
Abstract

1. We prove Liouville’s Theorem for the order of approximation by rationals
of real algebraic numbers.

2. We construct several transcendental numbers.

3. We define Poissonian Behaviour, and study the spacings between the or-
dered fractional parts of{nkα}.

Lecture by Steven Miller; notes for the first two by Steven Miller and Florin
Spinu; notes for the third by Steven Miller.
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Chapter 1

Liouville’s Theorem Constructing
Transcendentals

1.1 Review of Approximating by Rationals

Definition 1.1.1 (Approximated by rationals to order n). A real numberx is
approximated by rationals to ordern if there exist a constantk(x) (possibly de-
pending onx) such that there are infinitely many rationalp

q
with∣∣∣∣x− p

q

∣∣∣∣ < k(x)

qn
. (1.1)

Recall that Dirichlet’s Box Principle gaves us:∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
(1.2)

for infintely many fractionsp
q
. This was proved by choosing a large parameter

Q, and considering theQ + 1 fractionary parts{qx} ∈ [0, 1) for q ∈ {0, . . . , Q}.
The box principle ensures us that there must be two differentq’s, say:

0 ≤ q1 < q2 ≤ Q (1.3)

such that both{q1x} and{q2x} belong to the same interval[ a
Q
, a+1

Q
), for some

0 ≤ a ≤ Q − 1. Note that there are exactlyQ such intervals partitioning[0, 1),
andQ + 1 fractionary parts! Now, the length of such an interval is1

Q
so we get
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|{q2x} − {q1x}| <
1

Q
. (1.4)

There exist integersp1 andp2 such that

{q1x} = q1x− p, {q2x} = q2x− p. (1.5)

Lettingp = p2 − p1 we find

|(q2 − q1)x− p| ≤ 1

Q
(1.6)

Let q = q2 − q1, so1 ≤ q ≤ Q, and the previous equation can be rewriten as∣∣∣∣x− p

q

∣∣∣∣ < 1

qQ
≤ 1

q2
(1.7)

Now, letting Q → ∞, we get an infinite collection of rational fractionsp
q

satisfying the above equation. If this collection contains only finitely many dis-
tinct fractions, then one of these fractions, sayp0

q0
, would occur for infintely many

choicesQk of Q, thus giving us:∣∣∣∣x− p0

q0

∣∣∣∣ < 1

qQk

→ 0, (1.8)

ask → ∞. This implies thatx = p0

q0
∈ Q. So, unlesx is a rational number,

we can find infinitely manydistinct rational numbersp
q

satisfying Equation 1.7.
This means that any real, irrational number can be approximated to ordern = 2
by rational numbers.

1.2 Liouville’s Theorem

Theorem 1.2.1 (Liouville’s Theorem).Let x be a real algebraic number of de-
green. Thenx is approximated by rationals to order at mostn.

Proof. Let

f(X) = anX
n + · · · a1X + a0 (1.9)

be the polynomial with integer coefficients of smallest degree (minimal poly-
nomial) such thatx satisfies
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f(x) = 0. (1.10)

Note thatdeg x = deg f and the condition of minimality implies thatf(X)
is irreducible overZ. Further, a well known result from algebra states that a
polynomial irreducible overZ is also irreducible overQ.

In particular, asf(X) is irreducible overQ, f(X) does not have any rational
roots. If it did, thenf(X) would be divisible by a linear polynomial(X − a

b
). Let

G(X) = f(X)
X−a

b
. Clear denominators (multiply throughout byb), and letg(X) =

bG(X). Thendeg g = deg f − 1, andg(x) = 0. This contradicts the minimality
of f (we choosef to be a polynomial of smallest degree such thatf(x) = 0).
Therefore,f is non-zero at every rational.

Let

M = sup
|z−x|<1

|f ′(z)|. (1.11)

Let now p
q

be a rational such that
∣∣∣x− p

q

∣∣∣ < 1. The Mean Value Theorem gives

us that ∣∣∣∣f (p

q

)
− f(x)

∣∣∣∣ =

∣∣∣∣f ′(c)(x− p

q

)∣∣∣∣ ≤ M

∣∣∣∣x− p

q

∣∣∣∣ (1.12)

wherec is some real number betweenx and p
q
; |c − x| < 1 for p

q
moderately

close tox.
Now we use the fact thatf(X) does not have any rational roots:

0 6= f

(
p

q

)
= an

(
p

q

)n

+ · · ·+ a0 =
anp

n + · · · a1p
n−1q + a0q

n

qn
(1.13)

