Honorsl: Undergraduate Math Lab

Peter Sarngk Steven J. Millet, Alex Barnetf

Courant Institute of Mathematical Sciences
New York University
New York, NY

November 19, 2002

'Homepagehttp://www.math.nyu.edu/ ~millerj/

2E-mail: sarnak@math.princeton.edu

3E-mail: millerj@cims.nyu.edu or sjmiller@math.princeton.edu
4E-mail: barnett@nmr.mgh.harvard.edu



Abstract

The purpose of the Undergraduate Mathematics Laboratory is to form a research
team of undergraduates, graduate students and faculty to investigate interesting
unsolved conjectures theoretically and experimentally. The UML is sponsored by
a VIGRE grant of the National Science Foundation.

In addition to the standard lecture-homework classes, we wanted a class where
the undergraduates would work on hot conjectures and see what kinds of problems
mathematicians study. In the sciences and engineering, undergraduates are often
exposed to state of the art projects through experimental labs; we wanted to bring
a similar experience to the math majors.

The undergrads often have enough theory to understand the basic framework

and proofs of simple cases. Building on this, they then numerically test the con-
jectures. The undergrads learn a good deal of theory, they learn about coding, sim-
ulations and optimization (very marketable skills), and they get to see what is out
there. The graduate students and the faculty get a potent calculating force for nu-
merical investigations. A similar course has been run at Princetitid (- 2002).
Many of the problems investigated by the Princeton students arose from graduate
dissertations or current faculty research. It has been very easy finding graduate
students and faculty excited about working on this course; at the end of a semester
or year, instead of having a folder of solution keys to calculus, a graduate student
should be able to co-author an experimental math paper with the undergrads.

Below are the notes from the NYU Fal02 class.



Problem List

1. Primality Testing:

In a major theoretical breakthrough, Manindra Agarwal, Nitin Saxena and
Neeraj Kayal discovered a deterministic polynomial time algorithm to deter-
mine if a number is prime or composite. Previous algorithms are known to
be polynomial only under well believed conjectures (GRH), or are probabal-
istic. Some aspects of current primality testing algorithms will be explored,
possibly the distribution of the least primitive root mpd

2. Ramanujan Graphs:

The construction of graphs that are highly connected but have few edges
have many important applications, especially in building networks. To each
graphG we can associate a matrik, where4,; is the number of edges
from vertexi to vertex;j. Many properties of7 are controlled by the size

of the second largest eigenvalue(ef One project will be to investigate the
distribution of the normalized second largest eigenvalues.

3. Randomness of Arithmetic Maps:

For a primep, consider the mapnv, which sendse to its inverse mog,

x — Z. One project will be to compare this map to random maps mod
For example, let.(p) be the length of the longest increasing subsequence.
If pis congruent t@ mod4, the inverse map is a fixed-point-free signed in-
volution, and the length af (p) can be compared to that from random fixed-
point-free signed involutions (studied by Rains and others).9J(et, n; c)

be the Kloosterman sum,

S(m,n;c) = Z e (1)

rmodp

An additional project will be to investigat®", %19 which is related

to number variance of the Upper Half Plane mod(&IZ). Finally, let
VP < = < 2/p. Arrange in increasing order thgy numbersz, and
compare their spacings to Poissonian behavior.
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Chapter 1

Introduction, Primality Testing,
Algebra Review

We introduce basic number theory concepts and primality algorithms. Lecture by
Peter Sarnak; notes by Steven J. Miller.

1.1 Primality Testing

Givenn, isn prime or composite? How difficult is this? How long does it take?
Brute force: try factors up t@/n, so can do in/n steps.

P = NP problem. Deep central problem in theoretical Computer ScieRce.
is problems solvable in polynomial number of steps (in terms of input); if equals
NP, alot of problems are solvable quickly.

Telling whenn is prime: isn’t supposed to be hard, but until two weeks ago,
wasn’'t known to be & problem.

Notation: A(z) = O(B(:c)) if there exists &' > 0 (which can be computed;

if it cannot be computed, we say so) such thtr)| < C'B(x).

Example: One could show every sufficiently large odd number is the sum of
three primes. However, we didn’t know how large sufficiently large was! IE, we
couldn’t go through the calculation and make explicit a numiggsuch that ifn
is odd and greater thaM,, thenn is the sum of three primes. (Note: this has been
removed, and we know have another proof giving an exphgjt

Theorem 1.1.1 (Agrawal, Kayal, Saxena)There is a procedure which runs in
at mostO(log12 n) steps determines whetheiis prime. (Might be a little more
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thanlog'? n, ie, might be something likeg'? n(loglog n)4).

There were algorithms that were known and faster, but only known to work all
the time assuming certain well believed hypotheses (Riemann Hypothesis, RH).

(Go to http://www.math.nyu.edwmillerj/problemlist/problems.htm for a copy
of their paper).

Need a feel for numbers. Wherns big,log n (to any power) is much less than
n. For practical applications, the size of the constant is important, as a constant
of size10*°° would make an algorithm useless for our real world applications (ie,
for the ranges we can reach). In AKS, the constants are tractable.

Technical Point: In AKS, they quote a theorem from number theory (they
treat this as a black box: someone from this class will hopefully investigate this
result further).There are many primegsfor whichp—1 has a large prime factoy,
¢ > p3. Related to Sophie Germain primes: primesherep — 1 = 2¢, ¢ prime.

(She showed that for primes like thig, + y? = 2P, you can solve Fermat’s Last
Theorem for such primes. It is not known if there are infinitely many primes
like this). AKS does not need to know there are infinitely many Sophie Germain
primes; fortunately all they need is that there are sufficiently many prinvagh

p — 1 with large prime factors.

Similar to Twin Primes: primeg;, p; with p; —p, = 2. We don’t know if there
are infinitely many twin primes, but we do have heuristics (Hardy-Littlewood)
predicting how many twin primes there are (and we observe exactly that many).
Sophie Germain primes are more subtle, but should be able to get heuristics. For
twin primes and related quantities, see David Schmidt’s report on Prime Investi-
gations (Princeton Undergraduate Math Lak)0 — 2001). Anyway, this would
be a good project.

1.2 Arithmetic Modulo p

Number Theory: the study of whole numberZ.is the integers, look &t /nZ
={0,1,2,...,n — 1}. Thisis a finite group (under addition); in fact, it is a finite
ring (can also multiply, have inverses for the non-zero elements onligiprime).

Notation:z = y modn meansr — y is a multiple ofn.

Try and solve ir% the equatior2z+1 = 2y. The left hand side is odd, the right
hand side is even. Thus, there are no solutions. Really, just did arithmetie mod
orinZ/27Z. Harder:z>+y*+2? = 8n+7. This never has a solution. Look modulo
8. The RHS ist modulo8. What are the squares mé@ 1! = 1,22 = 4,32 =1,

4% = 0, repeats. See there is no way to add three squares afid get

9



Idea: First, try and solve the equation modulo different primes. If you cannot
solve it for some prime, then you cannot solve it over the integers.

1.2.1 Algebra Review

Z/nZ: do arithmetic over this ring(Z/nZ)* are the invertible (multiplicatively)

elements in the rin@/nZ, ie, z is in (Z/nZ if there is ay such thatty = 1
modn. Note: ifged(z,n) > 1 (ie, z andn have a common prime divis@), then
you cannot invert: (there is noy with xy = 1 modn). Why? zy = 1 modn

meanscy = 1 + An for some integel. But if p|x andp|n, thenp|1l which is
absurd. Exercise: gcd(x,n) = 1, there is an inverse (Euclidean Algorithm).

The cardinality (number of elements in the SEt)((Zf/nZ) is the number

of x € {0,1,2,...,n — 1} such thatged(x,n) = 1. We denote the number of
suchz by ¢(x), the Euler totient function. (Good Reference: H. Davenport: The
Higher Arithmetic). Note that iy is prime, ¢(p) = p — 1. This implies that
‘(Z/pZ)* =p—1=7Z/pZ — {0}. IE, we have a field if» is a prime, as every
non-zero element is invertible.

Z/nZ) , for anyn, is a finite Abelian group (we have inverses under mul-
tiplication, and order of multiplication doesn’t matter). Finite Abelian Groups is

a trivial subject: Structure Theorem for Finite Abelian Groups: product of cyclic
groups. .

Forn=pa prime,(Z/nZ) is a cyclic group of ordep — 1.

If G is a group (have identity, closed under some binary operation, have in-
verses with respect to the binary operation, operation is associative), we say the
order ofx € G, ord(x), is the least positive powen such thatz™ = e, where
e € (G is the identity of the group. In a finite group, every element has finite order
(proof: use the pidgeonhole principle).

Theorem 1.2.1 (Lagrange).ord(z) | ord(G).

Corollary 1.2.2 (Fermat’s Little Theorem). For any primep, if ged(a,p) = 1,
thena?~! = 1 modp.

10



1.2.2 Using Fermat’s Little Theorem

To check and see if a numberis prime, why not check it:"~! = 1 modn
if ged(a,n) = 1. Itis very easy to quickly computgcd(a,n) (use Euclid’s
Algorithm). Sketch: without loss of generality, let< n. Write n = bya + by,
and now the gcd of andn is the same as that afandb; (note0 < b; < a).

How long does it take to raiseto then — 1 power? Use repeated squares and
base2 expansion. Exampl&00 = 64 + 32 +4, 0or1-2%+1.2°+ 122 Thus,
d0a2, al . a2, at . a4, ad - as, al6 . alG’ a3? - a32. Thenal® = 64 . 432 . g4

If, by choosing am, you finda"~! # 1 modn, you have a certificate for
compositeness, but you have no idea what the factonsaoé!

When a machine uses Fermat’s Little Theorem, it randomly chooses a fixed
number ofa’s betweenl andn — 1. Problems: how many times should you run
these tests to be very confident of the result; are there any numbers which always
pass this test, yet are composite?

About eight years ago it was proved there are infinitely many Carmichael num-
bers (numbers such thaiz”~! = 1 modn for all a, butn is composite).

1.2.3 Quadratic Reciprocity

p, q odd primes. We definéﬁ) to bel if a is a non-zero square magl0 if a = 0,
and—1 otherwise (ie, ifu is not a square maog). Notea is a square mog if there
exists anr € {0,1,...,p — 1} such thatz = 2? modp. Forp an odd prime, half
the non-zero numbers are squares, half are not.

Exercise: (i) — a7 modp for oddp. Note the above squaredds! = 1.
Theorem 1.2.3 (Quadratic Reciprocity). (}%) = (g) : (—1)”2;1%1, p, ¢ odd
primes.

Gauss gave at least four proofs of this deep result. If ejiloer; is equivalent
to 1 mod4, then one hag?) = (%), ie, 'm a square root modulo you if you are a
square root modulo me.

Carmichael numbers were behaving like primes. We want to get rid of them.
Instead of testing”~! = 1 modn, test and see "z = (¢) modn. Similar to
the Euclidean Algorithm, can comput@r) in logn steps by constant applications
of Quadratic Reciprocity.

Key Test: Will test thata "z = (2) modn for 1 < a < Clog® n. If fails for
somea, the number is composite. If it passes, by the Riemann Hypothesis (RH),
then it is true for allz. Will then show this is a valid test for primality (ie, unlike
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Carmichael numbers, if this is satisfied for alup to C'log? n, thenn is prime.
This will take aboutog® n steps).

Algebra Books: Herstein (Topics in Algebra); Birkhoff-Mclean (Algebra),
Lang (Undergraduate Algebra).

1.3 Lecture Next Week

Steve will talk about reciprocity, finite fields.

1.4 WWW Resources

http://mathworld.wolfram.com/ is a good place to look up unfamiliar terms.
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Chapter 2

Notation, Euclid’s Algorithm,
Lagrange’s Theorem, Riemann Zeta
Function

We will review notation, Euclid’s Algorithm, Lagrange’s Theorem, and prove
there are infinitely many primes (three ways: following Euclid, by studying the
Riemann Zeta Functioq(s) ass — 1, and by analyzing(2). Lecture by Steven

J. Miller; notes by Alex Barnett and Steven J. Miller.

2.1

Notation

alb : a dividesb, i.e.the remainder after integer divisi(%nis 0.

(a,b) : Greatest Common Divisor (GCD) af andb. Sometimes written
ged(a, b).

x = y( mod n) : An equality once both sides of the equation have been
taken modula:. Equivalently, there exists an integesuch thatr = y+an.

wlog : ‘without loss of generality’. For example, if we have two numbers
andy, it is often convenient to know which is larger and which is smaller.
Without loss of generality, we can say< y, as the case > y is handled
identically (after permuting the variables).

s.t. : such that.
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e VY : for all.
e 1: there exists.

e big O notation :A(x) = O(B(z)), read “A(z) is of orderB(x)”, is short-
hand for, there is & > 0 (which we can explicitly calculate), sjtA(x)| <
C B(z), V.

e |S| or#5S : number of elements in the s&t

e #{condition} : number of objects satisfying tfemndition

e p: unless otherwise stated, a prime number.

e 7 : the set of integers.

e 7/nZ : the additive group of integers mad

e (Z/nZ)* : the multiplicative group of invertible elements mad
e Q: the set of rational number§ = {z : z = §,p, q € Z,q+#0}.
¢ R: the set of real numbers.

e C: the set of complex numbers.

. (%) : Legendre symbol of andp, defined as

a 0, if pla,thatis,a = 0( mod p)
(—) =< 1, if 3z s.t.2> = a( mod p) (2.1)
p -1, if the above does not exist

The symbol tests the question, “Doesave a square root in tHeeld of
arithmetic modulg?”

e ‘weak bound’ : an inequality constraining some quantity which does a very
poor job of getting close to the true size of the quantity. That is, a not very
useful bound.
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2.2 Euclid’s algorithm for GCD

Tells you if two positive integers andy have a GCD greater than 1 by finding
it. Therefore it's a ‘constructive proof’. It is also ‘deterministic’ (involves no
random choices). A fast procedure. takes only O(log)) steps. Remember that
the number of digitsx log y. wlog we takey > x.

Each step is the ‘black box’ integer division routine we’ll cBl] which given
the pairz, y returns the pair of integefsr s.t.r < x and satisfying

y=bx+r. (2.2)

Note that this step is polynomial in the number of digits (probabl{log y)* —
anyone?).
ALGORITHM:

Start with the paiw, x and performD to getb,, r;.
PerformD onx, r; to getb,, 7.
PerformD onrq, s to getbs, rs.

PerformD onr,_,,r,_1 to getb,,, r,.
Stop whenr, is either
e 0O, in which case,,_; is the GCD, or

e 1, in which case the GCD is 1, that isandy are relatively prime.

The procedure works because thetep gives am which inheritsall common
divisors ofy andz. This is easy to see by writin@ asr = y — bx. Therefore
all the adjacent pairs in the sequenge:,r,r, - --r,_1 Share the same GCDs.
The sequence is also descending = > r; > r9 > --+ > r,_1, SO must reach
the case that,_,|r,_», in which caser,_; is the GCD and-, = 0, or that a
remainder of 1 is reached, which implies no common divisors. We have a worst-
case scenario that each remainder is smaller than the previous by a constant factor
¢ < 1 (I believe this is the inverse of the Golden Ratigs — 1)/2 ~ 0.618 - - -
— anyone?), giving geometric (exponential) shrinkage ofitbe Therefore the
worst case is that the answer is reached in= O(log y) steps, and the whole
algorithm is therefore polynomial ilog 3.

15



2.3 Lagrange’s Theorem

2.3.1 Basic group theory

GroupG is a set of elementg; satisfying the four conditions below, relative to
some binary operation. We often use multiplicative notatigms) or additive
notation ¢; + g-) to represent the binary operation. For definiteness, we use
multiplicative notation below; however, one could replagewith b(x, y) below.

If the elements of7 satisfy the following four properties, th&ris a group.

1. dJe € G s.t.Vg € G : eg = ge = g. (Identity.) We often writee = 1 for
multiplicative groups, and = 0 for additive groups.

2. Vz,y,z € G : (zy)z = x(yz). (Associativity.)

3.Vx € G,3y € G stay = yr = e. (Inverse.) We writey = x~! for
multiplication,y = —x for addition.

4. Vx,y € G :xy € G. (Closure.)

If commutation holdsYz,y € G, ry = yx), we say the group is Abelian.
Non-abelian groups exist and are important. For example, consider the group of
N x N matrices with real entries and non-zero determinant. Prove this is a group
under matrix multiplication, and show this group is not commutative.

H is asubgroupof G if it is a group and its elements form a subset of those
of GG. The identity ofH is the same as the identity 6f. Once you've shown the
elements of{ are closed (ie, under the binary operatibi, y) € H if z,y € H),
then associativity irf{ follows from closure inH and associativity irt.

For the application to Fermat’s Little Theorem you will need to know that the
set{1,z,z?% --- "'} wheren is the lowest positive integer sa” = 1, called
the cyclic group is indeed a subgroup of any grogpcontainingz, as well as
divides the order of.

For a nice introduction to group theory see: M. Tinkhdanoup Theory and
Quantum Mechani¢cgMcGraw-Hill, 1964) or S. LangUndergraduate Algebra

2.3.2 Lagrange’s Theorem

The theorem states that#f is a subgroup ofs then|H| divides|G|.
First show that the sétH, i.e. all the elements off premultiplied by one
element, is just{ rearranged (Cayley’s theorem). By closw® falls within H.
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We only need to show thath; can never equakh; for two different elements
i # j. If it were true, since a uniquie* exists we could premultiply the equation
hh; = hh; by h™! to giveh; = h;, which is false. Thereforéh; # hh;, and we
have guaranteed a 1-to-1 mapping fréfito hH, sohH = H.

Next we show that the segsH andg,; H must either be completely disjoint, or
identical. Assume there is some element in both. Then = g,;h.. Multiplying
on the right bys; ' € H (since H is a subgroup) giveg, = g;jhoh;'. As H
is a subgrouphs € H such thath = hyh;'. Thusg; = g;hs. Therefore, as
hsH = H, g;H = gjhs H = g;H, and we see if the two sets have one element in
common, they are identical. We call a géf acoset(actually, a left coset) of/.

Clearly

G=\JgH (2.3)
geG

Why do we have an equality? Asc G andH C G, every set on the right is
contained inG. Further, ag € H, giveng € GG, g € gH. Thus,G is a subset of
the right side, proving equality.

There are only finitely many elementsd As we go through aly in GG, we
see if the sey H equals one of the sets already in our list (recall we've shown two
cosets are either identical or disjoint). If the set equals something already on our
list, we do not include it; if it is new, we do. Continuing this process, we obtain

k
G=JgH (2.4)
=1

for some finitek. If H = {e}, k is the number of elements ¢f; in general,
howeverk will be smaller.
Each sey; H has|H| elements. Thug(| = k|H]|, proving|H | divides|G].

2.4 Introduction to Riemann zeta function

2.4.1 Prelude: Euclid’s proof of infinity of primes

Given the set of primeg; - - - p,, you can always construct the numiéf_, p; + 1

which is indivisible by any of the givep, - - - p,. Therefore this number must
be divisible only by primes greater thay), or must be prime itself. Therefore
there exists a prime greater than An analysis of this proof gives a very weak
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lower bound on the number of primes less thamhe worst case scenario is that
[T\, pi+1is the next prime. Thus, if we had— 1 primes up tor = [/, pi+1,
we would haven primes up to

n—1 n
[Iri (IIpi+1)+1 (2.5)
i=1 j=1
Thus, having at least — 1 primes less tham, we have at least primes less
than (basically):2. One can quantify this further. One should get something like
there are at least primes less thad™ or 4™.
The zeta function will give us other ways to prove this, and to get a better
estimate on th@rime counting function

m(z) = #{p <z}, (2.6)

giving the number of primes below any numher

2.4.2 Definition, two forms
The Riemann zeta functiaf(s) is defined, for Re() > 1, by

o) =3+ (2.7)

ns’
n=1

We prove the useful fact that, for Rg(> 1,

ini — o =1 (1—i)1, (2.8)

S
primes p

which we call LHS and RHS. We call the product over primes an Euler Product.
To show equivalence, we use the Fundamental Theorem of Algebra (FTA) that
all positive integers can be expressed as a single, unique, product of prime factors.
Expanding all reciprocals in the RHS using the geometric series sum formula
(1—2)t=1+z+2>+2°+---, gives for the RHS,

(I427°4272 427+ )1 +3 4 ) (L4574 )

Remarkably, due to the FTA, we can associate 1-to-1 each term (choice of prime
factors) on the RHS with eachon the LHS. For instance, = 12 from LHS is
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accounted for by the RHS term,

1
2725 .375.1.1.1--- = ———

Each combination of RHS terms corresponds uniquely to a single

2.4.3 ((s)’s Behaviour and the Infinitude of Primes

We take the limit ofs going to 1 and compare sides. LHS gives

lim ¢(s) = lim Z - Z - (2.9)

n= 1

This sum diverges. Why? CrudeQ;ﬁLV:1 n~!is close tole %y which equals
log N. The definition of ‘close’ can be tightened up. For instance, you can cre-
ate upper and lower bounds by approximating the integral by rectangular strips,
getting

Z / <Z— (2.10)

As the two sums differ by a bounded amount, we see the sum growsgdiRe.

As s goes tol, if there are only finitely many primes than the product over
primes is well behaved (ie, finite). Therefore, there must be infinitely many
primes!

Further study of the zeta function will lead us to a good estimate foy.

A second proof follows from the fact that2m) = rational-7?™, for integer
m. This is known as &pecial Valueproof, as we are using the value @fs) at
a special value. We need the fact thdtis irrational. ¢(2) = 300, 1 = =,
which is irrational. Thus, the right hand side (the product over primes) must also
be irrational; however, if there are only finitely many primes, when 2 the right
hand side is rational! Thus, there must be infinitely many primes.

Please see Steve’s notes, and URLs for more information on all of the above.
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Chapter 3

Legendre Symbols, Gary Miller’s
Primality Test and GRH

We review the Legendre Symbol. We discuss Gary Miller's primality test, and
show that if the General Riemann Hypothesis (for Dirichlet Characters) is true,
then Miller’s test correctly determines if a numbers prime or composite, and
runs in timeO(log* n). Lecture by Peter Sarnak; notes by Steven J. Miller.

3.1 Review of the Legendre Symbol

Recall Fermat’s Little Theoremz?~! = 1 modp if p is prime.

Givenn, checka™ ! = 1 modn for manya’s relatively prime ton. Exercise:
If ever this is not satisfied, themmustbe composite.

There are composite numbers (called Carmichael numbers) which sétisfy
1 mod n for all a, yet are not prime. The first Carmichael numbebhid =
3-11-17; the third is1729 = 7- 13 - 19. Exercise: Prove all Carmichael numbers
mustbe square-free.

Aside: 1729 has an interesting history (Ramanujan, Hardy and taxicabs).
Hardy visited Ramanujan in the hospital, Hardy remarked that his taxicab’s num-
ber was particularly uninteresting; Ramanujan remarks72{) is the smallest
number which can be written in two different ways as the sum of two cubes.
1729 = 13 + 123 = 93 + 103,

Recall theLegendre symbol(?) is 0 if pla, 1 if there is anv # 0 with 2° = a
mod p, and —1 if there is no solution tac? = « modp. Euler's condition is
(i) =a"7 modp.
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Really, the Legendre symbol is a function Bp= Z/pZ. We can extend the
Legendre symbol to all integers. We only need to knomod p, and we define
() = (-TP)
" Initiallypthe Legendre symbol is define only when the bottom is prime. We
now extend the definition to all as follows: letn = p; - py - - - p; be the product

of ¢ distinct primes. Ther(%) = (i> (i> (l%) Note this isnot the same

p1 P2
as saying that i, is a square (a quadratic residue) mgdhena is a square mod

p; for each prime divisor.
The main result (which allows us to calculate the Legendre symbol quickly
and efficiently) is the celebrated

Theorem 3.1.1 (Quadratic Reciprocity). For m, n odd and relatively prime,

() () = (™=

3.2 Gary Miller's Primality Test, 1976

MiIIerTest Givenn as input ¢ must be odd), test whether < o < 701og? n,
(4) =a " modn (where, of courseg andn are relatively prime). If this test
fails for somexz in this range, outputompositeif it passes the test for all such
outputPrime

Note that we can very quickly determine if two number are relatively prime
(use the Euclidean Algorithm, which takéglog n) steps).

Theorem 3.2.1 (Miller Test Results).The Miller Test runs irO(log* n) steps. If
the output icompositethen the numbet is composite (ie, the algorithm’s result
is correct). If we assume GRH (ti&eneral Riemann Hypothesthe most impor-
tant unsolved problem in mathematics), then the ouppteis also correct.

Running time: we can comput(e%) in O(logn) steps. By Quadratic Reci-
procity, to computg £) (may assume-% < a < %), it is enough to computé?)
(with a factor of—1).
Why? We only need to knowmodn, so we may reduceuntil -3 < a < 3.
Note the top (in absolute value) is at most half the size of the bottdmAe then
use quadratic reciprocity to evalugte). Up to a factor of-1, (£) = (2). Thus,
we may reduce: moda, so thatn moda lies between-5 and$. Again, the top
is half the bottom, and the bottom is at most one-quarter of what we started with
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We continue this process; we need to do such flippings at imgst times.
Why? Each time the size of the denominator is at most half what it was before. If
2" = n, thenr = log, n < logn. Thus, after at mostg n passes, the denominator
would be about. So, a stage or two before would give a denominator ar@uord
4. The point is, inlog n steps, we can reduce to evaluating the Legendre symbol
of something where the bottom is of bounded size. Thus, we can evz(ilgj)ata
O(logn) steps. (Have a lookup table far< 10, et cetera).

We need to evaluat(a%) for C'log® n choices ofa, and for each choice we
need to evaluate™z" modn (SO we can compare it to?)), which takegO (log n)
steps. Thus, the number of step&ifog® n).

The Riemann Hypothesis plays a very important catalystic role. It leads us to
statements we feel should be true, statements which can often be proved without
the full force of Riemann.

Suppose we pass the test for allvith 2 < a < 70log?n anda relatively
prime ton. Gary Miller proved that, if GRH is true, then knowing thapasses
the test for alla in this little segment allows us to conclude thatwvill pass the
testfor all a. Clearly, we know ifn passes the test for allup ton — 1, then we
known will pass the test for alk relatively prime ton. The power of GRH is that
we need only checlog® n values ofa.

3.2.1 Aside: Finite Abelian Groups

Let A be afinite Abelian Group, thed is (ie, is isomorphic to) a product of cyclic
groups.

Look at(Z/nZ,+), the group of integers mod under clock addition. This is
a cyclic group.

The general statement is:

Theorem 3.2.2 (Structure Theorem for Finite Abelian Groups).Let A be a fi-
nite Abelian Group. Then there are integersthroughn, such thatd = Z/n,Z x

-+« x Z/n,Z, ie, A is isomorphic to the Cartesian product of groups of the form
Z/mZ.

Note =~ means is isomorphic to; we say two groups ms@mnorphic if there
is a group homomorphism between them which is one-to-one and orgmup
homomorphism ¢ is a map which preserves the group structure. Consider two
groupsG; andGs and a map : G; — Gs. If ¢ is a group homomorphism, then
forx,y € Gy, ¢(x+y) = ¢(x) P ¢(y), where+ is addition in the first group and
ép is addition in the second group.
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We now define theCartesian Product of two groups. X x Y is the set of
pairs (z,y) wherex € X andy € Y. If we are writing the group action ok
andY additively (say by , for addition in.X and@p, for addition inY’), then
(@1, 91) iy (@2,92) = (21 Dy 22,91 By 12)-

Let us consider a group written in additive notation. Recalldlger of an
elementis the number of times you must add the element to itself to get the
identity. We define the@xponentof a group as the least common multiple of the
orders of the elements of the group.

ConsidelZ /27 x 7./ 27, the product of two groups. [A/27 x 7./27, we have
the pairs(0,0), (0,1), (1,0) and(1,1). (0,0) is the identity under addition; all
other elements (check) have or@eiThus, the exponent &/27Z x Z /27 is 2.

Now considefZ/4Z = {0, 1,2, 3}. 0 is the identity, and under additidnand
3 have orded, and2 has ordeR. Thus, the exponent of this groupdisExercise:
using the exponent, observe ti#a27Z x 7 /27 andZ /47 cannot be isomorphic.

Fact: if p is prime, therZ/pZ = F, is a field. The non-zero elements have
multiplicative inverses(Z/pZ)* = I, = F, — {0} (the non-zero elements under
multiplication) is a cyclic abelian group with— 1 elements! IE, there is an ele-
mentg whose powers generate the grotgxercise: Prove that ifn is composite,
thenZ/nZ is not a field. Hint: show some non-zero element has no multiplicative
inverse.

Sketch of Proof of Fact: Supposé; is not cyclic. Letd be the exponent (the
least common multiple of the orders of the elementdypfThend < p — 1. As
the order of every element dividgs- 1 (Lagrange’s Theorem), we havg — 1.

For eachw € Fpf, 2% = 1 (in the fieldF;). This is becausd is the least
common multiple of the orders of the elements of the group. Thus, {fzgnd
the order ofr, z°4®) = 1. As ordz)|d, we have or¢) = kd for somek € Z.
Thus,z? = +0rde) — (Iord(x))k; — k=1,

Now use the fact thdf is a field. Consider? — 1 = 0 overF, (clearly0 is
not a root). Over F, means look for solutions to this equation withe I,). A
polynomial of degreel has at mostl roots (another theorem of Lagrange). But
everyr € Iy = I, — {0} is a root, because (the exponent of the group) is the
least common multiple of the orders of the elements. This is a contradiction: we
havep — 1 roots (everyr € I}, solvesz? — 1 = 0 modp), but by Lagrange there
are at most/ roots. Asd < p — 1, contradiction.

Steve Miller will discuss this needed theorem of Lagrange. See also the hand-
out from Davenport'She Higher Arithmetic
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3.2.2 Lehmer’s Proposition

Proposition 3.2.3 (Lehmer). If (£) = "z modn for all a up toC log®n, then
n is prime.

We assumer = p;---p;, t > 1, and all primes are distinct and odd. (When
there are repeated primes, the proof is easier, and is left as an exercise to the
reader). Them™ ! = 1 modn for (a,n) = 1 (ie, a andn relatively prime),
implies thata"~! = 1 modp; (p,; one of the prime factors of).

Thus,n — 1 = 0 modp; — 1. If there were a remainder (ie,if — 1 wasn't
equivalent td) modp; — 1 but was equivalent to; # 0 modp, — 1), if we raised
a to this power {;), we wouldn’t getl for all a. Just take: a generator o]F;j,
ie, an element of maximal ordes — 1. Thena"™! = a7 # 1 modp,. Note that
aPi~t =1 modp;, soa™ ! = a’i modp;.

We sayp, (a factor ofn) is of type 1 if ”7*1 = 0 modp, — 1; we sayp; is of
type 2 if %51 = 2% modp, — 1.

If at least one of the;’s (without loss of generality, say;) is of typel, takea
a quadratic non-residue megand a quadratic residue fps, ps, . .., p;. One can
find such am by the Chinese Remainder Theoremas the primes are distinct.

For a statement of the Chinese Remainder Theorem, see the Appendix at the end
of the notes.

We have(p%) = —1 and (p%) = 1for j > 1. As we are assuming is

composite, there are at least two primes.

As () = (p—) (p—) (p%),we obtain(2) = —1-1---1.

As we are assuming, is of typel, we have”%1 = (0modp; — 1. Mod p; — 1,
each non-zero element {i¥/p,F)* has order dividingy; — 1. Thus,a"z" = 1
modp;.

We are assuming that the Miller Test is satisfied fowallThus, (£) = a"T
modn. Mod p;, we have shown the left hand side-§ and the right hand side is
1, contradiction!

We are left with the case where all the primes are of §p@e leave this as
an exercise for the reader.
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3.3 GRH Implies Just Need To Check Up Ta)(log* n)
in Miller

Why does GRH imply tha(2) = a"7 modn for all « up to 70log>n (and

relatively prime ton) implies that(%) = ¢"7 modn for all a relatively prime to
n?

3.3.1 Fourier Analysis

Representation Theory (especially characters of Abelian Groups) is the most im-
portant things in Mathematics. Let be a finite Abelian Group. To each such
group, we associate a dual group, denofeavhereA is the set of all homomor-
phisms fromA into C*, C* are the complex numbers invertible under multiplica-
tion.

Recall ¢ is a group homomorphisnif (e + b) = (a)y(b). Note here
¥ : G1 — G4, andG, has been written additively ar@, has been written multi-
plicatively. We call such & acharactet

3.3.2 Examples

Let A = Z/nZ, andv € Z/nZ. Lete(z) = ¢*™= for z € C. Definey,(z) =
e(%). Exercise: Show by direct calculation that, (a +b) = v, (a)v,(b). Infact,
for eachv € Z/nZ we get a character, and the characters are distinct (exercise).

We only need to know how, acts ont, asy, (k) = ¢, (1+---+1) = <¢u( ))k.

A is canonically isomorphic tod. What this means is, to each € A there
corresponds a charactég in A, and to each charactere A there corresponds a
numbery,, € A = Z/nZ.

We can multiply two charactergz) 1) (x) = 11(x)s(x). Itis easy to see
that this is a character. The trivial character (which sends everythinhpisothe
identity of the group.

Consider two groups! and B. We can use the characters#fand B to get
the characters of the cartesian proddct B. If we want the characters of x B,
take a charactey, of A and ¢, of B and form the charactep,¢,, defined by

(%%) (Zlf, y) = ¢a(x)¢b(y)
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3.3.3 Characters oﬂF;;: Dirichlet Characters

We denote characters Bf by x. Dirichlet proved the best theorem of mathemat-
ics, introducing a lot of new math to solve the following:

Theorem 3.3.1 (Primes in Arithmetic Progressions]836, 1839). Leta andn
be relatively prime. There are infinitely many primes which giwehen divided
by n; moreover, to first order all residue classesnodn (a, n relatively prime)
have the same number of primes!

In other words, there are infinitely manysuch thaten + « is prime ifa and
n are relatively prime.

Hard Question: without using Dirichlet’s Theorem, can you prove that there
must beoneprime congruent ta modn if  andn are relatively prime?

Clearly, if « andn are not relatively prime, there cannot be infinitely many
primes congruent ta modn. Dirichlet shows this is also a sufficient condition.

Dirichlet introduced charactessithout introducing the concept of a group!
They didn’t have group notation until later.

Look at(Z/nZ)* = {x : (x,n) = 1,0 < x <n — 1}. This is a finite Abelian
group. #(Z/nZ)* = ¢(n), wheregp(n) is the Euler totient function, and(n) is
the number of integers (betwe@randn) which are relatively prime ta.

Dirichlet usedy instead ofn, so we change notation and look(dt/qZ)*.

A Dirichlet Character is a charactey of (Z/qZ)*; ie, x : (Z/qZ)* — C*
andy(ab) = x(a)x(b). Thus,x lies in the dual group ofZ/qZ)*. Recall thatC*
is the set of complex numbers with multiplicative inverses(ie= C — {0}.

Theprincipal or trivial character takes every: € (Z/qZ)* to 1; we denote
the trivial character byy.

If x is a Dirichlet Character ofZ/qZ)*, we sayx hasmodulus (also called
conductor) q. We extendy to be defined on all integers (all @f) by x(m) = 0 if
m andgq are not relatively prime, angd(m) = x(m modgq) otherwise. Clearly is
periodic, asy(z+ Aq) = x(x) forany\ € Z. Thus, we have the map: Z — C*.

