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Abstract

Using the Hardy-Littlewood Circle Method (and assuming no main
term contribution from the Minor Arcs), we calculate the expected
number of Germain primes. Calculations and notes by Steven Miller.
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1 Preliminaries

1.1 Definitions
Let

and

logp if n = p is prime
A(n) = .
0 otherwise

Finally, define

1.2 Partial Summation

Lemma 1.1 (Partial Summation: Discrete Version). Let Ay = 3.

then

N-1

N
Z anby, = Anbn — Apr—1ba + Z A, (by — bpya)

Proof. Since A,, — A,,_1 = a,,

N N
Z anbn = Z (An - Anfl)bn
n=M n=M

= (Av —An_1)bn + (An—1 — An—2)by_1 + -+ (A — Ap—1)bu

Q.

= Anby + (—An-—1by + An_iby—1) + -+ (= Anbarer + Apbar) — anr—1byr

N-1

= Anby = anbar + Y An(by — bpsa).

n=M

(5)



Lemma 1.2 (Abel’s Summation Formula - Integral Version). Let
h(x) be a continuously differentiable function. Let A(x) =3 _, a,. Then

> " ayh(n) = A(z)h(z) - /1 ' A(u)l (u)du (6)

n<zx

See, for example, W. Rudin, Principles of Mathematical Analysis, page
70.

1.3 Siegel-Walfisz

Theorem 1.3. [Siegel-Walfisz] Let C; B > 0, and let a and q be relatively
prime. Then

; logp = Lq)JrO(—lO;Cx) (7)

p=a(q)

for q¢ < log? z, and the constant above does not depend on x, q or a (ie,
it only depends on C' and B).

1.4 Germain Integral

Define

fin(z) =) logpi-e(pr)
p1<N

fon(z) = Zlogp2'€(—2p2$)
p2<N

fute) = 30 3 togpilogps - e((pr —2m)x). (8)
p1<N pa<N

Consider

fN( Z Z log p1 10gp2/1 ((Pl —2py — 1)x>dx. 9)

p1<N pa2<N

l\)\»—‘
N\

Note



[NIE

1 if — 295 —1=0
/ e(<p1 — 2py — 1)$)d$ — 1 b1 P2 (1())
- 0 ifp —2pa—1#0

Thus, we get a contribution of log p; log ps if p; and py = plT*l are both
primes. Thus,

1
2

" fv(@)e(—a)de = > logpilogps. (11)

p1<N

p2:p1;1 prime

VI

The above is a weighted counting of Germain primes.

1.5 Major and Minor Arcs
Let B be a positive integer, Q = log? N, and define the Major Arc M,

Moy = {zeo,n): ’x—g‘ < %} (12)

We also add in one interval centered at either 0 or 1, ie, the "interval”
(or wrapped-around interval)

Q@ Q
[0, N] U ll_ﬁ’ll' (13)

For convenience, we often use the interval [—3, 1] instead of [0, 1], in which

case we would have
11 Q 1 Q1
[—5’—5%] U IE_N’QI‘ (14

For functions that are periodic of period one, we could instead consider
2 N2 N
The Major Arcs are defined by

M= qu Mg (16)

< a=1
15Q Somt

[1 01 Q (15)
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The Minor Arcs, m, are whatever is not in the Major Arcs.
Then

fN( / F(@)e(—z)dz + /m fe(@)e(—2)dz.  (17)

mh—t

We will assume that there is no net contribution over the minor arcs.
Thus, in the sequel we investigate

/ Fr(@)e(—z)da. (18)
M

1.6 Reformulation of Germain Integral

fin(@) = ) AMmi) - e(miz)
fon(z) = Z A(ma) - e(—2max)

fulz) = Z Z)\(ml))\(mg)-e<(m1—2m2)m>. (19)

m1<N ma<N

We investigate

/ fy(x)e(—z)dx. (20)
M

We will show the Major Arcs contribute, up to lower order terms, To N,
where T5 is a constant independent of N. The length of the Major Arc M,
is % We sum over (a,q) =1 and ¢ < Q. Thus, the total length is bounded
by

Q 5 log”
Zq : N < W < T (21)
9<Q

By choosing B sufficiently large, we will be able to make all the errors
from the Major Arc calculations less than the main term from the Major
Arcs. Of course, we have absolutely no control over what happens on the



minor arcs, and we will simply assume there is no contribution from the
minor arcs.

