Abstract

1. We prove Liouville’s Theorem for the order of approximation by rationals
of real algebraic numbers.

2. We construct several transcendental numbers.

3. We define Poissonian Behaviour, and study the spacings between the or-
dered fractional parts dfn*a}.

Lecture by Steven Miller; notes for the first two by Steven Miller and Florin
Spinu; notes for the third by Steven Miller.
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Chapter 1

Liouville’s Theorem Constructing
Transcendentals

1.1 Review of Approximating by Rationals

Definition 1.1.1 (Approximated by rationals to order n). A real numberz is
approximated by rationals to order if there exist a constarit(z) (possibly de-
pending onr) such that there are infinitely many ration;%\k/vith

x—g‘ < % (1.1)

Recall that Dirichlet’s Box Principle gaves us:

z— ]3’ < iZ (1.2)
q q

for infintely many fractionsg. This was proved by choosing a large parameter
@, and considering th@ + 1 fractionary partdqz} € [0,1) for ¢ € {0,...,Q}.
The box principle ensures us that there must be two diffefensay:

0<q << (1.3)

such that bot{ ¢,z } and{g,x} belong to the same intervg, %1), for some
0 < a < @ — 1. Note that there are exactly such intervals partitioningp), 1),
and(@ + 1 fractionary parts! Now, the length of such an intervaéiso we get



{ar} — ()] < ~. (1.4)

Q
There exist integerg, andp, such that
{ar} = gz — p, {@r} = g —p. (1.5)
Lettingp = p, — p; we find
1
(g2 — @)z — p| < 0 (1.6)

Letg = ¢ — ¢1, 501 < ¢ < @, and the previous equation can be rewriten as

< —< = .7

Now, letting @ — oo, we get an infinite collection of rational fractloriYs
satisfying the above equation. If this collection contains only finitely many dis-
tinct fractions, then one of these fractions, %B%lywould occur for infintely many
choices);, of @, thus giving us:

< — =0, (1.8)

ask — oo. This implies thatr = 2 € Q. So, unlesr is a rational number,
q0
we can find infinitely manyistinct rational number§ satisfying Equation 1.7.
This means that any real, irrational number can be approximated tororgde?
by rational numbers.

1.2 Liouville’s Theorem

Theorem 1.2.1 (Liouville’s Theorem). Let z be a real algebraic number of de-
green. Thenz is approximated by rationals to order at most

Proof. Let

f(X) = a, X"+ a1 X + ag (2.9)

be the polynomial with integer coefficients of smallest degree (minimal poly-
nomial) such that satisfies



f(z) = 0. (1.10)

Note thatdegz = deg f and the condition of minimality implies that(X)
is irreducible overZ. Further, a well known result from algebra states that a
polynomial irreducible ove¥. is also irreducible ove@.

In particular, asf(X) is irreducible overQ, f(X) does not have any rational
roots. If it did, thenf(X') would be divisible by a linear polynomiak — ¢). Let

G(X) = f((f(f Clear denominators (multiply throughout by and letg(X) =
b

bG(X). Thendeg g = deg f — 1, andg(x) = 0. This contradicts the minimality

of f (we choosef to be a polynomial of smallest degree such tfiat) = 0).

Therefore,f is non-zero at every rational.

Let

M = sup |f'(2)| (1.11)

|z—z|<1

Let now§ be arational such th%& — § < 1. The Mean Value Theorem gives

us that
1(2) - ) = | (o~ g)' < u

wherec is some real number betweerand?; |c — x| < 1 for £ moderately
close toz.
Now we use the fact that(.X') does not have any rational roots:

z— L (1.12)
q

n n n—1 n
0#f (g) = a, (g) 4+ t4ag= AP+ a;f 4+ o (1.13)

The numerator of the last term is a nonzero integer, hence it has absolute value
at leastl. Since we also know that(z) = 0 it follows that

R

q" q

Combining the equations 1.12 and 1.14, we get:
1
qn

<M

x—g' (1.15)
q



whenevelz — 2| < 1. This last equation shows us thatan be approximated
by rationals to order at most For assume it was otherwise, namely thaan be
approximated to order + ¢. Then we would have an infinite sequence of distinct
rational numberg£:},-, and a constark(xz) depending only ow such that
_pi| _ k(@)
qi qu+6 .

