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Abstract

The purpose of this working group was to introduce participants to various areas
of fractal research. Meetings were held twice a week, Wednesday and Friday. The
format of the meetings was usually an informal lecture by one of the participants.
After a brief introduction to a variety of topics by the organizers, the other partici-
pants were encouraged to investigate specific areas of research and report back to
the group. The following report records the lectures that were presented. Topics
included definitions of dimension, iterated function systems, Julia sets, L-systems,
fractal curves, and applications. Originally, the notes were taken in real-time dur-
ing the lecture, and at the end of the quarter participants were allowed to edit the
notes for errors and to enhance clarity.
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Chapter 1

Introductory Lecture

Lecturer: Larry Lindsay (Wednesday, October 8, 2003)

The following is the last of three informal lectures on various topics in fractals.
The purpose of this lecture (as well as the previous lectures, not included in this
report) is to give participants in the Fractal Working Group an introduction to
fractals. The wide assortment of topics is intended to demonstrate the diversity
of research in the study of fractals. In the previous lectures we briefly touched
on the history of fractal research, different ways to make a fractal, the intuitive
idea of dimension, dynamical systems and chaos, analysis on fractals, the chaos
game, and applications of fractals. In this lecture we will discuss probabilities
on fractals, box-counting and Hausdorff dimension, cellular automata as fractal
generators, graph-directed fractals, and quantization dimension.

1.1 Probabilities on Fractals

Much attention has been given to studying probabilities on fractals. One reason
for this is that it leads to research on “multifractals,” which requires that a prob-
ability be defined on the fractal. (We will talk about multifractals in the next
lecture.) One way of assigning probabilities is similar to a chaos game. | will
briefly present a visual example here. Start with a big circle, and consider four
non-overlapping circles inscribed inside. Think of these as similarity maps which
shrink the larger circle bg for two (the right and left), ané for the other two (top

and bottom). From a seed point, say the center, pick these maps at random and
apply the sequence of maps for several iterations. Plot the resulting point at each



iteration. If we give each map probabili%g then this is like symbolic dynamics
where we generate a sequence of four symhbio, 8, 4), with each symbol hav-

ing the same probability of being chosen. We are interested in what shapes we
get after a large number of iterations — in this example, after 40 iterations, it looks
like four “speckled” diamonds.

But the two smaller diamonds look a little darker, and this gives us an intuitive
picture of a probability supported on a fractal. In this example, a more “natural”
measure would give each equal darkness, with the smaller diamonds having less
than} probability and the larger diamonds having more tharobability.

What exactly are the probabilities which make the diamonds equally dark? In
our example the map scalings dre;, 3, 3, S0 we would need to solve farsuch
that

AR AL AR
) +() +(G) +(G) -+ (L.1)
Then the four numbers on the left of the equation are the probabilities, say
p1, P2, P3, P4, Needed to make the diamonds equally dark.
The idea of assigning arbitrary probabilities to the basic maps of an iterated

function system is a generalization of the above example, and the above procedure
would lead to an intuitive physical picture of the probability.

1.2 Box-counting Dimension

Upper and lower box-counting dimension. Given aBelet N(r) be the mini-
mum number of balls of diametemeeded to coveE. Obviously,E needs to be
bounded. The upper box-counting dimension is defined as

(1.2)

We also define the lower box-counting dimension using liminf, and if the two

agree then we get the box-counting dimensiof'ofhe idea is thalVv (r) ~ (%)d

As an example, lefZ = [0, 1]. Clearly we get approximately each time in
the calculation, using various values:gfand in the limit as — 0 we definitely
getl. So the box-counting dimension [of 1] is 1, which is a good thing because
an interval is normally thought of as a 1-dimensional object!
As our next example, take the rationdlsin [0, 1]. This is a countable set.
What should the box-counting dimension be? We get a dimension of 1 again, since
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we always need the same number of boxes to cover the rationals as we needed to
cover all of[0, 1]. From a mathematician’s standpoint this actually makes us a bit
uneasy, because we have here a countable set (something relatively insignificant)
with positive dimension. Other definitions of dimension give any countable set a
dimension of 0. Despite this drawback box-counting dimension remains popular
because it is relatively easy to calculate and understand. Here is a theorem which
applies to the above example:

Theorem 1.2.1.dimg(E) = dimg(E), whereE is the closure of-.

Let me reiterate that we need a bounded set to do box counting. If we tried
to do the calculation on an unbounded set, $ay= R, then we would get
dimg(F) = oo. This is not good, sinc® should intuitively have dimension
1.

1.3 Hausdorff dimension

Hausdorff dimension doesn’t have this problem. We get

dimy(R) = 1. (1.3)

The reals are a countable union of intervals of lengtand there is a theorem
which states the following: a countable union of sets has Hausdorff dimension
equal to the supremum of the Hausdorff dimensions of the individual sets.

Without using the theorem, though, suppose we want to calculate the Hausdoff
dimension of the entire real line. We begin with the following quantity, where
{A;} represents a certain covering Bf

H)(R) = inf{) |A;]°: R CUA;: |A)] < e} (1.4)

Givenn, we could usen intervals of length! to cover[—1,1]. We could
cover[—2, —1] and[1, 2] by intervals of length’-, and we would needr such in-
tervals. We could usén intervals of size- to cover[—3, —2] and|2, 3]. Continue
in this way until we cover all oR.

For this cover, we get



5 1\’ 1\’ i 1\’
> 1
= A
; n(zk—ln)é
s - 1-6)k
= 2 D 20k, (1.5)
k=1

Now, to define Hausdorff dimension we first define thdimensional Haus-

dorff measure
H°(R) = lim H’(R), (1.6)
e\0

and the Hausdorff dimensiatimy (R) is the value ob where thej-dimensional
Hausdorff measure jumps from infinity to zero. In this particular examplesifl,
no matter what we use, the infimum defining/’(R) is O (just take larger and
larger values of: in the above equation). § < 1, it is infinity. If § = 1,
it is infinity. We conclude that the Hausdorff dimensionl®fis 1, and the 1-
dimensional Hausdorff measureRfis infinity.

1.4 Fun Exercise

Let E = {1,5,3,5,.--}. We get the Box Counting dimension ¢ (But, of
course, the Hausdorff dimension is 0, becafisis a countable union of points,

and a single point clearly has Hausdorff dimension 0.)

1.5 Example

Here is an example in which

dim(E) < dimp(E). (1.7)

For this example we will construct a special Cantor set.0Leta < b < 1/3.
In the construction of the traditional middle-third Cantor set we start yoitfh]
and take out the middle third, and then take out the middle third of the remaining
intervals, and continue in this manner. In this example we have two choices:



Either take out — 2a from the middle of the remaining intervals in one scenario,
or take outl —2b from the middle of the remaining intervals in the second scenario
(do it symmetrically so the sets on left/right are both of lengtr ).

At Level n in the construction of the Cantor set there willBeintervals, and
in this example they each have lengthb'~, wheres,, + t, = n. (s, is the total
number of times we used andt, is the total number of times we uséd

At each level we have a choice betweeandb. To make these choices we
consider the calculation involved for upper box-counting dimension:

Tmp(E) = T 320

Ogﬁ
— nlog2

. 1.8
snlogé%—tnlog% (1.8)

By consistently following a string af’s with an appropriately long sequence
of b's we can get this quantity close tog2/ log%. Similarly, for lower box-
counting dimension, by consistently following a stringsfwith an appropriately
long sequence of's we can getlim;(E) close tolog 2/log <. In this way we
can makelimy(F) < dimp(E).

Question: What if we “randomly” chooseands? (Many people study ran-
domly generated fractals.) In this case, with probability one, the box-counting
dimension would exist, and the “expected” dimension would be the same as the
dimension we would get by simply alternating betweemdb.

1.6 Cellular Automata

A classic example in the study of cellular automata is the Game of life (invented
by John H. Conway). Here is a brief description. Start with a 2-dimensional grid
in which some boxes are shaded and some are not, indicating if a box is “alive”
or “dead.” We start with some configuration at timme- 0. Attimet =1,2,3,...

we update the configuration of shaded boxes by a certain rule, which determines
whether or not a given box is alive or dead based on the condition of its neighbors
at the previous stage. The general idea is this: You die from having too few living
neighbors (die from loneliness), or you die from having too many living neighbors



(die from overcrowding). When conditions are just right, you live (or you are born
if you weren’t previously alive).

Now consider d-dimensional example. The boxes are in a single line. Again
suppose there is some rule, which determines whether you are alive or dead at each
point in timet = 0,1,2,.... For visual purposes we align the evolution of our
configurations, with configuration 0 above configuration 1 above configuration 2,
etc.

Here is a simple rule: You remain alive (or come alive) if your neighbors on
your left and right are different, and you die if they are the same.

Starting with a single live cell, we can think of this system as the evolution
of polynomials(1 + x)™ mod 2. (Or Pascal’s triangle mod 2.) A shaded box
corresponds to a coefficient of 1 for the appropriate power. dffe get

1

1+z

1+ 2

1+z+a2%+2° (1.9

If we do this for a very long time and look at the resulting figure, we see that
it's a Sierpinski triangle, oriented differently of course (right triangle).

More generally, we can take a primgand for our polynomial coefficients use
the finite fieldZ/pZ. We then take a given polynomial and raise it to higher and
higher powers mog (or actuallyp” should work, too). A surprising fact is that
the resulting fractal turns out to be a graph-directed fractal, which is a generalized
version of an iterated function system.

Question 1.6.1.What about using Gaussian integers instead of primes?

1.7 Graph-directed Fractal

In an iterated function system we start with a seed set and two or more maps of
the set into itself. We then iterate these maps in all possible ways, ad infinitum.
This can be generalized to several seed sets, and various maps between these sets,
in which case we get several limit sets and call the resulting collection of sets a
graph-directed fractal. In the particular example above, with cellular automata,

to see the graph-directed fractal we have to keep zooming back and rescaling



appropriately (as we take higher powers of our polynomial), and in this context it
is called the evolution set.

1.8 Quantization Dimension

My research has been in quantization dimension, and | will talk more about this
later. For now | will give a brief introduction. In order to talk about quantization
dimension we need a probability, and in the interesting case it will be a measure
on a fractal. Therefore, one might suspect it is related to multifractals (it is, but
we won't get into that here). The idea of quantization is useful for a variety of
applications, and in fact it comes from electrical engineering.

For an intuitive example, say you have a signal coming to you, with data that
you want to store. This signal might be for the colors of the pixels for some
picture. But you can only store a finite number of colors, not the entire spectrum.
Say the spectrum runs through Red - Yellow - Green - Blue.