The numerator of the last term is a nonzero integer, hence it has absolute value
at least1. Since we also know thatf(x) = 0 it follows that

∣∣∣∣f (p

q

)
− f(x)

∣∣∣∣ =

∣∣∣∣f (p

q

)∣∣∣∣ =
|anp

n + · · · a1p
n−1q + a0q

n|
qn

≥ 1

qn
. (1.14)

Combining the equations 1.12 and 1.14, we get:

1

qn
≤ M

∣∣∣∣x− p

q

∣∣∣∣ ⇒ 1

Mqn
≤
∣∣∣∣x− p

q

∣∣∣∣ (1.15)
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whenever|x− p
q
| < 1. This last equation shows us thatx can be approximated

by rationals to order at mostn. For assume it was otherwise, namely thatx can be
approximated to ordern + ε. Then we would have an infinite sequence of distinct
rational numbers{pi

qi
}i≥1 and a constantk(x) depending only onx such that∣∣∣∣x− pi

qi

∣∣∣∣ <
k(x)

qn+ε
i

. (1.16)

Since the numberspi

qi
converge tox we can assume that they already are in the

interval(x− 1, x + 1). Hence they also satisfy Equation 1.15:

1

qn
i

≤ M

∣∣∣∣x− pi

qi

∣∣∣∣ . (1.17)

Combining the last two equations we get

1

Mqn
i

≤
∣∣∣∣x− pi

qi

∣∣∣∣ <
k(x)

qn+ε
i

, (1.18)

hence

qε
i < M (1.19)

and this is clearly impossible for arbitrarily largeq sinceε > 0 andqi →∞.

Exercise 1.2.2.Justify the fact that if{pi

qi
}i≥1 is a rational approximation to order

n ≥ 1 of x, thenqi →∞.

Remark 1.2.3. So far we have seen that the order to which an algebraic number
can be approximated by rationals is bounded by its degree. Hence if a real, ir-
rational numberα /∈ Q can be approximated by rationals to an arbitrary large
order, thenα must be transcendental! This provides us with a recipe for construct-
ing transcendental numbers.

1.3 Constructing Transcendental Numbers

1.3.1
∑

m 10−m!

The following construction of transcendental numbers is due to Liouville.
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Theorem 1.3.1.The number

x =
∞∑

m=1

1

10m!
(1.20)

is transcendental.

Proof. The series definingx is convergent, since it is dominated by the geometric
series

∑
1

10m . In fact, the series converges very rapidly and it is this high rate of
convergence that will yieldx is transcendental.

Fix N large, and letn > N . Write

pn

qn

=
n∑

m=1

1

10m!
(1.21)

with pn, qn > 0 and(pn, qn) = 1. Then{pn

qn
}n≥1 is a monotone increasing

sequence converging tox. In particular, all these rational numbers are distinct.
Not also thatqn must divide10n!, which implies

qn ≤ 10n!. (1.22)

Using this, we get

0 < x− pn

qn

=
∑
m>n

1

10m!
=

1

10(n+1)!

(
1 +

1

10n+2
+

1

10(n+2)(n+3)
+ · · ·

)
<

2

10(n+1)!
=

2

(10n!)n+1

<
2

qn+1
n

≤ 2

qN
n

. (1.23)

This gives an approximation by rationals of orderN of x. SinceN can be
chosen arbitrarily large, this implies thatx can be approximated by rationals to
arbitrary order. We can conclude, in view of our precious remark 1.2.3 thatx is
transcendental.

1.3.2 [101!, 102!, . . . ]

Theorem 1.3.2.The number
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y = [101!, 102!, . . . ] (1.24)

is transcendental.

Proof. Let pn

qn
be the continued fraction of[101! · · · 10n!]. Then

∣∣∣∣y − pn

qn

∣∣∣∣ =
1

qnq′n+1

=
1

qn(a′n+1qn + qn−1)

<
1

an+1

=
1

10(n+1)!
. (1.25)

Sinceqk = anqk−1 + qn−2, it implies thatqk > qk−1 Also, qk+1 = ak+1qn +
qk−1, so we get

qk+1

qk

= ak+1 +
qk−1

qk

< ak+1 + 1. (1.26)

Hence writing this inequality fork = 1, · · · , n− 1 we obtain

qn = q1
q2

q1

q3

q2

· · · qn

qn−1

< (a1 + 1)(a2 + 1) · · · (an + 1)

= (1 +
1

a1

) · · · (1 +
1

an

)a1 · · · an

< 2na1 · · · an = 2n101!+···+n!

