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Abstract
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1 Problems where the Circle Method is Use-

ful

For each N , let AN be a set of non-negative integers such that

1. AN ⊂ AN+1,

2. |AN | → ∞ as N →∞.

Let A = limN→∞AN .

Question 1.1. Let s be a fixed positive integer. What can one say about
a1 + · · ·+ as? Ie, what numbers n are representable as a sum of s summands
from A?

We consider three problems; we will mention later why we are considering
sets AN .
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1.1 Waring’s Problem

Let A be the set of kth powers of non-negative numbers, and let

AN = {0k, 1k, . . . , Nk}. (1)

Question 1.2. Fix a positive integer k. For what positive integers s can
every integer be written as a sum of s numbers, each number a kth power?

Thus, in this case, we are trying to solve

n = ak
1 + · · ·+ ak

N . (2)

1.2 Goldbach’s Problem

Let A be the set of all prime numbers, and let AN be the set of all primes at
most N .

Question 1.3. Can every even number be written as the sum of two primes?

In this example, we are trying to solve

2n = a1 + a2, (3)

or, in more suggestive notation,

2n = p1 + p2. (4)

1.3 Sum of Three Primes

Again, let A be the set of all primes, and AN all primes up to N .

Question 1.4. Can every odd number be written as the sum of three primes?

Again, we are studying

2n + 1 = p1 + p2 + p3. (5)
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2 Idea of the Circle Method

2.1 Introduction

Definition 2.1 (e(z)). We define e(z) = e2πiz.

Exercise 2.2. Let m, n ∈ Z. Prove∫ 1

0

e(nx)e(−mx)dx =

{
1 if n = m

0 otherwise
(6)

Let A, AN be as in any of the three problems above. Consider

fN(x) =
∑

a∈AN

e(ax). (7)

We investigate
(
fN(x)

)s

:

(
fN(x)

)s

=
s∏

j=1

∑
aj∈AN

e(ajx)

=
∑
m

rN(m)e(mx). (8)

The last result follows by collecting terms. When you multiply two ex-
ponentials, you add the exponents.

Thus, when we multiply the s products, how can we get a product which
gives e(mx)?

We have s products, say e(a1x) through e(aNx). Thus,

e(a1x) · · · e(aNx) = e
(
(a1 + · · ·+ aN)x

)
= e(mx). (9)

Thus, the coefficient rN(m) in
(
fN(x)

)s

is the number of ways of writing

m = a1 + · · ·+ aN , (10)

with each aj ∈ AN .
As the elements of AN are non-negative, if N is sufficiently large rN(m)

is equal to the number of ways of writing m as the sum of s elements of A.
The problem is, if m is larger than the largest term in AN , then there

may be other ways to write m as a sum of s elements of A.
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Lemma 2.3.

rN(m) =

∫ 1

0

(
fN(x)

)s

e(−mx)dx. (11)

Proof: direct calculation.
Note that, just because we have a closed form expression for rN(m),

this does not mean we can actually evaluate the above integral. Recall, for
example, the inclusion - exclusion formula for the number of primes at most
N . This is an exact formula, but very hard to evaluate.

2.2 Useful Number Theory Results

We will use the following statements freely:

Theorem 2.4 (Prime Number Theorem). Let π(x) denote the number
of primes at most x. Then

π(x) =
∑
p≤x

1 =
x

log x
+ smaller. (12)

Upon applying Partial Summation, we may rewrite the above as∑
p≤x

log p = x + smaller. (13)

Theorem 2.5 (Siegel-Walfisz). Let C, B > 0, and let a and q be relatively
prime. Then ∑

p≤x
p≡a(q)

log p =
x

φ(q)
+ O

( x

logC x

)
(14)

for q ≤ logB x, and the constant above does not depend on x, q or a (ie,
it only depends on C and B).

For completeness, we include a review of partial summation as an ap-
pendix to these notes.
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2.3 Average Sizes of
(
fN(x)

)s

Henceforth we will consider fN(x) arising from the three prime case. Thus,
s = 3.

For analytic reasons, it is more convenient to instead analyze the function

FN(x) =
∑
p≤N

log p · e(px). (15)

Working analogously as before, we are led to

RN(m) =

∫ 1

0

(
FN(x)

)3

e(−mx)dx. (16)

By partial summation, it is very easy to go from RN(m) to rN(m).

Exercise 2.6. Prove the trivial bound for |FN(x)| is N . Take absolute values
and use the Prime Number Theorem.

We can, however, show that the average square of FN(x) is significantly
smaller:

Lemma 2.7. The average value of |FN(x)|2 is N log N .