Since the number$ converge tar we can assume that they already are in the
interval (x — 1,z 4+ 1). Hence they also satisfy Equation 1.15:

(1.16)

1 i
— <Mz 2 (1.17)
q; qi
Combining the last two equations we get
1 D k(x)
< |r—= — 1.18
v <[o- 2| < 5 (1.18)
hence
@ < M (1.19)
and this is clearly impossible for arbitrarily largesincee > 0 andg; — oc.
O

Exercise 1.2.2 Justify the fact that if £ },>, is a rational approximation to order
n > 1 of x, theng; — oo.

Remark 1.2.3. So far we have seen that the order to which an algebraic number
can be approximated by rationals is bounded by its degree. Hence if a real, ir-
rational numbera ¢ Q can be approximated by rationals to an arbitrary large
order, themn must be transcendental! This provides us with a recipe for construct-
ing transcendental numbers.

1.3 Constructing Transcendental Numbers

1.3.1 > 10™

The following construction of transcendental numbers is due to Liouville.



Theorem 1.3.1.The number

=1
— 1.20
mZ_ o (1.20)
is transcendental.

Proof. The series defining is convergent, since it is dominated by the geometric
series) | mLm In fact, the series converges very rapidly and it is this high rate of
convergence that will yield is transcendental.

Fix N large, and lek, > N. Write

n

Pn 1
— = — 1.21
Gn mzl 10m! (1.:21)
With p,., g, > 0 and(p,,q,) = 1. Then{2},, is a monotone increasing
sequence converging ta In particular, all these rational numbers are distinct.

Not also thaty,, must divide10™, which implies

gn < 10™. (1.22)

Using this, we get

Pn 1 1 1
O<z——— = Z 10m — 10+ (1 - 107+2 T 10(+2)(n+3) T
m>n

dn
2 - 2
< 10+ (10n!)n+l
2 2

This gives an approximation by rationals of ord€rof x. Since N can be
chosen arbitrarily large, this implies thatcan be approximated by rationals to
arbitrary order. We can conclude, in view of our precious remark 1.2.3rthsat
transcendental. O

1.3.2 [10%,10%,...]

Theorem 1.3.2.The number



y = [10",10%,...] (1.24)
is transcendental.

Proof. Let 2= be the continued fraction ¢f0" - - - 10™]. Then

‘ Pn 1 1
Yy——| = -
an an;H-l Qn(%ﬂqn + anl)
1 1
= w1000 (1.25)

Sinceqy = anqr_1 + qn_o, it implies thatg, > qx_1 AlSO, qx11 = ari1g, +
Jr—1, SO We get

Te+1 1 + k-1 < g + 1. (1.26)
dk Ak

Hence writing this inequality fok = 1,--- ,n — 1 we obtain

42 g3 Adn
Q1
q1 92 Gn—1

< (a1 +1)(ag+1)---(an, + 1)

1 1
= (1+=)(1+)ay--a,
(14 2) (04 m-ea

< 2”@1 ey = 2n101!+.-.+n!

< 107 =a? 1.27
(1.27)

n

Combining equations 1.25 and 1.27 we get:

Pn 1 1
—_ < —
’y dn An+1 CLZ—H
1\2 1) 2
< — < | =
(ﬁ) (%)
1

In this way we get, just as in the previous theorem, an approximatigrogf
rationals to arbitrary order. This proves thas transcendental.
O



1.3.3 Buffon’s Needle andr

Consider a collection of infinitely long parallel lines in the plane, where the
spacing between any two adjacent lineslisLet the lines be located at =
0,+d,£2d,.... Consider a rod of length where for convenience we assume
[ <d.

If we were torandomlythrow the rod on the plane, what is the probability it
hits a line? This question was first asked by Buffon 33.

Because of the vertical symmetry, we may assume the center of the rod lies on
the linex = 0, as shifting the rod (without rotating it) up or down will not alter the
number of intersections. By the horizontal symmetry, we may assugng x <
g. We posit that all values aof are equally likely. Ase is continuous distributed,
we may add int = g without changing the probability. The probability density
function ofz is 4.

Let 6 be the angle the rod makes with theaxis. As each angle is equally
likely, the probability density function df is 2.