< 102n! = a2
n (1.27)

Combining equations 1.25 and 1.27 we get:

∣∣∣∣y − pn

qn

∣∣∣∣ <
1

an+1

=
1

an+1
n

<

(
1

a2
n

)n
2

<

(
1

q2
n

)n
2

=
1

q
n/2
n

. (1.28)

In this way we get, just as in the previous theorem, an approximation ofy by
rationals to arbitrary order. This proves thaty is transcendental.
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1.3.3 Buffon’s Needle andπ

Consider a collection of infinitely long parallel lines in the plane, where the
spacing between any two adjacent lines isd. Let the lines be located atx =
0,±d,±2d, . . . . Consider a rod of lengthl, where for convenience we assume
l < d.

If we were torandomlythrow the rod on the plane, what is the probability it
hits a line? This question was first asked by Buffon in1733.

Because of the vertical symmetry, we may assume the center of the rod lies on
the linex = 0, as shifting the rod (without rotating it) up or down will not alter the
number of intersections. By the horizontal symmetry, we may assume−d

2
≤ x <

d
2
. We posit that all values ofx are equally likely. Asx is continuous distributed,

we may add inx = d
2

without changing the probability. The probability density
function ofx is dx

d
.

Let θ be the angle the rod makes with thex-axis. As each angle is equally
likely, the probability density function ofθ is dθ

2π
.

We assume thatx andθ are chosen independently. Thus, the probability den-
sity for (x, θ) is dxdθ

d·2π
.

The projection of the rod (making an angle ofθ with the x-axis) along the
x-axis isl · | cos θ|. If |x| ≤ l · | cos θ|, then the rod hits exactly one vertical line
exactly once; ifx > l · | cos θ|, the rod does not hit a vertical line. Note that if
l > d, a rod could hit multiple lines, making the arguments more involved.

Thus, the probability a rod hits a line is

p =

∫ 2π

θ=0

∫ l·| cos θ|

x=−l·| cos θ|

dxdθ

d · 2π

=

∫ 2π

θ=0

l · | cos θ|
d

dθ

2π

=
2l

πd
. (1.29)

Exercise 1.3.3.Show
1

2π

∫ 2π

0

| cos θ|dθ =
2

π
. (1.30)

Let A be the random variable which is the number of intersections of a rod of
lengthl thrown against parallel vertical lines separated byd > l units. Then
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A =

{
1 with probability 2l

πd

0 with probability1− 2l
πd

. (1.31)

If we were to throwN rods independently, since the expected value of a sum
is the sum of the expected values (Lemma??), we expect to observe

N · 2l

πd
(1.32)

intersections.
Turning this around, let us throwN rods, and letI be the number of observed

intersections of the rods with the vertical lines. Then

I ≈ N · 2l

πd
→ π ≈ N

I
· 2l

d
. (1.33)

The above is anexperimentalformula forπ!
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Chapter 2

Poissonian Behavior and{nkα}

2.1 Equidistribution

We say a sequence of numberxn ∈ [0, 1) is equidistributed if

lim
N→∞

#{n : 1 ≤ n ≤ N andxn ∈ [a, b]}
N

= b− a (2.1)

for any subinterval[a, b] of [0, 1].
Recall Weyl’s Result, Theorem??: If α 6∈ Q, then the fractional parts{nα}

are equidistributed. Equivalently,nα mod1 is equidistributed.
Similarly, one can show that for any integerk, {nkα} is equidistributed. See

Robert Lipshitz’s paper for more details.

2.2 Point Masses and Induced Probability Measures

Recall from physics the concept of a unit point mass located atx = a. Such a point
mass has no length (or, in higher dimensions, width or height), but finite mass. As
mass is the integral of the density over space, a finite mass in zero volume (or zero
length on the line) implies an infinite density.

We can make this more precise by the notion of an Approximation to the
Identity. See also Theorem??.

Definition 2.2.1 (Approximation to the Identity). A sequence of functionsgn(x)
is an approximation to the identity (at the origin) if

1. gn(x) ≥ 0.
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2.
∫

gn(x)dx = 1.

3. Givenε, δ > 0 there existsN > 0 such that for alln > N ,
∫
|x|>δ

gn(x)dx <
ε.

We represent the limit of any such family ofgn(x)s byδ(x).