It might work well to “uniformly” choose colors in the spectrum. If we are
allowed three bits, we can assign colors using numbers ranging from 000 to 111.
This is overly simplified, but of course, on a computer you can only work with
finitely many things.

Now suppose that the colors in our picture are not uniformly distributed. Per-
haps there are several shades of green, but in our original choice of quantization
levels there may only be 2 possible shades of green (not good enough). If we
really need to distinguish greens better, then we might want several greens. We
would have to give up something somewhere else, so maybe we don’t care about
red as much. Skew the color distribution (of our quantizing levels), so that we can
distinguish greens well, but reds not as well. (Example: a military analyst may
need to distinguish between subtle shades of green in a satellite photo.)

Given arandom picture from a random space of pictures (where there are some
biases perhaps in the space it's drawn from), the engineer would want to figure out
the best way of coding data so as to minimize distortion in the reproduced image.

Suppose we have a spectrum of colors (with a continuum of possible colors).
Givenn we are only allowed to quantize withlevels, so we need to pick the
most representative colors. If this choice has been made, then a given color in the
signal gets assigned to one our representatives according to a Voronoi diagram.
That is, it is assigned to the closest representative color. Effectively, we have
replaced our spectrum of colors with a finite number of regions of constant color.

How should we choose points? This is done so as to minimize expected dis-
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tortion. Without getting into specific definitions, let be the minimum expected
distortion (there are several ways of doing this). The quantization dimension is (if
it exists)

_ logn

d = lim

n—oo —log e,
The idea is that the quantization dimension gives us some idea as to how fast

the distortion goes to zero as we quantize with more and more pe;tms:(%)é.

As an example take the middle-third Cantor set. We need a measure, so con-
sider the uniform distribution (probability take left or right§$. The following
argument will be non-rigorous but will suggest what should happen. We will run
through a sub-sequence 0% in order to calculate the limit in the definition of
quantization dimension. Whem = 1, we can use onlyt point, so we pick it
intuitively in the middle, and we get some erqt

Whenn = 2, we can use two points, so we put each in the middle of the left
and right halves of the Cantor set:

(1.10)

[ * [=-] [ * [-] (1.11)
We intuitively know what to do fon = 1, 2,4, 8, 16, . . ., and by self-similarity
we get

n=1 el
1
n=2 ey = 561
1
n=4 €a = ge1 (1.12)

In the calculation of quantization dimension we get

d = lim 2"

n—oo — log e,
i log 2%

= lim ———
k—oo — log(g—kel)
log 2

%8s (1.13)
log 3
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This should be reassuring, because this number agrees with other definitions
of dimension.

The above reasoning is certainly not rigorous, but the result is true. In fact, re-
search into optimal configurations for# 2* has led to some interesting questions
which researchers are still trying to answer.
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Chapter 2

Multifractals

Lecturer: Larry Lindsay (Friday, October 10, 2003)

The following lecture is motivated by the David Harte bodkultifractals:
Theory and Applicationd will discuss the basics of multifractal analysis and then
talk about how the spatial distribution of earthquake locations can be modelled as
a multifractal. A chapter of Harte’s book is devoted to earthquake analysis. Since
much of the earthquake discussion in this lecture involves looking at figures from
the book and the figures are not shown here, the following will mainly address the
basic ideas of multifractal analysis with an occasional mention of the application
to earthquakes.

2.1 Multifractal Measures

The term multifractal actually refers to a measure on a space. The set having “full
measure,” of course, tends to be a fractal, but in a natural way we are able to
obtain fractals within fractals, and hence we use the term multifractal. Therefore,
we start with a measure:, usually a probability measure, so tha{A) is the
probability of a randomly chosen point belongingAo

We have seen examples of how we can visualize a measure on a fractal (chaos
game). Recall that we got a static picture, which may have thousands of points,
showing roughly, say, the Sierpinski triangle. By looking at the relative density of
points in an area we get a picture of the bias of a randomly chosen point being in
one part over another.

We will be looking at pictures of earthquake events, and seeing where they
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clump. This gives an indication of those areas where there is a higher probability
of having an earthquake. Because of the intuitive nature of fault zones, which have
an apparent self-similarity in their crack systems, it seems appropriate to assume
that a multifractal structure exists. With this in mind one collects data on earth-
guake locations and then tries to analyze that data using ideas from multifractal
analysis.
Here are some of the ideas involved. We begin with the set of points having
local dimensionu:
By = {o:lim 2MB@) (2.1)
™0 log r
This is how we are able to obtain, as mentioned above, fractals within fractals.
Typically we have
Umin < @ < Gmay- (2.2)

Definition 2.1.1 (Multifractal spectrum). f(a) = dimg(E,).

2.2 Generalized Rényi Dimensions

See also the paper by Hentschel and Procadtianfinite number of generalized
dimensions of fractals and strange attractors

e log Jy, m(B, (@) dm(a)

. log | m(B,(x))" dm(x
© =1 i 2.3
(9) RN log r ’ (2:3)

where
X, = {z:m(B,(x)) > 0}. (2.4)
) if ¢ £ 1

D, = ¢ 91 2.5
q {llﬂh\g flogm(f;g(;p))dm(m) if g=1 ( )

where in the case = 1, log 0 = 0.
Keep in mind that/ f(z)dm(z) is the expected value gfwith respect to the

measuren. Also, ([ f9!(z)dm(z)) " is theq — 1 norm of f with respect to
the measure:. We have

o log (Jm(B, (@) dm(x) 7T

2.6
N0 log r (2.6)
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Why theq — 1 norm? Notice that the integral

/m(BT(x))qldm(x) (2.7)
can be estimated with the sum

Zm(Bi)q_lm(Bi), (2.8)

where we have divided a region into a grid of small sub-baxes
Alternatively, Hentschel-Procaccia define

) \4q
1 hm ]'Og Zz m(BZ)

D —
qg— 1m0 logr

q

(2.9)

wherer is the length of a side of a bak;.

2.3 Relations

We have defined the Multifractal spectryffny) and the generalized Renyi dimen-
sionsO(q). So how are they related? Typicallft«) and©(q) form a Legendre
transform pair. See the book by Kenneth Falcomechniques in Fractal Geome-
try, pages 194 - 195.

Consider again the Hentschel-Procaccia definition:

1 log >, m(By)
lim 128 22 (B)",

D =
q—1m™0 log r

q

(2.10)

What if ¢ = 0? (Assume)® = 0.) Then we getD, is the box-counting dimen-
sion. The case = 1 is called the information dimension, which is related to
> . pilogp;. The casg = 2 is called the correlation dimension.

In general, forg = 2,3,..., we get the so-called order interpoint dis-
tance. For these integer valuesgfthere exists an algorithm which is helpful
for computations, as suggested by the following. Given a probability distribution,
pick a sequence of points from this distributioX’;, X», X3,..., X,. Suppose
the choices are independent, in that the choice of one doesn’t affect another. We
call this a sequence of i.i.d. random variables (i.i.d. = independent, identically
distributed).
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Let
Y = max{||Xi = X,||, /X2 = Xl [ X1 — X[} (2.11)

Take the cumulative distribution function of the above:
Fy(e) = ProlY <e¢) = /m(Be(x))q_ldm(x). (2.12)

Note this is the same integral as we've seen in the definitioh(ef. Therefore,
we can rewrite the definition as

1 log F
D, = lim o6 Y(e).

2.13
g—1e0 loge ( )

2.4 Bootstrapped Hill Estimate

The actual calculations for earthquake analysis in Harte’s book were done using
the bootstrapped Hill estimate, which is described as follows. Consider a data set
{x1, 79, ...,xN}. Leti be the current bootstrap number< i < k.

Let {ys : ys = 1,2,...,n} be the bootstrap sample. For all choose
Ty, Ty, LEL

ys = max{||zs, — x|, ||Ts,0 — 2, ||} (2.14)
Sort:
Yy < Ye) S 0 S Y- (2.15)
Next calculate )
-1 YG)
Zipn = —— log ——=. (2.16)
m—1 ; y(m)
We ultimately get an estimate f6¥(q) (which shouldn’'t depend om):
~ k
dic1 Zim

Lety,, be the average of the'" order statistic over alt bootstrap samples.
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Chapter 3

Iterated Function Systems

Lecturer: Gerald Edgar (Wednesday, October 15, 2003)

3.1 Iterated Function Systems

When Mandelbroit started writing about fractals, came up with the notion that they
should be self-similar — what does this mean? Lots of examples from previous
mathematics wi’ this property. One way to formalize is thru iterated function
systems (due to Barnsley), analogous to dynamical systems. Have lots of similar
properties, where the name iterated function system comes from, reminds us of
dynamical systems.

Cantor Set (1880); Henry Smith is sometimes said to have written about this
before Cantor, but unclear if he had it. Before Cantor, notion of countable / un-
countable wasn'’t clear, and what Smith talked about wasn’t clear. Smith was
interested in Riemann Integral. If you want to tell if a function is integrable, we
nowadays say it must be continuous except on a set of measure 0. Back then,
didn’t have measure (which dates from around 1900). They came up with exam-
ples of sets that were really small such that you could still be integrable. Some of
his examples looked like Cantor sets.

3.2 Cantor Set

3.2.1 Construction

The Cantor set is a subset of the real line. We'll consider subséts19f
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Will look at a sequence of approximations to the Cantor set.

LetCy = [0, 1]

Remove the middle third, and gét = [0, 3]U[2, 1]. Is a closed interval, keep
endpoints.

Continue the process. Next is

1 21 27 8
= - —— -, = —.1]. A1
In general (), is the union o2” closed intervals, each of size™. Note

CoDCi DCy D --- (3.2
Definition 3.2.1 (Cantor Set). The Cantor se€ is define by

C=(Cu={zeR:Vnzel,} (3.3)
n=1

Note that0,1 € C. In fact, once we find and endpoint, we never remove
the endpoint, thus all the endpoints arelin One might first think that only the
endpoints are left, but not the case. In fact, we’ll §&s uncountable later.

3.2.2 Non-Trivial Point in Cantor Set

Example 3.2.2.; € C, but is not an endpoint.

The endpoints are always of the forfh, m € N. By unique factorization of
integers, cannot writ¢ as an integer divided by a power of 3.

Must showi € C, for all n; infinitely many things to check, checking one at
a time won't be useful. Need to do a more clever job of checking. Will proceed
by induction omn.

Will proceed by Induction, showing thatand? are inC,, for all n.

18



Clearly, both points are iy, and the base case holds. We now assume that
1,2 € C,, and show they are il ;.

How do we go fronC), to ', . ;? We remove the middle third of sets. We take
an interval, remove the middle third, and what is left for each sub-interval looks
like the union of two pieces, each one-third the length of the previous.