Proof: The following trivial observation will be extremely useful in our ar-
guments. Let g(x) be a complex-valued function, and let g(x) be its complex
conjugate. Then |g(x)|2 = g(x)g(x).

In our case, as FN(x) = FN(−x) we have

∫ 1

0

|FN(x)|2 =

∫ 1

0

FN(x)FN(−x)dx

=

∫ 1

0

∑
p≤N

log p · e(px)
∑
q≤N

log q · e(−qx)dx

=
∑
p≤N

∑
q≤N

log p log q

∫ 1

0

e
(
(p− q)x

)
dx

=
∑
p≤N

log2 p. (17)

Using
∑

p≤N log p = N + small and Partial Summation, we can show
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∑
p≤N

logp = N log N + smaller. (18)

Thus, ∫ 1

0

|FN(x)|2 = N log N + smaller. (19)

Thus, taking square-roots, we see on average |
(
FN(x)

)
|2 is N log N , sig-

nificantly smaller than the maximum possible value (N2). Thus, we see we
are getting almost square-root cancellation on average. 2

2.4 Definition of the Major and Minor Arcs

We split the unit interval [0, 1) into two disjoint parts, the Major and the
Minor arcs.

Roughly, the Major arcs will be a union of very small intervals centered
at rationals with small denominator (relative to N). Near these rationals,
we will be able to approximate FN(x) very well, and FN(x) will be of size N .

The minor arcs will be the rest of [0, 1); we will show that FN(x) is
significantly smaller than N here.

2.4.1 Major Arcs

Let B > 0, and let Q = (log N)B � N .
For each q ∈ {1, 2, . . . , Q} and a ∈ {1, 2, . . . , q} with a and q relatively

prime, consider the set

Ma,q =
{

x ∈ [0, 1) :
∣∣∣x− a

q

∣∣∣ <
Q

N

}
. (20)

We also add in one interval centered at either 0 or 1, ie, the ”interval”
(or wrapped-around interval)[

0,
Q

N

]
∪

[
1− Q

N
, 1

]
. (21)

Exercise 2.8. Show, if N is large, that the major arcs Ma,q are disjoint for
q ≤ Q and a ≤ q, a and q relatively prime.
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We define the Major Arcs to be the union of each arc Ma,q:

M =

Q⋃
q=1

⋃
a=1

(a,q)=1

Ma,q, (22)

where (a, q) is the greatest common divisor of a and q.

Exercise 2.9. Show |M| < 2Q3

N
. As Q = logB N , this implies as N → ∞,

the major arcs are zero percent of the unit interval.

2.4.2 Minor Arcs

The Minor Arcs, m, are whatever is not in the Major Arcs. Thus,

m = [0, 1)−M. (23)

Clearly, as N →∞, almost all of [0, 1) is in the Minor Arcs.

3 Contributions from the Major and Minor

Arcs

3.1 Contribution from the Minor Arcs

We bound the contribution from the minor arcs to rN(m):

∣∣∣ ∫
m

F 3
N(x)e(−mx)dx

∣∣∣ ≤
∫

m

|FN(x)|3dx

≤
(

max
x∈m

|FN(x)|
)∫

m

|FN(x)|2dx

≤
(

max
x∈m

|FN(x)|
)∫ 1

0

FN(x)FN(−x)dx

≤
(

max
x∈m

|FN(x)|
)
N log N. (24)

As the minor arcs are most of the unit interval, replacing
∫

m
with

∫ 1

0

doesn’t introduce much of an over-estimation.
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In order for the Circle Method to succeed, we need a non-trivial, good
bound for

max
x∈m

|FN(x)| (25)

This is where most of the difficulty arises, showing that there is good
cancellation in FN(x) if we stay away from rationals with small denominator.

We will show that the contribution to the major arcs is

S(N)
N2

2
+ smaller, (26)

where ∃c1, c2 > 0 such that, for all N , c1 < S(N) < c2.
Thus, we need the estimate that

max
x∈m

|FN(x)| ≤ N

log1+ε N
. (27)

Relative to the average size of |FN(x)|2, this is significantly smaller; how-
ever, as we are showing that the maximum value of |FN(x)| is bounded, this
is a significantly more delicate question. We know such a bound cannot be
true for all x ∈ [0, 1) (see below, and not that FN(0) = N). The hope is
that if x is not near a rational with small denominator, we will get moderate
cancellation.

While this is very reasonable to expect, it is not easy to prove.