If ¢ is prime, we have previously seen the charagter) = (g) This is an

extremely important character.
Another example: Ley = 4. We definey(n) to be0 if niseven,lif n =1
mod4, and—1 if n = —1 mod4. Exercise: Show this is a character.
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3.3.4 General Riemann Hypothesis (GRH)

Below, p will always denote a primey will be a Dirichlet character modulg (¢
need not be prime).

Conjecture: GRH: Foranygq > 1, x > 3,if x # xo (ie, if x is not the
principal character) then

‘Z<1—§> -10gp-x(p)‘ < Clogq- V. (3.1)
If x = xo, thenpi
> (1-2)rogp < 5 +O(Va). (3.2)

C'is a universal constant, independentof

We are summing primes up to Thel — 2 factors are just weight factors. If
q = 4 andy is the character abovg(p) gives a positive sign for primes congruent
to 1 mod4 and a minus sign for primes congruentté mod4.

Analysis means cancellation; you want to see cancellation in a sum. The
numbers in these sums are flipping (plus one, minus one); we have %gmout
primes less than x (this is the Prime Number Theorem, first provegdie).

Random Drunk: each moment he flips a coin. If it is heads he staggers one
unit left, tails he staggers one unit right. Aftersteps, where do you think he’ll
be? Turns out he’ll be aboyyrn units from the origin (with high probability).
Steve Miller will prove this in a later lecture or handout.

Motto: random numbers (of size aroumjicancel like the square-root of the
number of terms.

What GRH is telling us is that the remainder term behaves like random noise.

3.3.5 Proof of the Miller Test

Theorem 3.3.2.1f GRH is true, then i £) = o™z modn forall a < C'log?n for
some fixed constaut, then it is true for alla (relatively prime ton, of course).

Remarkable observations = {a € (Z/nZ)* : (¢) = "> modn} is a
subgroup of Z/nZ)*. Why? Exercise (Closure: showadf b in this set, so isb.
Identity: showl is in this set. Inverses: showdfc S, e~ modn isin S. Note
associativity is inherited fronZ /n7)*).
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By assumptionS contains (at least) the firstlog” n elements. We claim this
implies S contains all relatively prime ton.

Supposes is not all of (Z/nZ)*. We talked about cosets (of Abelian Groups)
last time. (For more information about cosets and quotient groups, see the follow-
ing lecture by Steven J. Miller, notes by Alex Barnett). As everything is abelian,
we can form a quotient group by dividing our gro(#/nZ)* by the abelian sub-
groups.

Thus, 4 = 22" is a group (a quotient group) andlis a non-trivial group
(ie, there is more than one element in this group). Why mubave more than
one element?4 is the group of representative cosets@fnZ)* by the abelian
subgroupS. As S is not all of (Z/nZ)*, there must be at least two cosets. Hence
A'is not just the identity coset (which is- S or just.S5).

But this quotient 4) is a finite abelian group. We know for a finite abelian
group that its dual is isomorphic to itself. This means to each elemestvire
have a character id, and vice-versa. Further, the identity 4fis mapped to the
trivial character ofA.

Thus, there is a non-trivig} : A — C*. Now (Z/nZ)* — % — C*, and
thus we have a non-trivial Dirichlet character(@f/n7)* which is trivial onS (ie,
x(s) = 1forall s € S).

By construction,y is a Dirichlet character ofZ/nZ)*, x # xo, andyx|s = 1
(the last means that, restricted to s € S is the identity map). We know' is
all elements up to at leagtlog® n. So,x(a) = 1 for all a < C'log?n (from the
givens).

So, look at

Sump,q, ) =Y <1 - g) logp - x(p)- (3.3)

p<z

By GRH, Sunip, ¢, z) is less than a constant multiple b ¢ - \/x. Calling
the constant’;, we have Surp, ¢, ) < Cylogq - /.
If x < C'log® n, then there is a contradiction. Why? In Equation 3.3, §um )

is going to be_ _, <1 — g) log p, because all thg(p) = 1 in this range. The

Prime Number Theorem states that the number of primes less tlaésnlogw plus

an error term which is smaller thalr(lfg—gC (ie, in the limit, the size of the error term

divided by the number of primes less thaitends td) asz goes to infinity).
Thus,Sunfp, ¢, x) is going to look like a multiple oft. Why a multiple of

x and not a multiple of@? Remember we have the factog p in the sum,;
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this follows fromPartial Summation. Partial Summation is a discrete version of
Integration by Parts; see the Appendices at the end for a further statement.
By GRH, Sunip, ¢, z) is bounded by, log ¢ - /z. Thereforex < Cslogq -
V/z. This implies\/z < Cylogq, orz < CZlog*q.
Remember, we’ve changed notation fromn to ¢. We are assuming that

(g) = ¢z mod q for all @ < C'log?q for some fixed constantC. TakeC

greater tharC%. Then we have a contradiction! If GRH is true, Sgny, ) <

Cylog q-+/z only forz < C?log® ¢. But we are assuming thaipasses the Miller
Test for alla up toC'log? ¢. Thus, we can take larger thanC? log® q.

3.3.6 Review of Proof

Intuition: For random sequences, expect square-root cancellation in sums.

If we have a non-trivial character, if we look at these weighted sumgf,
there is no extra structure; we expect cancellation {ike There has to beome
g-dependence, but GRH says it is like a universal constant ticaes

In the Miller Test, we test somethin@log” n times. If the condition is always
true for these” log” n elements, we have a subgroff (Z/nZ)*. If S isn't all
of (Z/nZ)*, we can find a character, and we have sums with this character (any
sum with characters is callddarmonic Analysis). Further, this is a non-trivial
character which is the identity on the original group. The GRH cannot accomodate
a character of this type.

Why does the GRH lead to a contradiction? Basically, GRH says a certain
weighted sum of(p) over the primes less than(wherey is a Dirichlet character
with modulusg) cannot be too large. Specifically, it is at mastlog g - v/x.

This implies that there is a lot of noise in ty¢p); basically, we need to have
a good mixing of primes which givg(p) = +1 with primes givingy(p) = —1.

However, ifn satisfies the Miller Test fou up to C'log® ¢ (with C' > C32),
then we can find a modulusand a Dirichlet charactey where we have a very
long string of primes givingy(p) = +1. This forces the weighted sum gfp)
over primes less than (takingz = C'log®¢) to be larger tharC, log ¢\/z, a
contradiction.
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3.4 Appendices

3.4.1 Aside: Forp Odd, Half the Non-Zero Numbers are Quadratic
Residues

Note, for an odd prime;, half of the non-zero numbers are quadratic residues,
and half are quadratic non-residues. Tlegendre symboltakes each element

a € I to an element in the group-1, 1}. This is a homomorphism; not every
element has a square. The imagg-isl, 1}; the kernel is all the elements &f
which are sent td. Thus, half the numbers are residues, half are non-residues.

p—1

a — (%) = a2z modp. Thus, we have a homomorphism (given by the
Legendre symbol) fron¥; — {—1,1}. We claim the map is onto. The kernel is
all elements irf', which are mapped by the Legendre symbadl e, the quadratic
residues. (One needs to show the Legendre symbol is a group homomorphism:

zy) _ (z). (¥

(2)- ()

St_andard Group Theory Argumentml ~ {—1,1}. Thus, half the num-
bers inlF;, are quadratic residues.

3.4.2 Chinese Remainder Theorem

Theorem 3.4.1 (Chinese Remainder Theorem)Let m = mymsy, m; andms
relatively prime. Thel/mZ = Z/m\Z x Z/myZ.

This allows us to, givera; modm; anda; modms, find ana modm such
thata = a; modm; anda = a, modm,. For example, try and solve = 3 mod
5andx =4 mod?7.

See any book on Algebra.

3.4.3 Partial Summation

Lemma 3.4.2 (Partial Summation: Discrete Version).

N N-1
Z anby, = Anbyn — Apr_1bar + Z A, (by, — bpya) (3.4)
M M
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Lemma 3.4.3 (Abel's Summation Formula - Integral Version).Let h(x) be a
continuously differentiable function. Lét{x) = > __a,. Then

n<z

> anh(n) = A(z)h(z) - /1 ’ A(u)P (u)du (3.5)

n<x

See, for example, Walter RudiRrinciples of Mathematical Analysi@lso
known asThe Blue Book page70.
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Chapter 4

Cosets, Quotient Groups, and an
Introduction to Probability

Quotient groups. Basic probability theory for random walk. Lecture by Steven J.
Miller; notes by Alex Barnett and Steven J. Miller.

4.1 Quotient groups

Say we have a finite Abelian grou@ (this means for alk,y € G, xy = yx)
of orderm which has a subgrou@/ of orderr. We will use multiplication as
our group operation. Recall thmsetof an elemeny € G is defined as the set
of elementsyH = g{hy, ha,--- ,h.}. SinceG is Abelian (commutative) then
gH = Hg and we will make no distinction between left and right cosets here.
Thequotient grougor factor group), symbolized by / H, is the group formed
from the cosets of all elemenise . We treat each cosetd as an element,
and define the multiplication operation as usuaydég, . Why do we need
to be Abelian? The reason is we can then analyzgy, H, seeing that it equals
g:9;HH. We will analyze this further when we prove that the set of cosets is a
group.
There are several important facts to note. First i§ not Abelian, then the set
of cosets might not be a group. Second, recall we proved the coset decomposition
rule: given a finite groug: (with n elements) and a subgroup (with » elements)
then there exist elemengs throughg;, such that
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k
G=JaH. (4.1)
=1

The choices for the;’s is clearly not unique. I, throughg, work, so dog; h,
throughg,hy, whereh; is any element of{. Recall this was proved by showing
any two cosets are either distinct or identical.

We will show below that, foilG Abelian, the set of cosets is a group. Note,
however, that while it might at first appear that there are many different ways to
write the coset group, they really are the same. For example, the gdéednd
ghih3hsH are equal. This is similar to looking at integers mgdmod 12, the
integerss, —7 and19 are all equal, even though they look different.

We now prove that the set of cosets is a group (fokbelian).

Closure. By commutivity g;Hg; H = gig;H{ H. What is “H H"? Just the set
of all 2 possible combinations of elements 8t By closure, and the existence
of the identity, this just give$/ again (recall no element in a group can appear
more than once—duplicates are removed). Therefdiiey, H = g;g;H. Now, as
G is a group and is closed;g; € G. Thus, there is a such thatg,g;, € g.H
(asG = U’;}:1 ggH. Therefore, there is ah € H such thaty,g; = g,h, which
implies g,9;H = g,hH = g,H. Thus, the set of cosets is closed under coset
multiplication. Note, however, that while the coggj; /1 is in our set of cosets, it
may be written differently.

Identity. If eis identity of G, theneHg;H = ¢g;H andg;HeH = ¢g;H, SOeH
is the identity of this quotient group.

Associativity. Since as you may have noticed, the quotient group elements
behave just like those @f, associativity follows from that of:.

Inverse. It is easy to guesg ' H is the inverse offH. Check it:g ' HgH =
g 'gH = eH = identity, also true the other way round of course by commuta-
tivity. Unfortunately,g~! H# might not be listed as one of our cosets! Thus, we
must be a little more careful. Fortunately, @s' € G = UZ:1 gsH, there is
ana such thatg™! € g,H. Then, there is ah € H with g=! = g,h. Thus,
g~ ' = g,hH = g, H, and direct calculation will show that the cosggtd is the
inverse (under coset multiplication) gf{.
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4.2 Random walk and discrete probability

Each step in a random walk is a random event. We first study a single random

event, then the combination of two random events, then multiply repeated events.
For other introductory probability theory see

http://engineering.uow.edu.au/Courses/Stats/File24.html

4.2.1 Probability distribution for a single event, mean, vari-
ance

Our single event consists of one of a set of choices happening. The choices are
labelled byi = 1--- N, which are exclusive (no more than one can happen), and
complete (no less than one can happen). For instance, for a single coin toss,

1 = 1 H, heads
T = 2 T, tails.

We take the choicéas arandom variable meaning all we know is a probability
p; > 0 that each choice can happen= 0 means it never happens~= 1 means
it always happens, and most things are somewhere in between (the unbiased coin
hasp; = % Vi, ignoring the small probabilities of the coin landing on its edge or
quantum tunneling through the table.)

The set of{p;} we call theprobability distribution Completeness implies

o= 1 (4.2)

Note the abbreviatiol ", for 37 ..
We have some quantitf which has a valug; for each choice. For instance,
f could be the number of dots on each facé a die, in which cas¢g; = i. Mean
andvarianceare ways to characterize (summarize) the distribution gver
Mean. The mean oexpectation valuéexpected value) of over the distribu-
tion is

f

Elf] = > pifs (4.3)
This is just a weighted average 6f Check it for the (unweighted) dice; = é

Vi. You should geff = 2.
Variance. The variance is the square of theandard deviatiow :
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o? = Varlf] = Zpi(fi— )2 (4.4)

Crudelyo; gives the width of the distribution irf. From the definition you
can seer; is theroot mean squarérms) deviation from the mean. Expanding out
the square, and using earlier results,

Var[f] = Zpifi2_2f'zpifi+.f2'zpi
= Zpifz?_fQ

— E[f) - Bl (4.5)

This is a very useful formula. The first term is often known asstseond moment
of f. Thefirst moments just the mean. The:'* momentis defined a$ ", p; /™.

A quick comment about units. If; and f are measured in feet (for example),
the variance (which gives information on how spread guis) has units feet-
squared. If someone asks how tall the people in our class are, one would answer
about5; feet. If one is further pressed to give a range for the heights of our class,
one might say; feet, plus or minus; of a foot. One would not give the error
range in feet-squared! Thus, in measuring error it is the square-root of the variance
that comes into play. Note that ff is in feet, the variance is in feet-squared, and
the square-root of the variance is in feet.

4.2.2 Multiple events

Consider two random events. Let the first have choicesl1--- N (with prob-
abilities p; throughpy); let the second event have choices= 1--- M (with
probabilitiesq;, throughgq,,). Then there aréV M choices (possibilities) for the
combined event, which we could label by= ij. Sincek is also a random vari-
able, it has probability;, = r;; (you could think of this as a matrix i) j). If the
two events arendependenfalso calleduncorrelated, then

rij = Diqj, Vij independence (4.6)

(In other words, the matrix is separable in thend; directions). Many events we
study will be independent. For example, if you flip a fair coin twice, the result of
the first flip has no effect on the result of the second flip. Or if you roll a fair die,
et cetera.
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As before we have a quantitfy associated with each choiceor the first
event. For the second event we have a (in general different) quantfor its
choicej. We want to learn about the sum of these two quantities,

s=f+g. (4.7)

Note that for each combined choigg this quantitys has values;; = f;+g,. How
is s is distributed? We will show thahdependencef the two events implies a
simple law giving the mean and variancesah term of those off andg.

We compute the mean af following Eq. 4.3, except now we are summing
over all combined possibilities,

Els] = ZﬁjszjZZPin(frirgj):sz’fi'ZQj+Zpi'ZQj9j
iJ i % J i J
= [ 1+1-g=[f+37 (4.8)

So, the meanadd
We isolate this important fact:

Lemma 4.2.1.For independent events, the mean of a sum is the sum of the means.
Equivalently, the sum of the expected values is the expected value of the sums.
Thus, for any independent eventsind B, E[A + B| = E[A] + E[B].

What if we multiply A by a constant? For example, consider outcomés
with probabilitiesp;. The meand = E[A]. What is the mean of the new event
with outcomes:A; occurring with probabilitie®;?

Well,

E[cA] = Z picA;

= cFEIA]. (4.9)
We have therefore shown

Lemma 4.2.2. The mean of a multiple is the multiple of the mean. Equivalently,
the expected value of a multiple is the multiple of the expected value. Thus,
E[cA] = cE[A].
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We now calculate the variance of a sum, using the above results. For the
variance ofs = f + g we can use Eq. 4.5 to get

Varls] = E[s’] — Els]”
= E[(f+9)%— (Blf +g))°
= E[(f+9)’] — (E[f] + E[g])* by Lemma 4.2.1
= E[(f+9)%—(f+3)
= E[f’|+2E[fg]+ El¢*] - (f+9)* (4.10)

We justify the last step as follows:

E[(f+9)°] = Elf*+2fg+7’]
= E[(f*+2f9)+ 4%
= E[(f*+2f9)] + E[¢*] by Lemma 4.2.1
= E[f’] + E[2fg] + E[¢?] by Lemma 4.2.1
— E[f* +2E[fg] + E[¢°] by Lemma 4.2.2  (4.11)

Using independencg: again we can factodidgg] = >, ri; fig; = >, pifi -
>_;49; = E[f|E[g] = fg. Elegantly, this term is responsible for cancelling the
cross-term inf + g)?, and collecting the remaining terms leaves

Var(s| = Var[f]| + Var|g| (4.12)

So, the varianceslsoadd.

We now take the special case when the second event is identical to the first.
Thatis,M = N, ¢; = pi, g; = [;, Vi. In this case the above shows that 2f
and Vafs| = 2Var(f].

We can repeat the above combination law for successively repeated events.
Such events are calladentical independently distributg@d) events. Suppose
we haveK repetitions of iid events, with total = f + g + - - - + 2, we can just
repeatedly apply the above rules to get

5 = Kf (4.13)

Var[s] = K Var[f]. (4.14)
The mean and variance are not the only characteristics of the distribution that
add like in this way. Amazingly, there is an infinite sequence of special combina-

tions of the higher moments, calledmulantswhich add just like this. The mean
and variance are just the first two cumulants.
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4.2.3 Simplest random walk

We now have the tools to characterize a random walk. We chdbse 2 and
pP1 = pa = % just as with the coin toss, and define the “step” displacements
f1 = +1landf, = —1. This corresponds to a drunkard taking (uncorrelated) steps
of unit length along the integer line.

We use Egs. 4.3 and 4.5 to evaluate the mean and variance of a single step
event.

[ = +%—%_o (4.15)
Var[f] = %.(1)2 + %.(—1)2 —(0)* = 1. (4.16)

For K steps, starting from the origin, we have the final displacemesnttble sum
of all the steps, using the formulae above,

§ = K-0=0 (4.17)
vars] = K-1=K. (4.18)

So the standard deviatione. the width of the distribution of, has value
o, = +/Varls] = VK. (4.19)

This is our first vital fact about all but the most pathologitaindom walks: the
distribution has width which scales lik€'/2. This means that gypical distance
from the origin isv/K. This is called aiffusion procesand is very common in
the real world.

Again, remember that if the person walks in feet, the variance (which is a
measure of how much the distribution spreads out) will be in feet-squared. By
taking the square-root we again have units of feet.

4.2.4 Central Limit Theorem

The Central Limit Theorem (CLT) states that the distributiors éends to a&Gaus-
sian distribution

1 _(s=w)?
p(S) ~ N(:ua 02) = \/%O'e 207 (420)

!Random walks which danot exhibit this power law have infinite variance and ex-
hibit anomalous diffusion For more on this, see M. Bazant’s excellent course at
http://www-math.mit.edu/ ~bazant/teach/18.325
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with meany = 5 and variances®> = Var(s] as given above, ak — oo. This is
a very common “bell curve” with widtle centered aboyt. We have not defined
p(s) very rigorously—it is simply the probability of being displacedrom the
origin at the end of thé{-step random walk. An exact formula fp(s) involves
counting all the ways that-1 can be addeds times to get exactly. We will
postpone this, and the proof of CLT, for next time.

Remarkably the CLT applies &my N with any discrete step distributicip, }
and any step displacementg;}. It also applies to the case of continous-valued
steps with distribution( f) along the real line. However a criterion for validity is
always theiniteness of the second momehp( f).
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Chapter 5

Quadratic Reciprocity, Central
Limit Theorem and Graph Problems

We give Eisenstein’s proof of Quadratic Reciprocity, and then introduce the Graph
Theory problems. Lecture by Steven J. Miller and Peter Sarnak; notes by Steven

J. Miller.

5.1 Eisenstein’s Proof of Quadratic Reciprocity

5.1.1 Preliminaries
Theorem 5.1.1 (Quadratic Reciprocity). Let p and ¢ be distinct odd primes.

Then
- e

As p andg are distinct, odd primes, bottf) and <§> are+1. The difficulty

is figuring out which signs are correct, and how the two signs are related.
We use Euler’s Criterion, proved in a previous lecture:

Lemma 5.1.2 (Euler’s Criterion).

<ﬂ> — ¢"= modp. (5.2)
p



The idea behind Eisenstein’s proof is as follov(%) <§) is —1 to a power.
Further, we only need to determine the power m2odEisenstein shows many
expressions are equivalent, m@dto this power. Eventually, we arrive at an
expression which is trivial to calculate (mayl

5.1.2 First Stage

Consider all even multiples of by ana < p — 1: {2¢,4q,6q,...,(p — 1)q}.
Denote a generic multiple byg. Recall[z] is the greatest integer less than or
equal tox. By integer division,

aq
aq = |—
p

Thus,r, is the least non-negative number equivalenjdanodp.

The numberg—1)"+r, are equivalent to even numbers{ioy ..., p — 1}. If r,
is even this is clear; if, is odd, then(—1)"*r, = p — r, modp, and agp andr,
are odd, this is even.

p+re, 0<r,<p-—1 (5.3)

Lemma5.1.3.1f (—1)"r, = (—1)"r, thena = b.

Proof: We quickly gettr, = r, modp. If the plus sign holds, then, = r,
mod p impliesga = ¢gb mod p. As q is invertible modp, we geta = b mod p,
which yieldsa = b (asa andb are even integers betwee@mndp — 1).

If the minus sign holds, then, + r, = 0 mod p, or ga + ¢b = 0 mod p.
Multiplying by ¢! mod p now givesa + b = 0 mod p. As a andb are even
integers betweefiandp — 1,0 < a + b < 2(p — 1). The only integer strictly
betweer) and2p which is equivalent t® modp is p; howeverp is odd andz + b
is even. Thus, the minus sign cannot hold, and the elements are all distinct.

Lemma5.1.4.

p

(ﬂ) — (1) Seovare, (5.4)

Proof: For each evem, ga = r, modp. Thus, modp:
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—
1
—

(5.5)

I
—

() I

a even a even

where the above follows from the fact that we hélgé choices for an even
(to getg”= and Euler’s Criterion (to replacg= with (9)).

q
p
As a ranges over all even number fropnto p — 1, so too do the numbers

(—1)"r, modp. Thus, mody,

Ha

Il
/|\
—_
~—
<
)
=
i)

a even a even
H a = (—1)%aewes H Tq. (5.6)
a even a even

Combining gives

<g)(_1>za vt TT 7o = I 7 (5.7)

p a even a even

As eachr, is invertible modp, so is the product. Thus,

(g) (_]_)Za evenTa = ] modp (58)
p

As (%) Is its own inverse, the Lemma now follows by multiplying both sides
by (%). 0.

Therefore, it is sufficient to determinye,, _ _ r, mod2.
We make one last simplification. By integer division, we have

o)

P+ ra (5.9)

a even

ze - 2[5

a even a even

:Z[%a

a even
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As we are summing over eventhe Left Hand Side above is even. Thus, the
Right Hand Side is even, so

Z r, mod?2

a even

=I5

a even

pz qp?a Zra mod?2

a even | a even

R 3" 7, modz, (5.10)

a even [ a even

where the last line follows from the fact thais odd, so mo@, dropping the
factor ofp from the Left Hand Side doesn’t change the parity.
We have shown

Lemma 5.1.5. It is sufficient to calculaté_, ... [%}

5.1.3 Second Stage

Consider the rectangle with vertices 4t= (0,0), B = (p,0), C = (p,q) and
D = (0,q). The upward slopping vertical is given by the equatioa ]%x Asp
andgq are distinct odd primes, there are no pairs of integerg) on the lineAC.

We now interprety " [%} Consider the vertical line with coordinate

a. Then [%“} gives the number of pairge, y) with z-coordinate equal ta and

pairs (in the rectangld BC' D) with evenz-coordinate that are below the ling”".
We add some additional pointdt = (£,0), I = (§,%), G = (0,%) and
H = (%,q). We prove

y-coordinate an integer at mo%—“tpﬂ]. Thus,>’ % is the number of integer

Lemma 5.1.6. The number of integer pairs under the lide”' (inside the rect-
angle) with evenx-coordinate is congruent mazito the number of integer pairs
under the lineAF'.

Leta > £ be an even integer. The integer pairs on the line « are(a,0),
(a,1),...,(a,q). There are; + 1 pairs. Asq is odd, there are an even number of
integer pairs on the line = a. As there are no integer pairs on the liA€’, for a
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fixeda > £, mod2 there are the same number of integer pabsveAC as there
arebelow AC.

Further, the number of integer paiabove AC' is equivalent mod to the
number of integer pairs belowF' on the linex = p — a. To see this, consider the
map which takegz,y) to (p — 2, —y). Asa > L andisevenp —a < S and is
odd. Further, every odd < £ is hit (givena,q; < £, start with the even number
D — Qodd > ]-2))

Let #FC H,,.,, be the number of integer paifs, y) in triangle FC' H with z
even.

Let#EBC H be the number of integer pairs in the rectangleC' H; # £ BCH =
0 mod?2 (we've shown each vertical line has an even number of pairs).

Let#AF E.,., be the number of integer paifs, y) in the triangleA F £ with
x even, and le## AF' E be the number of integer pairs in the trianglé'F.

We need to calculat®, [%} mod?2:

a even

3 [@] = YAF B,y + #EBCH — #FCH

= #AFE.., + #EBCH + #FCH

= #AFE., + #FCH + #EBCH

— #AFE + #EBCH

— H#AFE. (5.11)

Thereforep =", ... [%‘1] = #AFFE mod2, and we have

<ﬂ) = (1)~ (5.12)
p
Reversing the rolls gf andg, we see that
(13) = (-1)", (5.13)
q

wherer = #AFG mod2, with #AFG equal to the number of integer pairs
in the triangleAFG.

Now, u + v = #AFFE + #AFG, which is the number of integer pairs in
the rectangleA FF'G. There are”g—1 choices forz and‘%1 choices fory, giving
’%1% pairs of integers in the rectanglel FG.

44



Thus,

(e - o

(_ 1 ) H#AFE+#AFG

p—1q—1

= ()77, (5.14)

which completes the proof of Quadratic Reciprocity.

5.2 Central Limit Theorem

X1, X5, X3, ... an infinite sequence of random variables such thatXhere
independent identically distributed random variables (abbreviated i.i.d.r.v.) with
E[X;] = X; = 0 (can always renormalize by shifting) and variar¢g\(?] = 1.

Let Sy = Zjvzl Xj.

Theorem 5.2.1.Fix —oo < a < b < co. Then asN — oo,

Prob(% & [a,0]) — \/LQ_W /ab e dt. (5.15)

The probability function is called the Gaussian or the Normal distribution.
This is the universal curve of probability. Note how robust the Central Limit
Theorem is: it doesn’t depend on fine properties ofihe

5.3 Possible Problems

5.3.1 Combinatorics and Probability

Combinatorics is the number of ways of doing something.ghaph is a set of
vertices (V') andedges(F) between them. Thus, edges are unordered pairs of
vertices.

Four Color Theorem (proved by an exhaustive search by the computer). Say
you have a graph in the plane (thus, if you draw the vertices and edges in the
plane, no two edges cross). Call such a grapltaaar graph. Can you color the
vertices such that if two vertices are joined by an edge, they have different colors?
Sure, by usingV/| colors! What is the least number of colors needed?
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Theorem 5.3.1 (Four Coloring Theorem).You can color the vertices of a planar
graph using at most four colors such that no two joined vertices have the same
color.

A k-regular graph is a graph such that there a@reedges out of each vertex.
A 2-regular graph has no freedom: you get a closed cycle.

Consider3-regular graphs. To each graph associateattjacency matrix A.
(First to study may be Kirchhoff). Say = (V, E) has|V| = n vertices. For now,
assume there are moultiple edges(ie, between any two vertices is at most one
edge, and there are no edges connecting a vertex to itsei§)ann x n matrix,
rows and columns indexed by the vertices, and= 1 if there is an edge from;
to v; and0 otherwise.

Thus, the adjacency matrix is a matrix wiith andls, and is symmetric.

Problem: What is the second largest eigenvalue of? How does it vary?
What do we expect?

In Linear Algebra, we learn we can diagonalize a real symmetric matrix. The
eigenvalues are real, and satigfy(\) = det A\l — A), the characteristic poly-
nomial. This is a polynomial i\ of degreen with integer coefficients. Thus,
the eigenvalues are algebraic numbers. The leading coefficiaft ibe constant
term is detA).

Thus,ps(A\) = \"+- - -+def(A), and by the Fundamental Theorem of Algebra,
there aren complex roots. If the leading coefficient of the defining polynomial is
1, we say the roots am@gebraic integers These roots are the eigenvaluesiof

Why must the eigenvalues be real? Want= \v, v a non-zero vector.

Fact: ifv = (1,1,...,1)7, v is an eigenvector ofl with eigenvaluek. Why?

As each vertex is connected kadistinct vertices, each row has exactentries
that arel andn — k entries that ar@. Thus,% is an eigenvalue, denote Dy.

Exercise 5.3.2.Show, for such adjacency matricdsthat all eigenvalues satisfy
—k <A<k

Consider connected graplis How big is \,(G) for the random3-regular
graph?

Theorem 5.3.3 (Kirchhoff’s Theorem). Let det(kI — A) be the product of the
non-zero eigenvalues df. Then det(k/ — A) equals the number of vertices times
the number of spanning trees.
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A tree is a connected graph with no cycles.spanning treeis a connected
sub-graph containing all the vertices. Sometimes called complexity of the graph.
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Chapter 6

Efficient Algorithms, Probability,
Alg+Transcendental, Pidgeon Hole,
Chebychev

We review many basic number theory results. We give efficient algorithms for
polynomial evaluation, calculating”, and finding the greatest common divisor.
We briefly review probability theory. After an introduction to Algebraic and Tran-
scendental Numbers, we review Dirichlet's Box Principle (aka the Pidgeonhole
Principle), and give an application. We prove a weak version of Chebyshev’'s The-
orem on the approximate number of primes. Lecture by Steven J. Miller. Notes by
Steven J. Miller (and Florin Spinu, who helped write up the notes on Dirichlet’s
Box Principle and Chebyshev).

6.1 Notation

1. W : the set of whole numbergi1,2,3.4,...}.
. N: the set of natural number$0, 1,23, ... }.

. Z : the set of integersf..., —2,-1,0,1,2,... }.

2
3
4. Q: the set of rational numbergz : x = §,p, q € Z,q# 0}.
5. R: the set of real numbers.

6

. C: the set of complex numbers$: : z = = + iy, z,y € R}.

48



7. Z/nZ : the additive group of integers mod
8. (Z/nZ)* : the multiplicative group of invertible elements mad
9. a|b: a dividesb, i.e.the remainder after integer divisicnis 0.
10. (a,b) : greatest common divisor (gcd) efandb, often writtenged(a, b).
11. = = y( mod n) : there exists an integersuch thatc = y + an.
12. wlog : without loss of generality.
13. s.t. : such that.
14. V : for all.
15. 3: there exists.

16. big O notation : A(x) = O(B(x)), read “A(x) is of order B(z)”, means
3C > 0 such that/z, |A(x)| < C B(x).

17. | S| or #S : number of elements in the s&t
18. p : usually a prime number.

19. n : usually an integer.

6.2 Efficient Algorithms

For computational purposes, often having an algorithm to compute a quantity is
not enough; we need an algorithm which will compgteckly. Below we study

three standard problems, and show how to either rearrange the operations more
efficiently, or give a more efficient algorithm than the obvious candidate.

6.2.1 Polynomial Evaluation

Let f(z) = apa™ + ap_12" 1 + -+ - + a1x + ag. The obvious way to evaluate is to
calculatez™ and multiply bya,, (n multiplications), calculate™~* and multiply
by a,_1 (n — 1 multiplications) and add, et cetera. There aradditions and
> 1o k multiplications, for a total of. + n{ntl) operations. Thus, the standard

(
2
method leads t®(n?) computations.
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Instead, consider the following:

(((anx—i—an1)x+an2>£+'--+a1>x+ao. (6.1)

For example,

Tat +42® — 32t — 1l +2 = (((m +4)x — 3)1’ — 11)3: + 2. (6.2)

Evaluating the long way takdsl steps; cleverly rearranging tak&steps.

Exercise 6.2.1.Prove that the second method takes at massteps to evaluate
anx" + - - - ap.

6.2.2 Exponentiation

Considerz™. The obvious way to evaluate involves— 1 multiplications. By
writing » in base two, we can evaluaté in at most2 log, n steps.
Let k be the largest integer such tl4t< n. Then3a; € {0, 1} such that

n = a2’ + a2+ 4+ a2 + a. (6.3)

It costsk multlpllcatlons to evaluate?', i < k. How? Consider, = :1:2 ,
0
Y1 =Yo - yo_ﬂf P =12 Y2 = Y1 yl—x ,--->yk—yk ! yk t=2z?
Then
" = xak2k+ak,12k’1+~~-+a12+a0
_ xaka . xak_12k’1 . xaﬂ . %o
= yzk . yglial “ e y?l . ygo. (64)

As eacha; € {0,1}, we have at most + 1 multiplications above (if;;, = 1
we have the terny; in the product, ifa; = 0 we don't).

Thus, it costg: multiplications to evaluate the?' (; < k), and at most another
k multiplications to finish calculating™. As k < log, n, we see that™ can be
determined in at motlog, n steps.

Note, however, that we do need more storage space for this method, as we
need to store the valugs = 22, i < log, n
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Exercise 6.2.2.Instead of expanding in base two, expand in base three. How
many calculations are needed to evaluatethis way? Why is it preferable to
expand in base two rather than any other base?

6.2.3 Euclidean Algorithm

The Euclidean Algorithm is an efficient way to determine the greatest common
divisor of z andy, denotedzcd(z, y) or (z, y). Without loss of generality, assume
1<z <y.

The obvious way to determing:d(z, y) is to dividex andy by all positive
integers up tac. This takes at mostr steps.

Let [z] denote the greatest integer less than or equal We write

y=2 .24, 0<m <z (6.5)
T
Exercise 6.2.3.Prove that; € {0,1,...,2 — 1}.
Exercise 6.2.4.Proveged(xz, y) = ged(ry, x). Hint: ry =y — £ - o,

We proceed in this manner unti|. equals zero or one. As each execution
results inr; < r;_;, we proceed at mosttimes (although later we prove we need
to apply these steps at masibg, = times).

T

r = — r1+ry 0<ry<nr
™
1

ry = T—-r2+r3,0§r3<r2
2
T

o = T—'T3+T4,O§T'4<7°3
3
Tk—2

Th—o = T_'Tk71+7nk70§7ak<7"k71- (6.6)

k—1

Exercise 6.2.5.Prove that ifr, = 0, thenged(z,y) = rx_1, wWhile if r, = 1, then
ged(z,y) = 1.

We now analyze how large can be. The key observation is the following:

Lemma 6.2.6. Consider three adjacent remainders in the expansign;, r; and
Tit1 (Wherey =r_j;andz = 7”0). Thenng(Tl‘, Ti—l) = ng<Ti+17 Ti)! andn»“ <

2
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Proof: We have the following relation:

ri—1

Ti—1 = T+ i1, O§T1+1<'I"Z'. (67)

(2
If r; < %54, then asr;y < r;, we immediately conclude that,, < ;. If
r
T, > t

2—1, then we note that

Ti—1
Tit1 = Ti—1 — : < Ty (6-8)

T

But “=1 = 1 (easy exercise). Thus_; < *5*. O

We count how often we apply Euclid’s Algorithm. Going frofm,y) =
(ro,r_1) to (r1, 7o) costs one application. Every two applications leads to the
first entry in the last pair being at most half of the second entry of the first pair.