We assume that andf are chosen independently. Thus, the probability den-
sity for (z, 6) is 448,

The projection of the rod (making an angle ®ivith the z-axis) along the
x-axisisl - | cosd|. If |z| < - |cosf|, then the rod hits exactly one vertical line
exactly once; ifr > [ - | cosd|, the rod does not hit a vertical line. Note that if
[ > d, arod could hit multiple lines, making the arguments more involved.

Thus, the probability a rod hits a line is

27 l-| cos 0| dzdb
p = /
0=0 Jx=—1-| cos 0| d-2m
B /Qﬂl~|0089|ﬁ
0=0 d 27'('
21
= ad 1.29
7d ( )
Exercise 1.3.3.Show ,
1 & 2
— |cosf|dd = —. (1.30)
2m Jo T

Let A be the random variable which is the number of intersections of a rod of
length! thrown against parallel vertical lines separatediby [ units. Then



R g l
Ao {1 with probability = (1.31)

0  with probability1l — 2 °

If we were to throwNV rods independently, since the expected value of a sum
is the sum of the expected values (Lem®®, we expect to observe

21
S 1.32
— (1.32)
intersections.
Turning this around, let us throw rods, and lef be the number of observed
intersections of the rods with the vertical lines. Then
21 N 2]

The above is aexperimentaformula for !



Chapter 2

Poissonian Behavior and{n”«}

2.1 Equidistribution

We say a sequence of numher € [0, 1) is equidistributed if

lim #{n:1<n < N andz, € [a,b]}
N—o0 N
for any subintervala, b] of [0, 1].
Recall Weyl's Result, Theoref??: If o ¢ Q, then the fractional partsna}
are equidistributed. Equivalentlyoy mod 1 is equidistributed.
Similarly, one can show that for any integer{n*a} is equidistributed. See
Robert Lipshitz’s paper for more details.

=b—a (2.2)

2.2 Point Masses and Induced Probability Measures

Recall from physics the concept of a unit point mass located-at:. Such a point
mass has no length (or, in higher dimensions, width or height), but finite mass. As
mass is the integral of the density over space, a finite mass in zero volume (or zero
length on the line) implies an infinite density.

We can make this more precise by the notion of an Approximation to the
Identity. See also Theorefi?.

Definition 2.2.1 (Approximation to the ldentity). A sequence of functiog(z)
is an approximation to the identity (at the origin) if

1. gn(z) > 0.

10



2. [ gn(z)dx =1.

3. Givene, o > 0there existsV > 0 such that for alln > N, flm|>§gn(x)dx <
€.

We represent the limit of any such familygfz)s byd(z).

If f(x) is a nice function (say near the origin its Taylor Series converges) then

/ f@)b@)de = Tim | f(@)gax) = £(0). (2.2)

n—oo

Exercise 2.2.2.Prove Equation 2.2.

Thus, in the limit the functiong,, are acting like point masses. We can con-
sider the probability densitieg,(z)dx andd(x)dx. For g,(z)dz, asn — oo,
almost all the probability is concentrated in a narrower and narrower band about
the origin; o(z)dx is the limit with all the mass at one point. It is a discrete (as
opposed to continuous) probability measure.

Note thatd(x — a) acts like a point mass; however, instead of having its mass
concentrated at the origin, it is now concentrated. at

Exercise 2.2.3.Let

noif|z] < 5
" — 2n 2.3
gn(2) {O otherwise 2:3)

Proveg,(z) is an approximation to the identity at the origin.

Exercise 2.2.4 Let .

gn(r) = 4" (2.4)

.
2+’

Find ¢ such that the above is an approximation to the identity at the origin.

Given N point masses located at, s, ..., xy, We can form a probability
measure

pn(z)de = % Z 6(xr — x,)dx. (2.5)

Note [ pn(z)dz = 1, and if f(x) is a nice function,

N

[ t@ns@e = 53" () (2.6)

n=1

11



Exercise 2.2.5.Prove Equation 2.6 for nicé(x).