3.2 Contribution from the Major Arcs

Fix a q ≤ Q and an a ≤ q with a and q relatively prime. We evaluate F
(

a
q

)
.
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F
(a

q

)
=

∑
p≤N

log p · e2πip a
q

=

q∑
r=1

∑
p≡r(q)
p≤N

log p · e2πi ap
q

=

q∑
r=1

∑
p≡r(q)
p≤N

log p · e2πi ar
q

=

q∑
r=1

e2πi ar
q

∑
p≡r(q)
p≤N

log p (28)

Note the beauty of the above. The dependence on p in the original sums

is very weak – there is a log p factor, and there is e
(

ap
q

)
. In the exponential,

we only need to know p mod q. Now, p runs from 2 to N , and q is at most
logB N . Thus, in general p � q.

We use the Siegel-Walfisz Theorem. We first remark that we may assume
r and q are relatively prime. Why? If p ≡ r mod q, this means p = αq + r
for some α ∈ N. If r and q have a common factor, there can be at most one
prime p (namely r) such that p ≡ r mod q, and this can easily be shown to
give a negligible contribution.

For any C > 0 ∑
p≡r(q)
p≤N

log p =
N

φ(q)
+ O

( N

logC N

)
. (29)

Now, as φ(q) is at most q which is at most logB N , we see that the main
term is significantly greater than the error term (choose C much greater than
B).

Note the Siegel-Walfisz Theorem would be useless if q ≈ N ε. Then the
main term would be like N1−ε, which would be smaller than the error term.

This is one reason why, in constructing the major arcs, we take the de-
nominators to be small.

Thus, we find
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F
(a

q

)
=

q∑
r=1

(r,q)=1

e2πi ar
q

N

φ(q)
+ smaller

=
N

φ(q)

q∑
r=1

(r,q)=1

e2πi ar
q . (30)

We merely sketch what happens now.

First, one shows that for x ∈ Ma,q that FN(x) is very close to F
(

a
q

)
.

This is a standard analysis (Taylor Series Expansion – the constant term is
a good approximation if you are sufficiently close).

Thus, as the major arcs are distinct,∫
M

F 3
N(x)e(−mx)dx =

Q∑
q=1

∑
a=1

(a,q)=1

∫
Ma,q

F 3
N(x)e(−mx)dx. (31)

We can approximate F 3
N(x) by F

(
a
q

)
; integrating a constant gives the

constant times the length of the interval. Each of the major arcs has length
2Q3

N
. Thus we find that, up to a smaller correction term, the contribution

from the Major Arcs is

∫
M

F 3
N(x)e(−mx)dx =

2Q3

N

Q∑
q=1

∑
a=1

(a,q)=1

(
N

φ(q)

q∑
r=1

(r,q)=1

e2πi ar
q

)3

e
(−2πima

q

)

= N2 · 2Q3

Q∑
q=1

1

φ(q)3

∑
a=1

(a,q)=1

(
q∑

r=1
(r,q)=1

e2πi ar
q

)3

e
(−2πima

q

)
.

(32)

To complete the proof, we need to show that what is multiplying N2 is
non-negative, and not too small.

We will leave this for another day, as it is getting quite late here.
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4 Why Goldbach is Hard

Using

FN(x) =
∑
p≤N

log p · e2πipx, (33)

we find we must study ∫ 1

0

F s
N(x)dx, (34)

where s = 3 if we are looking at p1 + p2 + p3 = 2n + 1 and s = 2 if we are
looking at p1 + p2 = 2n. Why does the circle method work for s = 3 but fail
for s = 2?

4.1 s = 3 Sketch

Let us recall briefly the s = 3 case. Near rationals a
q

with small denominator

(small means q ≤ logB N), we can evaluate FN(a
q
). Using Taylor, if x is very

close to a
q
, we expect FN(x) to be close to FN(a

q
).

The Major Arcs have size logB N
N

. As FN(x) is around N near such ra-
tionals, we expect the integral of F 3

N(x)e(−mx) to be N2 times a power of
log N . Doing a careful analysis of the singular series shows that the contri-
bution is actually S(N)N2, where there exist constants independent of N
such that 0 < c1 < S(N) < c2 < ∞.

A direct calculation shows that∫ 1

0

|FN(x)|2dx =

∫ 1

0

FN(x)FN(−x)dx = N. (35)

Thus, if m denotes the minor arcs,

∣∣∣ ∫
m

F 3
N(x)e(−mx)dx

∣∣∣ ≤ max
x∈m

|FN(x)|
∫ 1

0

|FN(x)|2dx

≤ N max
x∈m

|FN(x)|. (36)

As the major arcs contribute S(N)N2, we need to show
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max
x∈m

|FN(x)| � N

logD N
. (37)

Actually, we just need to show the above is � o(N). This is the main
difficulty – the trivial bound is |FN(x)| ≤ N . As FN(0) = N plus lower order
terms, we cannot do better in general.