Thus, we have shrinking maps fixing the left and right pdrt$ : R — R
given by

8 WK

R(z) = . (3.4)
Exercise 3.2.3.Prove that
Cny1 = L(C,) + R(C). (3.5)

Thus, each step is related to the previous step. The thasl R are nice in
that the two images df), 1] are disjoint, so all future subintervals will be disjoint
and it will be easy to count.

What happens t§ and3?

Note

=
VR
o
~~_
Il
> |~

(3.6)
We now have the inductive step: 4f 2 € C,,, thens, 2 € C,,,.
Proof. Clearly,
1 3
1= L(Z) € L(C,) C Ch1 (3.7)
and
3 1
1= R(Z) € R(C,) C Cuyy, (3.8)
which completes the proof of the inductive claim.
0
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Remark 3.2.4. Note that the Induction was easier by working vxt'n'tbth?l and}l
and not just}.

3.2.3 Alternate Formulation of C'

Note we have proved that

C = R(C) U L(C). (3.9)
Thus,
C=1Cu=[)Cur = [V (RCW)UL(C)). (3.10)
n=0 n=0 n=0

Therefore, we find

o0

C = ﬁm@wﬂu@)

n=0

= R([)C.)UL([)Cn)
_ ROVWULO). (3.11)

This is what we mean by’ being self-similar. See is self-similar under shrink-
ing by 3.

3.2.4 Another Formulation of the Cantor Set
Letz € [0, 1], we may writex in base3. In other words, we can write

3
a,
= — a; €{0,1,2}. 3.12

v= g welon? (3.12)

Note we are not claiming each number has a unique representation. Consider
the string.122222222222 - - - and.2.

Note thatC; = {z € [0,1] : a1 # 1}.
Continuing, we find’; = {z € [0,1] : a; # 1,a2 # 1}, and in general
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C, = {z€l0,1]:a4,...,a, €{0,2}}
C = {.1' S [0, 1} 1al, o, € {0,2}} . (313)

There are problems, however, As remarked, numbers need not have a unique
base 3 expansion. The example given shows that we may replace a number with
repeating block with a terminating set, and thus these numbers are rationals. If a
number can be written in two ways, one way using 1s and one way not, then it is
in the Cantor set (as it can be written in base 3 without using any 15s).

Remark 3.2.5. The Cantor Set is uncountable.

This follows from the fact that’ is equivalent to numbers in base 3 without 1
as a digit. Formally, one could map any suck »  %t, a; € {0,2},toy = | g—
whereb; = 0 if a; is0 andb; = 1 if a; is 2. Thus,C' has as many points as all of
[0, 1] (consider base 2 expansions of real numbers).

3.2.5 non-Cantor Sets

Let
Ay = {0}
2
Al = AO U (Ao + g)
2
Ay, = AU (Al + 5)
A; = AU A+ 2
3 - 2 2 27
2
An+1 = An U (An + 3n+1)
A = JA. (3.14)
n=0

This is an increasing sequence of sets, its union is not the complete Cantor Set,
but on the computer, cannot tell the difference between this and the Cantor set.

21



Similarly, we have

Therefore, the union of these sets,just like the Cantor Set, satisfies

A = L(A)UR(A). (3.16)
Remark 3.2.6. Note 4 is notthe Cantor Set4d is a countable set, the Cantor Set
is uncountable. We do have, however, that
C = A, (3.17)

namely,C is the closure ofd, and A approximateg” as well as we want.

3.3 Uniqueness of sets under such constructions

Question 3.3.1.Consider the maps and R. Are there any other sef§ such that

X = R(X)UL(X), (3.18)
maybe if we want the sets to be disjoint, and not the empty set?

Take}—1 and% and keep applying these operators. This will generate a countable
example. There are lots of examples of sets satisfying this relation.

Theorem 3.3.2 (Characterization of the Cantor Set)Let X be a closed, bounded,
non-empty set such that = L(X) U R(X). ThenX is the Cantor set.

3.4 Sierpinski Gasket (or Triangle)

Two-dimensional example. Start with an equilateral triartjlen the plane. Sub-
divide into smaller triangles by taking the midpoints of the three sides, and joining
them to form an equilateral triangle. There are now four equilateral triangles, re-
move the middle one (the one that doesn’t touch any of the original vertices). Call
this 5.

Continue by removing the middle equilateral triangle from each of the remain-
ing triangles, and call the resultasi.

We obtain a sequence
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So DS DS DSy D - (3.19)
and let

S = ﬁ S,.. (3.20)
n=0

Exercise 3.4.1.Analogous to the expansion using just Os and 2s from the Cantor
set, how can we characterize this?

SO Sl S"J
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Chapter 4

Sierpinski Gaskets, Metric Spaces
and IFS

Lecturer: Gerald Edgar (Friday, October 17, 2003)

4.1 Sierpinski Gasket

We saw last time that the Sierpinski Gasket is a generalization to the plane of the
Cantor Set. How can we generalize the base-three expansion of the Cantor Set?

We will look at an expansion in baslée The digits are the vector8 , a’, b,
— — . .. . .
where 0 is the 0-vector,a” is the vector from the origin along theaxis, going

half-way the first side, and is the vector along the positively sloped line going
up from the origin, going half-way up.
We can write a general poing in the gasket by

7 =3 (3) @ den, @1)
1=1
where
D=1{0,3.0} (4.2)
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4.2 Metric Space

Have a set of "points)S and a distance function(x, y) > 0 defined on pairs of
points inS satisfying:
Forallz,y € S,

1. p(z,y) =0ifand only if x = y;
2. p(x,y) = ply, x);
3. p(z,2) < p(z,2) +p(y, 2).

We say the space is a Complete Metric Space if every Cauchy sequence con-
verges. This is true for Euclidean spaces.

Definition 4.2.1 (Fixed Point). Let f : S — S. A pointx € S is a fixed point of
fif f(zx) = x.

Definition 4.2.2 (Contraction Map). A continuous functiorf : S — Sis a
contraction map iBa € (0, 1) such thatvz, y € S,

p(f(x), f(y) < ap(z,y). (4.3)

Remark 4.2.3. We do not need to assume a contraction map is continuous; this
follows from the definition.

Example 4.2.4.For the Sierpinski Gasket, we can define maps by

— 1,
felz) = gz
f2(T) = T4
f=(T) = %?+?. (4.4)

Theorem 4.2.5 (Contraction Mappings).Let.S be a non-empty complete metric
space, withf : S — S a contraction map. Then there existsiaiquefixed point.

Remark 4.2.6. If z; andz, were both fixed points, then

plx1, ) = p(f(xr), f(z2)) < ap(x,x2) < p(xq,22). (4.5)
Thus,p(z1, z2) = 0, and the two points are the same.
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Proof. Chooser, € S (possible ass is non-empty). Then let; = f(xg), zo =
f(x1), and in generaly,, = f(z,_1).

Then{z,} is a Cauchy sequence, and by the completeneSg@®fery Cauchy
sequence converges), we knay — y, say.

As f is a continuous functionf(z,) — f(y). Butasf(z,) = x,.1, the left
hand side is just the original sequence shifted by one term. Thus,— f(v),
or, recalling the definition of, we havey = f(y), andy is a fixed point.

O

4.3 lterated Function Systems

Let S be a complete metric space, and fet S — S be contraction maps for

i € {1,...,n} with constantsyy, ..., «,. Leta = max}, «;; note all f; are
contraction maps with parameter
Explicitly,
Vr,y € S, p(fi(z), fily)) < ap(z,y). (4.6)

We call the above atierated Function Systemith parametery.

Definition 4.3.1 (Attractor). An attractor for the Iterated Function Systenfi }
S a non-empty compact setsuch that

E = fi(E)U fo(E)U--- U fo(E). (4.7)

Theorem 4.3.2 (Hutchinson).A complete metric space with a finite number of
contraction maps has a unique attractbt

Proof. Consider the set

K(S) = all non-empty compact subsets.f (4.8)

K(S) is non-empty as5 is non-empty (consider the compact sets consisting
of just single points irb).

We introduce theHausdorff distanceon K(S) by: for K1, Ky, € K(S),
D(K,, Ks) < r if every element ofK; has distance less thanfrom some el-
ement of K, and vice versa.

ThenK (S) is a compact metric space. Defife: K(S) — K(S) by

F(K) = i(K)U f2(K)U--- U fo( K). (4.9)
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Also, one has

D (F(K1), F(K2)) < aD(Ky, K). (4.10)

This follows from the fact that each, € K, is close to some point; € K.
Thus,

p(f(z1), fz2)) < ap(ai,s2). (4.11)
Book-keeping yields the claim.
Therefore, the Contraction Map Theorem applied here impliesRHads a

unique fixed point.
N

Moreover, we have an explicionstruction Let K, be any non-empty com-
pact set inS. Let

K, = F(Ko) = fi(Ko)U---U fu(Ko)
Ky, = F(K)) = fi(Ky)U---U f(K;y)
(4.12)

and so on. Thelk',, — F in D, whereFE is the unique attractor set.

One can use this to draw images on the computer. Break the plane into small
rectangles (introduce a grid), and color the grid if any poinkgfis in that grid.
As n grows, this becomes a good approximation.

Since on the computer you are using floating points and do not have exact
numbers, one can get a cluster of points representing the fixed point; however, if
you stand far enough back you see a fixed point.
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Chapter 5

Interpolation and Fractals

Lecturer: Bruce Adcock (Wednesday, October 22, 2003)

5.1 Interpolating Functions and IFS

Say one has a set of data, and wants to interpolate and find a function that fits it.
We will arrive at an IFS that interpolates the data, as opposed to more traditional
functions. From the bookractals Everywherdy Michael Barnsley.

Assume we have a collection of data

{(:Ui,yi) ER’:ic {o,...,N}}, NeZtay<---<an.  (51)

Definition 5.1.1 (Interpolating Function). An interpolating function(for the
data set above) is a continuous functigtizy, zny|—R, f(x;) = y,; fori €

{0,...,N}. The points(z;,y;) are theinterpolation pointsand f interpolates
the points.

Example 5.1.2.Consider the data set consisting(6f 1) and (1, 2). Let

. (;) N ( é : ) (D ! (g) (5.2)
) (5) i G) ' (53)

and



Lettingy = x + 1, we find

1 1 1
w1( T ) _ (1 2 ¥ ) and U}Q( v ) = (for%) (5.4)
r+1 §fE+1 r+1 53E+§

meaning the graph af = = + 1 is the attractor.

We want an IFS{R?; w,,n € {1,...,N}}. Will limit ourselves to simple
affine functions such as

L0006 e

Also, we want

w, () _ () and w, (N) _ () (5.6)
Yo Yn—1 YN Yn

We get
anTo+en = Tpq
TN + €, = Ty
CnTo +n Yo + fn = Un—1
CpTN + dnyN + fn = Yn.