Thus, if k is the largest integer such th#lt < z, we see we apply Euclid’s
Algorithm at mostl + 2k < 1 + 2log, « times. Each application requires one
integer division, where the remainder is the input for the next step.

We have proven

Lemma 6.2.7. Euclid’s Algorithm requires at most + 2 log, « divisions to find
the greatest common denominatorcéndy.

Let us assume that = ged(z,y). Thus, the last equation before Euclid’s
Algorithm terminated was

Ti—2

Ti—g = “Tic1+ 1, 0 <71 (6.9)

ri—1
Therefore, we can find integeds ; andb;_» such that

TP = Qi—17i—1 + bi_ori_o. (6.10)

Looking at the second to last application of Euclid’s algorithm, we find that
there are integers,_, andb,_, such that

Tio1 = A_oTi—o + b;_s7i3. (6.11)

Substituting forr;_; = r;_1(r;_2, 7;,_3) in the expansion of; yields that there
are integers,;_, andb;_s such that

Ti = Qi—2Ti—2 + bi_37ri_3. (6.12)
Continuing by induction, and recalling = ged(z, y) yields

52



Lemma 6.2.8. There exist integers andb such thatged(z, y) = az + by. More-
over, Euclid’s Algorithm gives a constructive procedure to firehdb.

Exercise 6.2.9.Find a« andb such thatu - 244 + b - 313 = ged (244, 313).

Exercise 6.2.10.Add details to complete an alternate proof of the existence of
andb with az + by = ged(z, y):

1. Letd be the smallest positive value attainedday+ by as we varyu, b € Z.
Such ad exists: considefa,b) = (1,0) or (0,1). Thus,d = ax + by. We
now show! = ged(x, y).

2. ged(z,y)|d.

3. Lete = Ax + By > 0. Thend|e. Therefore, for any choice of, B € Z,
d|(Az + By).

4. d|x and d|y (consider clever choices of and B; one choice givesd|z,
one givesd|y). Therefored| ged(z,y). As we've showmed(z,y)|d, this
completes the proof.

Note this is a non-constructive proof. By minimiziag + by, we obtain
ged(x,y), but we have no idea how many steps is required. Prove that a so-
lution will be found either among pairéa, b) with a« € {1,...,y — 1} and
—be{l,...,x—1},or—ac{l,...,y—1}andb e {1,...,xz — 1}.

6.3 Probabilities of Discrete Events

6.3.1 Introduction

Let Q = {w;,wq,ws, ...} be an at most countable set of events. We Qathe
sample (or outcome) space We call the elements € 2 theevents Letz :
2 — R. That s, for each event € (2, we attach a real numbe(w). We callz a
random variable.

Example 6.3.1.Flip a fair coin 3 times. The possible outcomes &e- {HHH, HHT, HTH,THH, H'
One possible random variable igw) equals the number of headsdn Thus,
x(HHT) =2andz(TTT) = 0.
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Example 6.3.2.Let(2 be the space of all flips of a fair coin where all but the last
flip are tails, and the lastis a head. Thé$~= {H,TH,TTH,TTTH,...}. One
possible random variable i8(w) is the number of tails; another is(w) equals
the number of the flip which is a head.

We sayp(w) is aprobability function on € if
1. 0 <p(w;) < 1forallw,; €.

2. plw) =0if w & Q.

3. 2 p(wi) =1.

We callp(w) the probability of event.

Often, we have a random variables whefe)) = w. In a convenient abuse of
notation, we writeX for 2 andzx for z(w) andw. For example, consider two rolls
of a fair die. LetX be the result of the first roll, and of the second. Then the
sample space & =Y = {1,2,3,4,5,6}.

In general, consideX andY with x; occurring with probabilityp(z;) and
y; occurring with probabilityy(y;). We analyze thgoint probability r(z,y) of
observingr andy.

X andY areindependentif Vz,y, r(z,y) = p(x)q(y). In the example of
rolling a fair die twice,r(z,y) = p(z)q(y) = 3 -t if 2,y € X =Y, and0
otherwise.

Exercise 6.3.3.Consider again two rolls of a fair die. Now, léf represent the
first roll, andY the sum of the first two rolls. Prov€ andY are not independent.

EventsX; throughXy areindependentif p(zy,...,zx) = p1(z1) - - - p(xN).

Exercise 6.3.4.Construct three events such that any two are independent, but all
three are not independent. Hint: roll a fair die twice.

6.3.2 Means

If z(w) = w, themean (or expected valuepf an eventr is defined by
T = Z xip(x;). (6.13)

More generally, for a sample spafewith eventsw and a random variable
z(w), we have
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I(w) = Z 2w )p(w;). (6.14)

For example, the mean of one roll of a fair die3is.

Exercise 6.3.5.Let X be the number of tosses of a fair coin needed before getting
the first head. ThusX = {1,2,...}. Calculatep(z;) andz. We could let2 be

the space of all tosses of a fair coin where all but the last toss are tails, and the
last toss is a head. Thef{w) is the number of tosses of

Instead of writingz, we often writeE[z] or E[X], read ashe expected value
of x or X. More generally, we would havg(w) and E [z (w)].
The k' moment of X is the expected value af':

Elz"] = fop(xi) (6.15)

or
Bt W) = > a*(wip(w). (6.16)

Lemma 6.3.6 (Additivity of the Means). Let X andY be two independent events
with joint probabilityr(x, y) = p(z)q(y). Letz = z+y. ThenE[z] = Elx+y| =
Elz] + Ely].

Proof:
Elz+yl = Y (i +y)r(z,y)
(i)
— Z Z(azi +y;)p(xi)q(y;)
_ Z Z zap(z:)aly;) + Z Z yip(:)a(y;)
= D) Y aluy) + D p() D usalyy)

= FElz]-1+1-E[y] = E[z] + E[y]. (6.17)
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The astute reader may notice that some care is needed to interchange the order
of summations. I, > |ziy;[r (i, y;) < oo, then Fubini’'s Theorem is applica-
ble, and we may interchange the summations at will.

We used the two events were independent to go fdom, @ (;, ;) to
>iwip(ri) Y25 q(y;) = Elz]. Lemma 6.3.6 is true even if the two events are
not independent.

If the events are not independent, we encounter sumsTke; (2, y;);
however,) . r(x;,y;) = p(x;). Why? By summing over all possiblg we are
asking what is the probability that = x;; we do not care whay is. Thus,
> i 2w (@i yy) = D, wip(w;) = Elz], and similarly for the other piece.

Exercise 6.3.7.Write out the proof of the generalization of Lemma 6.3.6, where
X andY are not assumed independent.

Given an outcome spack = {zi,x,,...} with probabilitiesp(z;), let aX
be shorthand for the eventtimes X with outcome spacéaz,, axs,...} and
probabilitiesp, (ax;) = p(z;).

Lemma 6.3.8. Let X; through Xy be a finite collection of independent events.
Leta, throughay be real constants. Then

Elayzy + -+ +ayen] = a1 Bl + -+ - + an Elzy]. (6.18)
Lemma 6.3.9.Let X andY be independent events. Thefy| = E[z|E[y].
Exercise 6.3.10.Prove Lemmas 6.3.8 and 6.3.9.

6.3.3 Variances

Thevariance ¢ (and its square-root, th&andard deviation o,) measure how
spread out a probability distribution is. Assumgv) = w. Given an evenfX
with meanz, we define the standard deviatiop by

o = Y (i — T)p(xs). (6.19)
More generally, given a sample spaQe eventsw, and a random variable
z: 00— R,

2 = 2 (@) = 7)) p(w) (6.20)

7
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Exercise 6.3.11Let X = {0, 25, 50, 75, 100} with probabilities{.2, .2, .2, .2, .2}.
LetY be the same outcome space, but with probabilifiés.25, .3,.25,.1}. Cal-
culate the means and the variancesoaindY’.

For computing variances, instead of equation 6.19 one often uses
Lemma 6.3.12.02 = E[z?] — E[z]*
Proof: Recallt = E[z]. Then

o = 3 (v~ Bl b

= Z(Z‘f — 22, Elz] + Elz]*)p(;)

= Zx?p(a: ) — 2Ex lepxl )+ Elx Zp%

= E[z’] - 2E[z]* + Elx ] = E[2*] — E[z]. (6.21)
The main result on variances is

Lemma 6.3.13 (Variance of a Sum)Let X andY be two independent events.
Theno?,, = o} +0,.

Proof: We constantly use the expected value of a sum of independent events
is the sum of expected values (Lemma 6.3.6 and Lemma 6.3.8).

orvy = Ellz+9)* - El(x +y)
= E[x* +2ry+y*] — < [x] + Ely ])
— (E[a:?] + 2B wy] + Ely
= (BR? - ) + (Em ~ Bly] ) +2(Eley] - Elz]E[y])
—F

- a§+a§+2<E[xy] [x]E[y]). (6.22)

El2)? + 2E[x []+E[y]2>

By Lemma 6.3.9F[zy] = E[x]E[y], completing the proof.

Lemma 6.3.14.Consider independent copies of the same event (for example,
flips of a coin o rolls of a die). Ther,,, = \/no,.
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Exercise 6.3.15Prove Lemma 6.3.14.

Note that, if the even has units of meters, then the variangehas units
meters-squared, and the standard deviatipand the meam have units meters.
Thus, it is the standard deviation that gives a good measure of the deviations of an
event around the mean.

There are, of course, alternate measures one can use. For example, one could
consider

> (@i — )p(xs). (6.23)
Unfortunately, this is a signed quantity, and large positive deviations can can-
cel with large negatives. This leads us to consider

>l — zlp(s). (6.24)

While this has the advantage of avoiding cancellation of errors (as well as
having the same units as the events), the absolute value function is not a good
function analytically. For example, it is not differentiable. This is primarily why
we consider the standard deviation (the square-root of the variance).

Exercise 6.3.16.Consider the following set of data: fare {1,...,n}, given
x; one observeg;. Believing thatX and Y are linearly related, find the best
fit straight line. Namely, determine constamatsand b that minimize the error
(calculated via the variance)

n

i (Z/i — (ax; + b))2 = Z (Observed— Predicteq)

i=1 =

2

(6.25)

Hint: use Multi-variable Calculus to find linear equations ferand b, and
then solve with Linear Algebra.

If instead of measuring total error by the squares of the individual error (for
example, using the absolute value), closed form expressionsdond b become
significantly harder.

If one requires that: = 0, show that theé leading to least error i$ = y =

%Zz Yi-
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6.3.4 Random Walks

Consider the classical problem of a drunk staggering home from a lamp post late
at night. We flip a fair coinV times. With probability% we get heads (tails).
For each head (tail) the drunk staggers one unit to the right (left). How far do we
expect the drunk to be?

It is very unlikely the drunk will be very far to the left or right.

Exercise 6.3.17 Letz be+1 if we flip a head—1 for a tail. For a fair coin, prove
Elx] =0,02=1,0, = 1.

Exercise 6.3.18.Letpy(y) be the probability that afteV flips of a fair coin, the
drunk isy units to the right of the origin (lamp post).

1. Provepy(y) = pn(—y).

2. ConsiderN = 2M. Provepsy (2k) = (,7},) s, where(?) = i,

3. Use Stirling’s formulaf! ~ n"e "v2mn = 27m”+%e*”) to approximate
pn(Y)-

Label the coin tossed&’; through Xy. Let X denote a generic toss of the
coin, andYy be the distance of the drunkard aft¥rtosses. By Lemma 6.3.8,
Elyn] = Elz1+ -+ + an] = E[x1] + - -+ + E[zn]. As eachE[x;] = Efz] =0,

Thus, we expect the drunkard to be at the lamp post. How spread out is his
expected position? By Lemma 6.3.14,

Oyy = ONg = VNo, = VN. (6.26)

This means that &pical distance from the origin i/ N. This is called a
diffusion procesand is very common in the real world.

6.3.5 Bernoulli Process

Recall (]TV) = T,(NLLT), is the number of ways to choosebjects from/NV objects
when order does not matter. Consideindependent repetitions of an event with
only two possible outcomes. We typically call one outcwuecessnd the other
failure, the event aBernoulli Trial , and a collection of independent Bernoulli
Trials aBernoulli Process

In each Bernoulli Trial, let there be probabilityof success angd = 1 — p of

failure. Often, we represent a success witnd a failure with.
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Exercise 6.3.19.For a Bernoulli Trial, showz = p, 02 = pq, ando, = ,/pq.

Let Yy be the number of successes\rtrials. Clearly, the possible values are
Yv ={0,1,--- ,N}. We analyzeoy (k). Rigorously, the sample spa€kis all
possible sequences 6f trials, and the random variablg; : 2 — R is given by
yn(w) equals the number of successesin

If £ € Yy, we needk successes any — £ failures. We don't care what
order we have them (ie, ¥ = 4 andN = 6 thenSSFSSF andFSSSSF both
contribute). Each such string éfsuccesses andl — & failures has probability of
p* - (1 —p)¥=*. There arg(}) such strings.

Thus,py(k) = (})p* - (1 —p)¥*if k€ {0,1,--- , N} and0 otherwise.

By clever algebraic manipulations, one can directly evaluate the meand
the variancer; ; however, Lemmas 6.3.8 and 6.3.14 allow one to calculate both
guantities immediately, once one knows the mean and variance for one occur-
rence.

Lemma 6.3.20.For a Bernouilli Process withV trials, each having probability

p of success, the expected number of succesggs4s Np, and the variance is

02 = Npg.

YN

Exercise 6.3.21 Prove Lemma 6.3.20.

Consider the following problem: Let = {0, 1,2, ... } be the number of trials
before the first success. Whatigndo??

First, we determing(k), the probability that the first success occurs akter
trials. Clearly this probability is non-zero only féra positive integer, in which
case the string of results must be- 1 failures followed byl success. Therefore,

p(k) = p- (1 —p)*tif k€ {1,2,...}, and0 otherwise (6.27)

To determine the meahwe must evaluate

z = Y kp-(1-p*!
k=1

= py k" 0<g=1-p<L (6.28)
k=1

Consider the geometric series
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flo) = > d° = 1% (6.29)
k=0 q

A careful analysis shows we can differentiate term by tertn<f ¢ < 1. Then

= 1

"(q) = k¢t = : 6.30

f'(a) ;Oq Y (6.30)

Recallingg = 1 — p and substituting yields

z = kaqk_l

k=1
- £ = t (6.31)

(1 —(1 —p)) P

Differentiating under the summation sign is a powerful tool in Probability The-
ory.

Exercise 6.3.22.Calculates?. Hint: differentiatef(q) twice.

6.3.6 Poisson Distribution

Divide the unit interval intaV equal pieces. Considéy independent Bernoulli
Trials, one for each sub-interval. If the probability of a succes%,isthen by
Lemma 6.3.20 the expected number of success&s i% =\

We consider the limit as&v — oo. Obviously, we still expech successes in
each interval, but what is the probability &% successes? How long do we expect
to wait between successes?

We call this aPoisson process with parametel. For example, look at the
midpoints of the/V intervals. At each midpoint we have a Bernoulli Trial with
probability of succesg- and failurel — .

We determine théV — oo limits. For fixed NV, the probability oft successes
in a unit interval is
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For fixed, finitek, asN — oo, the firstk factors inpy (k) tend tol, (1 —

N
%) — e, and 1—% — 1.
Thus, we are led to thieoisson Distribution: Given a parametex (interpreted
as the expected number of occurrences per unit interval), the probability of

occurrences in a unit interval jgk) = 2—',“@‘A fork € {0,1,2,...}.

Exercise 6.3.23Check thap(k) given above is a probability distribution. Namely,
show)_, ., p(k) = 1.

Exercise 6.3.24.Show, for the Poisson Distribution, that the measa: \ and the
variances? = \. Hint: let

> k
f) = Z% = e (6.33)

k=0
Differentiate once to determine the mean, twice to determine the variance.

6.3.7 Continuous Poisson Distribution

We calculate a very important quantity related to the Poisson Distribution (with
parameten), namely, how long does one expect to wait between successes?
We've discussed that we expexcsuccesses per unit interval, and we've cal-
culated the probability of successes per unit interval.
Start counting a6, and assume the first success isaWhat isps(z)? As
before, we divide each unit interval infé equal pieces, and consider a Bernoulli
Trial at the midpoint of each sub-interval, with probabiliyof success.
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We have approximately/‘—]\? = Nz midpoints from0 to = (with N midpoints
per unit interval). Lety| be the smallest integer greater than or equal tdhen
we have[ Nz | midpoints, where the results of the Bernoulli Trials of the first
[ Nz — 1 midpoints are all failures and the last is a success.

Thus, the probability of the first success occuring in an interval of Iegi}gth
containingz (with NV divisions per unit interval) is

\ [Nz]—1 \ 1

For N large, the above convergeSetU\f”%.

We sayp(z) is acontinuous probability distribution on R if
1. p(z) > Oforall x € R.

2. [pp(x)dr = 1.

3. Probability(a < = < b) = [ p(z)da.

We callp(z) the probability density function .

Thus, asV — oo, we see the probability density functipg(z) = Ae=**. In
the special case of = 1, we get the standard exponential decay,

For instance, let (1) be the number of primes that are at mbst The Prime
Number Theorem stateg M) = 1024M plus lower order terms.

Thus, the average spacing between primes arddnd aboutlog M. We can
model the distribution of primes as a Poisson Process, with parametey,, =
@- While possible locations of primes (obviously) is discrete (it must be an
integer, and in fact the location of primes aren’t independent), a Poisson model
often gives very good heuristics.

We can often renormalize so that= 1. This is denotedinit mean spacing
For example, one can show tié" prime p,, is about) log M, and spacings
between primes aroung,, is aboutlog M. Then the normalized primesg;; ~

bm 1 H 1 —
T 17 will have unit mean spacing and= 1.
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6.3.8 Central Limit Theorem

X1, X, X3, ... are an infinite sequence of random variables such thakthere
independent identically distributed random variables (abbreviated i.i.d.r.v.) with
E[X;] = X; = 0 (can always renormalize by shifting) and variarceX ;| = 1.
LetSy =37, X;.

Theorem 6.3.25.Fix —oco < a < b < oco. Then asV — oo,

SN

Prob({ — € |[a, b / e_Tdt 6.35

(7 (6:35)

The probability function is called the Gaussian or the Normal distribution.

This is the universal curve of probability. Note how robust the Central Limit
Theorem is: it doesn’t depend on fine properties ofhe

6.4 Algebraic and Transcendental Numbers

6.4.1 Definitions

A function f : A — B is one-to-oneif f(xz) = f(y) impliesxz = y; f isonto if
given anyb € B, da € A with f(a) = b. f is abijection if f is a one-to-one and
onto function.

We say two setsl and B have the same cardinality(ie, are the same size) if
there is a bijectiory : A — B. We denote this byA| = |B|. If A has finitely
many elements (say elements)A is finite and|A| = n < cc.

Exercise 6.4.1.Show two finite sets have the same cardinality if and only if they
have the same number of elements.

Exercise 6.4.2.If f is a bijection fromA to B, prove there is a bijectiop = !
from B to A.

A is countableif there is a bijection betweeA and the integer&. A is at
most countableif A is either finite or countable.
Recall a binary relatior is anequivalence relationif

1. Reflexive: R(x, z) is true ( is equivalent tar).

2. Symmetric:R(z, y) true impliesR(y, =) is true (if x is equivalent tq, then
y IS equivalent tar).
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3. Transitive: R(x,y) andR(y, z) true imply R(z, z) is true (ifz is equivalent
to y andy is equivalent to:, thenz is equivalent to).

We often denote equivalence byor =.

Exercise 6.4.3.Letz,y, z € Z, and letn € Z be given. Defind(z, y) to be true
if n|(x —y) and false otherwise. Prov& is an equivalence relation. We denote it
byz =y.

Exercise 6.4.4.Let z,y, = be subsets ok (for example, X = Q,R,C,R", et
cetera). DefineR(z,y) to be true if|z| = |y| (the two sets have the same cardi-
nality), and false otherwise. Prove is an equivalence relation.

6.4.2 Countable Sets

We show several sets are countable. Consider the set of non-negative iftegers
Definef : N — Z by f(2n) = n, f(2n+ 1) = —n — 1. By inspection, we se¢
gives the desired bijection.

ConsiderWv = {1,2, 3, ...} (the positive integers). Thef: W — Z defined
by f(2n) = n, f(2n + 1) = —n gives the desired bijection.

Thus, we have proved

Lemma 6.4.5.To show a se$'is countable, it is sufficient to find a bijection from
S to eitherZ, N or W.

We need the intuitively plausible
Lemma 6.4.6.1f A C B, then|A| < |B|.
We can then prove

Lemma 6.4.7.1f f : A — C'is a one-to-one function (not necessarily onto), then
|A| < |C|. Further, ifC C A, then|A| = |C]|.

Exercise 6.4.8.Prove Lemmas 6.4.6 and 6.4.7.
If AandB are sets, theartesian product A x Bis{(a,b):a € A,b € B}.
Theorem 6.4.9.1f A and B are countable, soigl U Band A x B.
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Proof: we have bijectiong : N — A andg : N — B. Thus, we can label the
elements ofdA and B by

A = {ao,al,(lg,ag,...}
B == {bo,bl,bz,bg,...}. (636)
AssumeANnB is empty. Definé: : N — AUB by h(2n) = a, andh(2n+1) =

b,_1. We leave to the reader the case whtn B is not empty.
To prove the second claim, consider the following functioniV- — A x B:

h(n®+1) = (an, bo), h(n* +2) = (an,by-1), .-,
h(n? +n+1) = (an,by), h(n* +n+2) = (an_1,bp), .. .,
h((n+1)*) = (ao, by)
(6.37)
Basically, look at all pairs of integers in the first quadrant (including those on
the axes). Thus, we have pairs,, b,). The above functiorh starts at0, 0), and

then moves through the first quadrant, hitting each pair once and only once, by
going up and over. Draw the picturée!

Corollary 6.4.10. Let A; be countable/: € N. Then for anyn, A, U---U A,
and A; x --- x A, are countable, where the last set is altuples(ay, ..., a,),
a; € A;. Further, U2 A, is countable. If eacl¥; is at most countable, then
U2, A; is at most countable.

Exercise 6.4.11.Prove Corollary 6.4.10. Hint: fotu3*,A;, mimic the proof used
to showA x B is countable.

As the natural numbers, integers and rationals are countable, by taking each
A; = N, Z or Q we immediately obtain

Corollary 6.4.12. N*, Z" andQ" are countable. Hint: proceed by induction. For
example writeQ" ! asQ" x Q.

Exercise 6.4.13Prove there are countably many rationals in the interjall |.
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6.4.3 Algebraic Numbers

Consider a polynomiaf(x) = 0 with rational coefficients. By multiplying by
the least common multiple of the denominators, we can clear the fractions. Thus,
without loss of generality it is sufficient to consider polynomials with integer co-
efficients.
The algebraic numbers A, are the set of alk € C such that there is a
polynomial of finite degree and integer coefficients (depending,af course!)
such thatf (z) = 0. The remaining complex numbers are trenscendentals
Thealgebraic numbers of degreen, A,,, are the set of alt € A such that

1. there exists a polynomial with integer coefficients of degreguch that

f(z) =0

2. there is no polynomial with integer coefficients and degree less than
with g(z) = 0.

Thus, A, is the subset of algebraic numbersvhere for eachy € A, the
degree of the smallest polynomiglwith integer coefficients andi(z) = 0 is n.

Exercise 6.4.14.Show the following are algebgaic: any rational, the square-root
of any rational, the cube-root of any rationaly wherer,p,q € Q, i = v—1,

V3v2 —5.
Theorem 6.4.15.The Algebraic Numbers are countable.

Proof: If we show eacld,, is at most countable, then a& = US° | A, by
Corollary 6.4.104 is at most countable.

Recall theFundamental Theorem of Algebra (FTA): Let f(z) be a poly-
nomial of degree: with complex coefficients. Thelfi(xz) hasn (not necessarily
distinct) roots. Of course, we will only need a weaker version, namely that the
Fundamental Theorem of Algebra holds for polynomials with integer coefficients.

Fix ann € N. We now showA,, is at most countable. We can represent every
integral polynomialf(z) = a,a™ + --- + ao by an(n + 1)-tuple (aq, ..., a,).

By Corollary 6.4.12, the set of alh + 1)-tuples with integer coefficient&( )
is countable. Thus, there is a bijection fra¥nto Z"*!, and we can index each
(n + 1)-tuplea € Z"*:

o0

{a:aez™}y = J{ai}, (6.38)

=1
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where eachy; € Z" 1.

For each tupley; (or a € Z"1), there aren roots. LetR, be the roots of the
integer polynomial associated . The roots ink,,, need not be distinct, and the
roots may solve an integer polynomial of smaller degree. For exaryiple,=
(x2 —1)*is a degre® polynomial. It has two roots; = 1 with multiplicity 4 and
x = —1 with multiplicity 4, and each root is a root of a degrepolynomial.

Let R, = {x € C: zis aroot of a degree polynomiall. One can show that

R, = | JRa, D A, (6.39)
=1

By Lemma 6.4.10R,, is countable. Thus, by Lemma 6.4.6, &s is at most
countable A,, is at most countable.

Therefore, eacd,, is at most countable, so by Corollary 6.4 2(s at most
countable. As4; D Q (given§ € Q, considergz — p = 0), A; is at least
countable. As we've showd, is at most countable, this implie4,; is countable.
Thus, A is countableD

6.4.4 Transcendental Numbers

A set isuncountableif there is no bijection between it and the rationals (or the
integers, or any countable set).

Theorem 6.4.16.The set of irrationals if0, 1] is uncountable.

Proof: Let/ =[0,1] —Q = {z: 0 <z < 1andz ¢ Q}. Assume thaf is
countable (the case whefas finite is even easier).

We can write every number ihin a base two expansion, sgy= .y1y2y3ys - - -,

y; € {0,1}, y = >, y:27'. Certain numbers can be written two different ways.
For example.010011111111111--- = .0101. As we are assuming is count-

able, including both representations of these numbers is equivalent to taking the
union of two countable sets, which by Theorem 6.4.9 is countable.

Further, we can add back all the rational$(inl |, as there are countably many
rationals in[0, 1]. Call this setS (the union of the irrationals, the alternate repre-
sentation of some of the irrationals, and the rationals) XAs contained in the
union of three at most countable sets (and two are counta¥léey,countable by
Theorem 6.4.9.

There is therefore a bijection betweBinand X. We can enumerate the ele-
ments by{xzq, x9, z3, ... }.
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For eachr;, let.x; x0mi3 - - - 4 - - - e its binary expansion. We list the count-
able members ok :

Ty = T11T12713%14 ° * -
To =  T21T22X23T24 " **
xr3 = T31L32X33L34 """
Ty = TplTn2Tn3Tng " Tpn """

(6.40)

We construct a real number < [0, 1] not in X. As this was supposed to be
(more than a) complete list of all reals|ih 1], this will contradict the assumption
that/ is countable.

Consider the number = .z12523--- 2, - - - defined byz, = 1 — z,,. Canz
be one of the numbers in our list? For example, cawd z,,?

No, as they differ in then!” digit. Thus, z is not on our list, violating the
assumption that we had a complete enumeration. Note we had to be careful and
make sure we included all equivalent ways of writing the same number. Thus,
while z disagrees with the base two expansiore@f it cannot be an equivalent
way of representing.,,,, as all equivalent ways of representing are in our list.

This is merely an annoying technical detalil.
Thus, the set of irrationals i), 1] is not countable.

The above proof is due to Cantar’(3 — 1874), and is known a£antor’s
Diagonalization Argument. Note Cantor’s proof shows thatostnumbers are
transcendental, though it doesn’t tell which numbers are transcendental. We

can easily show many numbers (such+a8 + 2§\/7) are algebraic. What of
other numbers, such asande?

Lambert (761), Legendre {794), Hermite (1873) and others proved irra-
tional; Legendre {794) also provedr irrational. In1882 Lindemann provedr
transcental.

What aboute? Euler (737) proved thate ande? are irrational, Liouville
(1844) provede is not an algebraic number of degiz@nd Hermite {873) proved
e Is transcendental.

Liouville (1851) showed transcendental numbers exist; we will discuss his
construction later.
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6.5 Introduction to Number Theory

6.5.1 Dirichlet’s Box Principle

Definition 6.5.1 (Dirichlet’'s Box Principle / Pidgeon Hole Principle). Consider
n boxes, and place + 1 objects in the: boxes. Then some box contains at least
two objects.

We will use Dirichlet’s Box Principle to find good rational approximations to
irrational numbers.
Approximation by Rationals

Leta € R — Q be an irrational number. We are looking for a rational numgoer
such thaﬂa — §

is small, so thau;z is a good rational approximation ta

Lemma 6.5.2.Leta € R — Q. Then there exisi, g € Z, ¢ # 0 such that:

< (6.1)

o —

RS
Q|

Proof. It is enough to prove this for € (0,1). Letg > 1 and divide the
interval[0, 1) into ¢ intervals[%’, 1%1) of Iength%. Thena belongs to one of these
intervals. For somé < p < ¢ we then have:

1
]_)7& :> o
qa q

To obtain a better approximation, we start with an irrational number(0, 1)
and an integer paramet@r > 1. As before, divide the intervdD, 1) into @ equal
pieces(g, %1). Consider th&) + 1 numbers inside the interva, 1):

<1 (6.2)
q

p

q

a €

{a}, {20}, ... {(Q + 1)a}, (6.3)

where{z} denotes the fractional part of Letting [x] denote the greatest
integer less than or equal 19 we haver = [z] 4+ {z}.

By Dirichlet’s Box Principle, at least two of these numbers, $ay} and
{¢2}, belong to a common interval of Ieng%‘; Without loss of generality, we
may takel < ¢; < ¢ < Q + 1.
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Hence

1
{ga} —{qa}| < 0 (6.4)
and
1
(g2 — n2) — (uav — my)| < o T [qic]. (6.5)
Now letg =q1 — ¢, 1 < ¢ < Qandp =n; —ny € Z. Then
g0 —p| < 2 (6.6)
Q
and hence
P 1 1
a—=-| < —< =, 6.7
‘ q‘ T qQ T ¢ .7

We have proven

Theorem 6.5.3.Givena € R, there exisp, ¢ € Z, q # 0, such that

‘a _r oL (6.8)

6.5.2 Counting the Number of Primes
Euclid

Lemma 6.5.4 (Euclid). There are infinitely many primes.

Proof by contradiction: Assume there are only finitely many primes, say
P1,D2; - - -, P CONsider

r = p1p2.-pn + 1. (6.9)

x cannot be prime, as we are assumjngthroughp,, is a complete list of
primes. Thusg is composite, and divisible by a prime. Howevgrcannot divide
x, as it gives a remainder af Thus,z would have to be divisible by some prime
not in our list, again contradicting the assumption ghatroughp,, is a complete
enumeration of the primes]
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Exercise 6.5.5.Try, using Euclid’s argument, to find an explicit lower bound (as
weak as you like) to the function:

m(X) = #{p:pisprimeandy < X}. (6.10)

Dirichlet’'s Theorem

Theorem 6.5.6 (Primes in Arithmetic Progressions)Leta andb be relatively
prime integers. Then there are infinitely many primes in the progression b.
Further, for a fixeds, to first order all relatively primeé give progressions having
the same number of primes.

Notice that the conditioria,b) = 1 is necessary. Igcd(a,b) > 1, an + b
can never be prime. Dirichlet’s remarkable result is that this condition is also
sufficient.

Exercise 6.5.7.Dirichlet’'s theorem is not easy to prove, but try to prove it in the
particular casea = 4,b = —1, i.e. for the arithmetic progressiofn. — 1, using

an argument similar to Euclid’s. Proving there are infinitely many primes of the
form4n + 1 is a lot harder.

Prime Number Theorem

Theorem 6.5.8.(Prime Number Theorem or PNT) AS — oo,

X
log X

(X)) ~ (6.11)

The Prime Number Theorem was proved in 1896 by Jacques Hadamard and
Charles Jean Gustave Nicolas Baron de la Vallee Poussin. Of course, we need to
quantify whatr(X) ~ X means. Basically, there is an error functigifi.X)

such thatr(X) — X\ < E( ), andE(X) grows slower than—
A weaker verS|on was proved by Pafnuty Chebyshev (arcmﬁd)

Theorem 6.5.9 (Chebyshev)There exist explicit positive constantsand B such
that, forn > 30:

(6.12)
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Chebyshev showed one can take= log % ~ .921 andB = %A ~
1.105, which are indeed very close to 1. To highlight the method, we will use
cruder arguments and prove the theorem for a smdll@nd a largeiB.

Chebyshev’s argument uses an identity using von Mangoldt's Lambda func-
tion A(n), whereA(n) = log p if m = p* for some primep, and0 otherwise.

Define the function

T(X)= Y An)

1<n<X

a 619

%] ~ Y AW)

n>1
Exercise 6.5.10.Show thatl'(X) = > _ logn.
Now, it is easy to see (compare upper and lower sums) that
X
Z logn = / logtdt+ O(log X) = Xlog X — X +O(log X), (6.14)
n<X 1

giving a good approximation to the functi@i{.X). The trick is to look at

T(X)—QT(%) :ZA@)([% —2[% ) (6.15)

By the previous remarks, the LHS X log 2 + O(log X). Also,

log X
982 _ 1(X)log X. (6.16)
log p

RHS< ) “(logp)

p<X

Hence we immediately obtain the lower bound:

X log 2
> Oi + O(log X) (6.17)

m(X) = log

Exercise 6.5.11.Prove the bound in Equation 6.16.

To obtain an upper bound for(.X), we notice that, sinca| > 2[a], the
sum in equation (6.15) has only positive terms. By dropping terms we get a lower
bound.
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o)+ (2]

X/2<n<X

> ) logp

X/2<p<X

o () 31

X/2<p<X

ES (MX) _W(g)) 619

Hence we obtain an upper bound for the number of primes bet@wndX:
Xlog?2

Vv

m(X) —7(X/2) < og(X) + O(1) (6.19)
Now, if we write inequality (6.19) forX, & o 22,... we get
T(X) = 7(X/2) < 2%
T(X/2) — w(X/2?) < 21();((/%
k
m(X/2" ) —n(X/2%) < 21();(()/(% (6.20)

as long ag% > 1,i.e. k < [logy, X| = ko. Summing the above inequalities we
get on the left hand side a telescoping sum. All the terms cancel, except for the
leading termr(X) andr (X /2%) = 0.

Thus

ko

X /2
Z Toa (X735 (6.21)

To evaluate the sum in the above mequallty we split it into two péartsmall”
andk "large". More precisely, let, = log,(X'/1?) so thar2™ = X'/1° and note
that:
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X/2F X  2X 2X
k>ng
Hence the contribution front "large" is very small compared to what we
expect (i.e. order of magnitudig.gLX), or we can say that the main term comes
from the sum ovek small.
We now evaluate the contribution from sméll

X 1 2X 1 2X 20 X
> >

bl < — < - = 2
2F log(X/2%) — log(X /20 270~ log(X9/10) 9 log X (6.23)

k=1 k=1

Hence the right hand side of the equation (6.21) is made up of two parts,
a main term of sizqi—XX coming from equation (6.23), and a lower order term
coming from equation (6.22).