Thus, on the Major Arc M, 4, success will be in finding a function of size
N2 such that the error from this function to fy(z) on M, is much smaller
than N2, say N? divided by a large power of log N.

Similarly, when we integrate over the Major Arcs, we will find the main
terms will be of size N; again, success will be in showing the errors in the
approximations are much smaller than N, say N divided by a large power of
log N.

We are able to do this because of the Siegel-Walfisz Theorem (Theorem
1.3). Given any B > 0, we can find a C' > 0 such that, if ¢ < log® N, then

N N
p; logp = oo+ 0(—loch), (22)
p=r(q)

(r,q) = 1. Thus, we can take C' enormous, large enough so that even
log?B N
N

when we multiply by the length of the Major Arcs (of size
have something small.

, we still

2  fn(z) and u(x)

2.1 f(g)

We now calculate fN(§> for ¢ < log® N.
Up to lower order terms,



fN(%) = Zlogpl 6(]91 >Zlogp2 6(—2]?2 )

p1<N pa<N
q
a
= Z Z logp1 - 6(171 ) Z Z log ps - e( — 2p2—>
r1=1 p1<N ro=1 pa<N q
p1=r1(q) p2=r1(q)
z a\ — —2a
= Ze(h-) Z <7“2—) Z log p1 Z log po
r1=1 q ro=1 p1<N po<N
p1=r1(q) p2=r2(q)
N? ’ < a d —2a
= 5 e 7’1-) €<T’2—>
¢*(q) 12_:1 q ; q
(r1,9)=1 (rg,q)=1
N2
= S cy(a)e,(~2a), (23)
¢2(Q) q q

where the second to last line follows from the Siegel-Walfisz Theorem
(Theorem 1.3). We restrict to (r;,q) = 1 because if (r;,q) > 1, there is at
most one prime p; = r; mod q.
2.2 wu(x)
Let

Z Z 6((m1 - 2m2):c>. (24)

m1<N ma<N

We will often look at

Cq(@)cq(—=20)

2(q) u(z). (25)

Note

u(0) = N2 (26)

Let



_ Cqla)cy(=2a)

We write a as ( + ‘5‘, g e [— 9 Q}, Q = log? N. As always, we ignore

N’ N

lower order terms.
Note fy(z) is approximately C,(a)N? for z near . We now expand and

. . 2
show fn(a) is Cq(a)u<a - %) plus errors of size loch_—QBN for a € M.

3.1 Setup

Sagla) =

fiv(e) = Cyfayufo— )
Z A(ml))\(mg)e<(m1 — 2m2)a) — Cyla) Z e((ml — 2m2)5>

ml%;SN [/\(m1))\(m2)e<(m1 — 2m2)g> — Cy(a) e((ml — 2m2)ﬁ>
3 [ - [)\(mﬁ)\(mz)e((ml —zmg)g) —Cq(a)]e(—QmQB)]e(mlﬁ)

(28)

We now apply Partial Summation multiple times. First, we apply Partial
Summation to the ms-sum:

52;a,q

Z [)\(ml))\(mQ)e((ml — 2m2)g> — Cq(a)} e(—2my[3)
= Z_ Ay Oy
— Ap(N)e(—2NB) + 4mi /0 S el —uf)du. (29)

ma<u

We hit the above with e(m;3), and sum from m; =1 to N. We get two

pieces:



Sl Sag T Z A2 2Nﬁ) (mlﬁ)

m1<N
S1faq = Z 4mﬁ/ Z am,e(—uf)du - e(my3)
m1<N mao<u
Sa,q - Slz;a,q + Sl [a,q (30>

3.2 5 S ag

Siviag = P Aa(N)e(—2Np) - e(my3)

= m1<]2VNﬁ ) Y Aa(N)e(mf)
— ¢(~2NB) :ZZ;N[ mae((m1 —2ma)" ) = Cyfa) | elmaf)
= e(=2NB) [Ai(N)e(N )

~omif / 33 [pmamae(m = 2ma)) ~ Co]eteaya

(31)

3.2.1 First Piece
The first piece, the A;(N)e(Nf) term, is small for ¢ < Q. Why? We have

(up to lower order terms)

AN)e(Ng) = Y /\(ml))\(mg)e<(m1—2m2 ) Y Gl

mi1,ma<N m1,ma<N

= C,(a)N* — N*Cy(a) = 0. (32)

Thus, because of our choice of functions, the leading terms vanish, and
the remaining term is small.

10



3.2.2 Second Piece

We now study the second piece. Note || < % = log]\z,B, and Cy(a) =
cq(a) cq(—2a)
2(a)_6°(@) , '

Up to lower order terms, the mo-sum will leave us with

co(—2a)N [N
) [

my <t

@ cqa)
[)\(ml)e<m1 q) e ] e(tF)dt. (33)
Note fx(z) is a multiple of N? for x near . Thus, we want to make sure
the above is well dominated by N2.
For t < /N , this is immediate. For t > VN , using Siegel-Walfisz (Theo-
rem 1.3), we can make the bracketed quantity in the integrant dominated by
% for any C' when ¢ < log? N. Thus, we integrate a quantity that is at

lo
N
most el N

Thus, choosing C' appropriately, the integral contributes

over an interval of length N, we multiply by N3 < Q = log? N.
logC{VTN’ and
hence is negligible.

Remark 3.1. Note, of course, that the contribution is only negligible while
8] < %

Lemma 3.2. Sy, s a lower order correction.

3.3 Sl f;a’q

We must evaluate

N
Sifag = Z 47rzﬂ/0 Z amye(—uf)du - e(my3), (34)

m1<N ma<u
where

Uy = [)\(ml)/\(mg)e<(m1 - 2m2)g) - Cq(a)]. (35)
We bring the sum over m; inside the integral and again use Partial Sum-
mation.
We will ignore the integration and 3 for now, as these will contribute
BN < @Q =log?® N times the maximum value of the integrand. We will leave
the e(—uf)du with this integration.

11



When u < /N, we can immediately show the above is a lower order
correction. Thus, below we always assume v > v/ N.

3.3.1 First Piece

We have
Sipzea = 2 MmMma)e((m —2ms) ) — Cyla) | e(N5)
— ¢(Ng) _ 3 )\(ml))\(mg)e<(m1 —2m2)g) ~Cya) Y 1].

= e(NpB)|C,(a)uN — Cy(a)uN + Lower Order Terms

,  (36)

where by the Siegel-Walfisz Theorem (Theorem 1.3), the error in the

bracketed quantity is of size 10g10V 5

We then integrate from v = v/ N to N and multiply by (3, giving a con-
tribution bounded by

N? log? N3 N?
'logCN < N log® N < log¢ PN’
again getting a lower order correction to fy(z) for x near % (remember
fn(z) is of size N?).

BN

(37)

3.3.2 Second Piece
Again, u > v/N, and we have

[ Z [)\(m1)/\(m2)e<(m1 — 2m2)g> — Cq(a)]

mo<u

QMﬂ/ONZ

m1<t

e(tB)dt. (38)

Again, for t < v/ N, the contribution will be a lower order correction. For
t,u> VN,
Again, executing the sum over m; and my will give us

12



Cyla)ut — Cy(a)ut + Lower Order Terms, (39)

with the lower order terms of size log@gf <

Integrating over ¢ (from v/N to N), then integrating over u (from v/N to
N) and then multiplying by 3? gives an error bounded by

N? log?? N N* N?
"1 C < 2 C < C—2B pp’ (40)
log” N N#  log” N log N

again a lower order correction.