Note the right hand side of Equation 2.6 looks like a Riemann sum. Or it
wouldlook like a Riemann sum if the,,s were equidistributed. In general thgs
will not be equidistributed, but assume for any interjeab| that asN — oo, the
fraction ofx,s (I < n < N)in [a,b] goes toffp(x)dx for some nice function

p(x):

1< n< b
lim #in:lsns %a”d””" €latly / p(z)dz.  (2.7)

In this case, iff (z) is nice (say twice differentiable, with first derivative uni-
formly bounded), then

[ s = 5305w

> #{n:1<n<Nandz, € | £, 1|}
ZN%) ! ! ;n(EE[N N]

k=—o0

— /f(m)p(x)dac. (2.8)

Q

Definition 2.2.6 (Convergence tg(x)). If the sequence of points, satisfies
Equation 2.7 for some nice functipfi), we say the probability measureg (z)dz
converge te(x)dzx.

2.3 Neighbor Spacings

We now consider finer questions. Lef be a collection of points if0, 1). We
order them by size:

0 < ap) < gz < -+ < oy, (2.9)

whereo is a permutation 0f23 - - - N. Note the ordering depends crucially on
N. Let3; = agy;).

We consider how the differencef, — 3; are distributed. We will use a
slightly different definition of distance, however.

12



Recall[0, 1) is equivalent to the unit circle under the map- ¢*™*. Thus, the
numbers 999 and.001 are actually very close; however, if we used the standard
definition of distance, theh999 — .001| = .998, which is quite large. Wrapping
[0,1) on itself (identifying0 and 1), we see that999 and.001 are separated by
.002.

Definition 2.3.1 (mod1 distance).Letz,y € [0,1). We define the moddistance
fromz toy, ||z — y||, by

e = yll = min{le—yl, 1|z~ yl}. (2.10)
Exercise 2.3.2.Show that the mod distance between any two numberganl)

is at most;.

In looking at spacings between thes, we haveV — 1 pairs of neighbors:

(B2,61), (Bs,B2), s (Bw, Bn-1)- (2.11)

These pairs give rise to spacings., — 5; € [0, 1).

We can also consider the pait,, 5 ). This gives rise to the spacifiy— Gy €
[—1,0); however, as we are studying this sequence matthis is equivalent to
B —PBn+1€]0,1).

Henceforth, whenever we perform any arithmetic operation, we always
mean mod1; thus, our answers always live in0, 1)

Definition 2.3.3 (Neighbor Spacings)Given a sequence of numbersin [0, 1),
fix an N and arrange the numbers, (» < N) in increasing order. Label the
new sequencg;; note the ordering will depend oW. Lets_; = (y_; and

Bn+s = Bj-
1. The nearest neighbor spacings are the numpers — 3,, j = 1to N.
2. Thek™-neighbor spacings are the numbets , — 3;,j = 1to N.
Remember to take the differenggs, — 3; modl.

Exercise 2.3.4.Leta = /2, and leta,, = {na} or {n*a}. Calculate the nearest
neighbor and the next-nearest neighbor spacings in each case ferl0.

Definition 2.3.5 (wrapped unit interval). We call[0, 1), when all arithmetic op-
erations are done motl, the wrapped unit interval.

13



2.4 Poissonian Behavior

Leta ¢ Q. Fix a positive integek, and leta,, = {n*a}. As N — oo, look
at the orderedy, s, denoted bys,,. How are the nearest neighbor spacings of
distributed? How does this depend oh Ona? OnN?

Before discussing this problem, we consider a simpler caseNF&nd con-
sider N independent random variables. Each random variable is chosen from
the uniform distribution on0, 1); thus, the probability that,, € [a,b) iSb — a.

Lety, be thex, s arranged in increasing order. How do the neighbor spacings
behave?

First, we need to decide what is the correct scale to use for our investigations.
As we haveN objects on the wrapped unit interval, we haVenearest neighbor
spacings. Thus, we expect the average spacing gb be

Definition 2.4.1 (Unfolding). Let z, = Ny,. The numbers,, = Ny, have unit
mean spacing. Thus, while we expect the average spacing between agjacent
to be% units, we expect the average spacing between adjagernb bel unit.

So, the probability of observing a spacing as Iargé astween adjacent,s
becomes negligible a& — oo. What we should ask is what is the probability
of observing a nearest neighbor spacing of adjaggstthat ishalf the average
spacing. In terms of the,s, this will correspond to a spacing between adjacent
z,S of 3 a unit.