If f(x) is a nice function (say near the origin its Taylor Series converges) then∫
f(x)δ(x)dx = lim

n→∞

∫
f(x)gn(x) = f(0). (2.2)

Exercise 2.2.2.Prove Equation 2.2.

Thus, in the limit the functionsgn are acting like point masses. We can con-
sider the probability densitiesgn(x)dx and δ(x)dx. For gn(x)dx, asn → ∞,
almost all the probability is concentrated in a narrower and narrower band about
the origin;δ(x)dx is the limit with all the mass at one point. It is a discrete (as
opposed to continuous) probability measure.

Note thatδ(x− a) acts like a point mass; however, instead of having its mass
concentrated at the origin, it is now concentrated ata.

Exercise 2.2.3.Let

gn(x) =

{
n if |x| ≤ 1

2n

0 otherwise
(2.3)

Provegn(x) is an approximation to the identity at the origin.

Exercise 2.2.4.Let

gn(x) = c
1
n

1
n2 + x2

. (2.4)

Find c such that the above is an approximation to the identity at the origin.

Given N point masses located atx1, x2, . . . , xN , we can form a probability
measure

µN(x)dx =
1

N

N∑
n=1

δ(x− xn)dx. (2.5)

Note
∫

µN(x)dx = 1, and iff(x) is a nice function,∫
f(x)µN(x)dx =

1

N

N∑
n=1

f(xn). (2.6)
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Exercise 2.2.5.Prove Equation 2.6 for nicef(x).

Note the right hand side of Equation 2.6 looks like a Riemann sum. Or it
would look like a Riemann sum if thexns were equidistributed. In general thexns
will not be equidistributed, but assume for any interval[a, b] that asN → ∞, the
fraction ofxns (1 ≤ n ≤ N ) in [a, b] goes to

∫ b

a
p(x)dx for some nice function

p(x):

lim
N→∞

#{n : 1 ≤ n ≤ N andxn ∈ [a, b]}
N

→
∫ b

a

p(x)dx. (2.7)

In this case, iff(x) is nice (say twice differentiable, with first derivative uni-
formly bounded), then

∫
f(x)µN(x)dx =

1

N

N∑
n=1

f(xn)

≈
∞∑

k=−∞

f
( k

N

)#{n : 1 ≤ n ≤ N andxn ∈
[

k
N

, k+1
N

]
}

N

→
∫

f(x)p(x)dx. (2.8)

Definition 2.2.6 (Convergence top(x)). If the sequence of pointsxn satisfies
Equation 2.7 for some nice functionp(x), we say the probability measuresµN(x)dx
converge top(x)dx.

2.3 Neighbor Spacings

We now consider finer questions. Letαn be a collection of points in[0, 1). We
order them by size:

0 ≤ ασ(1) ≤ ασ(2) ≤ · · · ≤ ασ(N), (2.9)

whereσ is a permutation of123 · · ·N . Note the ordering depends crucially on
N . Let βj = ασ(j).

We consider how the differencesβj+1 − βj are distributed. We will use a
slightly different definition of distance, however.
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Recall[0, 1) is equivalent to the unit circle under the mapx → e2πix. Thus, the
numbers.999 and.001 are actually very close; however, if we used the standard
definition of distance, then|.999 − .001| = .998, which is quite large. Wrapping
[0, 1) on itself (identifying0 and1), we see that.999 and .001 are separated by
.002.

Definition 2.3.1 (mod1 distance).Letx, y ∈ [0, 1). We define the mod1 distance
fromx to y, ||x− y||, by

||x− y|| = min
{
|x− y|, 1− |x− y|

}
. (2.10)

Exercise 2.3.2.Show that the mod1 distance between any two numbers in[0, 1)
is at most1

2
.

In looking at spacings between theβjs, we haveN − 1 pairs of neighbors:

(β2, β1), (β3, β2), . . . , (βN , βN−1). (2.11)

These pairs give rise to spacingsβj+1 − βj ∈ [0, 1).
We can also consider the pair(β1, βN). This gives rise to the spacingβ1−βN ∈

[−1, 0); however, as we are studying this sequence mod1, this is equivalent to
β1 − βN + 1 ∈ [0, 1).

Henceforth, whenever we perform any arithmetic operation, we always
mean mod1; thus, our answers always live in[0, 1)

Definition 2.3.3 (Neighbor Spacings).Given a sequence of numbersαn in [0, 1),
fix an N and arrange the numbersαn (n ≤ N ) in increasing order. Label the
new sequenceβj; note the ordering will depend onN . Let β−j = βN−j and
βN+j = βj.