For X sufficiently large,

BX
X) <
m(X) = log X
whereB can be any constant strictly bigger th@n
To obtain Chebyshev’s better constant we would have to work a little harder
along these lines, but it is the same method.
Gathering equations (6.17) and (6.24) we see we have proven

(6.24)

AX BX
<7X) < .

logX_W( )_logX

While this is not an asymptotic for(.X), it does give the right order of mag-

nitude form(X), namely .

(6.25)

Exercise 6.5.12.Using Chebyshev’s Theorem, Prove Bertrand’'s Postulate: for
any integem > 1, there is always a prime number betweeand2n.
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Chapter 7

More of an Introduction to Graph
Theory

We review some basic definitions of Graph Theory, and prove a simple result
about the size of the eigenvalues of adjacency graphs. Lecture by Peter Sarnak;
notes by Steven J. Miller.

7.1 Definitions

Definition 7.1.1. For a graphG, let V' (G) be the set of vertices and(G) the set
of edges (an edge is a pdiv, w) with v, w € V'). We often just writé” and E.

Definition 7.1.2 (Connected Graph).A graph G is connected if for any two
verticesv, w € G, there is a path of edges ifi starting atv and ending atv.

Definition 7.1.3 (Boundary). 0A = {v € V — A : there is aw € A with
(v,w) € E}.

Definition 7.1.4 (k-regular). A graphdG is k-regular if there arek edges coming
out from each vertex.

Definition 7.1.5 (Expander Graph). LetG be a connected graph withvertices.
Let A C V(G) be any subset of vertices wifd| < % (ie, at most half of the
vertices). We sag is a (n, ¢, k) expander if for any such, |0A| > c|A].

Example 7.1.6.Let G be a2-regular graph withn vertices. For definateness,
label the verticeq1,2,...,n}. Let the edges beél,2), (2,3), (3,4),...,(n,1).
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Let A be the first half of the verticesA = {1,2,..., [g]} Then|0A| = 2, and
G is not an(n, ¢, 2) expander.

7.2 Size of Eigenvalues

Consider a3-regular graph withn vertices. We want the graph to have certain
desirable connectivity properties.

Let A = (ayy) is the adjacency matrix attached to the grépranda,, = 1
if there is an edge fromv to w and0 otherwise. This is a very sparse matrix
(only three non-zero entries in each row or column). Compute its eigenvalues
(real numbers).

Lemma 7.2.1. The eigenvalues; € [—3, 3].

Proof: Letf : V — R, define the action of the adjacency matf>on f by

Af)= > f(w). (7.1)

(v,w)eE
As there are finitely many vertices,(in fact), we can regard the functigifv)
as living inR", with coordinates(f(vl), e f(vn)).

Supposerw € V, Af(w) = Af(w), f # 0. Then is an eigenvalue (which
must be real asl is real symmetric).

We use the Maximum Modulus Principle. As# 0, letw, be such thaf (w)
is the maximum value of (w) (not zero, and exists as we have finitely many
vertices). Then

fw) =5 3 flw), (72)
(

wﬂUO)

If A > 3, this cannot happen (we’re assuming the graphiisgular and con-
nected). If\ = 3, thenf is constant. Working with absolute values, we similarly
obtain\ > —3.

Exercise 7.2.2.Prove ak-regular graphG is connected if and only X = k is a
simple eigenvalue.

Let \; be the second largest eigenvalue= £ is always an eigenvalue for a
k-regular connected graph. How big can the gap be betweand/?

77



Chapter 8

Linear Algebra Review, especially
Spectral Theorem for Real
Symmetric Matrice

We review some basic facts about Linear Algebra and Matrix Groups, and give
an introduction to Random Matrix Theory. Lecture by Steven J. Miller; notes by
Steven J. Miller and Alex Barnett.

8.1 Linear Algebra Review

Matrices can either be thought of as rectangular (often square) arrays of numbers,
or as linear transformations from one space to another (or possible to the same
space). The former picture is the simplest starting point, but as Professor Sarnak
emphasized, it is the latter, geometric view that gives a deeper understanding.

To connect with the simpler vector case, a vector can be thought of as a list of
real numbers which change in a certain way when the coordinate system changes,
or as a geometric object with length and direction. The latter objectagdinate-
independentand has different representations in different choices of coordinate
axes. Try to keep the geometric picture in mind for matrices.

8.1.1 Definitions

Given amn x m matrix A (wheren is the number of rows ana is the number of
columns), tharanspose ofA4, denotedA”, is them x n matrix where the rows of
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AT are the columns oft (or, equivalently, the columns of” are the rows ofd).
Lemma 8.1.1.(AB)" = BT AT and (AT)T = A.

We leave the proof to the reader.
If an n x n matrix (also called @quare matrix) A satisfiesA” = A, then we
say A is symmetric

Example 8.1.2.Let A be the matrix

2 2 4 2
1 1 -2 2
-2 0 0 1 (8.1)
1 1 2 1
ThenAT is
2 1 -2 1
2 1 0 1
4 -2 0 2 (8.2)
2 2 1 1

Note the above matrix is not symmetric.

The number otlegrees of freedom a symmetric matrixi(e.independent real
numbers needed to completely specify the matrix)(is+ 1) /2. Why? There are
n? entries,n on the diagonal. If you specify all entries above the diagonal and all
entries on the diagonal, then you know the symmetric matrix.

There aren? — n non-diagonal entries (half above the diagonal, half below).
Thus, one needs to specifiz™ + n = " entries,

Exercise 8.1.3.If A and B are symmetric, show B is symmetric.

Matrix multiplication. We call the element in thé" row and;*" columna;;.
Think of i = 1---n going down the left side, anfl= 1--- M going across the
top. A vectorv we represent as a column of elements with #fiebeingv;. A
nice way to see matrix-vector multiplication is that thegive thecoefficientdby
which the columns ofd are linearly mixed together. For the product= Av to
make sense, the length (dimension)vafhust equaln, and the dimension ab
will be n. A is therefore a linear transform from-dim space to:-dim space.

Multiple transformations appear written backwards: if we appthenB then
C' to a vector, we write

w = CBAwv. (8.3)

Note that taking the product of twe x n matrices require®(n?) effort.
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Exercise 8.1.4.Show that there are two ways to evaluate triple matrix products
of the typeC' BA. The slow way involve®(n?) effort. How about the fast way?
How do these results scale for the case of a produétoftrices?

Definition 8.1.5 (Invertible Martices). A is invertible if a matrix3 can be found
such thatBA = AB = I. The inverse is then writte® = A~!. Invertibility
requiresA to be square.

Transformations of a matrix. Just as with vectors, we can find out how the
components of a square matrk change under transformation. Say we have a
scalar quantityr = w? Av. We transform our coordinate system linearly such
that the vecton has components’ = Mwv, whereM is some invertible matrix
representing the transformation. Therefore alée= Mw. The only way that:
can remain unchanged by the transformation (as any scalar must), for all choices
of v andw, is if the transformed matrix is writted’ = M -7 AM~!. Check this
via

' =wTAY = (Mw)" (M~ TAM ™) (Mv) = w' TAIv = w" Av = 2. (8.4)

This is called asimilarity transformation or aconjugation Really we have one
object, the transformatiod, but it may have different representations by a matrix
of numbers, depending on the choice of basis.

Definition 8.1.6 (Orthogonal Matrices). ) is an orthogonal: x n matrix if it
has real entries and)” Q = QQ” = I.

Q is invertible, with inverse)”. The geometric meaning @ is arotation:
the vectorw = Qu is justv rotated (about the origin).
The number of degrees of freedom in an orthogonal matrixis— 1) /2.

Exercise 8.1.7.In 3 dimensions a general rotation involves 3 angles (for example,
azimuth, elevation, and ‘roll’). How many angles are needed in 4 dimensions? In
3d you rotate about a line-like axis (the set of points which do not move under
rotation); what object do you rotate about in 4d?

Exercise 8.1.8.Show that the identity matrix, always has representatialy; =
d;; regardless of the choice of basis. Hint: perform orthogonal tranformation on
the matrixJ;; .

The set of orthogonal matrices of orderforms acontinuous(or topologi-
cal) group, which we calD(n). (Not to be confused with “of order N”). Group
properties:

80



Associativity follows from that of matrix multiplication.

The identity matrix acts as an identity element, since it is in the group.

Inverse is the transpose (see abovg)! = Q7.

Closure is satisfied because any prodét of orthogonal matrices is itself
orthogonal.

Exercise 8.1.9.Prove the last assertion.

However, not all the elements 6f(n) can ‘talk’ to each othei,e. you cannot
reach all the elements by continuous transformation from the identity
Example forn = 2: a general order-2 orthogonal matrix can be written

cosf —sinf cos)  —sinf
( sinf cosf ) or ( —sinf —cosf ) ’ (8:5)
where0 < 0 < 27 is a real angle. The first has determinarit and defines the
‘special’ (i.e. unit determinant) grouyO(2) which is a subgroup of)(2) with
identity /. The second has determinant and corresponds to rotations with a

reflection; this subgroup is disjoint frorfiO(2), and has the weird (reflecting)
identity can be written in some basis as

(é 21). (8.6)

Note thatSO(2), alternatively written as the family of planar rotatioRg)), is
isomorphico the unit length complex numbers under the multiplication operation:

R(6) «— €". (8.7)

Therefore we haveé?(6,)R(6,) = R(6, + 6»). This commutativity relation does
nothold in highern > 2.

Orthogonal transformations. If an orthogonal matrix) is used for con-
jugation of a general square matu¥ then the rule Eq. 8.4 for transformation
becomes,

A = QAQT. (8.8)

This tells you how to ‘rotate’ a (square) matrix.
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Definition 8.1.10 (Complex Conjugate Transpose)Let A be ann x m matrix.
Then the complex conjugate transposelpflenotedA*, is obtained by the follow-
ing: (1) take the complex conjugate 4f ie, replace every entry;;, = z, + iy;x
with @;; = z;, — iy;x, and call this matrix4;; (2) take the transpose of;.

Exercise 8.1.11 Prove that(AB)* = B*A*.

Definition 8.1.12 (Dot or Inner Product). The dot (or inner) product of two real
vectorsv andw is defined as” w; if the vectors are complex, we instead use.

Exercise 8.1.13.Show that the dot product is invariant under orthogonal trans-
formation. That is, show that given two vectors, transforming them using the same
orthogonal matrix leaves their dot product unchanged.

Definition 8.1.14 (Length of a vector). The length of a real vectar is |v|? =
vTv; for a complex vector, we have|? = v*v.

Definition 8.1.15 (Orthogonality). Two real vectors are orthogonal (also called
perpendicular) ifv”w = 0; for two complex vectors, the equivalent condition is
v'w = 0.

Definition 8.1.16 (Eigenvalue, Eigenvector)Recall )\ is aneigenvalueandv is
an eigenvectoif Av = Av andw is not the zero vector.

Exercise 8.1.17.If v is an eigenvector ofi with eigenvalue\, showw = av,
a € C, is also an eigenvector of with eigenvalue\.

Exercise 8.1.18.Show that given an eigenvalueand an eigenvectar, you can
always find an eigenvectar with the same eigenvalue, Hut| = 1.

To find the eigenvalues, we solve the equatief(\/ — A) = 0. This gives a
polynomialp(\) = 0. We callp(\) thecharacteristic polynomial.
Thetrace of a matrixA, denote TfA) is the sum of the diagonal entries 4f

n

Tr(A) =) a;. (8.9)

=1

Lemma 8.1.19.Tr(A) = Y"1 | A,
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The proof relies on writing out the characteristic equation and comparing pow-
ers of A with the factorized version. By the fact that the polynomial has rapts
we can write

det(\ — A) = p(A) = JJ(r=N). (8.10)
=1
Note the coefficient oA is 1, thus we havg [.(A — A;) and notc [ [, (A — ;)
for some constant
By expanding out the RHS, the coefficient®f ' is — 3"  \;, which we
will show is —Tr(A). Expanding the LHS, we want to find the corresponding
coefficient in

A—ap; —ap R 5 1)
—a21 A — ag
—ap1 A — QApp

We have to remember the expansion of the determinant. Taking the top-left-most
2 x 2 block, we see its determinant(id — a;1)(\ — ag) — ajpa2; = A2 — (a1 +
ag2) A+ (ar1a20 — ajza91). The determinant of the top-left-mdsk 3 block is then
formed by(\ — a33) times the above x 2 determinant, plus two other multiples

of determinants which can give only a highest powek of \!. Thus we see that

the coefficient im\? is — (a1 + a2 +as3). Repeating this argument farx 4 block

up ton x n gives us the coefficient of”~! in the full determinantis- >_." | a;.

Since the LHS and RHS must be equal the LHS and RHS coefficients !

are equald

Corollary 8.1.20. Tr(A) is invariant under rotation of basis.

The proof follows immediately from the invariance of the eigenvalues under
rotation of basis. We need the following:

Lemma 8.1.21.det(AB) = det(A) det(B). Further, by induction one can show
det(AB---Z) = det(A)det(B) - --det(Z). Further,det(I) = 1.

Proof of Corollary: LetA = Q7 BQ. We showA and B have the same trace
by showingA and B have the same eigenvalues. To find the eigenvalugsvaé
must solve:
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det(\ — A) = det(\ — Q" BQ)
= det(\Q"Q — Q" BQ)
= det(Q"AIQ — Q" BQ)
— det (Q"(\ - B)Q)
= det(Q") det(M — B)det(Q)
= det(Q") det(Q) det(\] — B)
det(Q"Q) det(A\ — B) = det(I) det(\ — B) = det(A\I — B).
(8.11)

As the eigenvalues ol and B satisfy the same equation, they are equal.

8.1.2 Spectral Theorem for Real Symmetric Matrices

The main theorem we will prove is

Theorem 8.1.22 (Spectral Theorem)Let A be a real symmetria x n matrix.
Then there exists an orthogonak n matrix () and a diagonal matrix\ such that
QT AQ = A. Moreover, the: eigenvalues ofl are the diagonal entries of.

This result is remarkable: it tells you that any real, symmetric matrix is diago-
nal when rotated into an appropriate basis (recall the rotation effect of conjugation
using@). In other words, the operation of matrixon a vector can be broken
down into three steps:

Av = QAQ"v = (undo the rotatiof(stretch along coord axgsotationv.

(8.12)
Recall the ordering of transformations is read like Hebrew, right to left. The rota-
tion is just the rotation into the basis of eigenvectors.

Furthermore, the eigenvaluas (= diag els ofA) are a set of numbers invari-
ant under rotations ofl. In other words, ifA’ = PAPT is an orthogonally-
conjugatedi(e. P is orthogonal) version od, thenA’ has the samé)\;} asA. Of
course the ordering of thg has to be chosen the same.

For the Spectral Theorem we prove a sequence of needed lemmas:

Lemma 8.1.23.The eigenvalues of a real symmetric matrix are real.
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Let A be a real symmetric matrix with eigenvaltieand eigenvectos. Note
that we do not yet know thathas only real coordinates!
Therefore,Av = \v. Take the dot (or inner) product of both sides with the
vectorv*, the complex conjugate transposevof
v*Av = Av*o. (8.13)

But the left hand side is real. The two sides are clearly complex numbers
(ie, 1-dimensional matrices). Taking the complex conjugate transpose of the LHS
gives

(v*(Av))* = (Av)*(v")" = v" Awv. (8.14)

Therefore, the LHS is real, implying the RHS is real. But clearly is real
(similar calculation). Thus) is real.O

We will only prove the Spectral Theorem when all the eigenvalues are distinct.
Henceforth, we shall always assumas a real symmetric matrix.

Lemma 8.1.24.The eigenvectors of a real symmetric matrix are real.

The eigenvalues solve the equation — A)v = 0. Let A be an eigenvalue.
Thendet(A] — A) = 0. Therefore the matrib@ = A — A is not invertible.
Therefore it send a vector tb(standard linear algebra calculation).

Lemma 8.1.25.1f \; and )\, are two distinct eigenvalues of a real symmetric
matrix A, then their corresponding eigenvectors are perpendicular.

We studyv! Av,. Now

vl Avy = v} (Avg) = v] (Aava) = Agv] vs. (8.15)
Also,
vl Avy = v] ATvy = (v AT)vy = (Av) vy = (Av))Tvg = Molv,. (8.16)

Therefore
AT vy = Ml vy OF (A — Ag)vl vy = 0. (8.17)

As \; # Ay, vivy = 0. Thus, the eigenvectors andv, are perpendiculafl
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We can now prove the Spectral Theorem for real symmetric matfitiesre
are n distinct eigenvectors

Let \; to \,, be then distinct eigenvectors, and lef to v,, be the correspond-
ing eigenvectors chosen so that eachas lengthl.

Consider the matrix), where the first column aof) is v, the second column
of () is v,, all the way to the last column @ which isv,,:

T 7T 7
Q= v v - v, (8.18)
ol !

The transpose ap is

— v —
Q" = s (8.19)

— v, —

Exercise 8.1.26.Show that) is an orthogonal matrix. Use the fact that theall
have length one, and are orthogonal (perpendicular) to each other.

ConsiderQ” AQ. This is a matrix, call itB. To find its entry in the'" row
and; column, we look at

el Be; (8.20)

where thee;, are column vectors which arein the &% position and0 else-
where:

0
Thus, we need only show that Be; = 0 if i # j and equals\; if i = ;.

Exercise 8.1.27.ShowQe; = v; andQv; = e;.
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We calculate

el Be; = e QT AQe;
= (1 Q") A(Qey)
= (Qe:)" A(Qe))
= v} Av;
= v (Av)
= v/ \u; = Aol v;. (8.22)

Asv]v; equald if i # j andlif ¢ = j, this proves the claim.

Thus, the off-diagonal entries 6f7 AQ) are zero, and the diagonal entries are
the eigenvalues;. This shows tha®” AQ is a diagonal matrix whose entries are
then eigenvalues ofd. O

Note that, in the case of distinct eigenvalues, not only can we write down
the diagonal matrix, we can easily write down widatshould be. Further, by
reordering the columns @), we see we reorder the positioning of the eigenvalues
on the diagonal.
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Chapter 9

Central Limit Theorem, Spectral
Theorem for Real Symmetric,
Spectral Gaps

Proof of the Central Limit Theorem (via the Fourier Transform). Proof of the
Spectral Theorem for Real Symmetric Matrices (via maximization). Spectral Gap
and Families of Expanders. Lecture by Peter Sarnak; notes by Steven J. Miller.

9.1 Central Limit Theorem

Let X : Q — R be arandom variabler(w) € R). Define the density function
onR by

pla,b] = Prob(w L z(w) € [a,b]). (9.1)

Thus, X gives rise to the probability measyteon R.
Assume

1. X1, Xs, ... are independent identically distributed random variables (iidrv)
with densityy.

2. E(X) = [,z(w)dp(w) = [ xzdu(x).
3. Var(X) = [, 2*(w)dp(w) = [, 2z*du(z) = 1.
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DefineSy = > X, and letN (0, 1) denote the standard Gaussian or normal
distribution (mean zero, variance one).

Theorem 9.1.1.

—

N
— N(0.1 9.2
VN in probability (0,1), (9.2)

Prob(i—N € |a, b \/ﬂ/

Proof: We have a random variahlé, induces a probability measureon the
real lineR. Thus,dy = f(x)dz, f(x) is a nice function. As: is a probability
measure ofR, we must havef (z) > 0 and [, f(z)dz = 1.

The given assumptions about thes imply

1. [pzf(z)dz =

2. [pa®f(x)de = 1.

Definition 9.1.2 (Fourier Transform).

(9.3)

= / f(z)e ™y, (9.4)
R

Clearly,|f(¢) < Jp flx)dx < 1. Further,f(0 = Jn f(
Now

'€ = /}%(27rix)f(x)e_2m:5dx. (9.5)
Thus, f'(0) = 0 (from E(z) = 0).

We will assumef is continuous (although this is implied by our assumptions).
Further,

7€) = —47r2/Rx2f(:c)62”m§dx. (9.6)

Therefore,f”(0) = —4m* (by our assumption on the variance).
Using Taylor to expang we obtain
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fle) = f“)f+

= 1- 27r2§2 : 9.7)
Near the origin, the above shovfidooks like a concave down parabola.

Theorem 9.1.3 (Fourier Inversion). If f is a nice function (so all the quantities
below make sense, i¢,decays fast enough):

- [ eeae 9.9
Definition 9.1.4. e(y) = e*™.

Exercise 9.1.5.If ¢¢(z + y) = e((x + y)f), proveds(z + y) = de(z)de(y). ¢
is acharacterof (R, +).

Exercise 9.1.6.Is there ai) : R — R such thaty(x + y) = ¥(z) + ¥ (y)? IE,

can you find a homomorphism that takes addition to addition? If yes (of course:
see above!) what can you say abgtt If we assume is continuous, it must be

of the formes.

Think of R as a vector space oveD (ie, the scalars are€Q). What is the
dimension oRR overQ, and what is a basis? As the reals are uncountable and the
rationals are countable, there are uncountably many basis vectors.

Any linear transformation will satisfy the desired condition! For example,
choose any basis (callediamel Basig of R overQ (very hard! need the Axiom
of Choice).

To show every character of the reals is of the fatmyou need more. If you
assume the character is continous, then it must be of the fgrm

Suppose we have random variabl€sand Y with measureg: and v, with
induced functiongf(z) andg(z). If we chooseX andY independently, what is
the distribution ofX + Y?

Lemma 9.1.7.The distribution ofX + Y clearly cannot be the sum (as that won't
be a probability measure). It i x g, and f x ¢ is a probability measure.

Definition 9.1.8 (Convolution).

(f * 9)a t/fx— (9.9)
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We show the convolution is a probability measure. We assume our fungtions
andg are nice (ie, that we may use Fubini to interchange the order of integration).

Jusa@is = [ [ = patdyds
Z//fa:— y)dxdy

=lémw(éf@—mm)@
_ Lg (/f ﬁ»@

g(y) - 1dy = 1. (9.10)

Il
;U\

Exercise 9.1.9.f/§k\g(§) = f(&) - §(€). Thus, Fourier Transform converts convo-
lution to multiplication.

LetZ = X + Y. Whatis
quZe@z+wD:h@mz (9.11)

x can be anywhere; givery y must lie between — x andz — z + dz.

Prob(X +Y ezz+ dz]) = / Prob(X € [z,2 + dz] and
R
Y €[z—ux, z—:v—l—dz])f(x)dw
= / f(z)g(z — x)dx = h(z), (9.12)

where the last step follows from the definition of the density functions.
By Induction, we se&; + - - - Xy has distributionf « - - - % f (as the random
variables are iidrv).

However, we want to studyy = 21X,

VN
Definition 9.1.10 (FT). Let FT(f) = f; FT denotes the Fourier Transform.
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Lemma 9.1.11.

N
FT (the distribution of 21— T XN) _ [f(i)] _ (9.13)

VN VN

We take the limit asV — oo for fixed £. Recall we showed thayf(g) =
1 — 27262 + ..., Thus, we have to study

N
2m2e? €I
2o o1

But asN — oo, the above goes to

e~ 2mE" (9.15)

The universality arises becaus®nly terms up to the second order in the
Taylor Series contribute.

Exercise 9.1.12.Show the Fourier Transform of the Gaussian is the Gaussian.
Key point:

e Used Fourier Analysis to study the sum of independent identically dis-
tributed random variables, as it converts convolution to multiplication.

Exercise 9.1.13Fix g a nice, smooth, rapidly decreasing function. Consider the
linear transformationA:

(Af)(x) = / oz — ) f(y)dy. (9.16)

Any convolution operator is diagonalized by these characters (exponentials).
At a formal level,

(Ade)(z) = / oz — v)ée(v)dy
= / g(x — y)e >y
R
_ /g<t)€27ri£(xt)dt
R
= e g0ema = j(e)ocla) (0.17)
R

Thus,¢; is an eigenvector ofl with eigenvalugj(¢).
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9.2 Spectral Theorem for Real Symmetric Matrices

Let A be a real symmetric matrix acting @. ThenA has an orthonormal basis
vy, ...,0, Such thatAUj = /\jvj-

A simpler proof, assuming all eigenvalues are distinct, is available in the
Septembe25" lecture notes.

Write the inner or dot produci, w) = vfw. As A is symmetric,(Av, w) =
(v, Aw).

Definition 9.2.1. VL = {w : Vv € V, (w,v) = 0}.

Lemma 9.2.2. Supposé’ C R" is aninvariant vector subspacanderA (i fv €
V,thenAv € V). ThenV+ is also A-invariant: A(V1) c V*.

This proves the spectral theorem. Suppose we fingd-A 0 such thatdv, =
Aovo. TakeV = {uv, : u € R} for the invariant subspace.

By Lemma 9.2.2,V+ is left invariant under4, and is one dimension less.
Thus, by whatever method we used to find an eigenvector, we apply the same
method onl/ .

Thus, all we must show is given atrinvariant subspace, there is an eigenvec-
tor.

Consider

v wing%u},{v)zl {<AU’ U>} (918)

Standard fact: every continuous function on a compact set attains its maximum
(not necessarily uniquely). See, for example, W. RuBliimciples of Mathemati-
cal Analysis

Let vy be a vector giving the maximum value, and denote this maximum value
by Ao. As (vg,v9) = 1, vy is not the zero vector.

Lemma 9.2.3. Avy = A\gvg.

Clearly, if Avy is a multiple ofuy it has to be\, (from the definition ofu, and

Ao)-
Thus, it is sufficient to show

Lemma 9.2.4. {uv, : 1 € R} is an A-invariant subspace.
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Proof: letw be an arbitrary vector perpendiculardg ande be an arbitrary
small real number. Consider

(A(vo + ew), vy + ew) (9.19)

We need to renormalize, ag+ew is not unit length; it has length+ ¢ (w, w).
As vy was chosen to maximizelv, v) subject to{v, v) = 1, after normalizing the
above cannot be larger. Thus,

(A(vg + ew),vg + ew) = (Avg,vg) + 26{Avg, w) + € {w,w). (9.20)

Normalizing the vector, + ew by its length, we see that in Equation 9.20, the
ordere terms must be zero. Thus,

(Avg, w) = 0; (9.21)

however, this impliesiv, is in the space spanned by (asw was an arbitrary
vector perpendicular ta,), completing our prooft

Corollary 9.2.5. Any local maximum will lead to an eigenvalue-eigenvector pair.

The second largest eigenvector (denotedis

Al = max <AU’U>.
(v,v0)=0 <U,U>

We can either divide byv, v), or restrict to unit length vectors.

(9.22)

9.3 Applications to Graph Theory

Let G be ak-regular graph,f : V — R. Recallv ~ w if there is an edge
connectingy andw. Let A be the adjacency matrix @f, and define

Af(v) = Y f(w)
(f,9) = D f0)g(v). (9.23)

Consider the functiorfy(v) = 1 forallv € V. Then
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Afo(w) = folw) = kfo(v (9.24)

v~Yw

Thus, f; is an eigenfunction with eigenvalde

Theorem 9.3.1 (Expander Families).Fix k. Suppose we have a sequencé-of
regular graphsG; with |V;| — oo and supposé — X\ (G) > § > 0, ¢ fixed. Then
G, is an expander family.

Remark 9.3.2. If you have an algorithm that has a random element, then one
can show there is another algorithm which does what this algorithm does without
having a random component. (More or less, some slight of hand).

Suppose we havela@partite graph: there are two sets of verticdg(inputs)
andO (outputs). Edges run only betweémandO; there are no edges between two
vertices in/ or between two vertices i@. Let there ben inputs andn outputs,
and join each input witl: outputs.

Fix 6o > 0. We want, for anyB C I, |0B| > 6| B].

We give a sketch of the proof. We will show that knowledge of a spectral
gap ensures that the boundaryaofy subset ofl will be big. We do bipartite for
simplicity.

Let B C I. Define

_J2n—|B| forveB
flo) = {—\B[ otherwise (9.25)
Then
Y f0)=IBl-@2n—|B))+ (2n—|B])- (=|B])=0.  (9.26)
veV
Then
Al = max = <A~f’f> (9.27)
(Ffy=0  (f, f)
In particular,
et
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Definition 9.3.3 (Laplacian). A = kI — A.

ThUS,AfO = ]{/’fo — Af() =0- fo.
The eigenvalues oA are trivially related to the eigenvalues 4f

Remark 9.3.4 (Motivation for Laplacian). On the line we havgf—z. A discrete
version is (exercise)

xr+h)—=2f(x)+ f(x —h
foth) =2/@) + /b 9.26)
In the plane, we would havg% + % Integrating by parts we have

/(Af) gdridry = —/Vf-nga:ldmg
Q Q
= /Q [ (Ag)dzidzs. (9.30)

We want to integrate by parts on a graph!

(AF)(x )= > Fly (9.31)

T~y

Therefore

(AFF) = Y (ka - ZF<y>> F(z)

eV y~x
= kY F(z)?=) Y F(z)F(y). (9.32)
eV eV x~y

For each edge, orient it bye™ ande™. The analogue of the Laplacian be-
comes

Z(F<e+)_F(e—))2 _ ZF2 ) —2F (e F(e) + F2(e)

[

= <AF, F), (9.33)
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where the last line follows by thinking about what it means for vertices to be
connected, and how often each vertex is hit.

Recall
. (AFF) . 1||dF|P?
k=M = = e 9.34
LT (oo (F,F) (P02 (F, F) (9-34)
Plug in the functionf defined above, namely,
2n —|B| forve B
= 9.35
f(v) {—|B| otherwise ( )

If the edge runs from input to input or output to output, we get zero. The only
way we get non-zero contribution is from an input to an output (or vice-versa).
For our f,

%Z )f(e*) — f(e7) . %(271)2 - #{edges e running fron® to B}, (9.36)

where B¢ is the complement oB. We want0 < §, = k — A;. Divide the
previous equation byF, '), where(F, F') = (2n— |B|)?- |B| +|B|?- (2n— |B])
= |B|- (2n — |B]) - 2n.

Thus,
3(2n)#{edges}
< 2 . 9.37
% = 1B (20— |B) - 2n (9:37)
Therefore,
- (2n — |B
sledges} > do| B| - (2n — | B])
n
> 0o|B], (9.38)
as|B| <n.

Thus, the total number of edges is at lea$B|. But each vertex getsedges.
Thus,

(9.39)




94 2vk—-1

Let G be ak-regular connected graphl is the adjacency matrix. Biggest eigen-
value is)\y = k. Eigenvalues cannot be smaller thak. How big is the gap
betweent and\;?

Theorem 9.4.1 (Alon-Boppana).Fix k. Take any sequencce of graphs where the
number of vertice§z| — oo. Then

limg)—eoAi(Ag) > 2VE — 1. (9.40)

Remark 9.4.2. In 1-dimension, with probability one the drunk returns home;
same in2-dimensions. He escapes with finite probability3iand higher dimen-
sions!

Consider & regular graph with many vertices. Godplook locally. If there
are no short circuits, know what it looks like locally: it will look like a tree. (This
is p-adic hyperbolic geometry).

LetT be the infinite tree where each vertex is connected to three other vertices
(and a vertex cannot be connected to itself). Suppose a drunk is walking on a tree.
The only way he can get back is to exactly undo what he’s done.

Consider the following operator: consider an infinite dimensional Hilbert space
I,(V), the setof allf : V' — Rsuchthafy_ |f(v)]* < oo. This space is infinite
dimensional (for each, take the functiory,(w) = 1 if w = v and0 otherwise).

Using|ab| < ©4¥°,

(f,9) = f(w)g(v) (9.41)
exists (and is our inner product). We define
Af(w) =) f(w). (9.42)

It is not obvious that there are any eigenvectors (and, in fact, there are no
eigenvectors!). There is still a notion of spectrum. We will show the spectrum of
this operatork = 3) is [—2v/2,2V/2].

Note the constant function is horrendously not in this space (not&wssto
being square-integrable.
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Chapter 10

Properties of Eigenvalues of
Adjacency Matrices of Random
Graphs

We discuss properties of eigenvalues of adjacency matrices arising from Random
Graphs. Lecture by Peter Sarnak; notes by Steven J. Miller.

10.1 Definitions

Let G be a connected, simple (no multiple bonds or edge®gular graph with
adjacency matrid = (a,,,). Here

1 ifo~

Gy — To~w (10.1)
’ 0 otherwise

Thus,a, ., is the number of paths of length one franto w.

Let A% = (a%),), and here

2)

v,Ww

a,”) = number of paths of lengthfrom v to w. (10.2)

Thus,
al), =ty (10.3)

,Ul

Similarly let A» = (a{",), and here
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n

ay") = number of paths of length from v to w. (10.4)

v,Ww

Recall
TracdB) = Z by o (10.5)
Given an adjacency matri®, let D be the dlagonal matrix of eigenvalues.
Ao
A1
D= _ (10.6)

AN-1

A = Q~1DQ for some orthogonal matrig). Thus,A" = Q~'DQ, and we
find:

Lemma 10.1.1.7r(A") = T'r(D").

Lemma 10.1.2 (Trace Formula).For anyn > 0,

2

v,V

Ag a(™ (10.7)

I
=)

7 veV

10.2 pr(2n) and A\

To count walks of length from v to v, it is clearly at least as many walks as there
are on a-regular infinite tree.

A tree is a homogeneous object: any vertex looks exactly the same as any
other. There is no special vertex on a tree, though we will often name a Yieetex
root.

Definition 10.2.1. p(n) is the number of paths of lengthfrom v to v, wherev
is anyvertex ofthe k-regular tree.

Remark 10.2.2. p(n) = 0 for n odd.
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Remark 10.2.3. The number of paths of lengthfrom v to v on our graphG is at
least the number of paths of lengtHfrom any vertex to itself on the infinite tree.
Thus,

YoeV, a™ > pu(n). (10.8)

v,V

Remember that we've labeled théeigenvalues by, =k, ..., Ay_1.
In the trace formula, we find

N—-1
> N > Npw(2n). (10.9)
§=0
Therefore
1 N—-1
~ A2 > p(2n). (10.10)
7=0
and as\, = k
k2n 1 N-1

Fix n and letN — oc.
Let Ao = max <|)\1|, x|
Thus, substituting into Equation 10.11 we find

N——

k2n
)\2n
N + max

in the limitasN — oo (as we have,,,., a total of N — 1 times, and we divide
by N; in the limit, 2= — 1.
As N — oo, we find

> p(2n) (10.12)

V

1

Ao > pi(2n)
O A > (pk(Zn)>%. (10.13)
Exercise 10.2.4.Show
1. pp(2n) > %(2”%2)]{:(]{: —1)mL

m—1
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2. (pk(Qn)> "ok -1

Using the above exercise, we now find that

> 2V — 1. (10.14)

>\maX

10.3 Measure from the Eigenvalues

The trace formula told us that

=2

A= "al). (10.15)

veV

Il
o

j
Definition 10.3.1 (girth). The girth of a graph is the length of the shortest closed
cycle that returns to the starting vertex without any backtracking.

Assume that the girth of Gy tends toco as N — oc.

Fix n, let N be very large. Then by assumption the girth is greater than say
2n+1. Thus,ag’fg cannot have any contribution from cycles without backtracking.
Thus, locally, to calculate!’), we look like a tree, and we find”) = py.(n) for
everyv € V. Itis essentiathat we have fixea.

Therefore, we now have (for fixedunder our assumption) that

N-1
Aj = Npi(n)
=0
| N2
N Nfo= pr(n). (10.16)

o

j=

The left hand side looks like a Riemann sum.
Suppose the density of the eigenvalues of3tnegular graph igy = f(z)dz.
We have just shown, for polynomiglg (z) = 2", that

1
N > () — /3pn(l’>du(f€)> (10.17)
=0 -
where the above convergesdgn) (herek = 3).
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Thus, we are looking for a density functiditz) such that

/3 2" f(z)dz = p3(n), n > 0. (10.18)
-3

Is there such a function? Is it unique? What does it look like? This is the
Inverse Moment Problem

If there were two such functions, they would have to be equal by\taeer-
strass Approximation Theorem, as their difference integrates to zero against any
polynomial.