ﬁQNQ

4 Integrals of u(x)

4.1 Formulations

Remember

u(z) = Z e<(m1 —2m2)m>. (41)

m1,ma2<N

We need to study f_%l fn(z)e(—z)dz. We have shown that

fn(la) = Cq(a)u(a — g) + O<bgéVTZW)’ a € Mg, (42)
Thus, we must evaluate
! S
/Maqu(oz— 5) e(—a)da = /Z]% u(a— E> e(—a)da
= /Q u(B) e ~ 5~ B)ds
] .
= o(=9) [ w@e-pas @

13



— Z /_; e<(m1 — 2my — 1)x> dx. (44)

If my — 2my — 1 = 0, the integral gives 1. There are approximately %
ways to choose my, my < N such that m; —2my — 1 = 0.

Assume now my; — 2mgy — 1 # 0. Then the integral vanishes.

Hence,

Lemma 4.1.

/2 w(z)e(—z)de — g+0(1). (45)
_Q 1
4.3 [ M+ [Eu(x)e(—x)dx
2 N
Define
B 1 1 Q
ho= =337
_[.tpe @
L = N
_ el @
o= 35w
_ el
Lo="15 N’Q}
I = LULUI3UIL (46)

4.4 Integral over I, I3
We have

14



/u(m)e(—m)dw _ /1 > e(tm —2my — 1)) de

tmi,m2<N
= / Z e(myx) Z e(—2mox) - e(—x)dz
Timi<n ma<N
/ e(r) —e((N + 1)x) e(—2x) — e(—2(N + 1)x>e(—x)dx.
I 1 —e(x) 1 —e(—27)
(47)
On I and I3, the integral is
22 N N
<</ ——dx L —= = T B A (48)
LTI Q log” N

see, for example, Nathanson (Additive Number Theory: The Classical
Bases, Chapter 8).

4.5 Integral over I, I,

Each of these intervals has length ¢ = W. There are & + O(1) pairs
such that m; — 2my — 1 = 0. Each of these pairs will contribute (bound the
integrand by 1) % As there are at most % pairs, these contribute at most
%% < logP N.
Henceforth we assume m; — 2my — 1 # 0. We write
LU = %—%%—1—% =T, (49)
We have

15



S /1 e((m1 — 9my — 1)x>dx

m1q,mg<N
mq1—2mg—15#0

= e(—%) Z (—1)™ /_ie((m1—2m2—1)x)d:v

m1,mg<N
mq—2mog—1#£0

sin [ (mq — 2mo — %
- 6<_%>2L7T2 Z (_1)m12 <Tfll—2:12—11) >’ (50)

m1,mg<N
m1—2mg—1#£0

because, changing variables by sending = to (x — %) + % gives factors of
e((my = 2my = 1)3) = e(~e(%)e(—ma), and e(%5) = (~1)™.

4.5.1 0<|mi—2ms—1| < N'-¢

Let w = m; — 2me — 1. We will do the case 0 < w < N'7¢, the case with
—N'¢ > w > 0 being handled similarly.

For each w, there are at most N pairs of my, mo giving rise to such a w.
e
sin(w )

w

For such w, < % (because we are taking the sin of a quantity very
close to zero).

Thus, these pairs contribute at most

< N-% < Q = log® N. (51)

Inserting absolute values in Equation 50 gives a contribution of at most
log? N for such w, 0 < w < N'—¢.

4.5.2 N'7¢ < |m1 — 2moy — 1| <N

Again, let w = m; — 2my — 1 and assume N'™¢ < |w| < N. We will only
consider w > 0; w < 0 is handled similarly.