We have five unknowns, four equations — and so one free variable. Will pick
and choosé,,. Looking atd,,, that acts vertically — stretches or compresses verti-
cal line segments, acts like a sheer.

We will study0 < d,, < 1, and show that we have contraction maps.

5.2 Contraction Maps

Theorem 5.2.1.Let N > 1, {R* w,,n € {1,...,N}} be as earlier, with data
set{(z;,y;) € R% i € {0,...,N}}. Letd, € [0,1). Then there exists a metric

d on R? equivalent to the Euclidean metric, such that the IFS is hyperbolic (ie,
contracts) with respect td. Therefore, there is a unique nonempty compact set
G C R? such thatG = UY_ w, (G).
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Proof. Let

d((p1,q1), (P2, @2)) = |p1 — p2| +0lq1 — @2, (5.7)

whered is defined at the end. This is equivalent to the Euclidean metric for
6 > 0. Note this is equivalent to the taxicab metric (your distance is how much
you go north/south, then how much east/west] ¥ 1, one direction is more
expensive to travel than the other).

Then, noting that,, > 0 (which comes from the fact that we've arranged
the points in increasing order;,, might also be positive), so if we sé? =

d (wn(21,11), (22, y2)) then

D = d((anziten, cnritdyyi+1n), (antaten, cnrotdyys+£n))
= |an| - |11 — 22| + Olcn (21 — 22) + dn(y1 — y2)]

(lan| 4 Olen|)|zr — 2| + 0]dn| - [y1 — y2]

alry — za| + 05]y1 — yol

max{a, 6} - d((z1,91), (z2,92))-

IN A IA

In the above, a®/ > 2, we have

|xn - CBn—|—1|

< 1.
|z — 2o

|an| =

If 3¢; # 0 then

min;<;<n{1 —[cn|}

0 = ; 5.8
max <i<n {22} 5:8)
otherwise také = 1. Further, we took
_ 1 1
a = 3 + 12%}3\/“%‘} <
0 = max{ld|} <1
As a ando are less than, we obtain a contraction map.
O
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5.3 Fractal Interpolation Function

Theorem 5.3.1.With the same conditions as above?iis the attractor of the IFS,
thenG is the graph of a continuous functigh: [z,, zx] — R that interpolates
the interpolation points.

Proof. The proof is several pages. The basic idea is that we have created a system
of interpolating points. Doesn’t look normal by any means, but it does work.
O

We call the above &actal interpolation function

31



Chapter 6

Self-Similar Curves

Lecturer: Gerald Edgar (Wednesday, October 29, 2003)

6.1 Snowflake Curve

Start with an equilateral triangle. On each edge, put an equilateral triangle in the
middle, one-third of the size of the original. Iterate. Koch snowflake.

In the limit, what is the perimeter, what is the area? One can see the area
is finite (contained in a large disk), but what about the perimeter? What is the
curve’s length (in the limit).

One can obtain this by using an Iterated Function System. Isn’t so successful
if you start with the initial set — better to start with theundaryof the initial set,
the three sides of the initial equilateral triangle.

In this case, we obtain the boundary of the Koch snowflake. If we look at just
one edge, obtain something which is self-similar. Whatever the dimension of this
piece is, that is also the dimension of the boundary.

If we divide a line-segment into 5 equal parts, each part is equal to the other,
and we are looking for an exponehsuch that

d
() o1

We end up withd = 1. If we have a solid square, and divide into 5 equal
pieces, we get 25 equal pieces, and now we have
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d
25 - (%) = 1. (6.2)

In this case, we end up with= 2.

So, forsimilarity dimensionwe obtain a line is dimension 1, and a square is
dimension 2.

For the Koch boundary, when we shrink by a third, what happens? When we
so divide we see there are four equal parts, each shrunk by a fac—itoWEf now

have
d
N ES - 69

Therefored = log, 4; this is the self-similarity dimension of the snowflake —
it is higher than 1, but lower than 2.

., "~

6.2 Other Examples

Eisenstein Fractions:
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LY 64

So the Eisenstein fractions are dimension 2. They tile the plane. For the
McWorter pentigree, we have

d
6- (3_\/5> = 1. (6.5)

Henced is aboutl.86.
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Another example: Heighway'’s dragon:

PO <Pl
-
L]IJ
P4 PS P6 P'?
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1\¢
2<E) 1 (6.6)

Start with a line segment. Split and replace with two line segments of half the
length at right angles. Continue this process. As you continue, you get choices as
to which side to do things — alternate.

One can show the sides never cross; the limit is Heighway’s dragon. This will
have non-empty interior, tiles the plane.

Can also look at as an attractor for an IFS. Can also think of the approxima-
tions as not just polygons in the plane, but ranges of function defindd, ®p
First is just a linear function. For the second, divide interval in half. Map each
half linearly into the two segments (respectively).

For next stage, map in quarters, and so on. Once we have a quarter, keep the
corner vertex. Stays fixed in all future steps. The distances go down geometri-
cally (and the geometric series converge), so the images of any point converges.
This sequence of functions with values in the plane converges uniformly to a new
function in the plane. The range of that limit function is Heighway’s dragon. This
is a space-filling curve: the domain is a line segment, but the range has nonempty
interior in the plane! Other examples include Polya’s and Hilbert's space-filling
curves.

What about the boundary of Heighway’s dragon? What is its dimension? The
boundary looks like a nice curve, with necks where sides meet.

6.3 Graph Self-Similar

We can analyze this in a way like self-similar. Think of the boundary as being
made up of a left4l) and a right 8) part. The boundary is a closed curve, but not
simple closed curve (necks). We can find the dimensions afd B.
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For B, it turns out that it is made up of two shrunkdss, rotated, shrunk by a
half. Looked at in another way, can get thais made up of & and anA, each
shrunk by%.

Can look as a multi-graph: Have nodesAaand B, have an arrow from! to
itself of Weightiz; an arrow fromA to B of Weight%, and then arrows fron®
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to A of weight 3.
Not self-similar in the usual sense; often caltgdph self-similar
Our matrix has two rows and two columns:

o (@) ) o
2(3)° 0

here A(d) is the adjacency matrix, dimensieh do not confuseA(d) with
nodeA. In the above( < d.

In some sense, we want the above matrix to equarhis is a non-negative
matrix. To such matrices, there is a nice theory due to Perron-Frobenius, which
describes how the eigenvalues of such a matrix can behave. We have a posi-
tive eigenvalue large that the absolute value of everything else. Often the largest
eigenvalue is called thepectral radius all the eigenvalues are often called the
spectrum

We want to findd so that the spectral radius is 1; thus, the other eigenvalues
will be less than 1.

The similarity dimension is always greater than or equal to the Hausdorff di-
mension For the Barnsley Wreath, the self-similar dimension is 1.9227 (approx),
and the Hausdorff is 1.8459 (approx).
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Chapter 7

Logistics Curve, Julia Sets, and
Efficient Algorithms

Lecturer: Dean Eiger (Friday, October 31, 2003)

7.1 Notation

By f"(z) we meanf(f(--- f(z))---), ie, then-fold composition. By the orbit of
a pointz underf we mean
O(z) = {neZn[l,00): f*(x)}. (7.1)

It is possible for a variety of behaviors: the points in the orbit could escape to
infinity, or cycle.

For example, in the complex plane consigét) = 22. If z = a + b, we find
fla+ib) = (a®*—b*)+(2ab)i. We can create a graph using the real and imaginary
parts.

7.2 Logistics Curve

Let L be the limiting population of a system, lef be the population at the'”
generation.

L(anrl) = C.Z'n<1 - xn) (72)
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govern the population: the, means that the population growth is proportional
to the size of the population, while tHe— z,, encodes information on how the
population competes with itself for resources. Often [0, 4].

7.3 Julia Set

Consider an arbitrary point in the domain of the Logistics curve, and use that as
an input (starting point) for iteration. The Logistics Curve looks like a parabola,
going through(0,0) and (1,0). Look at the intersection with the ling = z.
Starting at anyr on the real axis, go up till you hit the Logistics curve, then over
till you hit the line, and repeat. In this case, we obtain a cycle. If we started at a
different point, we would have obtained different behavior.

We define the Julia set as follows: latefer to thei’” element of the set.

J(0;) = {VO; > f(O;) = O; N f(Ojx1) # Oix1} (7.3)

Take f(z) = 2% If 2] < 1,|f(2)]? = |2|*>. Note that| f"™(2)| < |f"(2)| in
this case; in fact, ratios will also tend to zeraf is strictly less than.

If the modulus is greater than the point will go off to infinity.

If the modulus equals, then all these points will be points in the Julia set.

1. If |z| < 1, thenf™(z) = 2 (this is notation for there exists a fixed point).
2. If |z] > 1, thenf"(z) # 2o (this is notation for there is no fixed point).

3. If |z| =1, thenf"(2) € J, whereJ is the Julia set.

7.4 Efficient Algorithms

Lecturer: Steven Miller (Friday, October 31, 2003)

For computational purposes, often having an algorithm to compute a quantity
is not enough; we need an algorithm which will compgckly. Below we study
three standard problems, and show how to either rearrange the operations more
efficiently, or give a more efficient algorithm than the obvious candidate.
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7.4.1 Polynomial Evaluation

Let f(z) = ap2™ + ap_12" 1 + - - + ayx + ag. The obvious way to evaluate is to
calculatez™ and multiply bya,, (n multiplications), calculate™ ! and multiply

by a,_1 (n — 1 multiplications) and add, et cetera. There aradditions and

> r_o k multiplications, for a total of: + % operations. Thus, the standard

method leads t@®(n?) computations.
Instead, consider the following:

(((anx+an_1)$+an_2>x+---+a1>x+a0. (7.4)

For example,

ot + 42 — 30% — 11z +2 = <<(7x + )z — 3):1: - 11>x +2.  (7.5)

Evaluating the long way takdsl steps; cleverly rearranging takesteps.

Exercise 7.4.1.Prove that the second method takes at massteps to evaluate
anx” + - - - ap.

7.4.2 Exponentiation

Considerz™. The obvious way to evaluate involves— 1 multiplications. By
writing n in base two, we can evaluaté in at most2 log, n steps.
Let & be the largest integer such t4t< n. Thenda,; € {0, 1} such that

n = a2"+ap 1281+ + @12 + ap. (7.6)
It costsk multiplications to evaluate?', i < k. How? Consider, = z2’,
_ . _ 20 20 2t _ . 22 _ k=1 k=1 _ 2K

Y1=Yo Yo =2 -7 =27, =YY" =2 ,...,Yp =Y Y = .
Then
P xak2k+ak—12k71+"'+¢112+¢10
— xaka . xak712k_l . :Ea12 . xao
ag 1\ Ak—1 aj ao
= (@) @) (@) (=)
=yt v (7.7)
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As eacha; € {0,1}, we have at most + 1 multiplications above (if;; = 1
we have the terny; in the product, ifa; = 0 we don't).