1. The nearest neighbor spacings are the numbersβj+1 − βj, j = 1 to N .

2. Thekth-neighbor spacings are the numbersβj+k − βj, j = 1 to N .

Remember to take the differencesβj+k − βj mod1.

Exercise 2.3.4.Letα =
√

2, and letαn = {nα} or {n2α}. Calculate the nearest
neighbor and the next-nearest neighbor spacings in each case forN = 10.

Definition 2.3.5 (wrapped unit interval). We call[0, 1), when all arithmetic op-
erations are done mod1, the wrapped unit interval.
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2.4 Poissonian Behavior

Let α 6∈ Q. Fix a positive integerk, and letαn = {nkα}. As N → ∞, look
at the orderedαns, denoted byβn. How are the nearest neighbor spacings ofβn

distributed? How does this depend onk? Onα? OnN?
Before discussing this problem, we consider a simpler case. FixN , and con-

siderN independent random variablesxn. Each random variable is chosen from
the uniform distribution on[0, 1); thus, the probability thatxn ∈ [a, b) is b− a.

Let yn be thexns arranged in increasing order. How do the neighbor spacings
behave?

First, we need to decide what is the correct scale to use for our investigations.
As we haveN objects on the wrapped unit interval, we haveN nearest neighbor
spacings. Thus, we expect the average spacing to be1

N
.

Definition 2.4.1 (Unfolding). Let zn = Nyn. The numberszn = Nyn have unit
mean spacing. Thus, while we expect the average spacing between adjacentyns
to be 1

N
units, we expect the average spacing between adjacentzns to be1 unit.

So, the probability of observing a spacing as large as1
2

between adjacentyns
becomes negligible asN → ∞. What we should ask is what is the probability
of observing a nearest neighbor spacing of adjacentyns that ishalf the average
spacing. In terms of thezns, this will correspond to a spacing between adjacent
zns of 1

2
a unit.

2.4.1 Nearest Neighbor Spacings

By symmetry, on the wrapped unit interval the expected nearest neighbor spacing
is independent ofj. Explicitly, we expectβj+1 − βj to have the same distribution
asβi+1 − βi.

What is the probability that, when we order thexns in increasing order, the
nextxn afterx1 is located betweent

N
and t+∆t

N
? Let thexns in increasing order

be labeledy1 ≤ y2 ≤ · · · ≤ yN , yn = xσ(n).
As we are choosing thexns independently, there are

(
N−1

1

)
choices of subscript

n such thatxn is nearest tox1. This can also be seen by symmetry, as eachxn is
equally likely to be the first to theright of x1 (where, of course,.001 is just a little
to the right of.999), and we haveN − 1 choices left forxn.

The probability thatxn ∈
[

t
N

, t+∆t
N

]
is ∆t

N
.
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For the remainingN − 2 of thexns, each must be further thant+∆t
N

from xn.
Thus, they mustall lie in an interval (or possibly two intervals if we wrap around)

of length1− t+∆t
N

. The probability that they all lie in this region is
(
1− t+∆t

N

)N−2

.

Thus, if x1 = yl, we want to calculate the probability that||yl+1 − yl|| ∈[
t
N

, t+∆t
N

]
. This is

Prob

(
||yl+1 − yl|| ∈

[ t

N
,
t + ∆t

N

])
=

(
N − 1

1

)
· ∆t

N
·
(
1− t + ∆t

N

)N−2

=
(
1− 1

N

)
·
(
1− t + ∆t

N

)N−2

∆t.

(2.12)

ForN enormous and∆t small,

(
1− 1

N

)
≈ 1(

1− t + ∆t

N

)N−2

≈ e−(t+∆t) ≈ e−t. (2.13)

Thus

Prob

(
||yl+1 − yl|| ∈

[ t

N
,
t + ∆t

N

])
→ e−t∆t. (2.14)

Remark 2.4.2. The above argument is infinitesimally wrong. Once we’ve located
yl+1, the remainingxns do not need to be more thant+∆t

N
units to the right of

x1 = yl; they only need to be further to the right thanyl+1. As the incremental
gain in probabilities for the locations of the remainingxns is of order∆t, these
contributions will not influence the largeN , small ∆t limits. Thus, we ignore
these effects.