The cancellation is due to the presence of the factor (—1)™!; note that
for the pair (my, my) we only care about the parity of m;.

Consider w and w — 1.

For my; — 2my — 1 = w, the solutions are

16



mp = w + 3, mo =1

my =w + 5, me = 2
my=w+7, me =3 (52)
and so on; thus there are about % pairs, all with parity —(—1)".

For my — 2my — 1 = w — 1, we again have about % pairs, but now
the parity is (—1)*. Thus, each of the % pairs with m; —2my — 1 = w is
matched with one of the % pairs with m; — 2my — 1 = w — 1, and we are
off by at most O(1) pairs, which will contribute

N
1
< — < logN. (53)
w:;—€ w
For the remaining terms, we subtract in pairs, using the first order Taylor
Expansion of sin(x). We have

N sin (w%) sin (w% — %)] | (54)

w w—1

w=N1l—¢

The Main Term of the Taylor Expansion gives < %, which when summed

over w gives N% As we have about % <& N pairs for each w, this
contributes at most N - ﬁ < N°€.
We also have the first order term from the Taylor Expansion:

sin (w% — %) = sin (w%) + O(%) (55)
This error leads to (remembering there are % < N pairs for each w)
N Q
<N Y wfjl < QlogN® < logPt N, (56)
w=N1l—¢

4.6 Collecting the Pieces

We have shown

17



/[ ) 1}u(x)e(—x)da: = %—FO(l)
/[—;,;H—fé . u(z)e(—z)de = (log];fN). (57)
Therefore
Lemma 4.2.
¥ N N
/_]% u(z)e(—x)de = 5 T O<logTN>' (58)

= Zu(ﬁ) e(—g—ﬁ)dﬁ
- (-9 u(B)e(~B)ds,  (59)
we see that
Lemma 4.3.
/Mw u(a — g) ce(—a)da = e< — g)g (60)

5 Determination of the Main Term

We now calculate the contribution from the Major Arcs. Up to lower order
terms,

18



fu(@)e(-a)de = Y7 3 LZQ

M <O a=1 -5
q<Q (aq)=1 q N
q /Z“‘J%
q<Q o=1 ng
7 (a,9)=1

where we have defined

19
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¢*(q)
o= D Cilae( )

(a,q)=1

q
&y = Y pg (62)

(a,q)=1

5.1 Properties of C,(a) and p,

We will follow the presentation of Nathanson (Additive Number Theory: The
Classical Bases, Chapter 8 and Appendix A).

5.1.1 c¢,(a) is Multiplicative

We follow Nathanson, Pages 320 — 321, Theorem A.23. Note that we are
labeling by r what he labels a, and we are labeling by a what he labels n.

Lemma 5.1. ¢,(a) is multiplicative; ie, if (q,q') = 1, then cyy(a) = c4(a)cy(a).
Proof: We have
3 e(?ﬁ) (63)

q9q'

(7,aq")=1

Exercise 5.2. Show that we can write the s above as ™ = rq' +1r'q mod q¢,
where 1 <r <gq, 1 <r <, and (r,q) = (r',q) = 1.

Thus

20



cala)ey(a) =

1]+
QM)
/N
=
SERS
~——
A
/7~
ﬁ\
»Q\|g
N——

r=1
(rq)=1 (r',q")=1

_ Z Z (rq+rq))

(T‘I) 1 ('r/q’) 1

I
MQ
_
Q)
/N
L
| 2
N——
|
o
=]
Q\
—
S
S—

5.1.2 ¢,(a) for (a,q) =1
Exercise 5.3. Show that

d d ifdla
hala) = Z€< > :{ otherwise

r=1

Recall the moebius function:

(—=1)" if d is the product of r distinct primes
pld) = .
0 otherwise

Exercise 5.4. Prove

> uld) = {(1) v =1

Ao otherwise

Then

21
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- ¥ u(%)d. (68)

d|(a,q)
Note that if (a,q) = 1, then there is only one term above, namely d = 1,
which yields
cola) = plq) if (a,q) = 1. (69)
Corollary 5.5. If ¢ =p*, k> 2 and (a,q) = 1, then c,(a) = 0.