Thus, it costs: multiplications to evaluate the?' (: < k), and at most another
k multiplications to finish calculating™. As k& < log, n, we see that™ can be
determined in at mostlog, n steps.

Note, however, that we do need more storage space for this method, as we
need to store the valugs = 22, i < log, n.

Exercise 7.4.2.Instead of expanding in base two, expand in base three. How
many calculations are needed to evaluatethis way? Why is it preferable to
expand in base two rather than any other base?

7.4.3 Euclidean Algorithm

The Euclidean Algorithm is an efficient way to determine the greatest common
divisor of z andy, denotedscd(z, y) or (z, y). Without loss of generality, assume
1<z <y.

The obvious way to determingd(z,y) is to dividex andy by all positive
integers up tac. This takes at mostr steps.

Let [z] denote the greatest integer less than or equal We write

_[y
y_ =
€T

Exercise 7.4.3.Prove that; € {0,1,...,2 — 1}.

cx+r, 0<r <. (7.8)

Exercise 7.4.4.Proveged(z, y) = ged(ry, ). Hint: ry =y — [%] T

We proceed in this manner uniil. equals zero or one. As each execution
results inr; < r;_1, we proceed at mosttimes (although later we prove we need
to apply these steps at masibg, = times).

42



T

r = |[|—| r+r, 0 ry<n
r1
1

r = r— 'T2+T3,O§7’3<T2
2
)

Ty = 7‘_ 'T3—|—T4,O§T’4<T3
3
Tk—2

T2 = | Tp—1+ 7T 0 < rp <rp_1. (7.9

k—1

Exercise 7.4.5.Prove that ifr, = 0, thenged(z,y) = rx_1, while if r, = 1, then
ged(z,y) = 1.
We now analyze how large can be. The key observation is the following:

Lemma 7.4.6.Consider three adjacent remainders in the expansign;, r; and
riv1 (Wherey = r_; andz = rg). Thenged(r;, ;1) = ged(ripq, 1), andry <

Ti—1

2
Proof. We have the following relation:

| T
Ti—1 = ”
K3

If r; < TT’l then as;.; < r;, we immediately conclude that,; < ”2*1. If
r; > 5%, then we note that

“ T+ Tig1, 0< Tiv1 < T5. (710)

T

Tit1 = Ti—1 — [Till Ty (711)

Ti—1
2 -

Ti

But [”—1] = 1 (easy exercise). Thus,; <
[

We count how often we apply Euclid’s Algorithm. Going frofm,y) =
(ro,r_1) to (ry,r9) costs one application. Every two applications leads to the
first entry in the last pair being at most half of the second entry of the first pair.
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Thus, if k is the largest integer such th#lt < z, we see we apply Euclid’s
Algorithm at mostl + 2k < 1 + 2log, « times. Each application requires one
integer division, where the remainder is the input for the next step.

We have proven

Lemma 7.4.7.Euclid’s Algorithm requires at most+ 2 log, « divisions to find
the greatest common divisor ofandy.

Let us assume that = ged(z,y). Thus, the last equation before Euclid’s
Algorithm terminated was

Ti_9g = [Ti_Ql “Tio1 + 71, 0<r; <ri_1. (712)
Ti—1

Therefore, we can find integetis ; andb,; _, such that

Ty = Qi—1Ti—1 + bi_aTi_o. (7.13)

Looking at the second to last application of Euclid’s algorithm, we find that
there are integers,_, andb,_, such that

Tic1 = @5_yTi—g + b;_s7i_3. (7.14)

Substituting for;_; = r;_1(r;_2, r;_3) in the expansion of; yields that there
are integers,;_, andb;_s such that

Ty = Qj—2Ti—2 + bi_3Ti_3. (7.15)
Continuing by induction, and recalling = ged(z, y) yields

Lemma 7.4.8. There exist integers andb such thatged(z, y) = az + by. More-
over, Euclid’s Algorithm gives a constructive procedure to firahdb.

Exercise 7.4.9.Find a andb such thata - 244 + b - 313 = ged(244, 313).

Exercise 7.4.10.Add details to complete an alternate proof of the existence of
andb with ax + by = ged(z, y):

1. Letd be the smallest positive value attainedday+ by as we varyu, b € Z.
Such &l exists. Thusf = ax + by. We now show = ged(z, y).

2. ged(x,y)|d.
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3. Lete = Az + By > 0. Thend|e. Therefore, for any choice of, B € Z,
d|(Az + By).

4. Consider(a,b) = (1,0) or (0,1), yielding d|z and d|y. Therefored <
ged(z,y). As we've showged(z, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimiziag + by, we obtain
ged(x,y), but we have no idea how many steps is required. Prove that a so-
lution will be found either among pairéa, b) with a € {1,...,y — 1} and
—be{l,...,x—1},or—aec{l,...,y—1}andb e {1,...,x — 1}.
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Chapter 8

L-Systems

Lecturer: Charles Estill (Wednesday, November 5, 2003)

8.1 L-System

An L-System is a method of starting with a seed object, say a triangle, and replac-
ing certain portions with more complicated themes.

We start with what Mandelbroit called an initiator and a generator. Each time,
we replace a pre-defined object with the generator.

For example, take an equilateral triangle. Have the generator be the first part
of a Koch snowflake (take the unit line segment, replace the middle third with two
segments at angles of 60 degrees). We then go through the object, replacing sides
with shrinked versions of the generator.

Usually we represent this by using an alphabet and a set of rules. For example,
let us have characters, — and-+. We can form words, say’ — F — F + +F —

F. HereF is the initiator. The word above tells us how to replace parts of the
generator to form the next stage.

Considerab, with a — ab andb — ba (a set of rules). Here, we apply these
rules in parallel. So, the next generationbfis abba.

This gives us strings of characters. We now give rules on how to make figures
from this. For example, lef’ be go forward by a certain distanééwill determine
this distance later) and draw a line. Letbe a right rotation by a certain angle
(sayo), and+ a left rotation by a certain angle (s&y Further, letf be go forward
without drawing a line.

At the end of the 19th century, Peano found an odd phenomenon. There are
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continuous functions from the closed intery@l 1] onto the unit squar@, 1] x
[0, 1].

Can have stochastic systems, where say one-third of the time wezhave
abe, one-third of the time téac and one-third of the time taba.

Another example is Conway’s game of life, where the fate of a cell depends
on the population of its neighbors and some fixed rules.

8.2 Peano Spacefilling Curve

Space-filling, Self-Avoiding Simple and Self-Similar curve; abbreviated by FASS.
Doesn't intersect itself, a bijection froffy, 1] to [0, 1] x [0, 1].

8.3 Motivation

The reason for creating this formulation was to model plants / leaves. We add
additional characters, the brackéend]. ConsiderF'F + [+F — F — F|. The
FF in the beginning is clear: go forward, go forward, dropping lines. The plus
rotates us. The left bracket does the following: push the state into a push-down
stack: the direction we're facing and the direction we’re at; we basically drop a
marker at this point and record the direction we were going. The we do what the
other symbols tell us until we hit the right bracket, at which point we return to the
marked position and restore the original orientation.

Obviously, need the same number of left and right brackets.

8.4 IFS andL-Systems

ConsiderF’ — F[+F|F[-F]F. Here, let the angle b&. This will generate a
nice leaf.
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Chapter 9

Hausdorff Dimension

Lecturer: Gerald Edgar (Friday, November 7, 2003)

9.1 Hausdorff Dimension

Let A be a set in a Euclidean Space (although more generally one may take a
metric space). Ledl C U, C; be a cover ofd, where|C;| = diam(C;) < e. We
call the above am-cover of A.

Fors > 0, consider

H:(A) = inf Y |CiJ". (9.1)
=1
We are often interested in
linéﬂj(A) = H*(A). (9.2)

The limit is a supremum - asdecreases, fewer covers are available. Typically
it is infinite up to a certain point, then a jump, and past the jump point it is often
zero; the value at the jump point can be anything betweamndco.

Lemma9.1.1.1f s < t and H'(A) > 0 thenH*(A) = cc.

Proof. Consider are-coverC;, and comparé . |C;|" and_, |C;|°. We may as-
sumee < 1 ase — 0. We find
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MGl < G (9.3)

3 (2

This is true for alle-covers, so we find

HY(A) < ¢ *H2(A). 9.4)
Sendinge — 0, if the LHS is positive, ag — 0, we must haved?(A) —
00. [

Lemma 9.1.2.1f s < t and H*(A) < oo, thenH'(A) = 0.
Proof. Same as before. O

Let sy = sup{s: H*(A) > 0}.

Caratheodory: 1905: defined arc length using method like this (n-dimensional
space). Worked for sets not given parametrically. Then Caratheodory showed that
for exponent 2, up to constant, get surface area. Hausdorff read the paper, said
the exponent didn’t need to be an integer, could be arbitrary. In his paper, he then
examined sets like the Cantor Set to show non-integral limits are possible.

9.2 Sierpinski Gasket

Equilateral triangle with sides of length 1 in the plane. Divide into four smaller
triangles, remove the central one and keep the other three. Continue (repeat with
the remaining three triangles).

Can do in terms of expansions. Consider two vectgralong one side and
e, along the other side, both sides emanating from the lower left verte(_iXat

Then we have all points in the plane that can be written in the form

=1
> @e{0,a.a) (95)
=1
Note the vectors:; ande; have Iength% if the initial triangle has sides of
length1.

We can consider it also as a sequence
So DS DS DS D - (96)
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wheresS,, consists oB” triangles of sides of lengtkr . Note the unit equilat-
eral triangle has diametér

If we find onee-cover, we get a bound. Givern> 0, choose: so thal ™" < e.
ThenS is covered bys™ triangles of side length~" < e. Thus,

HZ(A) < 3"-(27")% (9.7)

For whats is the above bounded? Cleark, = }ggg = log, 3. Anything
smaller thans, will give infinity, so we know thatH?°(S) < 1. Therefore,
H*(S) <1, sodim(S) < so.

If Ais a set of diameteb, let k be such tha2* < D < 27%+1, Without loss
of generality, we may assunie < 1.