To rigorously derive the limiting behavior of the nearest neighbor spacings
using the above arguments, one would integrate overxm ranging from t

N
to t+∆t

N
,

and the remaining eventsxn would be in the a segment of length1− xm. As∣∣∣(1− xm

)
−
(
1− t + ∆t

N

)∣∣∣ ≤ ∆t

N
, (2.15)

this will lead to corrections of higher order in∆t, hence negligible.
We can rigorously avoid this by instead considering the following:
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1. Calculate the probability that all the otherxns are at leastt
N

units to the
right of x1. This is

pt =
(
1− t

N

)N−1

→ e−t. (2.16)

2. Calculate the probability that all the otherxns are at leastt+∆t
N

units to the
right of x1. This is

pt+∆t =
(
1− t + ∆t

N

)N−1

→ e−(t+∆t). (2.17)

3. The probability that noxns are within t
N

units to the right ofx1 but at least
onexn is betweent

N
and t+∆t

N
units to the right ispt+∆t − pt:

pt − pt+∆t → e−t − e−(t+∆t)

= e−t
(
1− e−∆t

)
= e−t

(
1− 1 + ∆t + O

(
(∆t)2

)
→ e−t∆t. (2.18)

Definition 2.4.3 (Unfolding Spacings).If yl+1 − yl ∈
[

t
N

, t+∆t
N

]
, thenN(yl+1 −

yl) ∈ [t, t + ∆t]. The new spacingszl+1− zl have unit mean spacing. Thus, while
we expect the average spacing between adjacentyns to be 1

N
units, we expect the

average spacing between adjacentzns to be1 unit.

2.4.2 kth Neighbor Spacings

Similarly, one can easily analyze the distribution of thekth neighbor spacings
when eachxn is chosen independently from the uniform distribution on[0, 1).

Again, considerx1 = yl. Now we want to calculate the probability thatyl+k is
between t

N
and t+∆t

N
units to theright of yl.

Therefore, we need exactlyk−1 of thexns to lie between0 and t
N

units to the
right of x1, exactly onexn (which will beyl+k) to lie betweent

N
and t+∆t

N
units to

the right ofx1, and the remainingxns to lie at leastt+∆t
N

units to the right ofyl+k.
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Remark 2.4.4. We face the same problem discussed in Remark 2.4.2; a similar
argument will show that ignoring these affects will not alter the limiting behavior.
Therefore, we will make these simplifications.

There are
(

N−1
k−1

)
ways to choose thexns that are at mostt

N
units to the right of

x1; there is then
(
(N−1)−(k−1)

1

)
ways to choose thexn betweent

N
and t+∆t

N
units to

the right ofx1.
Thus,

Prob

(
||yl+k − yl|| ∈

[ t

N
,
t + ∆t

N

])
=

=

(
N − 1

k − 1

)( t

N

)k−1

·
(

(N − 1)− (k − 1)

1

)
∆t

N
·
(
1− t + ∆t

N

)N−(k+1)

=
(N − 1) · · · (N − 1− (k − 2))

Nk−1

(N − 1)− (k − 1)

N

tk−1

(k − 1)!

(
1− t + ∆t

N

)N−(k+1)

∆t

→ tk−1

(k − 1)!
e−t∆t. (2.19)

Again, one way to avoid the complications is to integrate overxm ranging
from t

N
to t+∆t

N
.

Or, similar to before, we can proceed more rigorously as follows:

1. Calculate the probability that exactlyk − 1 of the otherxns are at mostt
N

units to the right ofx1, and the remaining(N − 1)− (k − 1) of thexns are
at least t

N
units to the right ofx1. As there are

(
N−1
k−1

)
ways to choosek − 1

of thexns to be at mostt
N

units to the right ofx1, this probability is

pt =

(
N − 1

k − 1

)( t

N

)k−1(
1− t

N

)(N−1)−(k−1)

→ Nk−1

(k − 1)!

tk−1

Nk−1
e−t

→ tk−1

k − 1!
e−t. (2.20)
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2. Calculate the probability that exactlyk − 1 of the otherxns are at mostt
N

units to the right ofx1, and the remaining(N − 1)− (k − 1) of thexns are
at leastt+∆t

N
units to the right ofx1. Similar to the above, this gives

pt =

(
N − 1

k − 1

)( t

N

)k−1(
1− t + ∆t

N

)(N−1)−(k−1)

→ Nk−1

(k − 1)!

tk−1

Nk−1
e−(t+∆t)

→ tk−1

(k − 1)!
e−(t+∆t). (2.21)

3. The probability that exactlyk−1 of thexns are within t
N

units to the right of
x1 and at least onexn is betweent

N
and t+∆t

N
units to the right ispt+∆t−pt:

pt−pt+∆t →
tk−1

(k − 1)!
e−t− tk−1

(k − 1)!
e−(t+∆t) → tk−1

(k − 1)!
e−t∆t. (2.22)

Note that whenk = 1, we recover the nearest neighbor spacings.