5.1.3 Cy(a) is Multiplicative

We have shown ¢,y (a) = ¢4(a)cy(a) if (¢,¢') = 1. Recall the Euler phi-
function, ¢(q), is the number of numbers less than ¢ which are relatively
prime to q.

Exercise 5.6. Prove that ¢(q) is multiplicative; ie, if (¢,q') = 1, then
o(aq’) = d(a)o(d).

22



We now have
Lemma 5.7. C,(a) is multiplicative.

Proof: Assume (q,¢’) = 1. We have

Caq (@) Cqq (—20)
G () ¢*(aq)
cqla)ey(a)e,(—2a)cy (—2a)
?*(q)¢*(¢)
cqla)eg(—2a) cq(a)ey (—2a)
¢*(q) ?*(q')
— C(@)Cyla). (70)

5.1.4 p, is Multiplicative

We first prove a needed lemma.

Lemma 5.8. Consider Cy, (a1q2). Then
CQ1<a1Q2> = Cm(al) (71)

if (q1,q2) = 1.

Proof:

qu(a1QQ) = Z €<7“1w>

q1

= ) e(qu%)

r1=1 1
(r1,91)=1
q1

= > (r2) = Culo), (72)

r=1 ql

(rq1)=1

because (q1,q2) = 1 implies that as r; goes through all residue classes
that are relatively prime to ¢, so too does r = rigy. O

23



Lemma 5.9. p, is multiplicative.
Recall

Pq = Zi: Cq(a)e<—g). (73)

q

(a,q)=1
Assume (q1,¢2) = 1. Then we can write the congruence classes mod ¢; ¢
as ai1qa + azqr, with 1 <a; < qi, 1 <ap < g and (a1, q1) = (az,¢2) = 1.

q192 .
Paa = ; thqz(a)@( - E)
(a,q192)=1
a1q2 .
= C..(a)C,,(a e( _ _>
Z (@) Con(@)e( = —
(a,q1q92)=1
y S a1q2 + a2qq
- Z Z Cy(a1q2 + a2q1)Cyy(a1ge + a2q1)e( _ —>
L1 (an ) P

(a1,91)=1 (agz,q2)=1

(74)

Exercise 5.10. With ay, a2, q1,q2 as above,

CQ1(CLIQZ+G2Q1) = C(h(al(h) and qu(a1q2+a2(h) = CQ2(G2Q1)' (75>

Thus, we have

qQ q2
a1q2 + aoqq
Pargz = Z Z th (a1q2>clp (a2QI)e< - —>

q1492

ay=1 ag=1
(a1,91)=1 (ag,q92)=1

- qzl qu(a1q2)€<_%> qZQ O‘YQ(&qu)e(_%)

ay=1 ag=1
(a1,91)=1 (ag2,q2)=1
q1 a q2 a
1 2
= > Culae( =) Y Culm)e(-2)
ay=1 ql ag=1 q2
(a1,91)=1 (ag,q2)=1
= Paq " Paa- (76>

Thus, p, is multiplicative. O
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5.1.5 Calculation of p,

Lemma 5.11. p,x =0 if k > 2 and p is a prime.
Proof: This follows immediately from Cr(a) = 0. O

Lemma 5.12. Ifp > 2 is prime, p, = —1 !