Claim9.2.1. Let

3k:
Sk = UT]{,‘Z (9.8)
i=1
Then
m = #{i: T, NA# ¢} < 100. (9.9)

Proof. Except at singleton points,; N 7}, = ¢ and all are in a ball of radius
< D+ 27%. Therefore

3
m-47%. % < m(D+27%)2% (9.10)
Thus,
4 4. 4k: 2—k+2 2 4
m < — -4 x(D+27%)? < TR A0 (e11)
V3 V3 V3
Of course, we can take a smaller number than 100! O

If Aisasetofdiameteb, itintersects with at most: < 100 triangles of size
37*. Therefore,

p(A) < 100-37% = 100(27%)% < 100u(A)™. (9.12)

Therefore, any-cover A of S gives

50



ZJIAAS > 1002# > mu(s) (9.13)

This gives the desired answer — herds not Lebesgue measure, it is the
measure on the Sierpinski gasket. We us$eto denote the diameter.
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Chapter 10

Koch Fractal and
Non-Differentiable Curves

Lecturer Youri (Wednesday, November 12, 2003)

10.1 Koch Fractal

>From the paper by Koch (turn of the last century): it is a curve which is nowhere
differentiable. He wanted to construct such a curve usiegnentarygeometry,
and not the Fourier Series techniques of Weierstrass and Hardy.

Start with a segmentd, B]. Divide into three equal parts. Remove the middle
third, say at point€' < E. Form an equilateral triangle with baé&~ going up
to third vertex atD, and add the line€'D andDFE.

Continue this process on the four segments; in the limit we get the Koch Frac-
tal (also the Koch snowflake).

Let P, be the curve aften steps (after the first step, there are four sides). In
general, at the'" step, there aré” segments of length—.

Let k, : [0,1] — R2, a function to then'” curve. Ifz € P, N P,_1, then
kn(z) = kn—1(z). Notek,(z) = (z,0) if z is in the first or last third, else go up
from z till you hit the point. Note the Cantor set are &y for all n; in fact, there
are lots of Cantor Sets!

These functions converge uniformly, as the heights of the triangles decrease:

V3

(@) = kna(@)]] < 57

(10.1)
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We seek,, — k, wherek is a continuous fraction describing the fractal.

10.2 Properties ofk

10.2.1 kis Bounded

Note k is bounded: fork,, the height is bounded by the sum of the heights of
equilateral triangles, where each triangle is one-third the previous. Thus,

k(@) <> hy = 22@ = \/Tg' (10.2)

10.2.2 kis not Rectifiable

P, has4™ segments, each of leng#i. Thus, the length of’, is §7 The length
of k is the limit asn — oo, which is infinite.

However, the area between the curve andatfeis is finite; one may show
the area is bounded bé% In then'” step, there ar¢” equilateral triangles of side

length3~", for a total of4™ - “Lgn Summing ovem gives the claimed answer;

note we are using the area of an equilateral triangle of side Iesrigtﬁ%g.

10.2.3 k doesn’t intersect itself

In the original picture withAC' D E B, look at the line fromB to D. Draw a line
L with angle60 degrees fronB, parallel toD E. We want to show the curve is to
the left of this.

The distance fronD to the lineL isd(DE, L) > ‘/?3 Similarly, d(CE, L) >
V3

=
If a point z is built on the segmenb E, thenk; (z) € ED with say heighty

on DFE, then
1V3 V3

d (ky (2), k(z)) < - =

=34
Thus, this point is to the left of the line.
Now considerz € EB. Then ifk(z) = (z,0), it is on the left side. If

k(x) # (z,0), we have a similar situation as before, with everything smaller (self-

similarity).

(10.3)
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Basically, draw equilateral triangles with sides&t, CD, DE andEB. We
see all points on the curve built oAC' are constrained to lie in the equilateral
triangle built onAC'; all the points built onC'D are constrained to lie in the equi-
lateral triangle built orC'D; and so on.

Assumer # y, and choose so thats: < y — z. Thenk(xz) andk(y) belong
to parts of the curve built on different lines. As they are built on two different
segments, the curves cannot intersect.

As the curve doesn't intersect itself, we can order the points on the curve. If
x < y, we say the poink(x) is before(or preceedsthe pointk(y).

10.3 £k is not Differentiable

For a curve to be differentiable at some poifitif we take anyB also on the
curve, we can consider the secant lin@. This secant line must approach the
tangent lin€l’y asB — A.

10.3.1 Vertex Points

One type of points on the curve are the vertices of the polygonal lines. Let us
assumek(z) is a vertex ofF,; thus, it is a vertex of alP,, for m > n. Clearly not
differentiable there, as the two sides (before and after) meet at 120 degrees. Thus,
look at secant lines from one side gives a different slope than secant lines from the
other. We need that there are infinitely many vertices on each side approaching
k(x) — this follows from the presence of Cantor sets on each side.

10.3.2 Cantor Set but not Vertex Point

AssumeK = k(x) = k,,(x) for allm > n. Then itis a point in some Cantor set.
We can find two vertices for eveny that are close td<, one on each side. Say
the points ared < K < B. Then we can find a verteX going up fromB. The
angle fromK to C is between 30 and 60 degrees, or between 60 and 90 degrees.
This comes from eithef’ to the right and abovés, or from C' being to the left
and belowB.

The above argument also works for the point$) = (0,0) andk(1) = (1,0).
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10.3.3 Limit Point

If K = k(z)isalimit point, then we have a sequence of distingtr)s converging
to K (else we're in a previous case). L&, = k,(z). Choose a sub-sequence
{ni} such thatk,,, (z) # k,,(z). Let K,, C [A,_1, Bn—1]. Thenk,, is built on a
triangle that is removed. Then takeé,, B,|. Note the angle betwee#, B,
and A, B, is 60 degrees. Bu#,, B, — K, but the tangent line will have a
different slope.

10.4 More Non-Differentiable Curves

Start with an intervalA, B]. Divide in thirds withC' < E. Let M be the midpoint
of [C, E], and letD be at some angle frod/, with DM Iength—v?’fE. We perform
a similar process as before, and obtain another non-differentiable curve.
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Chapter 11

Quantization Dimension

Lecturer: Larry Lindsay (Friday, November 14, 2003)

11.1 Quantization Dimension — Background

Quantization is the process of estimating a given probabilityon R by a dis-
crete probability supported on a finite skt

This came from electrical engineering, for efficiently encoding information in
a signal and minimizing distortion. Specifically, the original motivation was pulse
code modulation (Reeves 1938).

We will need the following definitions:

V,..(P) = n' quantization of order
= }‘ngfn/d(x,A) dP(x)
ens(P) = V. (P)V". (11.1)

To estimate a given probability with a discrete probability supported on a finite
set, we could form a Voronoi diagram. Then the mass of a cell is the probability
of that cell, and we assign that mass to the centroid of the cell.

As an example consider the uniform distribution in some finite portion of the
planeR2. What does the optimal Voronoi partition look like? Could be squares,
hexagons, and so on. It turns out that hexagons are the best way to pack. This was
discovered in economics in the context of service centers for customers. The goal
is to minimize the average distance people need to travel to service centers.
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But this is kind of a trick question. It depends in some sense on how we
define distance in the plane. If we use the sup norm, we would use squares (which
would correspond to balls). The taxi-cab metric would lead to diamonds (again,
corresponding to balls).

There is a famous algorithm used to get the optimal set, called Lloyd’s Algo-
rithm | (also discovered by Steinhaus): Start witpoints (randomly placed) and
form a Voronoi partition. Within each area, move the point to the centroid of the
area. Then start over, forming a new Voronoi partition. Continue — number of
points stays fixed. Hopefully this converges to an optimal set, but it sometimes
converges to a locally optimal set (not globally optimal) or to a saddle-point.

Open question: What are necessary conditions for the algorithm to con-
verge to an optimal set?

11.2 Generalization to ther!” Power Distortion

Bucklew and Wise (1982): LeP, be the absolutely continuous part of a proba-
bility P onR?. Suppose?||| X ||"™°] < oo for somed. Then

lim n"/%,,(P) = Q(r,d) H@ (11.2)

n—o0 d\?

d/(d+r)
whereQ(r, d) > 0 depends only on andd, and above we are takingranorm,

p= d;ir. In this case\? is d-dimensional Lebesgue Measure.
The formula forQ(r, d) is

Q(r,d) = inf "%V, .(U(]0,1]%). (11.3)

n>1

Open question: What specific values doe€)(r, d) take on for different
values ofr and d?

This leads us into quantization dimension. WhaPifs singular with respect
to Lebesgue measure? Maybe there is a formula similar to above, but using a
smallerd. What exactly happens? Some definitions and results are known, but
there are still many open problems.

11.3 Definition of Quantization Dimension

Zador (1982):
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D,(P) = quantization dimension of order

logn

= lim (11.4)

n—oo —log e, . (P)
Note that the limit may not exist. In that case we define upper quantization di-
mensionD,.(P) = lim sup and lower quantization dimensidn, (P) = lim inf.

Idea:e,, . (P) behaves likg L)'/,

As an example consider the symmetric probability on the middle-third Cantor
set. As we saw in a previous lecture we can intuitively put quantization points in
the middle of the intervals at different levels in the construction of the Cantor set.
We getegr , = sreq,.

D, = lim —=—— =7 lim ———— = log,2. (11.5)

If instead of using the symmetric probability, what if our probability is skewed
to the left or right? The above intuitive argument may not help us much.

11.4 Self-Similar Example

Graf and Luschgy (1999): Ld? be a self-similar probability generated by a sys-
tem of contracting similarities,, ¢, . . ., ¢ (satisfying the Open Set Condition)
and a probability vectofp,, ..., py), thenD,(P) is the solutionD, to the equa-
tion

N

S s Th = 1, (11.6)
=1
wheres; is the contraction ratio af;.
Comparison to Thermodynamic Formalism: 1Y) be the inverse tempera-
ture

N

958 — 1. 11.7
> s
=1

Then we get
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D, = 5la) (11.8)

l1—gq
precisely whers(q) = rg.
Therefore,
~ Ble(n))
by = 1~ q(r)
(11.9)
implies
ion o Bla(r)d'(r)(1 —q(r)) + Bla(r))d'(r)
ol = (1= 4P
_ q/(r)ﬁ (q(r))(1 — Q(T))) ;i‘ﬁ(CI(T)). (11.10)

The first derivative is non-negative. We are assuming is differentiable. As
r increasesg(r) decreases. Thug,(r) < 0. Therefore,D'(r) > 0 if and only if

/ _6(Q<T))
Bla) < 7= 0y (11.11)
which is easily seen to be true.
Open Question: In numerical examples, the second derivative appears to
be negative (or non-positive). How can we prove this?
Lindsay and Mauldin (2000): The above can be extended to conformal iter-
ated function systems. Given appropriate conditions on a finite conformal iterated

function system (in particular, satisfying the Open Set Condition), one gets

D,.(m) = lﬁ(—_cl)q (11.12)

precisely whers(q) = rq.