2.4.1 Nearest Neighbor Spacings

By symmetry, on the wrapped unit interval the expected nearest neighbor spacing
is independent of. Explicitly, we expects;,; — 3; to have the same distribution
asfiy1 — Bi.

What is the probability that, when we order thgs in increasing order, the
nextz, afterx, is located betvveeﬁ; and %? Let thex,,s in increasing order
be labeled); <y, < - < Yn, Yn = To(n)-

As we are choosing the,s independently, there a(é(l‘l) choices of subscript
n such thatr,, is nearest ta:;;. This can also be seen by symmetry, as eacls
equally likely to be the first to theght of x; (where, of course(01 is just a little
to the right 0f.999), and we havéV — 1 choices left forz,,.

The probability that, € |, 552 is 4%,

14



For the remainingV — 2 of the x,,;s, each must be further théﬁ% from z,,.
Thus, they musdll lie in an interval (or possibly two intervals if we wrap around)

of length1 — 2. The probability that they all lie in this region (si — A
Thus, ifz; = y;, we want to calculate the probability thay, ., — yi|| €
4 52t This is

t t+ At N -1 At t+ At\N-2
err{ o -l [ 52) = (V7))

- (1-4) (-5

N

(2.12)

For N enormous and\t small,

(-5 =~
N ~~
t+ At\N-2
(1— +N ) ~ e A ot (2.13)
Thus
t t+ At _

Prob<||yl+1 —ylH € [N’ N :|) — e TAt. (2.14)

Remark 2.4.2. The above argument is infinitesimally wrong. Once we’ve located
yi+1, the remainingr,,s do not need to be more théﬁ% units to the right of

r1 = y;; they only need to be further to the right thgn . As the incremental
gain in probabilities for the locations of the remainings is of orderAt, these
contributions will not influence the larg®’, small At limits. Thus, we ignore
these effects.

To rigorously derive the limiting behavior of the nearest neighbor spacings
using the above arguments, one would integrate oyeranging from+ to %,
and the remaining evenis, would be in the a segment of length- x,,,. As

(-m)- (-8 e

this will lead to corrections of higher order iht, hence negligible.
We can rigorously avoid this by instead considering the following:

15



1. Calculate the probability that all the others are at least; units to the
right of z;. This is

P = (M%)Nl et (2.16)

2. Calculate the probability that all the otheyrs are at IeasﬁTAt units to the
right of z;. This is

— e (tFAY, (2.17)

t+At>N—1

Pi+At = (1— N

3. The probability that na:,,s are within£- units to the right ofz; but at least
onexz, is betweent. and 2% units to the right i9;. a; — pi:

Pt — Pt+at — € —6_(

= et (1 — 14+ At+ O((At)2)

— e 'At. (2.18)

Definition 2.4.3 (Unfolding Spacings).If .1 — y; € [%, %} , thenN (y;1 —
y1) € [t,t + At]. The new spacings,; — z; have unit mean spacing. Thus, while
we expect the average spacing between adjagento be% units, we expect the

average spacing between adjaceps to bel unit.

2.4.2 k" Neighbor Spacings

Similarly, one can easily analyze the distribution of #i& neighbor spacings
when each,, is chosen independently from the uniform distribution[@n ).
Again, consider:;; = y;. Now we want to calculate the probability that ;. is
between% and”—NAt units to theright of y;.
Therefore, we need exactly— 1 of thex, s to lie betweei) and+ units to the
right of 2, exactly oner,, (which will bey, ;) to lie between: and”—]\,m units to
the right ofx,, and the remaining,,s to lie at Ieasf*TAt units to the right ofy, ;.

16



Remark 2.4.4. We face the same problem discussed in Remark 2.4.2; a similar
argument will show that ignoring these affects will not alter the limiting behavior.
Therefore, we will make these simplifications.