Exercise 10.3.2.Compute the generating function
F(z) =) ps(n)z", (10.19)
n=0

which is something like

1
VA —1)2 = 22

if |z| is small (or maybe complex and outsidek, £|).

(10.20)

Zpg(n)z” = Z(/ x”f(a:)da:)z”

= = F(2). (10.21)

If we letz = L we find

Flw) = 3 psln)—

(10.22)

_3 w—x'
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Letw € C be such thatv ¢ [—3,3]. Lettingw — a € [—3,3], one gets
a different value (a jump) ifv approaches from above or below, and the jump is
basically f(a).

Look ata + ib anda — ib, b — 0.

10.4 Summary

The above is all based on the assumption that the girth was big. For the ran-
dom graph, there are very few short closed cycles. Thus, when we use the trace
formula, we now have

N = pi(n) + O(i) (10.23)
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Chapter 11

Spacings of Eigenvalues of Real
Symmetric Matrices; Semi-Circle
Law

Joint Density Function for eigenvalues of real symmetric matrices; spacing of
eigenvalues foR x 2 real symmetric matrices; Semi-Circle Rule. Lecture by
Steven J. Miller; notes by Steven J. Miller and Alex Barnett.

11.1 Jointdensity function of eigenvalues of real sym-
metric matrices (‘GOE")

11.1.1 Dirac Notation

The derivation handed out in lecture used physics notation which should be ex-
plained. The matrix is called the ‘Hamiltonian’ (meaning that it happened to arise
in a quantum physics problem). Vectors are often calategreferring to quan-

tum states), however they can be thought of as your usual vectors. (Quantum
mechanics is just linear algebra, amazingly). A general vector in 2D is written

lu) equivalentto u = ( Z; ) , (11.1)

the latter being its coordinate representation in some basis. The unit vectors are
. 1 0
1), |2) equivalentto o L1 ] (11.2)
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The|u) is a column vector, antk:| = |u)” is a row vector. Inner product can be
written as(v [u) = vT - u. General bilinear product can be writtén| M| u) =

T
v -M-u.

11.1.2 2 x 2 Gaussian Orthogonal Ensemble (GOE)

We consideR x 2 real symmetric matrices,

AE(;;‘Z). (11.3)

Understanding this casevgal to building intuition about Random Matrix Theory
for N x N matrices.

A can always be diagonalized by an orthogonal magrixs follows,

QT<§Z)Q:(31 KQ)ED. (11.4)

In 2 x 2 case, the characteristic equatitst(A — AI) = 0 is quadratic:

A —Tr(A)\ + det(A) = 0, (11.5)
where
Tr(A) = 2 + 2, det(A) = vz — °. (11.6)
Solutions are
Tr—+z Tr—z 2
A2 = 5 + ( 5 ) + 92, (11.7)

where 1 is thet case, 2 the-.
If the two eigenvalues are equal, we say the matrix is degenerate. Initially we

are in a three-dimensional space fag andz are arbitrary). Degeneracy requires
thatx, y andz satisfy

(x;z>2+y220, (11.8)

or, equivalently,

r—2z=0,y=0. (11.9)

Thus, we lose two degrees of freedom, because there are two equations which
must be satisfied. The set of solutiong{s, y, z) = (z,0,z)}.

106



Exercise 11.1.1.Show that\; — )\, is twice the distance from the origin in this
2D subspace.

Corresponding eigenvectors are,

vl—(Z), v2—(c_s). (11.10)

We use abbreviations= cos # ands = sin 6.

Why can we write the eigenvectors as above? We can always normalize the
eigenvector attached to a given eigenvalue to have lehgthle have previously
shown that, if the eigenvalues are distinct, then the eigenvectors of a real symmet-
ric matrix are perpendicular. This forces the above form for the two eigenvectors,
at least when\; # \,.

One rotation anglé defines the orthogonal matrix,

Q=Q() = <v1 v2> = ( © s ) . (11.11)

S C
The structure of the eigenvectors is actually quite rich.

Exercise 11.1.2.Find ¢ in terms ofz, y, z. Hint: use trigonometric identities to
simplify the resulting form. Hint: solve4 — A\;v;) = 0.

Exercise 11.1.3.Show that a generall can be written

- cos 3 sinf 10
A_a(sinﬂ —Cosﬁ) +7(0 1) (11.12)

Exercise 11.1.4.Find )\, » in terms ofa, 3,~. Show that the eigenvector angle
is given byd = /2. This result is quite deep; for instance notice that taking
a complete2r cycle in 3 reverses the signs of the eigenvectors! This isn't that
relevant for the rest of this lecture.

We adopt two assumptions about the joint distribution o¢ecalledp(A) =
p(z,y,2):

1. Invariance ofp under orthogonal transformations (aka ‘basis-invariance’),
p(MTAM) = p(A) for all orthogonall/.

2. Independence of distributions of individual matrix elemepts;, v, z) =
Pa(@)py (Y)p=(2).
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Section 2C-1 of the handout reminds us that these two assumptions taken together
demand a unique form of distribution,

p(z,y,2) x e’CTr(Az), (11.13)

depending on only one parametér we choose”' = 1. Notex means propor-
tional to; the constant of proportionality is what is needed to mafie, y, z) a
probability distribution (ie, the integral of [ [ p(z,y, z)dzdydz = 1.

This corresponds to Gaussian distributions of matrix elements,

py(y) = @ off-diag

() = p.(x) = ﬁe_x diag. (11.14)

Note that the diag elements have variagcehe off-diag variance. We show
how to compute the normalization prefactors later on. This form (for geéral
is the so-called GOE. The x n case is derived in Miller’s handout of 9/25/02.

11.1.3 Transformation to diagonal representation

The operation of diagonalizing can be viewed as the transformation from one
3D space to another 3D space,

r=(r,y,2) «— ' = (A, \,0) . (11.15)
A D,Q

This is 1-to-1 apart from the set of measure zero (ie, a lower dimensional sub-
space) corresponding to degenerate eigenvalues. Looking at Eq. 11.4 we can see
the transformation is linear in the eigenvalues, nonlineér We are interested in
themarginaldistribution of the eigenvalues,

P'( A1, Aa) = /d@p’()\l,)\g,e), (11.16)

in other words we don’t care whais. We use primes to signify distributions over
final (Q, D) variables.

We want to know how to transform probability density frammspace tor’
space. In general this must follow the law,

p(r)dr = p'(x")dr’, (11.17)



giving
p'(r') = det(J)p(r). (11.18)
The ratio of the volume elements|idet .J| where.J is the3 x 3 Jacobean matrix
of the transformation.J has elements;; = or;/0r;.
Inverting Eq. 11.4 we can writd(r’) as

(o) =amar = (27 (0 ) ()

= Ac? + Ags? (A — Aa)sc
B ( (A1 — Xa)sc Ais? + \oc? (11.19)

We evaluate/ for this case,

Oz Oy 0z
oA\ O\ O\

J=| o2 . . (11.20)
o2
ox
00

We see)\’s only appear in the bottom three entries, and furthermore they only
appear as factors\; — \,) in each entry.

Exercise 11.1.5 Evaluate the bottom row of to prove the above.

Therefore this factor of a row of can be brought out in evaluating the deter-
minant:

det(J) = |messyd-dep3 x 3 matrix| - (A\y — A2) = g(0)(A\1 — A2). (11.21)

Warning! The Jacobian is the absolute value of the determinant. Thus, we
need/\; — \o| above, or we need to adopt the convention that we label the eigen-
values so thak; > \,.

The only dependence on thés is given by the second factor. Plugging into
Eqg. 11.18 and marginalizing ovérgives,

P'(A,A) = /d@g(Q) (A — )\2)6—0\?“\%)
o (A = Ag)em (), (11.22)

Note that we do not need the absolute value sign arqund- \,) because we
chose\; > \,. This is the joint density of the eigenvaluegirx 2 GOE.
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11.1.4 Generalization ton x n case

The above generalizes quite easily, with the dimension of the two spaces being
N = in(n +1). Thein(n + 1) degrees of freedom il equaln degrees of
freedom inD (namely the eigenvalugs\; }) plus in(n — 1) degrees of freedom

in @ (namely the generalized angl@3. We sort the eigenvalues such that>

Ay > o>\,

Theorem 11.1.6.If \; = A, for somel < i < j < n, then the Jacobean of the
transformationA < (D, Q) vanishes, that iget(.J) = 0.

The proof relies on realising that the two eigenvectorandyv; span a 2D sub-
space, invariant undet. (Recall here we refer to a subspace ofthdim vector
space upon whichl operates by multiplication). The invariance means that the
choices of directions of the eigenvectors is arbitrary in this 2D plane. Therefore
there is one angle degree of freedonfinvhich in not constrained by, that is,
it is independent of the elements df Now think of the inverse transformation
from (D, Q) — A. An infinitesimal volume element is transformed as

dr = det(J)dr'. (11.23)

Changes of eigenvector angle within the 2D subspace have no effegtamthe
volume elementir is collapsed to zero. (Another way of putting this is that
acquires a null-space of dimension 1). Therefbrg.J) = 0. O.

This vanishing of the Jacobean at degeneracies renders the non-uniqueness of
the forward mapA — (D, Q) at these points harmless in the following.

The upper rows of J are messy functions of angl@s and the bottom n(n—

1) rows contain entries each whichlisear in the eigenvalues. Therefodet(./)
is a polynomial of degreén(n — 1) in the eigenvalues;. Furtherdet(J) = 0 if
any two eigenvalues are equal.

Consider the polynomidl],,_;.,,(A: — A;). First, note that this polynomial
vanishes whenever two eigenvalues are the same. We claim it is a polynomial of
degreeén(n — 1) in the eigenvalues. For eaghthere arej — 1 choices fori.

Thus, the degree is

zn:j_lznz:k:(n—l)(r;—l—i-l):n(n2—1). (11.24)
=2 k=1

Thus,det(.J) and[],;_;<,(A\: — A;) both vanish whenever two eigenvalues
are equal, and they have the same degree. Therefore, they must be scalar multiples
of each other.
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So,
det(J) o< [T (=N (11.25)
1<i<j<n

Combining with the GOE form of(A) gives, after marginalizing ove® as
before,

A = J[ v=x) e E= (11.26)

1<i<j<n

The vanishing of this probability density as any two eigenvalues come close is
calledlevel repulsion

11.2 Eigenvalue spacing distribution in2 x 2 real
symmetric matrices

11.2.1 Reminder: Integral of the Gaussian

We want

1:/ e da. (11.27)

oo

Square it and rearrange the summation over area by using polar coordinates:

I’ = / e dr - / eydy—/J ydxdy
2m -
= / d@/ rdre™” :27T-|:——€T}
2 0

= (11.28)
Introduction of the radius factorproducedre =", a known differential. So,
I = \/x. (11.29)

Changing the variable in the above, and rearranging, gives

e 2o2dx = 1. 11.30
\/27r02 ( )

This is therefore the correct normalization for a 1D Gaussian probability density,
of variances?.

111



11.2.2 Spacing distribution

A, S=AA,

Figure 11.1: Change of coordinates to get spacing distributiéh inght shading
suggests form of density across the 2D plane. Dark shading shows a graph of its
projection onto the? axis.

Here for convenience we present a slightly simpler derivation than in lec-
ture. Given the 2D density'(\;, \2) we want the 1D density of the difference
E = A\ — X\, This will require marginalizing again, since there is a reduc-
tion in dimensionality. We defin& = \; + X\;. The linear transformation
(A, A2) — (E,S) has fixed Jacobean (it is a rotation byt5° and a compres-
sion by+/2 in each axis). See Fig. 11.1.

Therefore, substituting in, = (S+E)/2and\; = (S—E)/2into Eq. 11.22
gives

p/<E’ S> x pl()\l(E7 5)7 >\2(E7 S)) - Ee_i[(S—FE)Q"‘(S_EF]

Ee 2. 52, (11.31)
which is separable. Therefore integrating o¥egives anF-independent number,
and

P(E) o« Be /2 (11.32)
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This is the so-called ‘Wigner Surmise’ for the eigenvalue spacing density. Re-
markably, in then x n case, even for large, this density is very close to the true
spacing distribution of adjacent eigenvalues. The limiting powekllaw ., p'(E)
Ef with 3 = 1 is intimately related to the matrix symmetry class GOE that we
close. It is also possible to achieye= 2 and3 = 4 by choosing different
symmetry classes.

Finally, let's say you couldn’t be bothered to construct your second variable
S. Instead you could derive the above using the Dirac delta-function (see below)
to marginalize:

0o A
p(E) = /_ d>\1/_ dX2 p'(A1, A2) 6(E — (A = A2)). (11.33)

Apart from the unusual limits (due to ordering of eigenvalues), this is the standard
procedure to extract a marginal density.

Exercise 11.2.1.Simplify the above to arrive af(E).

11.3 Delta Function(al)

Let f(x) be a nice function; for example, l¢{x) be an infinitely differentiable
function whose Taylor Series convergesf{a):

f(z) = f(0) + fll(‘o)x + fl;(,o)ﬁ e (11.34)
Let
5ul) = {” foe |3 5) (11.35)
0 otherwise
Exercise 11.3.1.Show that
/ Z F@)on(x)dz = £(0) + 0(%). (11.36)

Let§ be the limit as» — oo of §,,. We find / define

o)

im [ f(2)o,(x)de — /_ T H@)o(e)dz = £(0). (11.37)

n—oo
— 00

113



Exercise 11.3.2.Show that
/00 f(z)d(x —a)dx = f(a). (11.38)

A good analogy for thé functional is a point mass. A point mass has no
extension (no length, width or height) but finite mass. Therefore, a point mass has
infinite density.

A probability density must integrate to one. This correspondstto’(z)dx =
1. We often refer toj(x) as a point mass at the origin, aftk — a) as a point
mass at.

11.4 Definition of the Semi-Circle Density

Consider

] (11.39)
otherwise

2. /1 — 22 | <
P(I):{E)r\/l 2?2 if |z <1

Exercise 11.4.1.Show thatP(z) is a probability density. IE, show that it is non-
negative and integrates to Graph P(z).

We call P(x) the semi-circle density.

11.5 Semi-Circle Rule: Preliminaries

Let \; be the eigenvalues of a real, symmethicx N matrix A. We normalize
the eigenvalues aoft by dividing by2v/N.

Define
N
1 Ai(A)
= =) -2, 11.4
pante) =y 2.0 (= NN) (11.40)
olz — ;JL\/%)) IS a point mass j(\/%). By summing these point masses and

dividing by NV, we have a probability distribution. For example,

/ Z F (@) pan()dz = ﬁ:f(;\%)) (11.41)
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We will show that, asV — oo, the above converges to the integralfaigainst
the semi-circle density:

/ " (@) Pa)de (11.42)
What does this mean?
L A(4)
;f<—2\/ﬁ> (11.43)

looks like a Riemann Sum. The statement that, for rfice),

Zf N_ / flx (11.44)

means that a®V — oo, the number of eigenvalues of a randotnin [a, 0]
equals

/b P(x)dzx. (11.45)

Theorem 11.5.1.Choose the entries; of a real, symmetric matrix independently
from a fixed probability distributiorp with mean zero, variance one, and finite
higher moments. For each, form the probability measurgs y. ASN — oo,
with probability one the measures, ,,(x)dz converge to the semi-circle proba-
bility P(x)dx

This is not the most general version; however, it is rich enough for our pur-
poses.

11.6 Sketch of Proof of the Semi-Circle Law

11.6.1 Calculation of Moments via Trace Formula

We will show that the expected value of the moments ofthey(z) equal the
moments of the semi-circle.
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Definition 11.6.1. M4 (k) is thek moment of the probability measure attached
to p1a v (2)dx:

Man(h) = [ Hpan(o)ds - %; (A

Note thatd" \;(A)* = Trace A*). Thus, we have

)k. (11.46)

Tracg A¥). (11.47)

Man(k) =
an(k) 5

kN1+5

We now calculate the expected values of the first few momeénts (), 1, 2
and3).

Lemma 11.6.2.The expected value 8f 4 x(0) = 1.

Proof:

E[MA,N(O)} - %E[Trace{])} -1 (11.48)

Note that summing the eigenvalues to the zeroth power is the same as taking
the trace of the identity matrixd

Lemma 11.6.3.The expected value 8f 4 5 (1) = 0.
Proof:

E[MA,N(l)] - ﬁE[Trace{A)}

1
= ot [ )3 a}

(2

1
— WZE[Q”] =0, (11.49)

because we have assumed that eagcis drawn from a probability distribution
with mean zerod

Lemma 11.6.4. The expected value 61, v(2) = 1.
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Proof: Note that
Tracg A%) = Z Z 0. (11.50)

As our matrix is symmetriaz;; = a;;. Thus, the trace i3, >~ a7,
Now

E[MA’N(Q)} = 4;{2 [Trace{,ap)}
- 4N2 [ZZ ”}
_ WZZE[] - 7 (11.51)

where the last line follows from each; has variancd. As their means are
zero, the varianc&[a?;| — E[a;;]*> = 1 implies Ela;;] = 1. There areN? pairs
(4,7). Thus, we havey - (N - 1) = 1. O

Lemma 11.6.5.The expected value 8f 4 x(3) = 0 asN — oo.

We need
TracdA®) = > > ) ajaja. (11.52)
A 7 k
We find
E [MA,N(?))} — ﬁE [Trace(As)}

= 8N25 [ZZZ%“JW’“}
= W Z Z Z Elaijajkag). (11.53)
i 7k

There are three cases. If the subscripgsandk are all distinct, them,;;, a;y,
anda,; are three independent variables. Hence

Elaj;ajkar] = Elay] - Elajg] - Elag] = 0. (11.54)
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If two of the subscripts are the same (Say j) and the third is distinct, we
have

If all three subscripts are the same, we have
Ela}] (11.56)
This is the third moment af;;. It is the same for all variables;, and is finite
by assumption. There arg triples wherei = j = k.
Thus,

1
W'NE[G?J =

Thus, asV — oo, the expected value of the third moment is zero.

(11.57)

E [MAN(?’)} 8§  NI5

To calculate the higher moments requires significantly more delicate combi-
natorial arguments.

11.6.2 Calculation of Moments from the Semi-Circle

We now calculate the moments of the semi-circle. Fot 3, the k** moment of
the semi-circleC'(k) equals the expectdd” moment ofy 4 x(z) asN — oco.

00 1
Ck) = / " P(z)dr = 2 / V1 — 22dz. (11.58)
—00 T J-1
We note that, by symmetry, (k) = 0 for £ odd, andC'(0) = 1 asP(z) is a
probability density.
Fork = 2m even, we change variables= sin 6.

C(2m) = g/2 sin®™ @ - cos® 0d6. (11.59)

™

INIE]

Usingsin®# = 1 — cos? 6 gives

™

2 [z 2 [z
C(2m) = / sin®™ 0df — —/ sin®™ 2 0dg. (11.60)

™ ™

wlA
INE]

118



The above integrals can be evaluated exactly. We constantly use

cost(g) =
sin®(¢) = cos(29). (11.61)

Repeated applications of the above allow us to wiiité™ () as a linear com-
bination of1, cos(260), ..., cos(2m#).

Let
il — n-(n—2)---2 !fnfseven (11.62)
n-(n—2)---1 ifnisodd
We find (either prove directly or by induction) that
bl — 1N
2 / sin? gdy — 2Zm =D (11.63)
T = (2m)!!
Exercise 11.6.6.Show the above gives
(k=1
C(2m) = 2(k o (11.64)

Also, showC'(2) agrees with our earlier calculation.
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Chapter 12

More Graphs, Maps mod p, Fourier
Series and n alpha

More on Graphs; Arithmetic maps magd Lecture by Peter Sarnak; notes by
Steven J. Miller. Appendix: Introduction to Fourier Series &nd }, by Steven J.
Miller.

12.1 Kesten's Measure

For ak-regular graph, define

cpy/ (k—1)—£ :
du(t) = 4 107 dt if |t <2vk—1 (12.1)
0 otherwise
Fix a andb, and consider thé/ eigenvalues,;. Count
#{j . )‘j S [a,b]}
: 12.2
o (12.2)
Then
Claim 12.1.1. 405 n € b))
X Y € |a, .
lim. - = i (la,8]). (12.3)
We have
1
(,ok(2n))2" W/ (12.4)
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12.2 Generating Functions ork-Regular Trees

12.2.1 R(z)
Fix k. Thegenerating function R(z) is
R(z) = Y raz", (12.5)
n=0
where
~p(n) . :
o= T Probability that we return to in n steps (12.6)

For|z| < 1, the series expansion féi(z) converges.
Let ¢,, be the probability of starting atand ending at for the first time (after
n steps).

12.2.2 Q(2)
Define
Qz) = > a2 (12.7)
n=0
Exercise 12.2.1 Prove )
R(z) = =00 (12.8)
12.2.3 T(2)
Define
T(z) = Y ta2", (12.9)
n=0

where forw adjacent ta, t,, is the probability of going fromw to v in n-steps
for the first time.

Further, let,, ,(n) be the probability of going fronv to v in n-steps first time
andd(w,v) = m > 1. Remember that(w, v) is the distance fromw to v.
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Exercise 12.2.2 Prove
1. Q(z) = 2T(z).
2. o tualn)n = (T(2))

Exercise 12.2.3 Prove

kE—1

T(z) = %Jr —2T%(2). (12.10)

Note that this explicitly gives ug'(z) by application of the quadratic formula:

k— z
11\/1—4(71,2);

2—’“;12

T(z) = (12.11)

Now that we havel'(z) we haveQ(z), from which we getR(z). T'(z) will
have a square-root — it will be an algebraic functior: of

12.3 Recovering the Measuref(x) from R(z)

We have

[e.9]

R(z) = Y ra2". (12.12)

n=0

As we knowT'(z), we knowR(z), hence we know the numbers.
Now,

- :/ 2 f(x)de = / " f(x)d. (12.13)

How do we recoverf(x) given the numbers,? We've now normalized the
eigenvalues to lie if—1, 1].
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B(z) = 1R<1> - dz. (12.14)

Z zZ

Suppose we know the LHS. Can we recoyiér)? If = € [—1, 1], the function
will have a singularity. Thus, iff(x) is a nice function, we do not expect to be
able to make sense of the above relationdf [—1, 1]. We will, however, consider
z closeto the interval—1, 1].

Letz = ¢ +iy, £ € [-1, 1],y > 0. Later we will takez = & — iy.

Look at

B(§+iy) — B —iy) = /_1f(:1:) §+i1y—x_§—iz—x d
o[y
_ 22/_1 o (12.15)

We will study the above ag — 0.

12.3.1 Poisson Kernel

Recall¢ € [-1,1], f(x) fixed, we are integrating(z) against thd>oisson Kernel

Y

—_— 12.16

(=) +y ( )
As y — 0, the above looks singular at= &.
At z = &, the kernel has heig@t, which is quite large.
If x =& + ¢, then ag) — 0, the kernel goes to very rapidly.
Basically, agy — 0, the kernel becomes a higher, thinner spike centeréd at
Now
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o0

00 y B
/oo @it =

t
= —— —dn, from - =
/ y? 2+y 7 y
.

t2+y

—0o0

= (12.17)
This is anapproximation to the identity.
Thus,
B(& +iy) — B(§ —iy) — 2mif(§). (12.18)
12.3.2 Cauchy Integral Formula
If you have an analytic functiofi(z) and+y is a curve enclosing then
f(©) “—=d(¢ (12.19)

277 v 2—C

In our case above, we cannot apply Cauchy'’s Integral Formula, as our function
f(x) is not analytic. It is compactly supported, and no non-zero analytic function
is compactly supported.

Call this permutation:

¢ F:—F, (12.20)
whereg? is the identity.

Question 12.3.1.Does¢ behave like a random permutation?

12.4 Third Problem

12.4.1 Introduction

Letp be a large prime, and consider the map
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r— 2z~ modp, x # 0. (12.21)
This is a map fron¥, — IF,. The map is not completely random, as

1 — 1
1
9 ptt
2
p—1 — p—1. (12.22)
The map which sends — 2! is a permutation oF7. Itis not a completely
arbitrary permutation, as it pairswith z—! (away from a few very special’s,
such ap — 1 and1).
Thus, this permutation is a product of transpositions.

12.4.2 Character Sums

Let
1<A<B<p, B-— Alarge (12.23)
Let
m be the inverse ofn modp (12.24)
IE, mm = 1 modp.
Let
e(z) = 27™=, (12.25)

Forv € Z/pZ, consider

s= % e(@) (12.26)

A<m<B p
These sums will measure how equidistributed or random thermap m is.

Exercise 12.4.1 Prove the trivial bound fotS|:
S| < B— A. (12.27)

Let N = B — A + 1. By the Central Limit Theorem, with high probability if
we add/N random numbers of modulus one we expect square-root cancellation.
Thus, we expect (if the inverse map is random) {isat= /N.
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12.4.3 Completing the Square

Leta,b € Z, and consider th&loosterman Sum

Ki(a,b,p) = e(‘”;lﬁ). (12.28)

z mod p

z#0
How large can the Kloosterman Sum be@ K b = 0, then trivially KI(0, 0, p) =

p—1.
If b = 0 anda # 0 (or, by symmetry, the other way around) then

Kl(a,b,p) = Z e(ag)

_ Ze(%) — 1= -1 (12.29)

y=0

Exercise 12.4.2.Provezg;ée<%> = 0. Hint: LetT be this sum. Then show
e(1)T = TsthusT = 0.

12.4.4 Weil's Bound
Leta # 0 modp. Then

Kl(a,b,p)| < 2+/p. (12.30)
This is a very deep result.
How big is
> IKi(a, 1,p)? (12.31)
a mod p

If we believe Weil's bound, each term is of size at mdgfp, we square, then
sump terms. Thus, we expect a size of at mgst. We will show on average that
Weil's bound is correct.
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¥ Wt - X T ()
Y Y €<x1—fg+:(x1—x2)>
a(p)

z1,x9 mod p
z1,29#0

_ Z 6<x1;f2>ze<a(:c1—:c2))

x1,r9 mod p a(p) p
x1,r9#0

= (p—1p, (12.32)

where the last line follows from the-sum vanishes unless = z, which
then collapses the sums. There are 1 waysz; = x5, and when this occurs, the
a-sum givesp.

Exercise 12.4.3.Consider

> " IKi(a, 1,p)[" (12.33)

a(p)

Above there are-terms, each term of siz&,/p)* = 16p*. Thus, show the
sum is at most6p?®. You will findcp? for somec independent of.

By looking at one term, as every summand is positive, we find

Ki(a, 1,p)|* < . (12.34)
Thus, taking the fourth-root yields

Kl(a, 1,p)] < cipi. (12.35)
12.4.5 Fourier Expansion of Sums
Define the indicator function
1 A<y< A+ N
I(y) = =vs AT (12.36)
0 otherwise

Consider
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S = Z e(%)

A<z<A+N

= Ze<@>1(a:)

o P

We want to write/ (x) in terms of its Fourier Coefficients

Ttm) = /0 e(—mit)I(1)dt.
Then

m=—0o0

12.4.6 Brief Review of Fourier Series

Consider the unit intervdl, 1]. Define

Om(z) = e(mz).

Then (if our function is sufficiently nice)

flx) = D Fm)e(ma),

meZ
where

J/C\(m) = /0 f(z)e(—mx)dz.

(12.37)

(12.38)

(12.39)

(12.40)

(12.41)

(12.42)

12.5 Fourier Analysis and the Equi-Distribution of

{na}

12.5.1 Inner Product of Functions

We define the exponential function by means of the series
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xr - l‘n
=y - (12.43)
n=0

which converges everywhere. Given the Taylor series expansigin ofand
cos x, we can verify the identity

e = cosx + isin . (12.44)

Exercise 12.5.1.Provee” converges for alle € R (even better, for al: € C.
Show the series far* also equals
: T\
lim (1+—) : (12.45)
n—oo n
which you may remember from compound interest problems.

Exercise 12.5.2.Prove, using the series definition, theitt¥ = e®e¥. Use this

fact to calculate the derivative ef'. If instead you try to differentiate the series
directly, you must justify the derivative of the infinite sum is the infinite sum of the
derivatives.

Remember the definition ahner or dot product: for two vectorsv =
(v1, -+, o), W = (wy,--- ,w,), we take thenner productv - « (also denoted
(v, w)) to mean

Ui = (v,w) = v (12.46)
Further, the length of a vectoris

v = (v, ). (12.47)

We generalize this for functions. For definiteness, assfiraed g are func-
tions from|0, 1] to C. Divide the interval0, 1] into n equal pieces. Then we can
represent the functions by

flz) (f(O),f(l>,...,f<n_1>)7 (12.48)

n n

and similarly forg. Call these vectorg, andg,. As before, we consider
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(fo 9n) Zf() () (12.49)

In general, as we continue to divide the interval & o), the above sum
diverges. For example, if andg are identicallyl, the above sum is.

There is a natural rescaling: we multiply each term in the sun};,hhe size
of the sub-interval. Note for the constant function, the sum is now independent of
n.

Thus, for goodf andg we are led to

f.g) = hme( /f (12.50)

The last result follows by Riemann Integration.

Definition 12.5.3. We say two continuous functions {n1] are orthogonal (or
perpendicular) if their dot product equals zero.

Exercise 12.5.4 Provez™ andz™ are not perpendicular of), 1] for n # m.
We will see that the exponential function behaves very nicely under the inner
product. Define
en(x) = ¥ forn € Z. (12.51)
Then a straightforward calculation shows

1 fn=m

_ (12.52)
0 otherwise.

{en(@), em(7)) = {

Thusey(z), e1(z), e2(x), - - - are anorthogonal setof functions, which means
they are pairwise perpendicular. As each function has lehgtie say the func-
tionse, (x) are anorthonormal set of functions.

Exercise 12.5.5.Prove(e,(z), e,,(x)) is 1 if n = m and0 otherwise.
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12.5.2 Fourier Series andna}
Fourier Series

Let f be continuous and periodic dwith period one. Define theth Fourier
coefficient f(n) of f to be

~

Fn) = an = (f(@), enla)) = / f()emeds,  (12.53)

Returning to the intuition oR™, we can think of the:,(z)’s as an infinite
set of perpendicular directions. The above is simply the projectiofi iof the
direction ofe,,(z).

Exercise 12.5.6.Show
(f(x) = f(n)en(), en(x)) = 0. (12.54)

This agrees with our intuition, namely, that if you remove the projection in a cer-
tain direction, what is left is perpendicular to that direction.

The N** partial Fourier series of f is

N

sv(@) =Y f(n)ean(x). (12.55)

n=—N
Exercise 12.5.7 Prove

1. (f(x) — sn(x),e,(z)) =0if |n| < N.
2. [f(n)| < [y 1f(x)lda.
3. If (f,f) < oo, theny 02 [f(n)]* < (f. f).

4.1 (f, f) < oo, thenlimy, ., f(n) =0,

As (f(x) —sn(x),e,(x)) = 0if |n| < N, we might think that we just have to
let V go to infinity to obtain a series,, such that

(f(x) = seo(), €n(x)) = 0. (12.56)
Assume that for a periodic functigsix) to be orthogonal te,, (=) for everyn
it must be zero for every. Thenf(z) — s (z) = 0, and hencegf = s... Voila —
an expression fof as a sum of exponentials! Be careful, however. We have just
glossed over the two central issues — completeness and, even worse, convergence.
We will now see a way of avoiding some of our problems.
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Weighted partial sums

Define
Z . _sin((2N + 1)7x)
n(7) = sin Tx ’
(12.57)
sin? (N7z)
F = — "t = D, (
N(I) N sin® mx Z

Here F' stands for FéjerD for Dirichlet. In general, functions which we are
interested in taking their inner product agairfsare calledkernels; thus, the
Dirichlet kernel, the Féjer kernel, etc.

Note that, no matter wha¥ is, Fy(z) is positive for allzx.

We say that a sequenge(z), f2(x), f3(x), ... of functions is arapproxima-
tion to the identity if

1. fx(z) > 0for all x and everyN;
2. fO fN d.ﬁC = 1
3. limy oo f; ° fr(z)de = 0if 0 <0 < 1.

Theorem 12.5.8.The Féjer kerneld” (z), F»(x), F3(z), ... are an approxima-
tion to the identity.

Proof: The first property is immediate. The second follows from the observa-
tion thatFy (x) can be written as
N -1
Fy(@) = eo(a) + =~ (e1(@) +ex(@) )+, (1258)
and all integrals are zero but the first, which is

To prove the third property, note th&k (z) < t—>—ford <z <1-4.0

Let f be a continuous, periodic function @with period one. Thus, we can
considerf as a function on jugb, 1], with f(0) = f(1). Define

- / F(w)Fy(z — y)dy. (12.59)

Recall the following definition and theorem:
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Definition 12.5.9 (Uniform Continuity). A continuous function is uniformly con-
tinuous if given are > 0, there exists & > 0 such thatjz — y| < J implies
|f(z) — f(y)| < e. Note that the sam&works for all points.

Theorem 12.5.10.Any continuous function on a closed, compact interval is uni-
formly continuous.

Exercise 12.5.11Showz" is uniformly continuous ofu, b] for —co < a < b <
Q.

Theorem 12.5.12.Givene > 0, there is an/NV such that
|f(x) = Tn(z)] <€ (12.60)

for everyz € [0, 1].

Proof. For any positiveV,
To(@) = @) = [ fe=p)Fuy = 1)1
= /0 flz —y)Fn(y)dy — /0 f(z)Fa(y)dy (property 2 ofFy)
)

:/0 (f(x_y)—f(a:)>FN(y>dy

1

+ / (f(w —y) - f(zv))sz(y)dy-
1-6

(12.61)

Leto € (0,1/2). Then, using the fact that théy (z)’s are an approximation

to the identity, we find

/616 (f(:c —y) - f($>)FN(y)dy‘ < 2max | f(x)] - /616 Fy(y)dy. (12.62)

Since
1-§
lim Fn(y)dy =0, (12.63)

N—oo FY

133



we obtain

1-6
lim (f(z —y) = f(x)) Fn(y)dy = 0. (12.64)

N—oo 5

Thus, by choosingV large enough (where large dependsidrwe can insure
that this piece is at most

It remains to estimate what happens near zero. Sinseontinuous ang, 1]
is compact,f is uniformly continuous. Thus, we can choagssmall enough that
|f(x —y) — f(x)] < § for anyx and any positivey < §. Then

[ oo s i i

(12.65)
Similarly
1
[ (o= - 5@) Pty < 5. (12.66)
1-6
Therefore
Tn(z) — f(z)| <€ (12.67)
for all N sufficiently large. O

Definition 12.5.13 (Trigonometric Polynomials).Any finite linear combination
of the functiong,, () is called a trigonometric polynomial.

From Theorem 12.5.12 we immediately get the Stone-Weierstrass theorem:
Theorem 12.5.14 (Stone-Weierstrass)Any continuous period function can be

uniformly approximated by trigonometric polynomials.

12.5.3 Equidistribution

We say that a sequenée,, }, x,, € [0, 1] is equidistributedf

i : < =0b— .
&@m2N+1#{n In| < N,z, € (a,0)} =b—a (12.68)

for all (a,b) C [0, 1].

134



Theorem 12.5.15 (Weyl).Let o be an irrational number in0, 1]. Letz, =

{na}, where{y} denotes the fractional part af. Then the sequender,} is
equidistributed.