Exercise 4.1. Show FN(1
2
) = N − 1 plus lower order terms.

The key observation is that, if we stay away from rationals with small
denominator, we can prove there is cancellation in FN(x). While we don’t go
into details here (see, for example, Nathanson’s Additive Number Theory:
The Classical Bases, Chapter 7), the savings we obtain is small. We show

max
x∈m

|FN(x)| � N

logD N
. (38)

Note that Equation 35 gives us significantly better cancellation on aver-
age, telling us that |FN(x)|2 is usually of size N .

Thus, it is our dream to be so lucky as to see
∣∣∣ ∫I |FN(x)|2dx

∣∣∣ for any

I ⊂ [0, 1), as we can evaluate this extremely well.

4.2 s = 2 Sketch

What goes wrong when s = 2? As a first approximation, if s = 3 has the
Major Arcs contributing a constant times N2 (and FN(x) was of size N on the
Major Arcs), one might guess that the Major Arcs for s = 2 will contribute
a constant times N .

How should we estimate the contribution from the Minor Arcs? We have
F 2

N(x). If we just throw in absolute values we get∣∣∣ ∫
m

F 2
N(x)e(−mx)dx

∣∣∣ ≤ ∫ 1

0

|FN(x)|2dx = N. (39)

Note, unfortunately, that this is the same size as the expected contribu-
tion from the Major Arcs!

We could try pulling a maxx∈m |FN(x)| outside the integral, and hope to
get a good savings. The problem is this leaves us with

∫
m
|FN(x)|dx.

Recall
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Lemma 4.2.∫ 1

0

|f(x)g(x)|dx ≤
(∫ 1

0

|f(x)|2dx
) 1

2 ·
(∫ 1

0

|g(x)|2dx
) 1

2
. (40)

For a proof, see Lemma A.1.
Thus,

∣∣∣ ∫
m

F 2
N(x)e(−mx)dx

∣∣∣ ≤ max
x∈m

|FN(x)|
∫ 1

0

|FN(x)|dx

≤ max
x∈m

|FN(x)|
(∫ 1

0

|FN(x)|2dx
) 1

2 ·
(∫ 1

0

12dx
) 1

2

≤ max
x∈m

|FN(x)| ·N
1
2 · 1. (41)

As the Major Arcs contribute something of size N , we would need

max
x∈m

|FN(x)| � o(
√

N). (42)

There is almost no chance of such cancellation. We know∫ 1

0

|FN(x)|2dx = N plus lower order terms. (43)

Thus, the average size of |FN(x)| is N , so we expect |FN(x)| to be about√
N . To get o(N) would be unbelievably good fortune!
While the above sketch shows the Circle Method is not, at present, pow-

erful enough to handle the Minor Arc contributions, all is not lost. The
quantity we need to bound is∣∣∣ ∫

m

F 2
N(x)e(−mx)dx

∣∣∣. (44)

However, we have instead been studying∫
m

|FN(x)|2dx (45)

and

max
x∈m

|FN(x)|
∫ 1

0

|FN(x)|dx. (46)
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Thus, we are ignoring the probable oscillation / cancellation in the in-
tegral

∫
FN(x)e(−mx)dx. It is this cancellation that will lead to the Minor

Arcs contributing significantly less than the Major Arcs.
However, showing there is cancellation in the above integral is very diffi-

cult. It is a lot easier to work with absolute values.

A Cauchy-Schwartz Inequality

Lemma A.1. [Cauchy-Schwarz]∫ 1

0

|f(x)g(x)|dx ≤
(∫ 1

0

|f(x)|2dx
) 1

2 ·
(∫ 1

0

|g(x)|2dx
) 1

2
. (47)

For notational simplicity, assume f and g are real-valued, positive func-
tions. Working with |f | and |g| we see there is no harm in the above.

Let

h(x) = f(x) + λg(x), λ = −
∫ 1

0
f(x)g(x)dx∫ 1

0
g(x)2dx

(48)

As
∫ 1

0
h(x)2dx ≥ 0, we have
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0 ≤
∫ 1

0

(
f(x) + λg(x)

)2

dx

=

∫ 1

0

f(x)2dx + 2λ

∫ 1

0

f(x)g(x)dx + λ2

∫ 1

0

g(x)2dx

=

∫ 1

0

f(x)2dx − 2

( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

+

( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

=

∫ 1

0

f(x)2dx −

( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

≤
∫ 1

0

f(x)2dx

(∫ 1

0

f(x)g(x)dx
)2

≤
∫ 1

0

f(x)2dx ·
∫ 1

0

g(x)2dx∫ 1

0

f(x)g(x)dx ≤
(∫ 1

0

f(x)2dx
) 1

2 ·
(∫ 1

0

g(x)2dx
) 1

2
. (49)

Again, for general f and g, replace f(x) with |f(x)| and g(x) with |g(x)|
above. Note there is nothing special about

∫ 1

0
. 2

The Cauchy-Schwarz Inequality is often useful when g(x) = 1. In this
special case, it is important that we integrate over a finite interval.