There are( ) ways to choose the,s that are at most units to the right of
1. thereis ther( (k= 1)) ways to choose the, betweenﬁ andt+NAt units to

the right ofx;.
Thus,

t t+ At
Prob<||yl+k—yl||€ |:N N i|> =

O [ G S G o I
_ (N—l)...(]l\\]fkjll—(k—2))(N—1)];(k:—1)(kt_1)!(1 H;VAt> )

eTIAL (2.19)

Again, one way to avoid the complications is to integrate awgrranging
from L to LL2¢,
Or, similar to before, we can proceed more rigorously as follows:

1. Calculate the probability that exactly— 1 of the otherz,,s are at most;
units to the right ofr;, and the remaining/V — 1) (k —1) of thex,s are
at Ieast— units to the right ofr;. As there ar ) ways to choosé — 1

of thexns to be at mos}% units to the right ofcl, thls probability is

B N -1 (t)k—l(l t>(N—1)—(k—1)
e = \r-1)\W N

k— k—
NE=L b=l

T k- DINC
tk*l .
- e (2.20)

17



2. Calculate the probability that exactty— 1 of the otherz, s are at most;
units to the right ofr;, and the remainingV — 1) — (k — 1) of thez, s are
at Ieast% units to the right ofr;. Similar to the above, this gives

B N -1 ( t )k—l(l t+ At)(N—l)—(k—l)
e = \k-1)\N N
LN T
(k — 1)l NF-1
Ay
AU 2.21
- n© (2.21)

3. The probability that exactly—1 of thex,,s are withins; units to the right of
z; and at least one, is betweent. and 2! units to the right ig;, a; — p¢:

AR LA et
Pt —DPt+At — (l{?—l)'e _(]{7—1>'€ — me At. (222)

Note that wherk = 1, we recover the nearest neighbor spacings.

2.5 Induced Probability Measures

We have proven the following:

Theorem 2.5.1.Consider N independent random variables, chosen from the
uniform distribution on the wrapped unit interv@@, 1). For fixed N, arrange the
x,S Inincrease order, labelegh <y, < --- < yp.

Form the induced probability measurey; from the nearest neighbor spac-
ings. Then asv — oo we have

N
1 —t
pun(t)dt = N 521 5<t — N(yn — yn,1)>dt — e ‘dt. (2.23)

Equivalently, using,, = Ny,:

N

pna(t)dt = —25(75— (zn—zn_1)>dt et (2.24)

18



More generally, form the probability measure from i nearest neighbor
spacings. Then a& — oo we have

N
1 et
pn ()t = N;(S(t—N(yn—ynk))dt - G W @29)

Equivalently, using,, = Ny,:

k—1

l _
:uNk dt = Z(S( Z»,L Z»,L_k>>dt — me tdt (226)

Definition 2.5.2 (Poissonian Behavior)We say a sequence of poinishas Pois-
sonian Behavior if in the limit asV — oo the induced probability measures
un k(t)dt converge tO—e_tdt

Exercise 2.5.3.Leta € Q, and definev,, = {n™a} for some positive integer.
Show the sequence of poiats does not have Poissonian Behavior.

Exercise 2.5.4.Leta ¢ Q, and definev, = {na}. Show the sequence of points
a,, does not have Poissonian Behavior. Hint: for ed¢hshow the nearest neigh-
bor spacings take on at most three distinct values (the three values depéid on
As only three values are ever assumed for a fiXed v, (¢)dt cannot converge to
e~tdt.

2.6 Non-Poissonian Behavior

Conjecture 2.6.1. With probability one (with respect to Lebesgue Measure, see
Definition??), if a ¢ Q, if a,, = {n?a} then the sequence of points is Poisso-
nian.

There are constructions which show certain irrationals give rise to non-Poissonian
behavior.

Theorem 2.6.2.Leta € Q such that’a p”) < ¢ holds infinitely often, with

a, — 0. Then there exist integer§; — oo such thatuy, 1 (f) does not converge
to edt.

19



As a, — 0, eventuallya, < 1—10 for all n large. LetN,, = q,, Wherez—: is a
good rational approximation io:

(2.27)

‘a DPn Qp,
@l a
Remember that all subtractions are performed on the wrapped unit interval.

Thus,||.999 — .001|| = .002.

We look atay, = {k%a}, 1 < k < N,, = ¢,. Let the,s be then;s arranged

in increasing order, and let thgs be the numberﬁkzg—:} arranged in increasing

order:

B
§a!

B
72

BN
IN- (2.28)

IA A
(VARVAN
VARVAN

2.6.1 Preliminaries

Lemma 2.6.3.1f 5 = aj, = {k®a}, theny, = {k*22}. Thus, the same permuta-
tion orders both they,s and they;s.