11.5 History of Results

The self-similar case (Graf and Luschgy) was first done for the Strong Separation
case: for the IFS, there was a positive distance between the different parts of the
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fractal (no touching boundaries). Allowing for boundaries to touch, we have the
Open Set Condition, which states: there exists an opeli sath that,(U) C U
and¢;(U) N ¢;(U) = ¢ wheni # j. Note for the Cantor Set we could take
U = (0,1); but we could also us@), 1]\C, C the Cantor Set. This example is
bad, as the open sét misses the actual fractal. This leads to the Strong Open
Set Condition, which is the Open Set Conditipiis U can be chosen such that
UnJ # ¢, l.e., there is an intersection of the open set and the fractal set. For
the systems considered above the Open Set Condition and the Strong Open Set
Condition are equivalent.

Open question: How do we prove the previous result for infinite iterated
function systems?
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Chapter 12

Iterated Function Systems

Lecturer: Bruce Adcock (Wednesday, November 17, 2003)

12.1 IFS with Escape Time Algorithms

Looking at IFS with escape time algorithms. From there, one can go on to looking
at Julia sets.

Say we have an IF§R?; wy, ..., w,}; eachw; is a contraction. Lef be the
attractor for the IFS. Further, let

Al = w1 (S)

n—1

A, = wa(9)\ (A4 (12.1)

i=1

We can define a dynamical systeii®?; f}, where f is defined so that when
we restrictf : R? — R? to 9, it satisfies

(12.2)

wl_l(xay> If <x7y) € Al
flz,y) = { :

w,H(z,y) 1 (z,y) € A,
We havef(S) C S.
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12.2 Example

A right-angle version of the Sierpinski TrianglgR?; wy, w,, w3}, where

wi(x,y) = (.bz,.by+.5)
wo(x,y) = (bz+.5,.5y)
Consider
(2z,2y—1) ify>.5
flx,y) = { (2x —1,2y) ifz>5y<.5 (12.4)
(2x,2y) otherwise.

Assumewv’, 7 are in the same case of definition fifz, y). Then
A(F(V), f(Z)) = 2d(T, 7). (12.5)
If we mix cases, the above formula is not true.

Exercise 12.2.1 Assumev’ € R?\S, then

lim d(0, f"(V)) = oo, (12.6)

where in the above, we megnhcomposed with itsel times. Thus, anything
outside of the attractor escapes to infinity.

Consider again the right Sierpinski Triangle. M&tbe a rectangle containing
the Sierpinski Triangle (theindow). LetV = {(z,y) € R? : /22 + ¢ > R}.

Letn be a cut-off parameter (calledimity. Consider(z,y) € W. We assign
a color based on how quickly its iterates tend to infinity. Explicitly,

Color(z,y) = min (7, leastn such that*" ((z,y)) € V). (12.7)

In other words, we iterate a point at mastimes. If it hasn’t escaped (made it
into V), we color inn. The smaller the color, the faster it escapes.fAS) = 5,
the points inS are always colored.

With the Sierpinski Triangle example, we can get the following:
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12.3 Julia Sets

Let f : C - Chbea polynomial of degree greater than one. Egtdenote the
points of C whose orbits don’t converge to the Point at Infinity (note we are using
C, notC). Explicitly,

Fy = {z e C:H{|f"(2)|}2,is boundet}. (12.8)

The above is the filled in Julia Set. The boundaryfis called the Julia Set
of f, and is written ag/.

Typically, when we talk about Julia sets, we meafz) = 2% + \. This is
tied in with the Mandelbrot set, which {S\eC:{z,, }°° , does not diverge} (where
zo=0andz, = f(z,-1).)
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Chapter 13

Fractals and Biology

Lecturer: Larry Lindsay (Friday, November 19, 2003)

In this lecture we will discuss the papénactal Graphical Representation and
analysis of DNA and protein sequengby Victor V. Solovyev (BioSystems, 30,
1993, pages 137 to 160). The discussion below, unfortunately, doesn’t make much
sense without the accompanying figures from the paper, but it does give an idea
of how the study of fractals has been applied to research on DNA and protein
sequences.

13.1 Introduction

13.1.1 DNA

There are two types gdurines: Adenine (AapndGuanine (G)there are two types
of pyrimidines: Cytosine (CandThymine (T) These code over 100,000 proteins
by sequences of these four letters.

There is a place on a DNA where we start and end. Not everything codes —we
have a coding region where proteins are coded (that's what start and stop refers
to). We haveexons(these are the coding) and thtrons (these don't code, we
may not know what they do; spliced out during some processes). There are also
intergenic sequencesoutside of the coding of a gene). For some strange reason,
we call the starting poini’ and the stopping poir¥t.
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13.1.2 Chaos Game

Take a Sierpinski triangle, play the Chaos game and see what is filled in. If instead
of starting with three vertices we start with 4 vertices, we instead uniformly fill
in the square. Now, give each vertex a probabitity Now if the p;’s are not all
the same we won't fill in the square uniformly, but will get self-similar sets;
tells us how often we are in the quadrant near veitekenp;p, would be the
square up near vertdx and then divide that quadrant in fourths, and take the one
corresponding to vertex 4.

We can use this for proteins / DNA: label the corners of the square by A at
(0,0), C'at(1,0), G at(1,1) and T at(0, 1). Given a sequence, go to the center
of the quadrant with label the same as our first letter. Then, each letter tells us
how we move. There is more self-similarity on the intron coding than on the exon
coding (observation of figure).

We can talk about standard deviations. Going down to a certain levehsay
squares in our grid), then for a given sequence of leigtiie expect each cell to
haveZ; percent. Let

pij = #{pointsin the(s, j)-cell}. (13.1)
Let § be the standard deviation. Then

1 2
§ = \/nQ_lgg(pﬂ—m : (13.2)

A maskM" (m = 0,1,2,...) is the collection of cells wherg;; is at least
p + md. In other words, these are the cells where we are much ghoMais gets
rid of cells where not much is going on.

13.1.3 Graphic Representation

Take a large grid, say 128 by 128. Take a sequence of length 50,000. Play our
chaos game, and see how many points are in each cell. Thisis;ofor a given
sequence, say we are interested in GATATACC — this will correspond to a certain
set of boxes that correspond to this. The number of boxes divided by the number
of cells is the weight we give this sequence.

Define

F(subsequence) = Z Zpij’ (13.3)
J

i
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where above the right sums are only over the boxes that have the sub-sequence;
i.e., the number of cells containing this. Then we only look at strings of length 8
— there are@® such strings.

In a histogram, the:-coordinate is thé's, and they is the number that have
that F' value.

13.2 Use of Fractal Representation for Analysis

13.2.1 Functional Regions / Gene Structure

Sliding window going along, say of length 50. Then move over 1, repeat, calcu-
lating F' values. Then plot thé” value. We've filtered first, so if it is relevant, it
should have a spike there.

Idea: family of sequences that do same thing, not sure which genes do it. Make
a family mask, test against another sequence that is known to do the same thing.

13.2.2 Proteins and Amino Acids

There are 20 amino acids. Look attax 5 grid. Label each cell with one of the

20 amino acids. Now map proteins in terms of amino acid sequences. This works
well for non-primes; in fact, works best when a number factors as two comparable
numbers.

Now let the amino acids be sectors on a circle. This works also for primes
now. Say we have sectors. Then in the subsequent stages, we divide each sector
into n — 1 subsectors with a smaller radius, and then the remaining sector in the
wedge is thex'".
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Chapter 14

Fractals and Random Walks

Lecturer: Dean Eiger (Wednesday, December 3, 2003)

14.1 Random Walks

A random walk is a chance process in which an initial point is selected, and ad-
vancements are made along the coordinate system with equal probability of move-
ment in each possible direction.

We define coordinate systems as followsRih= R, leti be the unit vector in
the positive direction. Let”, be a starting point. We often choose at each stage
either+ior —i. Thus, aftemn steps, we are at

o= To+ Y (&) (14.1)
j=1
Let p(z) = 2. This is the probability that we reach the right end poiuit (

before we reach the left endpoirif){ let = = 7, for simplicity. Now p(0) = 0,
P(n) =1, andp(m) _ wl

14.2 Example: Circuit Analysis

Consider an electrical circuit. Let it have a voltage source of unit voltage, and an
arbitrary number of resistors connected in series. We can define current by

g = —t ) (14.2)



whereV (0) = 0, V(n) = 1. By Kirchoff’s Law, we have

V(e—-1)—V(x) N V(iz+1)—V(z)

= 0. 14.
I I 0 (14.3)

Therefore,

Viz) = . (14.4)

14.3 Harmonic Functions

Let B = {[0,n]}, and let/ = {[1,» — 1]}. We say a function is harmonic if, on
the interior pointd, we havef(x) = w; we sayB is the boundary.

Dirichlet Problem: given the values of a harmonic function on the boundary,
find the function in the interior.

Lemma 14.3.1 (Maximum Principle). The largest value of a harmonic function
occurs on the boundary.

Proof. Assume not; thus, lef take its maximum value in the interior. For interior
pointsz € I, if f(x) = M thenf(x + 1) = M, implying the function is constant
(and in this case, the maximum will also occur on the boundary). ]

Lemma 14.3.2 (Uniqueness Principle)lf f and g are harmonic functions and
f(z) = g(z) forall x € I, thenf(x) = g(x) forall z € B.

Proof. Let h(z) = f(x) — g(z). Forallz € I,
h(z—1)+hxz+1)  flz—-1)+ flz+1) glxz—-1)+gx+1)

= — . (14.5
2 2 2 ( )

Therefore, iff(z) — g(x) = h(x), thenh(z) is harmonic (becausg¢ and g
are). By the maximum principle, the maximum/obccurs on the boundary. As
f(z) = g(z) on the boundary, this implies the maximum/ofs zero, which then
givesh(z) =0forz € 1. O
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14.4 Random Walks in Infinite Spaces

Whereas the central problem of random walks in finite spaces is calculating the
probability of reaching one terminal point before the other, the probability of a
random walk escaping to infinity is the central problem in an infinite space. A
random walk returning to the initial point is said to be recurrent, and one that does
not is transient.

14.4.1 Escape Probability

The probability of a random walk on an infinite lattice escaping to infinity is de-
termined by consideration of finite subsets of the lattice.

Let G") be any finite subset df, whereL is a lattice. Here < /3¢ 22 is

the integer-valued radius of the sub&&t). Let S be the initial point.

Again, consider the probability of a system being transient (the probability
of escape). Thug;%, is the probability of leaving>™) before returning ta5®
(where we start). Therefore

Pese = lim p"). (14.6)
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Helge von Koch: On a Continuous Curve without
Tangents from Elementary Geometry

Koch Fractal

The segment Py=AB
has a positive

direction from 4

to B. The operation

Q replaces the segment

AB with the polygonal
line P;=ACDERB.