Exercise A.2. For what f and g is the Cauchy-Schwarz Inequality an equal-
ity?

B Partial Summation

Lemma B.1 (Partial Summation: Discrete Version). Let AN =
∑N

n=1 an.
then

N∑
n=M

anbn = ANbN − AM−1bM +
N−1∑
n=M

An(bn − bn+1) (50)
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Proof. Since An − An1 = an,

N∑
n=M

anbn =
N∑

n=M

(An − An−1)bn

= (AN − AN−1)bN + (AN−1 − AN−2)bN−1 + · · ·+ (AM − AM−1)bM

= ANbN + (−AN−1bN + AN−1bN−1) + · · ·+ (−AMbM+1 + AMbM)− aM−1bM

= ANbN − aM1bM +
N−1∑
n=M

An(bn − bn+1). (51)

Lemma B.2 (Abel’s Summation Formula - Integral Version). Let
h(x) be a continuously differentiable function. Let A(x) =

∑
n≤x an. Then

∑
n≤x

anh(n) = A(x)h(x)−
∫ x

1

A(u)h′(u)du (52)

See, for example, W. Rudin, Principles of Mathematical Analysis, page
70.

Partial Summation allows us to take knowledge of one quantity and con-
vert that to knowledge of another.

For example, suppose we know that∑
p≤x

log p = x + O(x
1
2
+ε). (53)

We use this to glean information about
∑

p≤x 1.
Define

h(n) =
1

log n
and an =

{
log n if n is prime

0 otherwise.
(54)

Applying partial summation to
∑

p≤x anh(n) will give us knowledge about∑
p≤x 1. Note as long as h(n) = 1

log n
for n prime, it doesn’t matter how

we define h(n) elsewhere; however, to use the integral version of Partial
Summation, we need h to be a differentiable function.

Thus
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∑
p≤x

1 =
∑
p≤x

anh(n)

=
(
x + O(x

1
2
+ε)
) 1

log x
−
∫ x

2

(
u + O(u

1
2
+ε)
)
h′(u)du. (55)

The main term (A(x)h(x)) equals x
log x

plus a significantly smaller error.

We now calculate the integral, noting h′(u) = − 1
u log2 u

. The error piece

in the integral gives a constant multiple of∫ x

2

u
1
2
+ε

u log2 u
du. (56)

As 1
log2 u

≤ 1
log2 2

for 2 ≤ u ≤ x, the integral is bounded by

1

log2 2

∫ x

2

u−
1
2
+ε <

1

log2 2

1
1
2

+ ε
x

1
2
+ε, (57)

which is significantly less than A(x)h(x) = x
log x

.
We now need to handle the other integral:∫ x

2

u

u log2 u
du =

∫ x

2

1

log2 u
du. (58)

The obvious approximation to try is 1
log2 u

≤ 1
log2 2

. Unfortunately, plug-

ging this in bounds the integral by x
log2 2

. This is larger than the expected

main term, A(x)h(x)!
As a rule of thumb, whenever you are trying to bound something, try the

simplest, most trivial bounds first. Only if they fail should you try to be
clever.

Here, we need to be clever, as we are bounding the integral by something
larger than the observed terms.

We split the integral into two pieces:∫ x

2

=

∫ √
x

2

+

∫ x

√
x

(59)

For the first piece, we use the trivial bound for 1
log2 u

. Note the interval

has length
√

x − 2 <
√

x. Thus, the first piece contributes at most x
1
2

log2 2
,

significantly less than A(x)h(x).
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The reason trivial bounds failed for the entire integral is the length was
too large (of size x); there wasn’t enough decay in the function.

The advantage of splitting the integral in two is that in the second piece,
even though most of the length of the original interval is here (it is of length
x −

√
x ≈ x), the function 1

log2 u
is small here. Instead of bounding it by a

constant, we now bound it by substituting in the smallest value of u on this
interval,

√
x. Thus, the contribution from this integral is at most x−

√
x

log2√x
<

4x
log2 x

. Note that this is significantly less than the main term A(x)h(x) = x
log x

.
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