Proof. We will estimates1~ =" v(ap)(7,) 8N — oo, wherex .y is the
function taking the valu® outside(a, b) and1 inside (a,b). We call x5 the
characteristic function of the interval(a, b).

Thus, we must show

N

Jim — HZN Xan) () = b —a. (12.69)

Considere,(z) = €™, Sincer, = {na} = na — [na] ande(r) =
ex(z + m) for every integern,

ep(zy,) = e*mikne, (12.70)

2 Z 27rzka n (1271)

{ ifk=0
(-Na)—er(N+1)a)
2N+1 i if £>0.

1—eg(a)
Now for a fixed irrationaky, |1 — e, (a)| > 0. Therefore ifk # 0:
lim 1 ex(—Na)—er((N+1)a)

N—oco 2N + 1 1 —ex(a)

Let P(z) = >, arex(x) be a finite sum (ieP(x) is a trigonometric polyno-
mial). By possibly adding some zero coefficients, we can wkite) as a sum
over a symmetric range?(z) = Y1 agax(z).

Exercise 12.5.16Showfo1 P(x)dz = ay.

= 0. (12.72)
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By the above arguments, we have shown that for any (finite) trigonometric
polynomial P(x):

N 1
. 1
Jim ZNP(xn) S gy = /0 P(x)dz. (12.73)

n=—

Consider two approximations to the characteristic funcfion,:

1. flm: flm(x) =1ifa +
is zero elsewhere.

< x <b-— =, drops linearly ta) ata andb, and

1 L
m m

2. fom! fim(z) = 1if a <z < b, drops linearly td) ata — - andb + +, and
is zero elsewhere.

Note there are trivial modificationsdif = 0 or b = 1. Clearly

flm(x) < X(a7b)(‘r) < me(x) (12-74)
Therefore
1 N 1 N 1 N
< < .
IN +1 nZ_:N flm(nrn) = 9N +1 nz_:N X(a,b)(ﬂfn) = ON+1 nz_:N fgm({En)
(12.75)

By Theorem 12.5.12, for each, givene > 0 we can find trigonometric
polynomialsP,,(x) and Py, (z) such that Py,,, () — fim(x)| < € and| Py, (x) —

Jom(x)| < €.
As f,, and f,,, are continuous functions, we can replace

N N
at a cost of at most
AS N — o0,
1 i Pin(2,) — /1 P (2)d. (12.77)
2N +1 = 0

But fol Pip(z)de = (b—a)— £ andfol Py (z)dz = (b—a) + =. Therefore,
givenm ande, we can choosé&/ large enough so that

136



1 1 N

(b=a)= 0 =S o537 2

IA

Letting m tend toco ande tend to0, we sees— SN N X (@) — b —
a. [l

Exercise 12.5.17Rigorously do the necessary book-keeping to prove the previous
theorem.

Exercise 12.5.18 Prove
1. If « € Q, then{na} is periodic.

2. If o ¢ Q, then no two{na} are equal.
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Chapter 13

Liouville’s Theorem Constructing
Transcendentals

1. We prove Liouville’'s Theorem for the order of approximation by rationals
of real algebraic numbers.

2. We construct several transcendental numbers.

3. We define Poissonian Behaviour, and study the spacings between the or-
dered fractional parts dfn*a}.

Lecture by Steven J. Miller; notes for the first two by Steven J. Miller and
Florin Spinu; notes for the third by Steven J. Miller.

13.1 Review of Approximating by Rationals

Definition 13.1.1 (Approximated by rationals to order n). A real numberz
is approximated by rationals to order if there exist a constant(x) (possibly
depending orr) such that there are infinitely many ration;%llvvith

p| k()

x — —‘ < . (13.1)
q q"
Recall that Dirichlet’s Box Principle gaves us:
1
v — ?’ <5 (13.2)
q q




for infintely many fraction§;. This was proved by choosing a large parameter
@, and considering th@ + 1 fractionary partdqz} € [0,1) for ¢ € {0,...,Q}.
The box principle ensures us that there must be two diffefensay:

0<q1 <2<Q (13.3)

such that botH{¢, 2} and{¢>z} belong to the same intervg, %1), for some
0 < a < @ — 1. Note that there are exactly such intervals partitioningp, 1),
and(@ + 1 fractionary parts! Now, the length of such an intervaéiso we get

(g} — ()] < 5 (13.4)

There exist integerg, andp, such that

{az} = qz —p, {2} = @r —p. (13.5)
Lettingp = p, — p; we find

1
(2 — @)z —p| < 0 (13.6)
Letqg =g, — ¢1, S01 < ¢ < @, and the previous equation can be rewriten as
P 1 1
r—=<—=< = (13.7)
ql 9@ T ¢

Now, letting @ — oo, we get an infinite collection of rational fractloﬁs
satisfying the above equation. If this collection contains only finitely many dis-
tinct fractions, then one of these fractions, %gaywould occur for infintely many
choices(),, of ), thus giving us:

‘a: L) P S (13.8)
Q| qQk
ask — oo. This implies thatr = ”—g € Q. So, unles is a rational number,
we can find infinitely manylistinct rational number% satisfying Equation 13.7.
This means that any real, irrational number can be approximated toorde?
by rational numbers.
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13.2 Liouville’s Theorem

Theorem 13.2.1 (Liouville’s Theorem).Let x be a real algebraic number of
degreen. Thenz is approximated by rationals to order at most

Proof. Let

f(X) = ap, X"+ a1 X + ag (13.9)

be the polynomial with integer coefficients of smallest degree (minimal poly-
nomial) such that satisfies

f(z) = 0. (13.10)

Note thatdeg z = deg f and the condition of minimality implies that(X)
is irreducible overZ. Further, a well known result from algebra states that a
polynomial irreducible oveZ. is also irreducible ove®.

In particular, asf(X) is irreducible overQ, f(X) does not have any rational
roots. If it did, thenf (X') would be divisible by a linear polynomiak — ). Let
G(X) = f((—f%) Clear denominators (multiply throughout by and letg(X) =

bG(X). Thendeg g = deg f — 1, andg(z) = 0. This contradicts the minimality
of f (we choosef to be a polynomial of smallest degree such tfiat) = 0).
Therefore,f is non-zero at every rational.

Let

M = sup |f'(2)] (13.11)

|[z—zx|<1

Let now? be a rational such th%& — £| < 1. The Mean Value Theorem gives

us that
r(2)-r@| = |r@ (o-2) < ar

wherec is some real number betweerand?; |c — x| < 1 for £ moderately
close toz.
Now we use the fact that(X') does not have any rational roots:

z— g (13.12)

n n n—1 n
o¢f(§):an(§) bqag= Pt a;f It N7 (1313)



The numerator of the last term is a nonzero integer, hence it has absolute value
at leastl. Since we also know thgt(z) = 0 it follows that

7(2) | = (7)) = et s £ asaa
q q q" q"

Combining the equations 13.12 and 13.14, we get:

<o 72' |

Mg = x . (13.15)
whenevetz — 2| < 1. This last equation shows us thatan be approximated

by rationals to order at most For assume it was otherwise, namely thagn be

approximated to order + ¢. Then we would have an infinite sequence of distinct

rational numberg£:};-, and a constark(xz) depending only ow such that

; k
=-n

Since the number? converge ta: we can assume that they already are in the
interval (x — 1,z 4+ 1). Hence they also satisfy Equation 13.15:

(13.16)

1 .
— <Mz 2 (13.17)
q; qi
Combining the last two equations we get
1 D k(x)
<|r_& 13.18
v <[o- 2| < 5 (13.18)
hence
@ < M (13.19)
and this is clearly impossible for arbitrarily largesincee > 0 andq; — oc.
O

Exercise 13.2.2.Justify the fact that iff2* },>, is a rational approximation to
ordern > 1 of z, theng; — oc.
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Remark 13.2.3. So far we have seen that the order to which an algebraic num-
ber can be approximated by rationals is bounded by its degree. Hence if a real,
irrational numbera ¢ Q can be approximated by rationals to an arbitrary large
order, thenn must be transcendental! This provides us with a recipe for construct-
ing transcendental numbers.

13.3 Constructing Transcendental Numbers

13.3.1 Y, 107™

The following construction of transcendental numbers is due to Liouville.

Theorem 13.3.1.The number

> 1
— 13.20
is transcendental.

Proof. The series defining is convergent, since it is dominated by the geometric
series) | m%n In fact, the series converges very rapidly and it is this high rate of
convergence that will yield is transcendental.

Fix N large, and lek, > N. Write

n

Dn 1
— = — 13.21

m=1

with p,,, ¢, > 0 and(p,,q,) = 1. Then{p"}n>1 is a monotone increasing
sequence converging ta In particular, all these rational numbers are distinct.
Not also thaty,, must divide10™, which implies

g < 10™. (13.22)
Using this, we get
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Pa 11 1 1
0<z-— q_n - Z 10m' - 10(n+1)! (1 + 10n+2 + 10(n+2)(n+3) +---

m>n
2 _ 2
< 10+ (10n!)n+1
2 2
< o5 < e (13.23)

This gives an approximation by rationals of ord€rof x. SinceN can be
chosen arbitrarily large, this implies thatcan be approximated by rationals to
arbitrary order. We can conclude, in view of our precious remark 13.2.3:tisat
transcendental. O

13.3.2 [10%,10%,.. ]
Theorem 13.3.2.The number

y = [10%,10%,...] (13.24)
is transcendental.

Proof. Let 2= be the continued fraction ¢f0" - - - 10™']. Then

1 1

ang-l—l B Qn(a;z—HQn + anl)

1 1
< _— = Jgmr (13.25)

‘ Pn
y _— —
n

Sinceqr = angr—1 + qn-2, itimplies thatg, > g1 AlSO, gr1 = ax11Gn +
qs—1, SO We get

Bl g+ 7 < g 1 (13.26)
dk dk
Hence writing this inequality fok = 1,--- ,n — 1 we obtain
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= Q1 —— - < a; +1 a+1an+1
! GG G (a1 +1)(az+1)--( )
(1+ ! ) (1+ ! )
p— — DY - a R an
aq an 1
< 2”a1 R 2”101!+---+n!
Combining equations 13.25 and 13.27 we get:
1 1
_bn _
‘ dn Apyq  artl
1\2 1) 2
< = < =
1

- (13.28)

In this way we get, just as in the previous theorem, an approximatigrogf
rationals to arbitrary order. This proves that transcendental.
O

13.3.3 Buffon’s Needle andr

Consider a collection of infinitely long parallel lines in the plane, where the
spacing between any two adjacent linesiis Let the lines be located at =
0,+d,+2d,.... Consider a rod of length where for convenience we assume
[ < d.

If we were torandomlythrow the rod on the plane, what is the probability it
hits a line? This question was first asked by Buffori 7i33.

Because of the vertical symmetry, we may assume the center of the rod lies on
the linez = 0, as shifting the rod (without rotating it) up or down will not alter the
number of intersections. By the horizontal symmetry, we may assugng xr <
g. We posit that all values aof are equally likely. Ase is continuous distributed,
we may add inc = %’ without changing the probability. The probability density
function ofz is 4.

Let  be the angle the rod makes with theaxis. As each angle is equally
likely, the probability density function of is %.
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We assume that andé are chosen independently. Thus, the probability den-
sity for (x, ) is 4242,

The projection of the rod (making an angle ®fwith the z-axis) along the
x-axis isl - | cos@|. If |z| < 1-]|cos@|, then the rod hits exactly one vertical line
exactly once; ifr > [ - |cos @], the rod does not hit a vertical line. Note that if
[ > d, arod could hit multiple lines, making the arguments more involved.

Thus, the probability a rod hits a line is

27 l-| cos 0| dxdb
=)
0=0 J z=—1-| cos 0| d-2m

B /2wl-|COSQ|ﬁ
9=0 d 2

21
= —. 13.29
— (13.29)

Exercise 13.3.3.Show

1 [ 2
— |cosO|do = —. (13.30)
2m Jo T
Let A be the random variable which is the number of intersections of a rod of
lengthl thrown against parallel vertical lines separated/by [ units. Then
1 with ility 2
_ w!t probab! !ty = . (13.31)
0 with probability1 — =;

™

If we were to throw/NV rods independently, since the expected value of a sum
is the sum of the expected values (Lemma 6.3.8), we expect to observe

N - 2—1 (13.32)
wd

intersections.
Turning this around, let us throw rods, and lef be the number of observed
intersections of the rods with the vertical lines. Then
21 N 2i
p—_— No— . 13.33
d T T (13.33)
The above is aexperimentaformula for !

I =~
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Chapter 14

Poissonian Behavior and{n*a}

We now define Poissonian Bevahior, and investigate the normalized spacings of
the fractional parts ofi?«. Lecture and notes by Steven J. Miller.

14.1 Equidistribution

We say a sequence of numher € [0, 1) is equidistributed if

lim #{n:1<n <N andz, € [a,b]}
N—o0 N
for any subintervala, b] of [0, 1].
Recall Weyl's Result: lfo ¢ Q, then the fractional partna} are equidis-
tributed. Equivalentlypa mod1 is equidistributed.
Similarly, one can show that for any integer{n*a} is equidistributed. See
Robert Lipshitz's paper for more details.

=b—a (14.1)

14.2 Point Masses and Induced Probability Measures

Recall from physics the concept of a unit point mass located-at.. Such a point
mass has no length (or, in higher dimensions, width or height), but finite mass. As
mass is the integral of the density over space, a finite mass in zero volume (or zero
length on the line) implies an infinite density.

We can make this more precise by the notion of an Approximation to the
Identity.
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Definition 14.2.1 (Approximation to the Identity). A sequence of functions(x)
is an approximation to the identity (at the origin) if

1. g.(z) > 0.

2. [ gn(z)dx =1.

3. Givene, o > 0there existsV > 0 such that for alln > N, f|z|>5gn(x)dx <
€.

We represent the limit of any such familygafz)s byd(z).

If f(z) is a nice function (say near the origin its Taylor Series converges) then

[ t@b@de = lim [ f@)ga(o) = f0) (14.2)
Exercise 14.2.2 Prove Equation 14.2.

Thus, in the limit the functiong,, are acting like point masses. We can con-
sider the probability densitieg,(z)dx andd(x)dx. For g,(z)dz, asn — oo,
almost all the probability is concentrated in a narrower and narrower band about
the origin; d(z)dz is the limit with all the mass at one point. It is a discrete (as
opposed to continuous) probability measure.

Note thatd(z — a) acts like a point mass; however, instead of having its mass
concentrated at the origin, it is now concentrated. at

Exercise 14.2.3 Let

n if jz| < 2l
n = an 14.3
gn(7) {O otherwise ( )

Proveg, () is an approximation to the identity at the origin.

Exercise 14.2.4Let

1

gula) = e (14.4)

1 .
ﬁ‘i‘l’Q

Find ¢ such that the above is an approximation to the identity at the origin.

Given N point masses located at, -, ..., zy, We can form a probability
measure
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N
pun(z)de = % 221 O(x — zp)dx. (14.5)

Note [ pn(z)dz = 1, and if f(x) is a nice function,

[ t@nsta :—fon (14.6)

Exercise 14.2.5Prove Equation 14.6 for nicé(z).

Note the right hand side of Equation 14.6 looks like a Riemann sum. Or it
wouldlook like a Riemann sum if the,,s were equidistributed. In general thgs
will not be equidistributed, but assume for any inter{vab] that asNV — oo, the
fraction of x,s (I < n < N)in [a,b] goes tof p(z)dx for some nice function

p(x):

1<n< b
A}im GAURE _n_%andxn € la,b]} — / p(z)dz. (14.7)

In this case, iff (x) is nice (say twice differentiable, with first derivative uni-
formly bounded), then

[t = 536

- #{n:1<n<Nandz, € | £, 1|}
~ k;oof(% e 5
- / f(@)p(x)de. (14.8)

Definition 14.2.6 (Convergence tg(x)). If the sequence of points, satis-
fies Equation 14.7 for some nice functipfx), we say the probability measures
pn (x)dz converge tg(x)dx.
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14.3 Neighbor Spacings

We now consider finer questions. Let be a collection of points if0, 1). We
order them by size:

0 < o) < Qp2) < - < (s (14.9)

whereo is a permutation of23 - - - N. Note the ordering depends crucially on
N. Let ﬁj = Qg (j)-

We consider how the differences,, — 3, are distributed. We will use a
slightly different definition of distance, however.

Recall[0, 1) is equivalent to the unit circle under the map- ¢*™*. Thus, the
numbers 999 and.001 are actually very close; however, if we used the standard
definition of distance, theh999 — .001| = .998, which is quite large. Wrapping
[0,1) on itself (identifying0 and 1), we see that999 and.001 are separated by
.002.

Definition 14.3.1 (mod1 distance). Letx,y € [0,1). We define the mod dis-
tance fromx to y, ||z — y||, by

|z —yl| = min{!x—y!, 1—\x—y\}. (14.10)

Exercise 14.3.2.Show that the motl distance between any two number$aini)
is at most;.

In looking at spacings between tf¥es, we haveV — 1 pairs of neighbors:

(B2,61), (Bs,B2), s (Bw, Bn-1)- (14.11)

These pairs give rise to spacings.; — 5; € [0, 1).

We can also consider the p&it;, 5y). This gives rise to the spacing— Gy €
[—1,0); however, as we are studying this sequence matthis is equivalent to
fr—PBn+1€]0,1).

Henceforth, whenever we perform any arithmetic operation, we always
mean mod1; thus, our answers always live in0, 1)

Definition 14.3.3 (Neighbor Spacings).Given a sequence of numbetsg in
[0,1), fix an N and arrange the numbers, (n < N) in increasing order. La-
bel the new sequengg; note the ordering will depend oY. Let3_; = Oy
andfy; = f;.
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1. The nearest neighbor spacings are the numbers — 3,, j = 1to N.

2. Thek™-neighbor spacings are the numbets , — 3;,j = 1 to N.

Remember to take the differenggs;, — 5, mod1.

Exercise 14.3.4Leta = /2, and leta,, = {na} or {n?a}. Calculate the nearest
neighbor and the next-nearest neighbor spacings in each case ferl0.

Definition 14.3.5 (wrapped unit interval). We call [0, 1), when all arithmetic
operations are done mof the wrapped unit interval.

14.4 Poissonian Behavior

Let o ¢ Q. Fix a positive integek, and leto,, = {n*a}. As N — oo, look
at the orderedy,,s, denoted byj,,. How are the nearest neighbor spacingg of
distributed? How does this depend &b Ona? OnN?

Before discussing this problem, we consider a simpler caseNFa&nd con-
sider N independent random variables. Each random variable is chosen from
the uniform distribution ono0, 1); thus, the probability that,, € [a,b) iSb — a.

Lety, be ther,s arranged in increasing order. How do the neighbor spacings
behave?

First, we need to decide what is the correct scale to use for our investigations.
As we haveN objects on the wrapped unit interval, we havVenearest neighbor
spacings. Thus, we expect the average spacing y@.be

Definition 14.4.1 (Unfolding). Let z, = Ny,. The numbers,, = Ny, have unit
mean spacing. Thus, while we expect the average spacing between agjgcent
to be+- units, we expect the average spacing between adjagsrib bel unit.

So, the probability of observing a spacing as Iargé astween adjacent,s
becomes negligible a& — oo. What we should ask is what is the probability
of observing a nearest neighbor spacing of adjaggsthat ishalf the average
spacing. In terms of the,s, this will correspond to a spacing between adjacent
z,S of 3 a unit.

150



14.4.1 Nearest Neighbor Spacings

By symmetry, on the wrapped unit interval the expected nearest neighbor spacing
is independent of. Explicitly, we expects;; — 3; to have the same distribution

asfiy1 — B

What is the probability that, when we order thgs in increasing order, the
nextz,, afterz; is located betwee% and %’? Let thex,,s in increasing order
be labeled); <y, < -+ < yn, Yn = Tom)-

As we are choosing the,s independently, there a(é(;l) choices of subscript
n such thatz,, is nearest ta:;. This can also be seen by symmetry, as eacls
equally likely to be the first to theght of x; (where, of course(01 is just a little
to the right 0f.999), and we havéV — 1 choices left forz,,.

The probability thatz,, € [%, %] is &L,

For the remainingV — 2 of thez,,s, each must be further théi‘i}% from z,,.
Thus, they musall lie in an interval (or possibly two intervals if we wrap ?Vr02und)
of lengthl — 5521, The probability that they alllie in this region (s — 3¢

Thus, ifz; = y, we want to calculate the probability thay, ., — u|| €

A - .
|4 52t Thisis

t t+ At N -1 At t+ At\N-2
Pr0b<||yl+1—yl‘|€[ﬁ7 N ]) = < 1 >'W'<1— N )

N N
(14.12)
For N enormous and\¢ small,
1
1—-) ~ 1
(1-%
Aty N-2
(1— HN t) e AN o ot (14.13)
Thus
t t+ At
Prob<||yl+1 —yl| € [N’ j;\[ }) — e 'At. (14.14)
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Remark 14.4.2. The above argument is infinitesimally wrong. Once we’ve lo-
catedy, ;, the remainingr,,s do not need to be more théﬂb]% units to the right

of x1 = y;; they only need to be further to the right thgn ;. As the incremental
gain in probabilities for the locations of the remainings is of orderAt, these
contributions will not influence the larg®’, small At limits. Thus, we ignore
these effects.

To rigorously derive the limiting behavior of the nearest neighbor spacings
using the above arguments, one would integrate oyeranging from+: to %,
and the remaining evenis, would be in the a segment of length- z,,. As

(m)- (-5 <X e

this will lead to corrections of higher order it, hence negligible.
We can rigorously avoid this by instead considering the following:

1. Calculate the probability that all the otheys are at Ieas% units to the
right of z;. This is

p = (1—%>N1 et (14.16)

2. Calculate the probability that all the othefs are at IeasfﬁTAt units to the
right of z;. This is

t 4 At\N-1
Dryar = (1— +N ) — e~ (FAY, (14.17)

3. The probability that na:,,s are within- units to the right ofz; but at least
onew, is betweeny and% units to the right i, A, — py:

Pe—Paar — €' — e~ (A0

= e’t<1 — e’At)
— et (1 — 1+ A+ 0((At)2)

— e lAt. (14.18)
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Definition 14.4.3 (Unfolding Spacings)If y,.1 —y; € [ . ”At] thenN (y,,1 —

y1) € [t,t + At]. The new spacings,; — z; have unit mean spacing. Thus, while
we expect the average spacing between adjagesto be% units, we expect the
average spacing between adjaceps to bel unit.

14.4.2 k™ Neighbor Spacings

Similarly, one can easily analyze the distribution of tt& neighbor spacings
when eacl,, is chosen independently from the uniform distribution[@n ).
Again, consider:;; = y;. Now we want to calculate the probability that ;. is
between% and”—NAt units to theright of y;.
Therefore, we need exactly— 1 of thez,s to lie betwee) and+ units to the
right of z;, exactly oner,, (which will bey, ;) to lie between and”—]\,m units to
the right ofx, and the remaining,,s to lie at Ieasf*TAt units to the right ofy; ;.

Remark 14.4.4.We face the same problem discussed in Remark 14.4.2; a similar
argument will show that ignoring these affects will not alter the limiting behavior.
Therefore, we will make these simplifications.

There are( ) ways to choose the,s that are at most units to the right of

z1: thereis ther( (k= 1)) ways to choose the, betweenﬁ andt+NAt units to
the right ofx;.
Thus,

N N

()G

(N=1)--(N=1—(k—=2)(N-1)—(k—1) ¢+ t + At N—(k+1)
NET N (k:—l)!(l ) A

t t+ At
Prob<||yl+k—yl|| c |: i|> =

eTIAL (14.19)

Again, one way to avoid the complications is to integrate awmgrranging
from L to LL2¢,
Or, similar to before, we can proceed more rigorously as follows:
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1. Calculate the probability that exacty— 1 of the otherz, s are at most;
units to the right ofr;, and the remainingV — 1) — (k — 1) of thez, s are
at least: units to the right of,. As there ar ],::’_‘11) ways to choosé — 1
of thex, s to be at mos; units to the right ofz;, this probability is

N ) [CO (O A

Nk‘—l tk—l i
k- DINFC
tk—l »
BT (14.20)

2. Calculate the probability that exactly— 1 of the otherz, s are at most;
units to the right ofr;, and the remainingV — 1) — (k — 1) of thez, s are
at Ieast% units to the right ofr;. Similar to the above, this gives

B N -1 ( t )kl(l t+ At)(Nl)(kl)
e = \r-1)\W N
_ NE-L gkt N
e
Ay
— . 14.21
k- nl© (14.21)

3. The probability that exactly — 1 of thex,,s are within; units to the right of
z; and at least one,, is betweent: and 2 units to the right i9;.a: — pi:

tk_l tk—l k—1

—t

— — — — -t
Pt — Di+At (k:—l)!e (k_1>!6 (k‘—l)!e At.

(14.22)

Note that wherk = 1, we recover the nearest neighbor spacings.
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14.5 Induced Probability Measures

We have proven the following:

Theorem 14.5.1.ConsiderN independent random variableg chosen from the
uniform distribution on the wrapped unit interv@@, 1). For fixed N, arrange the
x,S In increase order, labelegh <y, < --- < yn.

Form the induced probability measurey; from the nearest neighbor spac-
ings. Then asV — oo we have

N
1 —t
pxa()dt = — n§:1j5<t ~ N(yn — yn,l))dt ettt (14.23)
Equivalently, using,, = Ny,:

N
1 -1
v (t)dt = N;é(t— (zn—zn_1)>dt — e tdt. (14.24)

More generally, form the probability measure from e nearest neighbor
spacings. Then a& — oo we have

N
1 tk_l .
punk(t)dt = N ngl 5<t — N(y, — yn_k)>dt — = 1>!6 dt. (14.25)

Equivalently, using,, = Ny,:

N
1 tk’fl »
pna(t)dt = N;:lja(t— (zn—zn,k)>dt - Gy e (1429)

Definition 14.5.2 (Poissonian Behavior)We say a sequence of points has
Poissonian Behavior if in the limit a& — oo the induced probability measures
1iv i (t)dt converge to%e—tdt.

Exercise 14.5.3Leta € Q, and definex,, = {n™a} for some positive integer
m. Show the sequence of poiats does not have Poissonian Behavior.
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Exercise 14.5.4.Leta ¢ Q, and definen,, = {na}. Show the sequence of
pointsc,, does not have Poissonian Behavior. Hint: for ea¢hshow the nearest
neighbor spacings take on at most three distinct values (the three values depend
on N). As only three values are ever assumed for a fiXedu,  (t)dt cannot
converge ta'dt.

14.6 Non-Poissonian Behavior

Conjecture 14.6.1.With probability one (with respect to Lebesgue Measure), if
a & Q,if a,, = {n’a} then the sequence of points is Poissonian.

There are constructions which show certain irrationals give rise to non-Poissonian
behavior.
Theorem 14.6.2.Leta € Q such that)a — Z’—: <& holds infinitely often, with
a, — 0. Then there exist integer§; — oo such thatuy, (f) does not converge
to e~tdt.

As a,, — 0, eventuallya,, < 1—10 for all n large. LetN,, = q,, Wherefl’—: is a
good rational approximation te:

o= B2 < o
dn qn
Remember that all subtractions are performed on the wrapped unit interval.

Thus,||.999 — .001|| = .002.

We look atay, = {k*a}, 1 < k < N,, = ¢,. Let theg;s be then;s arranged
in increasing order, and let thgs be the number«@kg’;—:} arranged in increasing

order:

(14.27)

BN
N (14.28)

Ba
V2

b1
Y1

IA A
IA A
VARVAN

14.6.1 Preliminaries

Lemma 14.6.3.If 3, = a;, = {k*a}, theny, = {k*£2}. Thus, the same permuta-
tion orders both they,s and they,s.
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Proof. Multiplying both sides of Equation 14.27 By < ¢? yields

1
‘/ﬁa—k?’ﬁ <l <t = (14.29)
In I In 2gn
Thus,k*« andk;QZ—: differ by at mostﬁ. Therefore
25\ _ fj2Pn 1
H{k a} {k qn}H <o (14.30)

As the numbers{mzﬁ} all have denominators of size at mq}%‘;t we see that
{k?L=} is the closest of th¢m?22} to {k*a}.
This implies that if3; = {k*a}, theny;, = {kQ{;—:}, completing the proof.
O

Exercise 14.6.4.Prove the ordering is as claimed. Hint: about eagh= {k?a},
the closest number of the forfn?2e } is {222 }.

14.6.2 Proof of Theorem 14.6.2

Exercise 14.6.5Assumeé|a — b||, [|c — d|| < 5. Show
(e —b) = (c=d)|| < [la—>bl[+]lc—dl. (14.31)

Proof of Theorem 14.6.2: We have shown

an
18 — 2l < w (14.32)

n

Thus, asV,, = q¢,:

HNn(ﬁl—w)H < a, (14.33)

and the same result holds witheplaced by — 1.
By Exercise 14.6.5,

N (B =) — No(Bim1 — vim1) || < 2ay. (14.34)

Rearranging gives

No(Br = Bie1) = No(y = 7i-1) || < 2an. (14.35)
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Asa, — 0, thisimplies the difference betweHniVn(ﬁl—ﬁlfl)

)andHNn(fyl—

fyll)u goes to zero.
The above distance calculations were done mobhe actual differences will
differ by an integer. Thus,

N,
1 n
i, a(t)dt = > s (t — No (6 — ﬂz_l)> (14.36)
=1
and
Pn 1 Nn
i adt = <=3 5(t = Nal = 31-1)) (14.37)
"o=1

are extremely close to one another; each point mass from the difference be-
tween adjaceng;s is either withina,, units of a point mass from the difference
between adjacenys, or is withina,, units of a point mass an integer number of
units from a point mass from the difference between adjagsenturthergq,, — 0.

Note, however, that if; = {£*2=}, then

Ny = qn{kﬂ%} e N. (14.38)

n

Thus, the induced probability measur%l(t)dt formed from they;s is sup-

Pn
ported on the integers! Thus, it is impossible fdf. , (¢)dt to converge tetdt.
As g, (t)dt, modulo some possible integer shifts, is arbitrarily close to

Pn

Mﬁ;,l(t)dt, the sequencék?a} is not Poissonian along the subsequence\Vaf
given by N,,, whereN,, = ¢,, ¢, is a denominator in a good rational approxima-
tiontow. O

14.6.3 Measure oy ¢ Q with Non-Poissonian Behavior along
a sequencev,

What is the (Lebesgue) measureco? Q such that there are infinitely mamy
with
(p

< = a, —0. (14.39)

’ Dn
o — —
n

4n
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If the above holds, then for any constéity), for n large (large depends on
botha andk(«)) we have

k()
g2te’

’ Dn
o — —
an

(14.40)

Exercise 14.6.6.Show this set has (Lebesgue) measure orsize

Thus, almost no irrational numbers satisfy the conditions of Theorem 14.6.2,
wherealmost nas relative to the (Lebesgue) measure.

Exercise 14.6.7.In a topological sense, how many algebraic numbers satisfy the
conditions of Theorem 14.6.2? How many transcendental numbers satisfy the
conditions?

Exercise 14.6.8.Let o satisfy the conditions of Theorem 14.6.2. Consider the
sequenceV,, whereN,, = ¢,, ¢, the denominator of a good approximation to

Pn
a. We know the induced probability measuygg | (¢)dt and ug; ,(t)dt do not
converge ta:‘dt. Do these measures converge to anything?

Remark 14.6.9.1n The Distribution of Spacings Between the Fractional Parts of
{n%a} (Z. Rudnick, P. Sarnak, A. Zaharescu), it is shown that for masttisfying

the conditions of Theorem 14.6.2, thése sequenceV; along whichug, | (t)dt
doesconverge taetdt.

159



Chapter 15

More Graphs, Kloosterman,
Randomness ofr — z mod p

More on Graphs, Kloosterman, and the Third Problem on the Randomness of
T mod p. Review of projective geometry and fractional linear transformations.
Lecture by Peter Sarnak; notes by Steven J. Miller.

15.1 Kloosterman Sums

Recall

S(a,b,p) = i e(ax;—lﬁ)’ (15.1)

x mod p

where> " means sum over afl relatively prime top, andz = ! modp.

Theorem 15.1.1 (Weil).For p an odd prime and,, b € Z,

1S(a,b,p)] < 25 (15.2)

The above captures the randomness. Wejaddl numbers of modulug,
and we see square-root cancellation. Weil's Theorem says the cancellation is
"like" random numbers. Recall when we added, we expected to observe a
sum around/N if we had N summands.
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15.2 Projective Geometry

Consider the map

C — Cu{co}
az+b
cz+d

ya —

(15.3)

We define the above as the action of the matrix

a b
< . d ) (15.4)
onz:z.

P}(R) is identified with the perimeter of a circle, with antipodal points (points
on a diagonal, separated byadians) identified.

15.3 Example
Definition 15.3.1 P! (FF,)). P'(F,) is the projective line,
PY(F,) = {0,1,...,00}. (15.5)
We construct &-regular graplt;, onp + 1 vertices as follows:

1. Joinx to = + 1 modp.
2. Joinz tox — 1 modp.

3. Joinx to —z modp,

whereL = 0.
Form the adjacency matrix of the above graph. Is there a spectral graph?

Theorem 15.3.2.There is a spectral gap!

M(Gp) < 2.99. (15.6)
These graphs araot Ramanujan in general.
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We can look at the three maps as matrices

(11 (0 1 (1 =1
re (3 )os (5 ) (1) wsa
Exercise 15.3.3.(5T)3 = +1.

Exercise 15.3.4.Show the three maps we used to cre@jecan be given by
1. x — Tz (corresponding tac — = + 1),
2. v — T~z (corresponding tax — = — 1),

3. r — Sz (corresponding tax — —7.

15.4 Stereographic Projections and Fractional Lin-
ear Transformations

What are the analytid,— 1 invertible maps fronC — C? What if we includex.

First, one might ask what iso?

Take a sphere, call the north pale Consider the infinite plane = 0.

To each pointP on the sphere, draw the line from to P, and write down the
point of intersection on the plane= 0. Call this mapS (stereographic projection;
preserves angles), and call the sphete- P*.

Thus,

S(P) € C, S(c0) < N, S* =2 CU {oo}. (15.8)

Recall GL, are the2 x 2 matrices with non-zero determinarffL,(C) is the
group of2 x 2 matrices with determinarit

Fractional Linear Transformation: — gjj:s

If we have two linear transformations
o a b o aq b1
’y—(cd>>5—(q dl) (15.9)

v(0z) = (70)z, (15.10)

where(v¢) is usual matrix multiplication.

then
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15.5 More Kesten

LetI" be a group generated by

Ay, ATY Ay ASY L Ay, AL (15.11)
1 2 k

We make &k-regular graph by joining: andy with an edge { ~ ) if and
only if z = A7y for somej.
Define, forf : I' — C,

Bf(z) = Y f(y). (15.12)
Ty
To make the sum make sense if we have infinitely many vertices we require
f € I*(T"), the space of functiongwhere>_ |g(v)]* < oo.
One could ask about the spectrum Bfon this space. The HW problem
was on ak-regular tree. Make words using the generators. Have the notion of
a free group: no relation (ie, no word is the identity word) except the trivial ones

T = (A, Ao, ..., Ay). (15.13)

Definition 15.5.1 (Free Group). T is a free group if the only relations iR giv-
ing the identity are the obvious ones (ie, the only wordlin. .., A, that is the
identity word is words of the form, ' 4;A;' A1 A; A, and so on).