Proof. Multiplying both sides of Equation 2.27 by < ¢ yields

1
‘k:Qa—k:Q& <R <o~ (2.29)
In I In 2gn
Thus,k%a andk“;—: differ by at mostﬁ. Therefore
1
H{kﬂa} . {kﬂﬁ}H < —. (2.30)
n 2¢n

As the numbers{mzf(j—:} all have denominators of size at mqj—g we see that
{k?L=} is the closest of th¢m?22} to {k*a}.
This implies that if3; = {k*a}, theny, = {kQ%}, completing the proof.
O

Exercise 2.6.4.Prove the ordering is as claimed. Hint: about eagh= {k?a},
the closest number of the forfn?2e} is {222},
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2.6.2 Proof of Theorem 2.6.2

Exercise 2.6.5.Assumé|a — b||,||c — d|| < 5. Show
I(a =) = (c=d)l < [la—=0l|+|lc—dl|. (2.31)

Proof of Theorem 2.6.2: We have shown

an
16—l < w (2.32)
Thus, asV,, = q¢,:
Va8 = )| < an, (2.33)

and the same result holds witheplaced by — 1.
By Exercise 2.6.5,

Nn(ﬁl - ’71) - Nn(ﬁl—l - %—1) < 2an~ (234)

Rearranging gives

No(Br = Bi-1) = Nu(y = vi-1)|| < 2an. (2.35)

Asa, — 0, thisimplies the difference betweHrj\fn(ﬁl—ﬁl_l)‘ ) and‘ ’Nn(%—

Yi-1) ‘ goes to zero.

The above distance calculations were done mobhe actual differences will
differ by an integer. Thus,

N,
1 n
pi, 1 (t)dE = N Z 5<t — No(Br — 514)) (2.36)
mo=1
and
pn 1
M](i;;,l(t)dt = Fn Z 5<t — Np(y — 71-1)) (2.37)

are extremely close to one another; each point mass from the difference be-
tween adjaceng;s is either withina,, units of a point mass from the difference
between adjaceny;s, or is withina,, units of a point mass an integer number of
units from a point mass from the difference between adjagsn&urtherg,, — 0.
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Note, however, that if; = {£*£}, then
Ny = qn{kﬂﬁ} e N. (2.38)
dn

Thus, the induced probability measur%l(t)dt formed from they;s is sup-

bn

ported on the integers! Thus, it is impossible }tqf%l(t)dt to converge t@'dt.
As gy, (t)dt, modulo some possible integer shifts, is arbitrarily close to

Pn

uﬁjﬁl(t)dt, the sequencék?a} is not Poissonian along the subsequence\Vaf
given by N,,, whereN,, = ¢,, ¢, iS a denominator in a good rational approxima-
tiontoo. O

2.6.3 Measure ofx ¢ Q with Non-Poissonian Behavior along a
sequenceV,,

What is the (Lebesgue) measurecotZ Q such that there are infinitely many
with

<4, =0 (2.39)

n

o — —
4n

If the above holds, then for any constdity), for n large (large depends on
botha andk(«)) we have

’ Pn

k(o)

—.
qate

]@ _Dn (2.40)

dn
By Theorem??, this set has (Lebesgue) measure or 8izdhus, almost no
irrational numbers satisfy the conditions of Theorem 2.6.2, whérest nois
relative to the (Lebesgue) measure.

Exercise 2.6.6.In a topological sense, how many algebraic numbers satisfy the
conditions of Theorem 2.6.2? How many transcendental numbers satisfy the con-
ditions?

Exercise 2.6.7.Let « satisfy the conditions of Theorem 2.6.2. Consider the se-
guenceN,,, whereN,, = q,, ¢, the denominator of a good approximationtoWe

know the induced probability measur/eél(t)dt andugy,, ,(t)dt do not converge
to e~'dt. Do these measures converge to anything?
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Remark 2.6.8. In The Distribution of Spacings Between the Fractional Parts of
{n%a} (Z. Rudnick, P. Sarnak, A. Zaharescu), it is shown that for masttisfying

the conditions of Theorem 2.6.2, thesea sequenceV; along whichugy, , (t)dt
doesconverge ta‘dt.
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