2.5 Induced Probability Measures

We have proven the following:

Theorem 2.5.1.ConsiderN independent random variablesxn chosen from the
uniform distribution on the wrapped unit interval[0, 1). For fixedN , arrange the
xns in increase order, labeledy1 ≤ y2 ≤ · · · ≤ yN .

Form the induced probability measureµN,1 from the nearest neighbor spac-
ings. Then asN →∞ we have

µN,1(t)dt =
1

N

N∑
n=1

δ
(
t−N(yn − yn−1)

)
dt → e−tdt. (2.23)

Equivalently, usingzn = Nyn:

µN,1(t)dt =
1

N

N∑
n=1

δ
(
t− (zn − zn−1)

)
dt → e−tdt. (2.24)
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More generally, form the probability measure from thekth nearest neighbor
spacings. Then asN →∞ we have

µN,k(t)dt =
1

N

N∑
n=1

δ
(
t−N(yn − yn−k)

)
dt → tk−1

(k − 1)!
e−tdt. (2.25)

Equivalently, usingzn = Nyn:

µN,k(t)dt =
1

N

N∑
n=1

δ
(
t− (zn − zn−k)

)
dt → tk−1

(k − 1)!
e−tdt. (2.26)

Definition 2.5.2 (Poissonian Behavior).We say a sequence of pointsxn has Pois-
sonian Behavior if in the limit asN → ∞ the induced probability measures
µN,k(t)dt converge to tk−1

(k−1)!
e−tdt.

Exercise 2.5.3.Letα ∈ Q, and defineαn = {nmα} for some positive integerm.
Show the sequence of pointsαn does not have Poissonian Behavior.

Exercise 2.5.4.Let α 6∈ Q, and defineαn = {nα}. Show the sequence of points
αn does not have Poissonian Behavior. Hint: for eachN , show the nearest neigh-
bor spacings take on at most three distinct values (the three values depend onN ).
As only three values are ever assumed for a fixedN , µN,1(t)dt cannot converge to
e−tdt.

2.6 Non-Poissonian Behavior

Conjecture 2.6.1. With probability one (with respect to Lebesgue Measure, see
Definition??), if α 6∈ Q, if αn = {n2α} then the sequence of pointsαn is Poisso-
nian.

There are constructions which show certain irrationals give rise to non-Poissonian
behavior.

Theorem 2.6.2.Let α ∈ Q such that
∣∣∣α − pn

qn

∣∣∣ < an

q3
n

holds infinitely often, with

an → 0. Then there exist integersNj → ∞ such thatµNj ,1(t) does not converge
to e−tdt.
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As an → 0, eventuallyan < 1
10

for all n large. LetNn = qn, wherepn

qn
is a

good rational approximation toα:∣∣∣α− pn

qn

∣∣∣ < an

q3
n

. (2.27)

Remember that all subtractions are performed on the wrapped unit interval.
Thus,||.999− .001|| = .002.

We look atαk = {k2α}, 1 ≤ k ≤ Nn = qn. Let theβks be theαks arranged
in increasing order, and let theγks be the numbers{k2 pn

qn
} arranged in increasing

order:

β1 ≤ β2 ≤ · · · ≤ βN

γ1 ≤ γ2 ≤ · · · ≤ γN . (2.28)

2.6.1 Preliminaries

Lemma 2.6.3. If βl = αk = {k2α}, thenγl = {k2 pn

qn
}. Thus, the same permuta-

tion orders both theαks and theγks.

Proof. Multiplying both sides of Equation 2.27 byk2 ≤ q2
n yields∣∣∣k2α− k2pn

qn

∣∣∣ < k2an

q2
n

≤ an

qn

<
1

2qn

. (2.29)

Thus,k2α andk2 pn

qn
differ by at most 1

2qn
. Therefore∣∣∣∣∣∣{k2α

}
−
{

k2pn

qn

}∣∣∣∣∣∣ <
1

2qn

. (2.30)

As the numbers{m2 pn

qn
} all have denominators of size at most1

qn
, we see that

{k2 pn

qn
} is the closest of the{m2 pn

qn
} to {k2α}.