>e.

The polygonal line P, is obtained by applying » times the operation Q starting from AB =[0,1].
P, has 4" segments of length 3% Let S be the set of all vertices of the polygonal lines P;

Py, P,..and S'=S the set of the limit points of the points of §.

Define functions £k, :[0,1] - P, in the following way
ko(x) = x
x ifxeACorEB
kl (x) = .
y if x € CE (asshown)

The function k, coincides with k, ; on their common segments and
k,(x)=y, if k,_,(x) belongs to a segment ST of P, _, which is removed in the construction of
P and y, is the point of intersection of the perpendicular to S7" with P, .

The functions k, are continuous and converge uniformly to a continuous function k because

an(>) V3

k -k < t =
H n (x) n—l(x) || 2.3;1 3 2.371




Let P be the curve obtained with the limiting process described above. The curve
P is the continuous function & :[0,1] - S’ and consists of all points of S’.

e The function k is bounded

||k,1<x>||<2||k () = ki (x )||<Z 3" -6 1oL
V3 V3

) 1= lim 1o, Gy < == de. [T G 1< 4B | =

BB By

e The curve k is not rectifiable

n

The length L, of the curve P, is % . Then the length L of the curve P is

=limL, = 11m4— =

n—m n—w 3 n

e The area between the curve P and the x — axis is 2—3

V3

The area of an equilateral triangle with sides of length x is %xz sin(60°) = Tx

The region between the curves P, and P, consists of 4" equilateral triangles and has area

J— 1 H_£4”
"4 3 16 9"
The area between the curve P and the x — axis is
A=Y oy B4 B

oy = 4 9" 16 91_ﬂ 20

9

A

Now we want to show that the curve P doesn't intersect itself. Let / be the line that meets DE
at the point £ with an angle 60°.

e The curve P lies on the left side of |

Let x €[0,1]
If k(x) = xthen k(x) € AB and AB is on the left side of /.
If k(x) # x then there is an integer n such that &, (x) # x. The distance between / and the

B3

segments of P, (except the segment with vertex B) is > %003(30") = 23 The point k(x) lies

on the part of P generated by a segment of length 3% . Then || k(x) -k, (x)||< 4—\/5 and so k(x)

1s on the left side of /.



e The curve P doesn't intersect itself

Suppose that 0< x < y <1
) 1 : o
Let n be an integer such that 3 < y—x. Then the polygonal line P, has a vertex which lies

between k,(x) andk, (). Then the points k(x) and k(y) belong to parts of P defined by
different segments of P,. As we have shown in Propositionl, these parts of P don't intersect
and so k(x) # k(y).

The points of P, (and P ) have a natural ordering i.e. the point X =k, (x) precedes the point
Y=k (y)if x<y and X succeeds Yif x> y.

Theorem: The curve P doesn't have a well defined tangent at any point.

Proof: Let X be a point on the curve P.

» If X is also a vertex of one of the polygonal lines P, then both segments of P, which have
vertex X contain infinitely many vertices approaching X .

The angle between these segments is 60 or 120°and so P doesn't have a tangent line at X .

« If X isnotavertex and k,(x) =X for some integer n, then X belongs to all polygonal lines

P ,m2>n.Then the lines XM, and XN, meet at an angle

between 30° and 60° and so the sequence N..
of lines /,, , =XM, , l,, = XN, do not

converge i.e. the curve P doesn't have a
tangent line at the point X .

n 2

.. X M.

« If X doesn't belong to any P, ,let L and Mk be two consecutive vertices of P, such that
X, =k, (x)lies between them. If P has a tangent line at X , then the lines L, M, approach the
M, is 0°,60° or 120°.This angle is

nonzero infinitely many times because k(x) # k,(x) . Therefore the curve P doesn't have a

tangent line at X . The angle between L M and L

n+l

tangent line at the point X . Since X is an arbitrary point of P the function & is not
differentiable at any point in the interval [0,1].

Interactive constructions of Koch fractal and Koch snowflake are implemented on

http://www.3rd-imperium.com/Java/Fractals/KF.html



Another Nondifferentiable Curve

‘The median DM of triangle
CDE is vertical and has length A

D
b /TN )
| DM = | CE | VAU
M

/j'_"__ E
G c

A

Let ¢, be the polygonal line obtained by applying the above operation n times starting with the

unit interval. The functions ¢, converge uniformly to a continuous function ¢ .
The function ¢ doesn't have derivative for any value of x

If ¢(x) belongs to one of the polygonal lines the proof is analogous to the Koch snowflake.
The other possibility is that the points ¢, (x) approach the point ¢(x) and the sequence {¢, (x)}

contains infinitely many different points. If the line 4B has a positive slope then the angle
between CD and CE is less than 60° and the angle between EC and ED is greater than 60°.
Let's denote the unit interval as left side and the first side of a triangle of ¢, built on a

left side of ¢, , is left and the second is right. If the triangle is built on a right side of ¢, _,, then
the first side is right and the second is left. Let X, = ¢, (x) and let's choose a subsequence

Y, = X, which doesn't have equal points. To each point ¥, we correspond the segment S, with
vertices s, and s, such that the point Y, lies between s, and s, . If the sides S, change from

left to right (or from right to left) infinitely many times then the angle between every two
consecutive sides is greater than 60°. Then the sequence of secants s, s, doesn't converge and

so ¢(x) doesn't have a tangent line at x. Suppose that the segmentss, s, are left sides for all

k > k,. The sequences of left sides approach a vertical line and so the function ¢ cannot have a
finite derivative at x . If the slope of 4B is negative, the proof that the curve ¢(x) is nowhere
differentiable is similar.
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Koch Snowflake
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A Simple Example of a Function, which is Everywhere
Continuous and Nowhere Differentiable

Karl Kiesswetter

Let 7 :[0,1]] > R be the function defined as follows
XV

f(x)=> (=™ o where

x= Zz—: ,x, =0,1,2,3 is the base four expansion of x € [0,1] and

x,—-2 if x,>0
X, = .
0 if x,=0
N, =number of x; suchthatx;, =0 and k<v.
Then the values of X, are —1,0,1 and the series for f(x) is absolutely convergent for

every x. The values of f for x = 0,%,%,%,1 are

£(0)=0 f(%)=—%
1 =1 N w_i:_
g—;4n f(?)—kzzll 2k 1
1 2 N
573 fZ)=0
=32 qw=3 e

o 4" 2"

P

The numbers x = mn in the interval [0,1] have two different base four representations.

Now we show that the value of f is independent of the representation of x.
Let

n

v
v=1 4V

*

a .
a= =qg +—2 with ¢ >0
4" !

0 b .
bzz > with b, =a, for v<n, b, =a, -1, andb, =3 forv>n.

v=l

Then a=b andb=a" +22 31+ 32+
4n 4n+ 4n+

Casel: a, =3: f(a)Zf(a*)“L(_zl—ZM



)= f()+;;( (=
Case2: a =2: f(a)=f(a")

foy = ra) -0 §;°4¥"=fw3
Case: a, =1 f(a)= f@)—iﬂ—

£(b)= f()+;;(DNH fa) -0 < @

Now we show that £ is a continuous nondifferentiable function

Theoreml:
1
The function f is Lipschitz continuous and | f(x)— f(y) |< 4|x — y|5
Proof: Let 0<x,y<1 and

)
4}’H‘1

4
|x—yl=—+ +--- where #; >0
41’!

Then | x—y |2L and
4}1

| f()—f) < —,, o
| ()= () \32—,,
Therefore | f(x)— f(») < 4x - y|§ n

Since f(0)=0 and f(1)=1, the function f can be extended continuously to R with
f(x)=[x]+ f(x—[x]). The fractal properties of f follow from the following lemma:

1
Lemma 1: For every 2 <x< )

0 fle-d)e r@=-3
@) flerd)- =
(iii) fle+1)+ f(x)=1
Proof:

1 1
i) Let x=—+x; where x; <—
(i) R 1<y



Then x5 =x and f() =2~ f(x) ==~ f(x—})
(ii) x+%:%+x1 Then f(x+%):—f(x1):f(x)+%

(iii) x+%:%+x1 Then f(x+%)=%—f(x1):l+f(x) [ ]

Let's denote by K the graph of f i.e. K ={(x, f(x))|x €[0,1]}. The set K is
compact because f is continuous on [0,1].

Consider the following IFS F' ={f|, 15, f5, f4} in the plane

SN

0
_x___% 0 [ x] _%}
fz_y_—_o %__y_‘i'__%
_x___% 0 [x] _%
f3_J’___0 12_L’_+_0}
_x_:_% 0 [ x] _%}
fh_y_ _0 }é_;y_+_}é

From Lemmal follows that K = fi(K)U f5 (k) U f3(K) U f4(K)
Then the set K is the attractor set of /' because K is compact. Kiesswetter's fractal is

self-affine and has Hausdorff dimension % .

Theorem?:
[ is nondifferentiable at each point in the interval[0,1].

In the proof of Theorem?2 we need the following two lemmas

Lemma 1:
1

Suppose that 0 <V, :4% and W, =V, +Lnﬁl. Then \f(Wn)—f(Vn)\:—n.

4 2

Proof: Let W, =V,+ > in Then

v=n+l

0 _ M"+l
A (AT

v=n+l

v



FUA Y U u yp— .

v=n+l 2

Lemma 2:
If A< x < Bwith A< B, then at least one of the following inequalities hold

f(B) = f()| |£(B)-F(4)| or S =[] |£(B)-F(4)|

| B-x || B-4 | | x-4 || B-4 |
Proof:

(B_A)Mz(g_x)w( A)f(x)_Z(A)

(B - A)‘M <(B- X)M A)‘f(x) f(A4) (*)

If both held simultaneously:

S B) =[] _|fB)-f)] nd |f(B) S| |f @)= f(A)

| B-4 | | B—x | | -4 | | x—A |
Then
(B_A)M >(B_x)f(B)_f(x) A)‘f(x) f(4)
B-4 B—x
This is a contradiction to inequality (*) -
Proof of Theorem 2:

For each 0 < x <1and for every natural number »n there exists at lest one ¥, such that
1
0<V, <x<W,=V,+—<I
4

From Lemma 2 it follows for at least one of V,, or W, (denoted by K, ) that
@ =S K| S = )| _ )

> == =2"
| x-Kk, || WV, | 4
Therefore 1 is not differentiable at x because lim K, =x and the sequence of
n—0
difference quotients M diverges. ]
x f—

n
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Figure2. Kiesswetter’s fractal.



Figure3. The iterated function system.