P
Proof:

u a

Pp = Z Cp(a)e<—]—9>

_ pz cp(a>cp(—2a)e< B g) )

But as p > 2, ¢,(a) = ¢,(—2a) = p(p) as (a,p) = 1. As p*(p) = 1 and
oé(p) = p — 1 we have

RSV
Lemma 5.13. If p =2, then ps = 1.
Proof:

(le(=2)




where we have used cy(1) = €™ and cy(—2) = e 2™,

Exercise 5.14. Prove cy(1) = €™ and cy(—2) = 2™,

5.2 Determination of sy and &
Recall

Sy = qu‘ (80)

q<Q

We define
& = p (81)
q

Exercise 5.15. Let h, be any multiplicative sequence (with whatever growth
conditions are necessary to ensure the convergence of all sums below). Then

She = 1 (1+ihpk). (82)

p prime

52.1 &
We have

6 = Zq:ﬂq
— H (1+gppk>

p prime

= [I(1+n) (83)

p

because p,» = 0 for k > 2 and p prime by Lemma 5.11. We have previ-
ously shown (see Lemmas 5.12 and 5.13) that p, = 1 and p, =

1 ) for
p > 2 prime. Therefore

T (-1
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& = H(1+pp)

p

= (L4+p2) [0+ 00)

p>2

- 2H[1—ﬁ]

p>2
= 2Ty, (84)
where
Definition 5.16 (Twin Prime Constant).
1
T, — [1 _ —} ~ 6601618158 85
i g (p—1)? (85)

1s the twin prime constant.

5.2.2 6y

We need to estimate |6 — Sy|. As p, is multiplicative and zero if ¢ = p*
(k > 2), we see we need only look at sums of p,. As p, = —ﬁ, one can
show that the difference between & and &y tends to zero as N — oo.

Thus,

Lemma 5.17.
6 = 2T5. (86)

5.3 Number of Germain Primes and Weighted Sums

Combining the above arguments, we have shown that, up to lower order
terms,

> log(p)~10g(]%1) = 6%

p<N

D, p;l prime
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Note that we are counting Germain prime pairs by (%,p) and not

(p,2p + 1). Such a difference in counting will introduce a factor of 2.

We can pass from this weighted sum to a count of the number of Germain

prime pairs (%,p) with p < N.
Again we follow Nathanson, Chapter 8. Define

1e(N) = o1

p<N

D, p;l prime

¢y =Y togl) dog (P,

2

PN
p—1 .
p,~5— prime

Clearly
G(N) < log®> N - ma(N).
Therefore,
Lemma 5.18. Up to lower order terms,

G(N) = TaN
log? N log’ N’

Wg(N ) >
We now provide a bound in the opposite direction.

N1—6

V) = Y 1< oy

p<N1—%

D, p;l prime

Then
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GIN) = ) 1ogp-10g<p%1)

P2N176
p—1 .
p,~5— prime

= (1-6)’logN Y 1

p>N1-9
p—1 .
p,~5— prime

= (1-5)*10g* N(mg(N) — ma(N'%))

N1—6
> L \27..2 —5)21og? N - .
> (1—=4)"log N’irg(N)—l—O((l )" log” N logN> (92)

Therefore

N1—6
2N < —_85"2. 2N
log"° N -7ma(N) < (1—-40)"°-G(N) —|—O<log N logN)

0 < log? N - 1g(N) — G(N) < [(1 82 1} G(N) + O(logN - Nltéé)

If 0 <6 < 3, then (1 —0)"% —1 < 6. We thus have

log N
0 < log?N -7e(N) — G(N) < N 5+0(O§,§ )] (94)
Choose 0 = mfl’ig#. Then we get
loglog N
< 1og? N - _ < i =R
0 < log®N -7¢(N) — G(N) < O(N e ) (95)

Recalling G(N) =~ TN gives

Lemma 5.19.
>N

N) < ——.
m6(N) < logzN

(96)
Combining with the other bound we have finally shown
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Theorem 5.20. Assuming there is no contribution to the main term from

the Minor Arcs, up to lower order terms we have

ToN
N) = ,
ma(N) log? N
where Ty 1s the twin prime constant
1
T, = [1 - —} ~ .6601618158.
=1l (p—1)2

p>2
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