This implies that ifβl = {k2α}, thenγl = {k2 pn

qn
}, completing the proof.

Exercise 2.6.4.Prove the ordering is as claimed. Hint: about eachβl = {k2α},
the closest number of the form{c2 pn

qn
} is {k2 pn

qn
}.
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2.6.2 Proof of Theorem 2.6.2

Exercise 2.6.5.Assume||a− b||, ||c− d|| < 1
10

. Show

||(a− b)− (c− d)|| < ||a− b||+ ||c− d||. (2.31)

Proof of Theorem 2.6.2: We have shown

||βl − γl|| <
an

qn

. (2.32)

Thus, asNn = qn: ∣∣∣∣∣∣Nn(βl − γl)
∣∣∣∣∣∣ < an, (2.33)

and the same result holds withl replaced byl − 1.
By Exercise 2.6.5,∣∣∣∣∣∣Nn(βl − γl)−Nn(βl−1 − γl−1)

∣∣∣∣∣∣ < 2an. (2.34)

Rearranging gives∣∣∣∣∣∣Nn(βl − βl−1)−Nn(γl − γl−1)
∣∣∣∣∣∣ < 2an. (2.35)

Asan → 0, this implies the difference between
∣∣∣∣∣∣Nn(βl−βl−1)

∣∣∣∣∣∣ and
∣∣∣∣∣∣Nn(γl−

γl−1)
∣∣∣∣∣∣ goes to zero.

The above distance calculations were done mod1. The actual differences will
differ by an integer. Thus,

µα
Nn,1(t)dt =

1

Nn

Nn∑
l=1

δ
(
t−Nn(βl − βl−1)

)
(2.36)

and

µ
pn
qn

Nn,1(t)dt =
1

Nn

Nn∑
l=1

δ
(
t−Nn(γl − γl−1)

)
(2.37)

are extremely close to one another; each point mass from the difference be-
tween adjacentβls is either withinan units of a point mass from the difference
between adjacentγls, or is withinan units of a point mass an integer number of
units from a point mass from the difference between adjacentγls. Further,an → 0.
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Note, however, that ifγl = {k2 pn

qn
}, then

Nnγl = qn

{
k2pn

qn

}
∈ N. (2.38)

Thus, the induced probability measureµ
pn
qn

Nn,1(t)dt formed from theγls is sup-

ported on the integers! Thus, it is impossible forµ
pn
qn

Nn,1(t)dt to converge toe−tdt.
As µα

Nn,1(t)dt, modulo some possible integer shifts, is arbitrarily close to

µ
pn
qn

Nn,1(t)dt, the sequence{k2α} is not Poissonian along the subsequence ofNs
given byNn, whereNn = qn, qn is a denominator in a good rational approxima-
tion toα. 2

2.6.3 Measure ofα 6∈ Q with Non-Poissonian Behavior along a
sequenceNn

What is the (Lebesgue) measure ofα 6∈ Q such that there are infinitely manyn
with ∣∣∣α− pn

qn

∣∣∣ <
an

qn

, an → 0. (2.39)

If the above holds, then for any constantk(α), for n large (large depends on
bothα andk(α)) we have ∣∣∣α− pn

qn

∣∣∣ <
k(α)

q2+ε
n

. (2.40)

By Theorem??, this set has (Lebesgue) measure or size0. Thus, almost no
irrational numbers satisfy the conditions of Theorem 2.6.2, wherealmost nois
relative to the (Lebesgue) measure.

Exercise 2.6.6.In a topological sense, how many algebraic numbers satisfy the
conditions of Theorem 2.6.2? How many transcendental numbers satisfy the con-
ditions?

Exercise 2.6.7.Let α satisfy the conditions of Theorem 2.6.2. Consider the se-
quenceNn, whereNn = qn, qn the denominator of a good approximation toα. We

know the induced probability measuresµ
pn
qn

Nn,1(t)dt andµα
Nn,1(t)dt do not converge

to e−tdt. Do these measures converge to anything?
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Remark 2.6.8. In The Distribution of Spacings Between the Fractional Parts of
{n2α} (Z. Rudnick, P. Sarnak, A. Zaharescu), it is shown that for mostα satisfying
the conditions of Theorem 2.6.2, thereis a sequenceNj along whichµα

Nn,1(t)dt
doesconverge toe−tdt.
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