The graph we just spoke aboGt(I') on A;, A7' up to Ay, A, ' is a2k-regular
tree if and only ifl" is a free group o, ..., A,. This is called a Cayley Graph
(relative to the given generators).

Theorem 15.5.2 (Kesten).The spectrum oB whenI is free onk generators is

spectruniB) = | — 2v/2k —1,2v2k — 1]. (15.14)

Further,T"is free onAy, ..., A, if and only if

spectruniB) ¢ | — 2v2k —1,2v2k — 1]. (15.15)

Thus, the spectrum contains a pomittsidethis interval if and only ifl" is not
free.

Finally, 2k is in the spectrum if and only iF is amenable (for example,
abelian).
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Corollary 15.5.3. Our graphsG), cannot be Ramanujan, as thesea relation
among the generators, namel§7)? = +1.

15.6 Sl(Z)

Definition 15.6.1 (Slx(Z)). SLy(Z) is the group o2 x 2 matrices with unit de-
terminant and integer coefficients.

Exercise 15.6.2.Consider the matrices

11 0 1 . 1 -1
r=(g1)os=(0) m=(3 7)) as

Show these three matrices generate(Zl; as (ST)® = +I, this shows
SLy(Z) is not a free group.

Where should Si7Z) act? Lubotsky: you don’t understand a group until it
acts on something you know. Galois had groups acting on roots of polynomials
(permuting roots).

What does Sk(7Z) act on? It does act on the sphere, but it is too big a space.
We want to study the smallest space where it acts reasonably.

Look at SL(R), the group of2 x 2 matrices with determinant and real
entries. Let: be in the upper half plane, s0= = + iy, y > 0. Then

Z

b b
Gzt |m(az+ ) >0 (15.17)

cz+d’ cz+d

A similar statement holds for in the lower half plane. Thus, SIR) maps
the upper (lower) half plane to itself.

By shifting by an integer, we can bring amyc R to 2’ € [0, 1).

Gauss was the first to draw the fundamental domain fe(B).acting on the
upper half plane:

Draw a circle of radiud with center0; draw vertical lines at = i%, going
from the point on the circle to infinity. The region formed is called the fundamen-
tal domain for Sk(Z) on the upper half plane. This means that ariy the upper
half plane can be brought into this region.
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15.7 Isz — 7 mod p Random?

15.7.1 First Test

Question 15.7.1.To what extent is / how random:is— = modp?

There are» numbers.
If look at all numbersl < z < p — 1, we get all the numbers back (in some
new order). We can look at a long segment (on what scale?), say

VD <z <2/p. (15.18)
Now z will be all over[1,p — 1]. This generateg/p numbers betweeh and
p — 1. The average spacing is is approximat%. How are numbers spaced?
First, we need to write them in increasing order

1<a; < ay < - <a <p-—1. (15.19)

Let us denote the nearest neighbor spacingdby= a; — ai, Ay = az — as
and so on. Let
A

Note thed;s have unit mean spacing.
Conjecture 15.7.2 (Naive Conjecture) We expect the spacings to follow Poisso-
nian Statistics. Explicitly, the distribution of spacings we see here should be the

same as that from choosingp numbers independently from the uniform distribu-
tionon[0,1).

15.7.2 Second Test

Question 15.7.3 (Jim Propp).Doesz — 7 behave like a random permutation of
order2?

What is the distribution of the longest increasing sub-sequence?
Given a permutation of, 2, ..., N, we have — (7). Permutations are often
denoted by

1 2 N
(0(1) oc(2) a(N)) (15.21)



Look at the distribution of the longest increasing sub-sequence about the mean.
Normalized appropriately, what does it look like?

15.7.3 Third Test: Hooley's R*

A+N

3 e<§>, (15.22)

rz=A p

wherel <A< A+ N<p-—1.
When we add numbers of modulus one, we expect square-root cancellation.
Then

Conjecture 15.7.4 (Hooley’'sk*). For everye > 0,

A+N 7
S e(—) <. Nipf, (15.23)
r=A p

Note<. means the left hand side is less thartimes the right hand side (for

somer, > 0).
Note there is no dependence dn— the only dependence is on the size of
summationV and the primep.

If N > ,/p, the above can be proven. by Weil's bound.

15.8 Note on Non-trivial Bound of Fourth Powers of
Kloosterman Sums

Note on conditions arising in non-trivial bound on sum of fourth powers of Kloost-
erman sums (Heath-Brown review). Supplemental notes by Alex Barnett.

Please refer to Professor Sarnak’s lecture of 10/16/02, and Heath-Brown’s re-
view article on Kloosterman Sums.

There are six summations inherent in the desired sum

—_
—_

p—1 p—

Kl (a, b, p)[*, (15.24)

o
I
=)
o
I
=)
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namely the two sums shown and one internal sum in each of the KI's. Using the

result )
p_ JR—
S e (@) - { p—1, n=0 (mog) (15.25)
—\p 0, otherwise

twice, turns the twe(-) functions into counting conditions on the variables inter-
nal to the four KlI's. Calling these variables x, y, z, we want the total number of
ways that, withl < w, z,y, z < p — 1 (the four surviving sums), we satisfy both

w+zr—y—z =0 (p) (15.26)
and
w+z—y—2z =0 (p). (15.27)
Multiplying Eq. 15.27 bywxyz gives
(w+z)yz — (y+ 2)wz = 0 (p). (15.28)
Substituting Eq. 15.26 gives
(w4 x)(yz —wz) = 0 (p). (15.29)

So eitherw +x =0 (p) oryz —wx =0 (p), or both.

The first set of cases has= —w from (15.26) givingz = —y, So there are
(p—1)? choices ofw andy. For each choice andz are fixed uniquely. Therefore
these cases contribute — 1)* ways.

For the second set, we have two equations

y+z = w+z (p) (15.30)
yz = wxr (p) (15.31)

for two unknowngy, z, for any of the arbitrary choices af, x. You could combine
these equations into the single quadratic

v’ —ylw+x)+wr =0 (p). (15.32)

Two solutions fory arey = w andy = x (check by substitution). Since it
is a quadratic, these are the only two solutions. Therefore the number of ways
contributed is at most 2 times tig — 1)? ways of choosingy, .

Over-counting due to the and/or is at least of order smaller, but also can
only reduce the number of ways. Therefore the total number of wiay(® — 1)?,
which isO(p?). From this follows the bound on the sum given in the article and
lecture.
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Chapter 16

Introduction to the
Hardy-Littlewood Circle Method

Introduction to the Hardy-Littlewood Circle Method. Lecture and notes by Steven
J. Miller.

16.1 Problems where the Circle Method is Useful
For each\V, let Ay be a set of non-negative integers such that

1. Ay C Anya,

2. |[Ay| — ccasN — oc.

Let A = limy oo AN.

Question 16.1.1.Let s be a fixed positive integer. What can one say albgut
-+ a,? le, what numbers are representable as a sumosummands from?

We consider three problems; we will mention later why we are considering
setsAy.

16.1.1 Waring’'s Problem

Let A be the set of™ powers of non-negative numbers, and let
Ay = {0F 1% ... N} (16.1)
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Question 16.1.2.Fix a positive integek. For what positive integers can every
integer be written as a sum efnumbers, each numberid' power?

Thus, in this case, we are trying to solve

n = a4+ +ady. (16.2)

16.1.2 Goldbach’s Problem

Let A be the set of all prime numbers, and Jet; be the set of all primes at most
N.

Question 16.1.3.Can every even number be written as the sum of two primes?

In this example, we are trying to solve

2n = ay + as, (163)

or, in more suggestive notation,
2n = p1 + po. (16.4)

16.1.3 Sum of Three Primes
Again, let A be the set of all primes, andly all primes up ta\V.

Question 16.1.4.Can every odd number be written as the sum of three primes?

Again, we are studying

2n+1 = p1+p2 +ps. (16.5)

16.2 Idea of the Circle Method

16.2.1 Introduction
Definition 16.2.1 ¢(z)). We define(z) = ¢*™,
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Exercise 16.2.2Letm,n € Z. Prove

/01 e(nz)e(—mz)dr = {1 0 =m (16.6)

0 otherwise

Let A, Ay be as in any of the three problems above. Consider

fn(x) = Z e(ar). (16.7)

(ZGAN

We investigate(fN(x))S:

(v@) = TI 3 elaa)

= Z ry(m)e(mz). (16.8)

m

The last result follows by collecting terms. When you multiply two exponen-
tials, you add the exponents.

Thus, when we multiply the products, how can we get a product which gives
e(mz)?

We haves products, say(a,z) throughe(ayz). Thus,

e(az) - -elayz) = e((a1 +-+ aN)x) = e(max). (16.9)
Thus, the coefficienty (m) in (fN(x))S is the number of ways of writing

m = a+---+ay, (16.10)

with eacha; € Ay.

As the elements ofi are non-negative, itV is sufficiently largery(m) is
equal to the number of ways of writing as the sum of elements ofA.

The problem is, ifn is larger than the largest term iy, then there may be
other ways to writen as a sum of elements of4.

Lemma 16.2.3. )
rn(m) :/ <fN(x)) e(—mz)dz. (16.11)
0
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Proof: direct calculation.

Note that, just because we have a closed form expression fat), this does
not mean we can actualgvaluatethe above integral. Recall, for example, the
inclusion - exclusion formula for the number of primes at mayst This is an
exact formula, but very hard to evaluate.

16.2.2 Useful Number Theory Results

We will use the following statements freely:

Theorem 16.2.4 (Prime Number Theorem).Let 7(z) denote the number of
primes at most. Then

xr
mx) = Y 1= gz T smaller (16.12)

p<z

Upon applying Partial Summation, we may rewrite the above as

Zlogp = x + smaller (16.13)

p<z

Theorem 16.2.5 (Siegel-Walfisz)Let C, B > 0, and leta and ¢ be relatively
prime. Then

3 logp = $+O< i ) (16.14)

log®

for ¢ < log? z, and the constant above does not depend:pmor «a (ie, it
only depends on' and B).

For completeness, we include a review of partial summation as an appendix to
these notes.

16.2.3 Average Sizes oéfN(:z:))s

Henceforth we will considefy () arising from the three prime case. Thass 3.
For analytic reasons, it is more convenient to instead analyze the function

Fn(z) = Zlogp-e(px). (16.15)

p<N
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Working analogously as before, we are led to

1 3
Rn(m) = / (FN(JJ)) e(—mx)dx. (16.16)
0
By partial summation, it is very easy to go fraRy (m) to ry(m).

Exercise 16.2.6.Prove the trivial bound fofFy(z)| is N. Take absolute values
and use the Prime Number Theorem.

We can, however, show that the average squafé,0f) is significantly smaller:
Lemma 16.2.7.The average value ¢fy(x)|* is N log N.

Proof: The following trivial observation will be extremely useful in our ar-
guments. Lety(z) be a complex-valued function, and lgtr) be its complex
conjugate. Thety(z)|* = g(z)g(z).

In our case, a$'y(x) = Fy(—z) we have

[ i@l = [ Fv@Fya
= /0 Z logp - e(px) Z log q - e(—qx)dx

p<N qg<N
1
= > Zlogplogq/ e((p— Q)x>dﬂc
p<N g<N 0
= ) log’p. (16.17)
p<N

Using) _ylogp= N + small and Partial Summation, we can show

Y log? = NlogN + smaller (16.18)
pP<N
Thus,
1
/ |Fx(z)]> = Nlog N + smaller (16.19)
0

Thus, taking square-roots, we see on avenfzégﬁ,(:;:)) |2 is N'log N, signifi-

cantly smaller than the maximum possible vali¥@). Thus, we see we are getting
almost square-root cancellation on averdge.
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16.2.4 Definition of the Major and Minor Arcs

We split the unit interval0, 1) into two disjoint parts, the Major and the Minor
arcs.

Roughly, the Major arcs will be a union of very small intervals centered at
rationals with small denominator (relative 0). Near these rationals, we will be
able to approximaté’y (z) very well, andFy (z) will be of size V.

The minor arcs will be the rest o, 1); we will show thatFy(z) is signifi-
cantly smaller thaV here.

Major Arcs

Let B > 0, and letQ = (log N)? < N.
Foreachy € {1,2,...,Q}anda € {1,2,...,q} with a andq relatively prime,
consider the set

Mo, = {xe 0,1) : ‘x—g‘ < %} (16.20)

We also add in one interval centered at eitheor 1, ie, the "interval” (or
wrapped-around interval)

Q Q
[o, N] U ll_ﬁ’ll‘ (16.21)

Exercise 16.2.8.Show, ifN is large, that the major arcs\, , are disjoint for
g < Qanda < ¢, a andq relatively prime.

We define the Major Arcs to be the union of each (G ,:

Q
M =] J Mg (16.22)
g=1 a=l

(a,q)=1

where(q, ¢) is the greatest common divisor efandg.

Exercise 16.2.9.Show| M| < %. AsQ = log”? N, this implies asV — oo, the
major arcs are zero percent of the unit interval.
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Minor Arcs

The Minor Arcs,m, are whatever isotin the Major Arcs. Thus,

m = [0,1) — M. (16.23)
Clearly, asN — oo, almost all of[0, 1) is in the Minor Arcs.

16.3 Contributions from the Major and Minor Arcs

16.3.1 Contribution from the Minor Arcs

We bound the contribution from the minor arcs-tg(m):

| [ Pi@e-majad| < / |Fy(a)[de

< (max|Fy(e |/yFN ) [2da

rem

< (max|Fy(x))) /OlFN(x)FN(—m)dx

rem

< (meax|FN(x)|>NlogN. (16.24)

As the minor arcs are most of the unit interval, replacfngwith [, doesn't
introduce much of an over-estimation.

In order for the Circle Method to succeed, we need a non-trivial, good bound
for

max |Fi(z)| (16.25)

rem

This is where most of the difficulty arises, showing that there is good cancel-
lation in Fiy(x) if we stay away from rationals with small denominator.
We will show that the contribution to the major arcs is

2

N
G(N)T + smaller (16.26)

wheredc;, c; > 0 such that, for allV, ¢; < 6(N) < cs.
Thus, we need the estimate that
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N
max | Fiy(z)

< - 16.27
€M | - loglJrEN ( )

Relative to the average size [dfy (z)|?, this is significantly smaller; however,
as we are showing that the maximum valug Bf; ()| is bounded, this is a sig-
nificantly more delicate question. We know such a bound cannot be true for all
x € [0, 1) (see below, and not th@ty (0) = V). The hope is that it is not near a
rational with small denominator, we will get moderate cancellation.

While this is very reasonable to expect, it is not easy to prove.

16.3.2 Contribution from the Major Arcs

Fix aq < @ and aru < ¢ with a andq relatively prime. We evaluatE(g).

q p<N
q

_ Z Z lng . 6271’7;%

r=1 p=r(q)
p<N

q

= Z Z logp-e%i%

r=1 p=r(q)
p<N

= ie%iaqr Z log p (16.28)
r=1

p=r(q)
p<N

Note the beauty of the above. The dependence omthe original sums is
very weak — there is g p factor, and there is(%) . In the exponential, we only

need to know modgq. Now, p runs from2 to N, andq is at mostiog” N. Thus,
in generap > q.

We use the Siegel-Walfisz Theorem. We first remark that we may assume
andgq are relatively prime. Why? Ip = r mod ¢, this mean® = aq + r for
somea € N. If » andg have a common factor, there can be at most one ppime
(namelyr) such thap = » modgq, and this can easily be shown to give a negligible
contribution.

For anyC' > 0
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N N

p=r(q)
p<N

Now, as¢(q) is at mosty which is at mostog” N, we see that the main term
is significantly greater than the error term (choGsmuch greater thar).

Note the Siegel-Walfisz Theorem would be uselegsaf N¢. Then the main
term would be likeV!~<, which would be smaller than the error term.

This is one reason why, in constructing the major arcs, we take the denomina-
tors to be small.

Thus, we find

q

F(g) = Z e ¢](\;) + smaller

r=1
(rg)=1

N ! 27 4
- 7 16.30
o(q) Z ‘ ( )

(ra)=1

We merely sketch what happens now.
First, one shows that for € M, , that Fy(z) is very close toF< ) This

q
is a standard analysis (Taylor Series Expansion — the constant term is a good
approximation if you are sufficiently close).

Thus, as the major arcs are distinct,
/ F¥(z)e(—mz)dr = Z Z / F3¥(z)e(—mz)dz. (16.31)
M = Ma,

.
times the length of the interval. Each of the major arcs has Ie?%’{hThus we
find that, up to a smaller correction term, the contribution from the Major Arcs is

We can approximate’y (z) byF( ) ; integrating a constant gives the constant
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3 o . LQS < i g Qﬂ—i% ’ —2mima
/MFN(:C)e( mz)de = — qzz; ; <¢<q) (Z);le ) e(—q )

(a 1 T

= N?.2@Q°

)
Q
q=

(a,q)=1 (ra)=1

)
1 Z i Qi & ’ (—27Tima
e™a | e ——
1 ¢(q>3 a=1 r=1 q

)

(16.32)

To complete the proof, we need to show that what is multiplyNvgis non-
negative, and not too small.
We will leave this for another day, as it is getting quite late here.

16.4 Why Goldbach is Hard

Using
Fy(z) = ) logp- ™™, (16.33)
p<N
we find we must study
1
/Fﬁ,(x)d:z:, (16.34)
0

wheres = 3 if we are looking afp; + p, + p3 = 2n + 1 ands = 2 if we are
looking atp; + p» = 2n. Why does the circle method work fer= 3 but fail for
s =27

16.4.1 s = 3 Sketch

Let us recallbriefly the s = 3 case. Near rationals with small denominator

(smallmeansg < log? N), we can evaluaté«“N(g). Using Taylor, ifz is very
close to7, we expectty(z) to be close tay (7).

The Major Arcs have sizé"gj\',ﬂ. As Fy(z) is aroundN near such ratio-

nals, we expect the integral @f;(x)e(—mz) to be N? times a power ofog N.
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Doing a careful analysis of the singular series shows that the contribution is actu-
ally 6(N)N?, where there exist constants independenVa$uch that) < ¢; <
S(N) < ¢a < 0.

A direct calculation shows that

/ |Fn(z)]Pde = / Fn(z)Fy(—x)dz = N. (16.35)
0 0

Thus, ifm denotes the minor arcs,

1
| / Fi(a)e(~ma)dz| < max|Fy(2) / |Fy () 2da
m rem 0
< Nmeax|FN(x)|. (16.36)

As the major arcs contribute( N) N2, we need to show

max |Fy(2)] <

. 16.37
log? N ( )
Actually, we just need to show the abovedso(V). This is the main difficulty

— the trivial bound i§Fy(z)| < N. As Fy(0) = N plus lower order terms, we
cannot do better in general.

Exercise 16.4.1.ShowFy(3) = N — 1 plus lower order terms.

The key observation is that, if we stay away from rationals with small de-
nominator, we can prove there is cancellatiorfin(z). While we don’t go into
details here (see, for example, Nathanson’s Additive Number Theory: The Clas-
sical Bases, Chapt&), the savings we obtain is small. We show

max |Fn(z)] < (16.38)

log? N’
Note that Equation 16.35 gives us significantly better cancellation on average,
telling us that Fiy(x)|? is usually of sizeV.
Thus, it is our dream to be so lucky as to #q@ |FN(;1:)\2da:) forany I C
[0, 1), as we can evaluate this extremely well.
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16.4.2 s = 2 Sketch

What goes wrong whern = 2? As a first approximation, i§ = 3 has the Major
Arcs contributing a constant time§? (and Fiy(z) was of sizeN on the Major
Arcs), one might guess that the Major Arcs foe= 2 will contribute a constant
timesN.

How should we estimate the contribution from the Minor Arcs? We have
F%(z). If we just throw in absolute values we get

)/mF?v(x)e(—mx)dx) < /01 |Fy(x)|’dz = N. (16.39)

Note, unfortunately, that this is the same size as the expected contribution from
the Major Arcs!

We could try pulling amax,c, | Fx(z)| outside the integral, and hope to get a
good savings. The problem is this leaves us WithFy (z)|dz.

Recall

Lemma 16.4.2.

[ v < ([ ([owra). asao

For a proof, see Lemma 16.5.1.
Thus,

‘/mFJ%r(x)e(—mx)dx‘ < gleé}iC|FN(m)|/ol|FN(x)|dx

< I&%FN@M(/;\FN(;CNM:E)% . (/01 12dx>§
< max|Fy(z)|- N2 - 1. (16.41)

rem

N

As the Major Arcs contribute something of si2g we would need

max | Fy(z)] < o(V'N). (16.42)

There is almost no chance of such cancellation. We know
1
/ |Fx(z)|?dz = N plus lower order terms (16.43)
0
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Thus, the average size [@fy (z)| is IV, so we expedtFy (z)| to be about/N.
To geto(N) would be unbelievably good fortune!

While the above sketch shows the Circle Method is not, at present, powerful
enough to handle the Minor Arc contributions, all is not lost. The quantity we
needto bound is

‘/ F¥(z)e(—mx)dz|. (16.44)
However, we have instead been studying
/ |Fi(z)|*dx (16.45)
and
1
mEaX|FN(a:)]/ |Fn(z)|dx. (16.46)
rem 0

Thus, we are ignoring the probable oscillation / cancellation in the integral
[ En(z)e(—ma)dz. Itis this cancellatiorthat will lead to the Minor Arcs con-
tributing significantly less than the Major Arcs.

However, showing there is cancellation in the above integral is very difficult.
Itis a lot easier to work with absolute values.

16.5 Cauchy-Schwartz Inequality

Lemma 16.5.1.[Cauchy-Schwarz]

/ollf(@ ldz < /‘f )Pdr) '(/01|g(fc)\2dar)é. (16.47)

For notational simplicity, assumgandg are real-valued, positive functions.
Working with | f| and|g| we see there is no harm in the above.
Let

Iy fl@)g(x

h(z) = f(z)+ Ag(x), A = —=—73
(¢) = f(2)+ Ag(a) fog(x)%ix

(16.48)

As [} h(z)*dz > 0, we have
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0 < [ (10 +uw) e
= Olf(x)2dx + 2/\/01f(:v)g(x)dx + A2 /Olg(:v)2dx
(Ji r@)gta)dr) . (Ji r@)gta)dz)”

_ /Olf(m)2dx 9

Jy 9(x)2dz [ g(x)2dz
o (B @)
a /0 flayds - folg(x)Qd:L‘
(Jo Fa)ga)dr) .
el | rwra
( i f(x)g(w)dx)2 < /0 f(x)?dx - /0 g(z)2dx
Olf(x)g(fc)dfc < (/Olf(:c)def : (/Olg(x)2d:c)é. (16.49)

Again, for generalf and g, replacef(z) with |f(x)| and g(z) with |g(x)]|
above. Note there is nothing special abgﬁd}n a

The Cauchy-Schwarz Inequality is often useful wligén) = 1. In this special
case, it is important that we integrate over a finite interval.

Exercise 16.5.2For what f andg is the Cauchy-Schwarz Inequality an equality?

16.6 Partial Summation

Lemma 16.6.1 (Partial Summation: Discrete Version).Let Ay = S

n=1 Q-
then
N N-1
Y anby = Anby = Arciba + Y Anlby = but) (16.50)
n=M n=M
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Proof. SinceA,, — A,,, = a,,

N N
Z a'nbn = Z (An - An—l)bn
n=M n=M

= (Av —An_1)bn + (An—1 — An—2)bn_1 + -+ (A — Ap—1)bu

= Anby + (—An-—1by + An_1bv_1) + -+ (= Anbarer + Apbar) — anr—1bar
N-1

= Anby —ap,bar + Z A, (by — bpya). (16.51)
n=M

]

Lemma 16.6.2 (Abel's Summation Formula - Integral Version).Leth(z) be a
continuously differentiable function. Lét(x) = > _ a,. Then

n<x

> " anh(n) = A(z)h(z) - /1 ’ A(u)h (v)du (16.52)

n<x

See, for example, W. RudiRrinciples of Mathematical Analysipage70.

Partial Summation allows us to take knowledge of one quantity and convert
that to knowledge of another.

For example, suppose we know that

Zlogp = x4 O(zz"). (16.53)

p<z

We use this to glean information abopf,_, 1.
Define

h(n) = 1 and o, — logn ifnis prlme (16.54)
logn 0 otherwise.

Applying partial summation t_ _, a,h(n) will give us knowledge about
>_p<z 1. Note aslong as(n) = loén for n prime, it doesn’t matter how we define
h(n) elsewhere; however, to use the integral version of Partial Summation, we
needh to be a differentiable function.

Thus
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Zl = Zanh(n)

p<w p<z

- (svoui)

nE /2 (w+O(s*) )W (u)du. (16.55)

The main term {(z)h(x)) equalsg; -
We now calculate the integral, notihg(u) =

——. The error piece in the
ulog

integral gives a constant multiple of
x u%—s—e
/ 5—du. (16.56)
o wlog”u
As 10g12u < s , the integral is bounded by

1 v 1 1
. / urt < gt (16.57)
log”2 /o log"25 +¢€

which is significantly less thaA (z)h(z) = =

. logz*
We now need to handle the other integral:

x €T 1
/ du = / 5—du. (16.58)
5 ulogu 2 log U

The obvious approximation to try IIs— < o . Unfortunately, plugging
this in bounds the integral b;é— This is Iarger than the expected main term,
A(z)h(z)!

As a rule of thumb, whenever you are trying to bound something, try the sim-
plest, most trivial bounds first. Only if they fail should you try to be clever.

Here, we need to be clever, as we are bounding the integral by something
larger than the observed terms.

We split the integral into two pieces:

[~ 1659

For the first piece, we use the trivial bound figggll—u Note the interval has

length/z — 2 < \/z. Thus, the first piece contributes at mg%i—, significantly
less tharA(x)h(x).
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The reason trivial bounds failed for the entire integral is the length was too
large (of sizer); there wasn’t enough decay in the function.

The advantage of splitting the integral in two is that in the second piece, even
though most of the length of the original interval is here (it is of length/z ~
x), the functionlog12u is small here. Instead of bounding it by a constant, we now

bound it by substituting in the smallest valuewbn this interval,\/z. Thus,

the contribution from this integral is at mo% < logijx. Note that this is
significantly less than the main teri(x)h(z) = =

logz”®
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Chapter 17

Multiplicative Functions,
Kloosterman, p-adic Numbers, and
Review of the Three Problems:
Germain Primes, \{(G) for Random
Graphs, Randomness o — = mod

p

Multiplicative Functions, Kloosterman Sums and Boungsdic Numbers. Re-
view of the Three Problems (Germain Primes, Randomness -ef 7 mod p,
Random Graphs). Lecture by Peter Sarnak; notes by Steven Miller.

17.1 Multiplicative Functions, Kloosterman and p-
adic Numbers

17.1.1 Multiplicative Functions

Definition 17.1.1 (Multiplicative Functions). Let f be defined on the positive
integersN. f is multiplicative if

f(mn) = f(m)f(n) if m andn are relatively prime (17.1)
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This is the same as

Z f =11 (1 + ™+ fEpT ) (17.2)

p

We call the above akuler Product. The standard example is tRgemann
Zeta Function,

(s) = Z% =11 ! —. (17.3)

n=1 p 1_p

There are many multiplicative functions (some, like Dirichlet Characters, do
not even requiren andn to be relatively prime).
The Kloosterman sums amdt multiplicative.

17.1.2 Kloosterman Sums
If ¢; andc, are relatively prime,

K(CL, b70102) = K(*?*acl) 'K(*a*aCQ)v (174)

where thexs are functions o, b, ¢; andcs.
Say we showK (a, b, p)| < p¥, wherer does not depend anor b or p.
Then, ifc =[], p;*, we have

K(a, b,Hp;”i) _ HK(*,*,pgﬁ'). (17.5)

Thus, we just need to get bounds over prime powers to bound a general Kloost-
erman sum.

Theorem 17.1.2 (Salie)If o > 2,

K(a,b,p®) < 2p2. (17.6)
Proof: elementary.
p—1 p—1
> : (17.7)
x modp? z1=0 2=0
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wherex = 1 + zop andxy, x5 € {0,1,...,p — 1}.
Thus, when we encounter terms I&é%) , we need the inverse of + pxs.
Letz; ' be the inverse of; modp. Then

(21 +pro) ™ = ay' (14 wep) (17.8)
Note that

(1—pb)™' = 1+pb+O(>p?). (17.9)
Say we want the inverse mod of (1 — bp). Try multiplying by (1 + bp). We
get
(1 —pb)(1+pb) = 1—bp* = 1 modp?. (17.10)
The above arguments is Hensel's Lemma.

17.1.3 p-adic numbers

We define the-adic norm of a rationak = ¢, a andb relatively prime, by

SIS]

lell, = p~™, Where% =p™, (p,1) = 1. (17.11)

Note that numbers that are highly divisible pwre smallp-adically.

We have the rational® and thep-adic norm|| = ||,. Similar to completing
the rationalsQ with the usual norm to gek, we can complete the rationals with
respect to this norm. The resulting field is called thadic numbers(),.

Q C R, andQ is dense iR. Similarly Q@ ¢ Q, andQ is dense irQ,.

Letz € Q,. Then

a—m A—m+1
T = om m—1
p p

where0 < a; <p— 1.

Suppose we have a solutigiizy) = 0 modp. We then try and find:; such
that f(x¢ + pr1) = 0 mod p®. Hensel noted that all we need to fingd is some
knowledge of the derivative at the previous stage.

+eFag ap+agp’ - (17.12)
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17.2 Germain Primes

p — 1 = 2q, p andq prime. What are the statistics? How many are there ug?to
Do they know about each other? What are their correlations? What abog®?

The Circle Method is a way of trying to solve additive equations (Waring’s
Problem, Goldbach’s Problem +p, = 2n, Vinogradov’s Three Primes Theorem
p1 + p2 + p3 = 2n + 1, Twin Primesp,; — p; = 2).

Definition 17.2.1 (Germain Primes).If p is prime andp— 1 = 2¢ for some prime
q, we sayp is a Germain Prime.

Definition 17.2.2 (i (z)). Recallw(x) is the number of primes at mast Then
m(x) ~ 2. Letwg(z) be the number of Germain primes at mast If the

log z

probability of getting a prime iog x, then we might expect that

re(e) = Y 1 ~ Const —y—. (17.13)

log” x

Using the circle method, we will try and estimate the above constant, and hope
the minor arcglo not contribute to the main term

Major McMahan (from the army, friendly with Hardy and Littlewood) made
tables of primes to thmillions. He checked, and Hardy and Littlewood’s constant
(for twin primes) was correct and Sylvester (who made a probabilistic argument)
was shown to be slightly off.

See Hardy and Littlewood, Acta Mathematicd4y1923, Partitio numerorum.
[ll: On the expression of a number as a sum of primes

We will then investigate the nearest neighbor &ffdnearest neighbor spac-
ings.

Also look at Robert Vaughnhe Hardy Littlewood Methad

17.3 Randomnessof — 7

Given a primep, look atz — 7. How do we comput&?

One can compute by using the Euclidean Algorithm (very fasdg p steps).
Recall the Euclidean Algorithm givesandb such thaux + bp = 1. Thus, mod
p,axr = 1, 0ra =T modp.

We now study the spacings betweeasx ranges in some interval mqd If
the interval is very small, we don’t expect randomness. What if we take an interval
of length,/p. Do we see Poissonian Behavior there for a fixed prime?
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Now, fix a numbew. Look at%f’dp as you varyp.

Theorem 17.3.1 (Duke-lwaniec).Suppose = 1 mod4. There is a square root
of —1 modp; ie, 3z such thatz? = 1 modp. Now we can také < z < ’%1 SO

> € [0, %} Then%, as we varyp, is equi-distributed.

One can also look at the longest increasing sub-sequence.
Knuth, volume2 of the Art of Computer Programming. Look at the stuff on
generating random numbers.

17.4 Random Graphs/ Ramanujan Graphs

Bollobas,Random Graphshe will have a model of the randoBaregular graphs
(what it means, how to generate, how many are thexeyy hard if you don’t
distinguish between isomorphic graphs (which have the same spectrum).

Look at the distribution of the second largest eigenvalyef the random
3-regular graph. Find the mean and the variance, graph.

Professor Sarnak will give a lecture on the Tracy-Widom distribution (which
is the distribution of the biggest eigenvalue in some random ensemble — will we
see the same distribution here)?

What is the scale for normalizing?

Take an interval, see how many eigenvalues in it, slide the interval down, and
see how the number varies.
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Chapter 18

Random Graphs, Autocorrelations,
Random Matrix Theory and the
Mehta-Gaudin Theorem

Random Graphs (especially graphs with large girth and chromatic number), Au-
tocorrelation, Random Matrix Theory (Vandermonde determinants, orthonormal
polynomials) and the Mehta-Gaudin Theorem (laigémits of quantities related

to the joint density function of the eigenvalues). Lecture by Peter Sarnak; notes
by Steven Miller.

18.1 Random Graphs

Definition 18.1.1 (Chromatic Number). The chromatic number is the least num-
ber of colors such that each vertex has a different color than all of its neighbors.

Example 18.1.2.A bi-partite graph is2-colorable, as is a tree (alternate colors
as you go through the generations).

What can force you to have a lot of colors? If a vertex is joined, toertices,
you need a lot of colorg the vertices it is joined to are joined to each other.

Definition 18.1.3 (Girth). The girth is the shortest closed cycle.

If the girth is large, make a vertex blue, yellow next level, blue on next level,
et cetera until you come back on yourself.
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Question 18.1.4.Can you make a graph with large girth and large chromatic
number?

The two fight each other. Erdos solved this problem by showing that if you
take aRandom GrapHhwith suitable properties), then that graph will have large
girth and large chromatic number with high probability.

Take a Random Graph withvertices and basically' < edges placed at ran-
dom among th¢’) = O(n?) possible edges.

The random graph has short cycles, but the number of short cycles is small.
Erdos removes certain graphs with small girth, and shows with high probability
the graphs left have large girth and large chromatic number.

See Mckay’s paper: he proves Kesten’s measure holds for the random graph
as the number of vertices goes to infinity.

18.2 Baire Category

Givena ¢ Q andC,, how often can we fin(% € Q such that

al c,
’Oé o a’ - q2+€ ’
In Lebesgue Measure, almost alkatisfy the above infinitely often.

In the Baire Category, this inequality does not hold infinitely often.

(18.1)

18.3 Autocorrelation

Note: Alex Barnett lectured on this section.

x-axis is number of swaps, y-axis is number of graphs with given, A, (n).
Say takesl00 swaps to randomize. Then thevalue at101 swaps should be
independent of thg-value atl swap.

But we don’t know the number of swaps before we have moved far enough.

Let \(n) = A1(n) — A1, where), is the average value.

Autocorrelation: Say the-axis runs tan.

Zx )N, (n =+ ¢) (18.2)

The above is a function @f symmetric inc. As c gets largeA(c) dies to zero,
and has largest value at= 0.
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Look for ¢ such that say0% of the area is fromx onward.

18.4 Gaudin’s Method

18.4.1 Introduction
From Random Matrix Theory: we have a probability distributionf&in

ps(rs.oan) = en(B) [[lo; — wlfe =% dey - dey.  (183)
j<k

Start off with a realV x IV matrix, diagonalize with eigenvalues, . . ., zy. If
you choose the matrix at random, you géthumbers, and you have a probability
distribution on the eigenvalues.

We've derived the probability above fa¥ x N matrices. For convenience,
we order the eigenvalues.

If 3 = 1 we call the ensemble GOE (Gaussian Orthogonal Ensembles); if
£ = 2 we have GUE (Unitary) and if = 4 we have GSE (Symplectic).

