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INTRODUCTION

I Sound = pressure, pressure causes displacement

I Elastic Potential Theory

I Elastic Parabolic equation (PE)

Goal: Compare Elastic Potential Theory displacement to PE
displacement
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APPLICATIONS

I Nuclear Test Ban Treaty monitoring

I Tsunami warning systems

I Explains anomalies in submarine transmissions
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COMPRESSIONAL AND SHEAR WAVES
Compressional: (P) Particles travel parallel to the wave
Shear: (SV) Particles travel perpendicular to the wave

I Both types propagate in elastic media

I Only compressional waves propagate in fluid media
I Interface waves require simultaneous incidence of P and

SV waves on an interface
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SNELL’S LAW

Reflected WaveIncident Wave i

Transmitted Wave

Transmitted Angle

sin(i)
c1

= sin(τ)
c2

I τ is the transmitted angle,
both c1 and c2 are
propagation speeds

I c1 < c2 → c1
c2

sin(i) = sin(τ)



OUTLINE Waves Rayleigh Waves Parabolic Equation Concluding Remarks

SNELL’S LAW

Reflected WaveIncident Wave i

sin(i)
c1

= sin(τ)
c2

I τ is the transmitted angle,
both c1 and c2 are
propagation speeds

I c1 < c2 → c1
c2

sin(i) = sin(τ)

I i < ic → no transmitted
wave
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SNELL’S LAW

Critical Wave

Head Wave

Expelled Energy from Head Wave
i_c

sin(i)
c1

= sin(τ)
c2

I τ is the transmitted angle,
both c1 and c2 are
propagation speeds

I c1 < c2 → c1
c2

sin(i) = sin(τ)

I i = ic (Head wave)
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RAYLEIGH WAVES

Stress components acting on an infinitesimal
rectangular parallelapiped

I Stress in elastic media

I σxy = σyx

I σxz = σzx

I σzy = σyz

I Six independent
components remain
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RAYLEIGH WAVES

I Potential equations for compressional and shear waves in elastic
media

Φ = Ae[−ωη̂αz]e[iω(
x−t

c )], (1)

Ψ = Be[−ωη̂βz]e[iω(
x−t

c )] (2)

where η̂α =
√

1
α2 − 1

c2 , η̂β =
√

1
β2 − 1

c2 , and c is wave speed

I Elastic displacement equation

~U = (Φx −Ψz)x̂ + (Φz −Ψx)ŷ + (Φz + Ψx)ẑ (3)

I Apply the free surface boundary conditions z = 0, σzz = 0:

A[(λ+ 2µ)η2
α + λ

(
1
c

)2

] + B(
2µηβ

c
) = 0, (4)

I and σxz = 0:

A(
2ηα

c
) + B(

(
1
c

)2

− η2
β) = 0 (5)
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RAYLEIGH WAVES

Rewrite equations (3) and (4) as the matrix equation:(λ+ 2µ)η2
α + λ

(1
c

)2
(

2µηβ
c

)
2ηα

c

(1
c

)2 − η2
β

[A
B

]
=

[
0
0

]
(6)

Nontrivial solutions exist where determinant equal to zero:

[
(λ+ 2µ) η2

α + λ

(
1
c

)2
]((

1
c

)2

− η2
β

)
− 4µ

(
1
c

)2

ηαηβ = 0

(7)
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RAYLEIGH WAVES[
(λ+ 2µ) η2

α + λ
( 1

c

)2
] (( 1

c

)2 − η2
β

)
− 4µ

( 1
c

)2
ηαηβ = 0

Find c that allows a solution for A and B
Future Work: Use roots in eq. 3 to find Rayleigh Wave displacements
for different media
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PARABOLIC EQUATION DERIVATION

I Helmholtz equation(
L
∂2

∂x2 + M
)(

ux
w

)
= 0. (8)

I L and M are matrices containing depth derivatives

I Multiply by L−1 and factor(
∂

∂x
+ i(L−1M)1/2

)(
∂

∂x
− i(L−1M)1/2

)(
ux
w

)
= 0. (9)

I Assume outgoing energy dominates incoming energy

∂

∂x

(
ux
w

)
= i(L−1M)1/2

(
ux
w

)
. (10)

This is the (ux,w) parabolic equation for propagation is
elastic and fluid media.
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PARABOLIC EQUATION MODEL

I Marching method

I Range dependent media

I Solves for pressure at every point in a range depth grid

Transmission Loss: Measure of signal weakening as it
propagates outward from the source

TL = −20 log10

∣∣∣ pr
p0

∣∣∣
where p0 is pressure near the source and p is pressure at the
receiver
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PARABOLIC EQUATION RESULTS
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PARABOLIC EQUATION RESULTS
Pressure output form PE at both interfaces

Future
Work:Compare these curves to theoretical displacement curves
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