(* Computing a 5-0 trump split among two hands *)
deed = {}; (* initialize deck to empty *)
(* assign five 1s to the deck; the 1s represent the trump suit *)
(* then we assign 21 0s, these are the non-trump *)
(* taking time and coding well can save you a LOT of trouble *)
For[n = 1, n ≤ 5, n++, deck = AppendTo[deck, 1]];
For[n = 6, n ≤ 26, n++, deck = AppendTo[deck, 0]];
Length[deck] (* makes sure got 26 cards *)
(* should have this in the program so we make sure we use the right deck,
and thus will paste it below *)

Out[8]= 26

In[13]:=
trumpsplit[numdo_] := Module[{},
count = 0;
deed = {}; (* initialize deck to empty *)
For[n = 1, n ≤ 5, n++, deck = AppendTo[deck, 1]];
For[n = 6, n ≤ 26, n++, deck = AppendTo[deck, 0]];
For[n = 1, n ≤ numdo, n++, (* main loop of code *)
{
 hand = RandomSample[deck, 13]; (* randomly choose 13 cards *)
 numtrump = Sum[hand[[k]], {k, 1, 13}];
 (* note numtrump is 0 or 5 if we have a 5-0 split *)
 If[numtrump == 0 || numtrump == 5, count = count + 1];
 (* count is our counter, counts how often have 5-0 *)
 (* we use || for or;
 would use && for and use two equal signs for comparison *)
}]; (* end of n loop *)
Print["Two theories: 2(1/2)^5 gave ", 6.25, ", other gave 3.913."];
Print["We observe ", 100. count/numdo, "."];
]

In[10]:= Timing[trumpsplit[1000000]]
Out[10]= {11.2945, Null}

Two theories: 2(1/2)^5 gave 6.25%, other gave 3.913%.
We observe 3.9166.
(* Getting exactly two kings *)
twokings[numdo_] := Module[{},
 deck = {}; (* initialize deck to empty *)
 (* 1 is a king, 0 non-king *)
 For[n = 1, n ≤ 4, n++, deck = AppendTo[deck, 1]];
 For[n = 5, n ≤ 52, n++, deck = AppendTo[deck, 0]];
 count = 0; (* initialize num of successes to 0 *)
 For[n = 1, n ≤ numdo, n++,
 {hand = RandomSample[deck, 5]; (* 5 card hand *)
 numkings = Sum[hand[[k]], {k, 1, 5}];
 If[numkings = 2, count = count + 1];
 }]; (* end of n loop *)
 Print["Theory predicts prob exactly two kings is ",
 100.0 Binomial[4, 2] Binomial[48, 3]/Binomial[52, 5], "."];
 Print["Observed probability is ", 100.0 count/numdo, "."];]

Timing[twokings[1 000 000]]
Theory predicts prob exactly two kings is 3.99298.
Observed probability is 3.9965.

Length[deck]

52
(* calculating probability of a full house, queens and kings *)
(* probability is VERY small so must do a lot of simulations! *)
(* sadly the more you want to compute, the worse Mathematica is *)
(* this is not a hard code, don't really need the special fns here *)
(* would want to shift to another language that is better *)

fullkingqueens[numdo_] := Module[{},
 deck = {};
 (* initialize deck to empty *)
 (* 10 is a queen, 1 is a king, 0 non-king *)
 For[n = 1, n \leq 4, n++, deck = AppendTo[deck, 1]];
 For[n = 5, n \leq 8, n++, deck = AppendTo[deck, 10]];
 For[n = 9, n \leq 52, n++, deck = AppendTo[deck, 0]];
 count = 0; (* initialize num of successes to 0 *)
 For[n = 1, n \leq numdo, n++,
 hand = RandomSample[deck, 5]; (* 5 card hand *)
 numkings = Sum[hand[[k]], {k, 1, 5}];
 (* want full house of Qs and Ks *)
 (* sum is either 23 or 32! *)
 If[numkings == 32 || numkings == 23, count = count + 1];
]; (* end of n loop *)
 Print["Theory predicts prob full house (Qs and Ks) is ",
 100.0 Binomial[2, 1] Binomial[4, 3] Binomial[4, 2] / Binomial[52, 5], "."];
 Print["Observed probability is ", 100.0 count / numdo, "."];
]

Timing[fullkingqueens[10000000]]
Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is 0.00168.

Timing[fullkingqueens[40000000]]
Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is 0.0018925.