What is the correlation between two eigenvalues? What is the probability of
observing a given spacing between two eigenvalues? We've done this2rxthe
case.

Inthe N x N case, we would need to integrate out most of the eigenvalues.
The difficulty is] |z; — xx|°.

For 3 = 1,2 or 4, we can evaluate these integrals; we are fortunate that these
values are the ones that arise in practice.

In fact, even just determiningy () is difficult. This is called theSelberg
Integral, which A. Selberg solved in high school!

We will only consider3 = 2, and will be interested in the limit a¥ — oo
(under appropriate re-scaling).

RN(371,--~,17N) = /"'/P2(I1,$27~--,xmxnﬂa--~;CCN)dSUn+1"'dCCN-
R R

(18.4)
This will be a symmetric function of the first variables. If we integrate all
but 1 variable we get the density of eigenvalues; if we integrate all but two we get
information on pairs of eigenvalues.

Remark 18.4.1. 3 = 0 is Poissonian.
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18.4.2 Vandermonde Determinants

Notation: dp means

2
oy -~ dby. (18.5)

o _ itk

dp(elvueN) = CNH

Jj<k

We are now working on thé/-torus|0, 27| x --- x [0, 2x]. This goes under
the name CUE (Circular Unitary Ensemble).
Remember the group

U(N)={N x N matricesA with AA* = I}. (18.6)

Similar to the diagonalization of symmetric matrices, for any unitary matrix
there is a unitary matri¥” such tha’ ~'UV is diagonal; further, the eigenvalues
have absolute valug and hence can be written &$.

Suppose we havf, ..., fx. We form the Vandermonde of thg-variables

van(fi,....fv) = [J(fi = f)- (18.7)
1<J
Today we will only use the square, so we don’t worry about ordering so that

fi < fj-
Exercise 18.4.2.

van(fi,..., fy) = det (fg'—1> . (18.8)
1<ij<N
Thus, we have
1 | I 1
fof (18.9)
N-1 oN-1  eN-1
1 2 N
18.4.3 Orthonormal Polynomials
On the unit circlel’, we have the measure
dt
du(t) = —. 18.10
u(t) 5 ( )



Let f(¢) be a function such that

[ 5wty = 0. [ irwPaut =1 (18.11)

Define a sequence of monic polynomi&tg(x) for n € N andg,,(t) with

bult) = Pu(F(D). ult) = ﬁ | 603, 0dute) = ;. @812

This is Gramm-Schmidt, where the inner product between two funcfiamsl
g is given by

(f.9) = / FOFdu() (18.13)

and the ‘Kronecker delta’ symbol (the discrete analog of the continuous delta
‘function’ 4(+)) is defined by

T (18.14)
0 otherwise

We introduce orthogonal polynomials to handle the integral. The above pro-
cess (constructing the,s and thep,,s) gives an orthonormal sequence of polyno-
mials.

18.4.4 KernelKy(x,y)

Define the kernel

Kn(z,y) = Z@-(w) (). (18.15)

Exercise 18.4.3 Prove the following:
1. [ Kn(z,2)du(z) = N.

2. [ Kn(z,y)Kn(y, 2)dply) = Kn(z,2).
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Remark 18.4.4.

N-1

[ Kxtamamants) = X[ [ &),

=

Thus, integratingy againstK y projectsg onto the first\V vectors.

Define, forl <n < N,

Dn,N(tl,...,tn) = det <KN(tj7tk)>

1<) k<n

For example,
Din = Kn(t1,t1)
and

Dyn = Kn(t1,t1) Kn(t1,ts)
> Kn(ta,t1) Kn(to,t2)

18.4.5 Gaudin-Mehta Theorem
Theorem 18.4.5 (Gaudin-Mehta).We have

1.

mVan(f(tl), o ,f(tN)> = detNxN<¢ifl(tj)>

ﬁ’VanO(tl),...,f(tN))F = Dyn(ti, ... ty).

3. For1 <n <N,

1<i,j<N

(18.16)

(18.17)

(18.18)

(18.19)

(18.20)

(18.21)

/ Dn,N(tb . >tn)d,u(tn) = (N -+ 1-— n)Dn,LN(tl, Ce ,tnfl). (1822)
T
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The third statement is the beef, allowing us to integrate out one variable at a
time by induction.

Remember
Dun(ti,. . 1) = det,LXn<KN(tj,tk)) o (18.23)
1<j5,k<n
Corollary 18.4.6. Let F' be a symmetric function of, . . ., ¢,,, and define
Fun(ty,....ty) = > F(tiy, ... ts)
1<i1 <t <in<N
1
dptpn(t1, ... ty) = aDn,N(tlv--~>tN)d:u<t1)”'d/L<tN)' (18.24)
Then

/NFN,N(tla"'7tN)d,un,N(tl7"'7tN) = / F(tla--wtn)d//vn,N(tla--wtn)-
T mn
(18.25)

How might we use the above? For example, considet far j, £k < N, and
consider forf even

> Fla—m). (18.26)

1<j<k<N

What is the expectation of the above? In this casas a function of two
variables, and’(xy, z2) = f(|z1 —z2|) and we now just need to integrafé|x; —
x9|) against the determinant of2ax 2 matrix, and this is the only place whehé
will arise.

Suppose we had

dp(xy,...,zN) = e~ 2 H |z — ap|?dzy -+ - day. (18.27)
i<k
Consider the expectation of

Yo flw =), (18.28)

1<j<k<N

According to the corollary, the answer is just
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KN($1,931) KN(xbe)

T dr dry. (18.29
KN(£U2,96’1) KN(952,$2) ¢ 11t ( )

1
[z — 2a]) 57
/]
This is enormousprogress — we started withy variables; we now have
variables. We need to take thé — oo limit of the determinant, a much easier
guestion.

18.4.6 Example

T = (0,27, du(z) = £, f(z) = €7, f"(z) = ¢, andP,(z) = z". These
P,s are monicg, (z) = P,(f(x)) is orthonormal, which gives, (z) = ¢*, and
clearly
27 ) )
/ e"e M dy = 6. (18.30)
0
Finally, we obtain a geometric progression
N-1
Kn(z,y) = emey)
n=0
— etN(z=y)

We will symmetrize (and go from-N to ), and when we take th2 x 2
determinant, we get something like

sin _<M> , (18.32)

an ()

The most famous pair correlation: we haVeeigenvalues so that the mean
spacing isl. Thepair correlationis

. [sin <7T(I — y)) ] 2. (18.33)

m(z —y)
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Chapter 19

Increasing Length Subsequences
and Tracy-Widom

More on increasing length subsequence and the Tracy-Widom distribution. Lec-
ture by Peter Sarnak, notes by Steven Miller.

19.1 Increasing Length Subsequences

Consider the set of permutatiofs onn numbers. Let € S,, be a random per-
mutation, and lef, be the length of the longest increasing sub-sequence. What
is the expected value df,?

Conjecture 19.1.1 (Ulam).
E[L,] ~ 2v/n. (19.1)

Proved by several people (Schepp, Vircheck (?), ...).

At Bell Labs, many people (including Odlyzko) investigated. Monte-Carlo
simulations for variance (beginnind93). Dividing variance byn% was good.
Looking at the expectation of

Ly—2
U—l\/ﬁ (19.2)
ne
and investigated whether or not it went to a limit. Noticed this distribution is
negative (shifted to the left). Prefers to lessthan2,/n.
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19.2 Tracy-Widom

OnR", we have

Py(z)dz = e Xim1 7] H |z; — zi|’ day - de,, §e{1,2,4}. (19.3)

i<k
Will use the weight—*"dz, which will give rise to Hermite polynomials.
Definition 19.2.1 v 5(s)). Fn s(s) is the probability that there is no € [s, co).

We can write this as a determinant (see the papers by Mehta and Mehta-
Gaudin). We will have again

En(z,y) = Y ¢i(2)d;(y). (19.4)

0<j<N-1

Remember the semi-circle rule, that (with some normalization) the eigenval-
ues lie in[—2v/N, 2v/N].

What is the expected value of the largest eigenvalue? We know most are in
[—2v/N,2v/N]. We haven't discussed whether or not there are outliers. With
probability one, we can show that there will be no such outliers.

We haveN eigenvalues. Nedr is calledthe bulk As there areV numbers,
we expect eigenvalues in an interval of s%enear the origin.

What about eigenvalues near the edge®y/N? Lets € (—oo, o0). Look at

Fy (2\/N+ ]\f) (19.5)

This is the scaling limit. Say = 0. this would give us what is happening at
the origin.

Theorem 19.2.2 (Tracy-Widom).

dF(s)

o (19.6)

lim FN<2\/N+; ) = Fp(s), Fp(s) =

1
N—oo 6

1 . . . .
Here theN©s arises from the particular problem we're interested in. Here, we
are looking at eigenvalues from random matrices.
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Chapter 20

Circle Method and Germain Primes

Using the Hardy-Littlewood Circle Method (and assuming no main term contribu-
tion from the Minor Arcs), we calculate the expected number of Germain primes.
Calculations and notes by Steven Miller.

20.1 Preliminaries

20.1.1 Definitions

Let
e(z) = ™ (20.1)
and
M) = {logp Ifn:]?IS prime (20.2)
0 otherwise
Finally, define

cqla) = Z 6(7“9). (20.3)
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20.1.2 Partial Summation

Lemma 20.1.1 (Partial Summation: Discrete Version).Let Ay = 27]:7:1 Q.
then

N N-1
> anby = Axby — Ay—iby + > An(by — bosr) (20.4)
n=M n=M

Proof. SinceA,, — A,_1 = a,,

N N
Z @nbn = Z (An - Anfl)bn
n=M n=M

= (AN —An-1)by + (An-1 — Ay2)by_1 + -+ (Am — Ap—1) b

= Anby + (—An_1bnv + An_ibyo1) + -+ (—Anbygr + Anbar) — an—1by

N-1

= Anby = anbyr + Y An(by — bpsa).

n=M

]

Lemma 20.1.2 (Abel's Summation Formula - Integral Version).Leth(x) be a
continuously differentiable function. Lét{x) = > __a,. Then

n<z

> anh(n) = A(z)h(z) - /1 ’ Al (v)du (20.6)

n<x

See, for example, W. RudiRrinciples of Mathematical Analysipage70.

20.1.3 Siegel-Walfisz

Theorem 20.1.3.[Siegel-Walfisz] Let”; B > 0, and leta and ¢ be relatively
prime. Then

x x
S logp = W+O<bg—%> (20.7)

for ¢ < log? z, and the constant above does not depend:pq or « (ie, it
only depends o’ and B).
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20.1.4 Germain Integral

Define

fin(z) = Z log pi1 - e(p17)
p1<N

fon(z) = Z log ps - e(—2pyx)
p2<N

fu(@) = D ) logm logpz~e<(p1 —2pz):v)~ (20.8)
p1<N p2<N

Consider

fulae(-alde = Y 3 togmlogps |

1
T2 p1<N p2<N

e((p1 — 2py — 1)3:) dx.

(20.9)

N[

Note

1
2 1 ifp—2p—1=
/2 e((p1 = 2p2 — D) do = e 0 (20.10)
*% 0 |fp1—2p2—]_7£0

Thus, we get a contribution &dg p; log ps if p; andp, = 7’17‘1 are both primes.
Thus,

fy(x)e(—z)dr = Z log p1 log ps. (20.11)

po= p12_ 1 prime

The above is a weighted counting of Germain primes.

=

20.1.5 Major and Minor Arcs
Let B be a positive integer) = log? N, and define the Major Aré, ,

Moy = {xe 0,1) : ‘x—g‘ < %} (20.12)
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We also add in one interval centered at eitheor 1, ie, the "interval” (or
wrapped-around interval)

Q Q
[o, N] U ll_ﬁ’ll‘ (20.13)

For convenience, we often use the interjak, 1] instead of{0, 1], in which
case we would have

1 1 Q 1 Q1
[_5’_§+N] U [E‘N@]' (20.14)
For functions that are periodic of period one, we could instead consider
1 @1 @f
[5 ~ N2 + = N (20.15)

The Major Arcs are defined by

= U O (20.16)
q<Q <aq1:1

The Minor Arcs,m, are whatever isotin the Major Arcs.
Then

lfN( /fN r)dr + /f (r)e(—x)dx. (20.17)

We will assume that there is no net contribution over the minor arcs. Thus, in
the sequel we investigate

/ fn(z)e(—x)d. (20.18)
M
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20.1.6 Reformulation of Germain Integral

fin(z) = Z A(ma) - e(max)
fon(z) = Z A(mg) - e(—2max)

fu(z) = Z ZA<m1>A<m2>~e(<m1—2m2>x). (20.19)

m1<N ma<N

We investigate

/ fv(z)e(—x)d. (20.20)
M

We will show the Major Arcs contribute, up to lower order termig)V, Where
T, is a constant independent 8f. The length of the Major Aro\,, |s . We
sum over(a, q) = 1 andg < . Thus, the total length is bounded by

B
Yo < = < log” (20.21)
N
q<Q

By choosingB sufficiently large, we will be able to make all the errors from
the Major Arc calculations less than the main term from the Major Arcs. Of
course, we have absolutely no control over what happens on the minor arcs, and
we will simply assume there is no contribution from the minor arcs.

Thus, on the Major Arc\, ,, success will be in finding a function of si2é
such that the error from this function & (») on .M, , is much smaller thaiv?,
say N? divided by a large power dfg V.

Similarly, when we integrate over the Major Arcs, we will find the main terms
will be of size N; again, success will be in showing the errors in the approxima-
tions are much smaller thawM, say/V divided by a large power dbg N.

We are able to do this because of the Siegel-Walfisz Theorem (Theorem 20.1.3).
Givenany B > 0, we can find & > 0 such that, ify < log? N, then

N N
;N logp = m+O(—10gON), (20.22)

p=r(q)
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(r,q) = 1. Thus, we can také' enormous, large enough so that even when we

multiply by the length of the Major Arcs (of siz@@, we still have something
small.

20.2 fy(x)and u(x)
20.2.1 f(g)

We now calculatqu( > for ¢ < log? N.
Up to lower order terms,

fN(g) = ) logp:- €<p1q> > logp, - €<—2P2q>

q p1<N p2<N
= Z Z log py - 6(]?1 >Z Z log ps - €<—2p2 >
ri=1 p1<N ro=1 po<N q
p1=r1(9) p2=r1(q)
g a\ o —2a
S MIC1) 1) PRI SRt
ri=1 q ro=1 PN P2<N
p1=r1(q) =r9(q)
N? g ( a g —2a
- < e T1—> 6<T2—>
¢*(q) 21 q Zl q
(r1,9)=1 (ro,q)=1
N2
= ——c,(a)cq(—2a), (20.23)
¢2(Q) fI( ) Q( )

where the second to last line follows from the Siegel-Walfisz Theorem (Theo-
rem 20.1.3). We restrict t0;, ¢) = 1 because ifr;, q) > 1, there is at most one
primep; = r; modg.

20.2.2 u(x)
Let

u(z) = Z Z e<(m1—2m2)x>. (20.24)



We will often look at

—Cq(“(i;q((q;z“)u(x). (20.25)
Note
u(0) = N2 (20.26)

20.3 fy(a) — %&;ZQ)U(OZ — 3), o€ M,

Let

cqla)cy(—2a)
¢*(q)

We write v asf + g B € [— Q Q], Q = log? N. As always, we ignore

N’ N
lower order terms.
Note f (z) is approximatelC, (a) N* for x near¢. We now expand and show

fn(a)is Cq(a)u<a - g) plus errors of size—Nsr— for a € My,.

C,la) = (20.27)

20.3.1 Setup

Sugla) = fu(a) = Cyfayu(a—7)
= Z )\(ml))\(mQ)e<(m1 —2m2)a) — Cya) Z e<(m1 —2m2)ﬁ)

mi1,mo<N m1,mo<N

= ml%;SN [)\<m1))‘(m2)6<(m1 - 2m2)g> — Cy(a) 6<(m1 - 2m2)ﬁ>
-y [ > [mAGma)e((mi —2ma)7 ) - Cq<a)]e(—2m26)] e(m )

(20.28)

We now apply Partial Summation multiple times. First, we apply Partial Sum-
mation to then,-sum:

206



S2aq = Z [)\(ml))\(mg)e<(m1 — 2m2)§> — Cq(a)} e(—2ms[3)
= z_: amgbmg
mo<N
N
= Ay(N)e(=2Np) + 4xif /0 > am,e(—uf)du. (20.29)

We hit the above witl(m,3), and sum fromn; = 1to N. We get two pieces:

Siviaq = P Aa(N)e(—2Np) - e(mi3)

mi1<N
N
S1fiaq = Z 47”5/0 Z amye(—uB)du - e(m1f)
m1<N ma<u
qu = 5 Saq T S [ra.q° (2030)

20.3.2 )5y

Siviag = Y As(N)e(—2NB) - e(mif)

= e(=2NB) D Ax(N)e(mif)
= o2vp) Y Y [A(ml)A(m)e((ml—zmQ)g)—oq(a)}qmlﬁ)
= e(=2Np) |Ai(N)e(NB)

—orif /ON S [)\(ml))\(mg)e«ml —2m2)g> —cq(aﬂe(w)dt.

m1<t ma<N

(20.31)
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First Piece

The first piece, thel; (N)e(N ) term, is small forg < Q. Why? We have (up to
lower order terms)

ANNE) = 30 Am)Mmae((m —2ma)0) = DT Cyfa)

my,ma<N m1,mo<N

= C,(a)N? = N°C,(a) = 0. (20.32)

Thus, because of our choice of functions, the leading terms vanish, and the
remaining term is small.

Second Piece

We now study the second piece. Npté < ¢ = 162 andC, (a) = ;%((Z)) C‘;f;é;l).

Up to lower order terms, thew,-sum will leave us with

cg(—2a)N [N
T [ X

m1 <t

[/\(ml)e<mlg> - (;Z((;))] e(tB)dt. (20.33)

Note fx(x) is a multiple of N? for x nearg. Thus, we want to make sure the
above is well dominated biy?.

Fort < v/N, this is immediate. For > /N, using Siegel-Walfisz (Theorem
20.1.3), we can make the bracketed quantity in the integrant dominatgg%g{y

for anyC' whenq < log” N. Thus, we integrate a quantity that is at mggg—N

over an interval of lengtV, we multiply by N5 < Q = log? N.
Thus, choosing”' appropriately, the integral contribut%sgévf—

B and hence
is negligible.

Remark 20.3.1. Note, of course, that the contribution is only negligible while
8] < %

Lemma 20.3.2.5; 5., iS a lower order correction.
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2033 S fy

We must evaluate

N
Sifag = Y Amif /0 > ampe(—up)du-e(miB), (20.34)

m1<N mo<u
where

Uy = [)\(ml))\(mz)e((ml - 2m2)g> - cq<a)] (20.35)
We bring the sum oven, inside the integral and again use Partial Summation.
We will ignore the integration and for now, as these will contributeé NV <«
Q = log? N times the maximum value of the integrand. We will leave the
e(—uf)du with this integration.
Whenu < v/N, we can immediately show the above is a lower order correc-
tion. Thus, below we always assume> v/N.

First Piece
We have
Sipzan = 2o AmAma)e((m —2m) 7 ) — Cyla)|e(N5)
= ¢e(NpB) Z )\(ml))\(mg)e((ml—ng)g) — Cy(a) Z 1].

= e(NpB)|C,(a)uN — C,(a)uN + Lower Order Term}, (20.36)

where by the Siegel-Walfisz Theorem (Theorem 20.1.3), the error in the brack-
eted quantity is of sizgogc—NN.

We then integrate from = /N to N and multiply by, giving a contribution
bounded by

N? < log? N3 < N?
logt® N N log“ N log¢ PN’

BN (20.37)
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again getting a lower order correction fg(z) for = neary (remembetfy (z)
is of sizeN?).
Second Piece

Again,v > +/N, and we have

a

2mi3 /0 Ty [ S (M)A ma)e((m 2m2)5) _ q(@ﬂ e(tB)dt.

m1<t L ma<u
(20.38)
Again, fort < /N, the contribution will be a lower order correction. For
t,u> VN,
Again, executing the sum ovet; andm, will give us
Cq(a)ut — Cy(a)ut + Lower Order Terms (20.39)

with the lower order terms of sizlgg“tTN.

Integrating ovet (from /N to N), then integrating ovet (from /N to N)
and then multiplying by3? gives an error bounded by

N? log’? N N* N?
2NZ. < L —F—5—, 20.40
& log® N N2 log® N log¢ 2P N ( )
again a lower order correction.
20.4 Integrals ofu(z)
20.4.1 Formulations
Remember
u(zr) = Z e((m1 - 2m2)x). (20.41)
mi1,mo<N
We need to study”_%l fn(z)e(—z)dz. We have shown that
a N?
fN<Oé) = Cq(a)u<a - a) + O(m), o€ Ma,q' (2042)
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Thus, we must evaluate

If my — 2m, — 1 = 0, the integral gived. There are approximately} ways
to choosen,, m, < N such thatn; — 2m, — 1 = 0.

Assume nown; — 2my — 1 # 0. Then the integral vanishes.
Hence,

Lemma 20.4.1. .
/2 w(z)e(—x)dr = g—O—O(l). (20.45)
_Q 1
2043 [ N+ [Zu(x)e(—z)dx
Define
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1 1 Q

ho= =55+

1. Q @
Eo= |-3+% ]
L = 91_9]
° IN'2 N

1 Q1

L= |3-%3
I = LULUILUI. (20.46)

20.4.4 Integral overls, I3

We have

/u(m)e(—x)dw _ /1 > e(tm—2my — 1)) de

I; z ml,mQSN
= / Z e(myx) Z e(—2max) - e(—x)dx
Timi<n ma<N
/ e(r) —e((N + 1)x) e(—2x) — e(—2(N + 1)x)e(—x)dx.
I 1 —e(x) 1 —e(—2x)
(20.47)
On I, and I3, the integral is
22 N N
224 = 20.48
<</Iixxx<<Q log? N’ ( )

see, for example, Nathanson (Additive Number Theory: The Classical Bases,
Chaptem).

20.4.5 Integral overl,, I,

Each of these intervals has Ien@h: @ There arel +O(1) pairs such that

my — 2mo — 1 = 0. Each of these pairs will contribute (bound the integrand)oy

%. As there are at mos‘.} pairs, these contribute at mo%t% < log? N.
Henceforth we assume; — 2m, — 1 # 0. We write
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LUIL = [1 _ QL Q} _r (20.49)

We have

3 / e((m1 — omg — 1)x>dx

mi1,mg<N
m1—2mg—1#£0

= e( — %) Z (=)™ /_i e((ml —2mgy — 1)x>d:c

my1,mg<N
mq1—2mg—15#0

in L= 2my — 1)<
(D x ol ) o

mq1,mg<N
m1—2mg—1+#£0

=

because, changing variables by sendintp (x — %) + % gives factors of
e((m1 — 9my — 1)%) — e(—1)e(m)e(—msy), ande(mr) = (—1)™.

0 < |my—2my— 1] < N

Letw = my — 2my — 1. We will do the casé® < w < N'7¢ the case with
—N'¢ > w > 0 being handled similarly.
For eachw, there are at mosV pairs ofmy, my giving rise to such av. For

sin(w )

suchw, —2% < % (because we are taking the sin of a quantity very close to
zero).
Thus, these pairs contribute at most
Q _ 1B
< N-N < @ = log” N. (20.51)

Inserting absolute values in Equation 20.50 gives a contribution of at most
log? N for suchw, 0 < w < N'~¢.

N'=¢ <|m; —2my — 1| < N

Again, letw = m; — 2my — 1 and assumeéV!l— < |w| < N. We will only
considerw > 0; w < 0 is handled similarly.
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The cancellation is due to the presence of the fagtdr)™; note that for the
pair (my, my) we only care about the parity of; .

Considerw andw — 1.

Form,; — 2my — 1 = w, the solutions are

my = w + 3, me =1
mi; = w + 5, mo =2

and so on; thus there are abé%gﬂ pairs, all with parity—(—1)>.

Form; —2m,—1 = w—1, we again have abodt* pairs, but now the parity
is (—1)“. Thus, each of thé5* pairs withm; — 2m, — 1 = w is matched with
one of the% pairs withm; —2my, — 1 = w — 1, and we are off by at mo€2(1)
pairs, which will contribute

N
1
< Y — < logN. (20.53)
w=N1-¢ w
For the remaining terms, we subtract in pairs, using the first order Taylor Ex-
pansion okin(z). We have

iV: [sin (w%) sin <w% — %) ] | (20.54)

w=N1-¢

The Main Term of the Taylor Expansion gives -, which when summed
overw gives+—. As we have aboud5“ < N pairs for eachw, this contributes
at mostV - —— < N-.

We also have the first order term from the Taylor Expansion:

. Q _ Qy _ . Q Q
sin (wﬁ N) = sin (wﬁ> + O<N> (20.55)
This error leads to (remembering there éﬁﬂy’i < N pairs for eachw)
N Q
< N > A <« QlogN® < log”*' N (20.56)
w=N1-¢ w—1
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20.4.6 Collecting the Pieces

We have shown

3.4 2
N
—dr = — ). 20.57
/[—éé}—[—]%,fi] uetadr <10gBN> (20-57)
Therefore
Lemma 20.4.2.
Q

N N N
—x)dy = —4+0 ) 20.58
/—2 u(z)e(—x)dx 5 + (logBN> ( )

//vta u(a — g) e(—a)da = [LZ:;I% u(a - g) ce(—a)da
= [ e(=g-)as
- (-9 W05, (2059
we see that
Lemma 20.4.3.
/M u(a - g) ce(—a)da = e( — g)g (20.60)

a,q

20.5 Determination of the Main Term

We now calculate the contribution from the Major Arcs. Up to lower order terms,
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fy(z)e(—z)dr =
M

where we have defined
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r=1 q
(ra)=1
cq(a)c,(—2a)
Cole) = = aﬁQq(Q)
q
a
Pqg = Z C;(a)e(—;)
(@
q
ey = > pg (20.62)
(@t

20.5.1 Properties ofC,(a) and p,

We will follow the presentation of Nathanson (Additive Number Theory: The
Classical Bases, Chapteand AppendixA).

¢q(a) is Multiplicative

We follow Nathanson, Pag&g0 — 321, TheoremA.23. Note that we are labeling
by » what he labels, and we are labeling by what he labels..

Lemma 20.5.1.¢,(a) is multiplicative; ie, if(¢, ¢') = 1, thenc,y (a) = cq(a)cy (a).
Proof: We have

3 e(?%) (20.63)

F=1
(,aq")=1

Exercise 20.5.2.Show that we can write thé& above ag = r¢’ + r’¢ modgq/,
wherel <r <gq,1 <7 <¢,and(r,q) = (,¢) = 1.

Thus

217



@) = D0 o(rh) 3 ()

/
r=1 r'=1 qq

(ra)=1 (¢! ¢"=1

I
Q)
/N
L
| 2
N——
|
o
2
Q\
—~
IS
N~—

cq(a) for (a,q) =1
Exercise 20.5.3.Show that

hg(a) = Ze(r%> _ {d if d|a

— 0 otherwise

Recall the moebius function:

(=1)" if dis the product of distinct primes
pld) = :
0 otherwise

Exercise 20.5.4 Prove
1 if(r,q)=1
S uia) = {1 TR
0 otherwise
d|(r,q)

Then
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r=1 d|(r,q)
= Zu(d)ie(r—)
dlq i
= Z,u(d) ; e(l%)
dlq =1 d
= Y nl@)hy(a)
dlq
= ZM( )hd(a)

- ¥ ,u(%)d. (20.68)

d|(a,q)

Note thatif(a, ¢) = 1, then there is only one term above, namely 1, which
yields

cola) = plq) if (a,q) = 1. (20.69)
Corollary 20.5.5. If ¢ = p*, k > 2 and(a, q) = 1, thenc,(a) = 0.

C,(a) is Multiplicative

We have show,, (a) = c,(a)cy(a) if (¢,¢") = 1. Recall the Euler phi-function,
®(q), is the number of numbers less thawhich are relatively prime tq.

Exercise 20.5.6 Prove thatyp(q) is multiplicative; ie, if(¢, ¢') = 1, then¢(qq') =
o(q)e(d')-
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We now have
Lemma 20.5.7.C,(a) is multiplicative.

Proof: Assumégq, ¢') = 1. We have

Cqq' (@) Cqq (—2a)
Cor (@) ¢*(qq')
cqla)ey(a)e,(—2a)cy (—2a)
¢*(9)9*(¢')
cq(a)cq(—2a) ) ¢y (a)cqy (—2a)
¢*(q) (')
= Cy(a)Cy(a). (20.70)

pq is Multiplicative
We first prove a needed lemma.

Lemma 20.5.8.ConsiderC, (a1¢2). Then
CQ1 <a1Q2) = Cth (al) (2071)

|f (ql,QQ) =1.

Proof:

q1
@142
Cyla1g2) = Z 6(7‘1—)
r1=1 ql
(r1,91)=1
q1
3]
= Z 6(7’1Q2—>
r1=1 q

(r1,91)=1

q1
a

> 6<7‘—1) = Cy (a), (20.72)

q1

r=1
(rq1)=1

becauséqi, ¢2) = 1 implies that ag; goes through all residue classes that are
relatively prime tog;, So too does = 71¢e. O
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Lemma 20.5.9.p, is multiplicative.
Recall

b= > C’q(a)e(——>. (20.73)

Assume(qi, ¢2) = 1. Then we can write the congruence classes meogas
a1qe + azqr, With 1 S <qi,l<ay <gand(a,q) = (az,q) = 1.

q192

Pagz = Z Cquzz(a)e(_ql;‘%)

(a,q192)=1
q1q2

— Z (Jql(a)qu(a)€< B ﬁ>

a=1
(a,q192)=1

q1 q2
- Z Z Coi(a1G2 + a2q1)Cy (a1G2 + Cl26h)6( —

a;=1 ag=1
(a1,91)=1 (agz,q2)=1

a1q2 + G2Q1>
q192 .
(20.74)
Exercise 20.5.10With aq, a2, ¢1, ¢» as above,

Coi(a1q2 + azq1) = Cyi(a1g2) and Co,(a1g2 + azqr) = Co,(azqr). (20.75)
Thus, we have

q1 q2
a1q2 + axqq
Poee = D, D qu(alfI2)Cq2(a2Q1)€( - —>

4192

ay=1 ag=1
(a1, ql>—1 (ag,q2)=1

= Z Cy (a1ga)e ( q1> i OQQ(CLQQI)e(_%)

ay=1 ag=1
(a1, q1>—1 (ag,q2)=1
a & a
1 2
=Y Culae( =) Y Culasle( - 2)
ay=1 ql ag=1 q2
(ay,q1)=1 (ag,q2)=1
= Py Pgs- (20.76)

Thus, p, is multiplicative.O
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Calculation of p,

Lemma 20.5.11.p,» = 0if £ > 2 andp is a prime.

Proof: This follows immediately frond,x (a) = 0. O

Lemma 20.5.12.If p > 2 is prime,p, = —ﬁ.

Proof:

5 —Cp(a)cp(_2“)6< . 9). (20.77)

But asp > 2, ¢,(a) = ¢,(—2a) = u(p) as(a,p) = 1. As u*(p) = 1 and
o(p) = p — 1 we have

p—1 1 a
Py = e ——
= A O ( p>
1 0 p! a
- DY)
1
= —— 20.78
(p—1)2 ( )
Lemma 20.5.13.If p = 2, thenp, = 1.
Proof:
2 a
= 3 ca(-5)
(@t
1
- cme(-3)
_ eMe(=2)
$*(2)
eﬂ'ie—Qﬂ’i .
— E e =1, (20.79)
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where we have used(1) = e™ andcy(—2) = e~ ™.

Exercise 20.5.14Provec,(1) = e™ andcy(—2) = e~ 2™,

20.5.2 Determination ofsy and s

Recall
Sy = Y pg (20.80)
9<Q
We define
& => py (20.81)
q

Exercise 20.5.15Let b, be any multiplicative sequence (with whatever growth
conditions are necessary to ensure the convergence of all sums below). Then

She =[] (1 n i hpk>. (20.82)
q k=1

p prime

We have
6 = Z Pq
q
= H <1 + Z ppk->
k=1

p prime

- 11 (1 n pp) (20.83)

p

becausey,» = 0 for £ > 2 andp prime by Lemma 20.5.11. We have previ-
ously shown (see Lemmas 20.5.12 and 20.5.13)ghat 1 andp, = —ﬁ for
p > 2 prime. Therefore
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6 = H(l—l—pp)

p

= (L4+p) [J(1+py)

p>2

- 2H[1—ﬁ]

p>2

= T, (20.84)

where

Definition 20.5.16 (Twin Prime Constant).

7 =[] [1—L} ~ 6601618158 (20.85)

—1)2
st (=1

is the twin prime constant.

SN
We need to estimate — 6 y|. Asp, is multiplicative and zero if = p* (k > 2),
we see we need only look at sumgpafAsp, = —ﬁ, one can show that the
difference betweea and &y tends to zero ad/ — oo.

Thus,

Lemma 20.5.17.
6 = 2T5. (20.86)

20.5.3 Number of Germain Primes and Weighted Sums

Combining the above arguments, we have shown that, up to lower order terms,

> 10g(p)-10g(p;1) = 6%

2
pP<N
p,g; prime
N
= QTQE
= T,N. (20.87)
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Note that we are counting Germain prime pairs(lﬁg—l, p) and not(p, 2p+1).

Such a difference in counting will introduce a factor2of
We can pass from this weighted sum to a count of the number of Germain

prime pairs( 21, p ) with p < N.
Again we follow Nathanson, Chapt&r Define

we(N) = > 1

pP<N

P25 L prime
GN) = Y log(p) - log (]%1) (20.88)
p<N
p, Bzt prime
Clearly
G(N) < log® N - 7g(N). (20.89)
Therefore,

Lemma 20.5.18.Up to lower order terms,

N 5N
ma(N) > G(2> = 2 (20.90)
log® N log® N
We now provide a bound in the opposite direction.
s 1-6
N = ) 1< s N (20.91)
p<N1-4

p,pgl prime

Then
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GIN) = > logp-10g<p;1>

2
P2N176
p,ﬂ; prime
2
= (1—96)*log* N § 1
pZleé
p,%—l prime

= (1-5)*10g* N(mg(N) — ma(N'%))

1-6

N
> (1-6)%*log? Nmg(N) + O ((1 —6)?log® N -

g N) (20.92)

Therefore

leé
2N < —_52. 2N
log° N -mg(N) < (1-9) G(N)—i—O(log N logN>

0 < log> N -7a(N) — G(N) < [(1-8)2%— 1]G(N) +O(logN-(\2](T.‘§)3)

If 0 <6 < 3, then(l —4§)~2 — 1 < 4. We thus have

log N

0 < log? N -76(N)—G(N) < N 5+0( = )] (20.94)

Choose’ = 216e N Then we get

log N
log log N
< log? N - - ——o ), .
0 < log? N -7g(N) — G(N) < O(N o v ) (20.95)
RecallingG(N) ~ T, N gives
Lemma 20.5.19. TN

N) < =2 20.96

Ta(N) < 10g2N ( )

Combining with the other bound we have finally shown
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Theorem 20.5.20.Assuming there is no contribution to the main term from the
Minor Arcs, up to lower order terms we have

T.N
N) = , 20.97
7TG< ) 10g2N ( )
whereT, is the twin prime constant
1
| [1_ m} ~ 6601618158, (20.98)

p>2
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