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Abstract

The purpose of the Undergraduate Mathematics Laboratory is to form a research
team of undergraduates, graduate students and faculty to investigate interesting
unsolved conjectures theoretically and experimentally. The UML is sponsored by
a VIGRE grant of the National Science Foundation.

In addition to the standard lecture-homework classes, we wanted a class where
the undergraduates would work on hot conjectures and see what kinds of problems
mathematicians study. In the sciences and engineering, undergraduates are often
exposed to state of the art projects through experimental labs; we wanted to bring
a similar experience to the math majors.

The undergrads often have enough theory to understand the basic framework
and proofs of simple cases. Building on this, they then numerically test the con-
jectures. The undergrads learn a good deal of theory, they learn about coding, sim-
ulations and optimization (very marketable skills), and they get to see what is out
there. The graduate students and the faculty get a potent calculating force for nu-
merical investigations. A similar course has been run at Princeton (2000− 2002).
Many of the problems investigated by the Princeton students arose from graduate
dissertations or current faculty research. It has been very easy finding graduate
students and faculty excited about working on this course; at the end of a semester
or year, instead of having a folder of solution keys to calculus, a graduate student
should be able to co-author an experimental math paper with the undergrads.

Below are the notes from the NYU Fall2002 class.



Problem List

1. Primality Testing:

In a major theoretical breakthrough, Manindra Agarwal, Nitin Saxena and
Neeraj Kayal discovered a deterministic polynomial time algorithm to deter-
mine if a number is prime or composite. Previous algorithms are known to
be polynomial only under well believed conjectures (GRH), or are probabal-
istic. Some aspects of current primality testing algorithms will be explored,
possibly the distribution of the least primitive root modp.

2. Ramanujan Graphs:

The construction of graphs that are highly connected but have few edges
have many important applications, especially in building networks. To each
graphG we can associate a matrixA, whereAij is the number of edges
from vertexi to vertexj. Many properties ofG are controlled by the size
of the second largest eigenvalue ofG. One project will be to investigate the
distribution of the normalized second largest eigenvalues.

3. Randomness of Arithmetic Maps:

For a primep, consider the mapInvp which sendsx to its inverse modp,
x 7→ x. One project will be to compare this map to random maps modp.
For example, letL(p) be the length of the longest increasing subsequence.
If p is congruent to3 mod4, the inverse map is a fixed-point-free signed in-
volution, and the length ofL(p) can be compared to that from random fixed-
point-free signed involutions (studied by Rains and others). LetS(m,n; c)
be the Kloosterman sum,

S(m,n; c) =
∑

xmodp

e2πi mx+nx
c (1)

An additional project will be to investigate
∑

c
|S(1,1;c)|2

c2
, which is related

to number variance of the Upper Half Plane mod SL(2,Z). Finally, let√
p ≤ x ≤ 2

√
p. Arrange in increasing order the

√
p numbersx, and

compare their spacings to Poissonian behavior.
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Chapter 1

Introduction, Primality Testing,
Algebra Review

We introduce basic number theory concepts and primality algorithms. Lecture by
Peter Sarnak; notes by Steven J. Miller.

1.1 Primality Testing

Givenn, is n prime or composite? How difficult is this? How long does it take?
Brute force: try factors up to

√
n, so can do in

√
n steps.

P = NP problem. Deep central problem in theoretical Computer Science.P
is problems solvable in polynomial number of steps (in terms of input); if equals
NP , a lot of problems are solvable quickly.

Telling whenn is prime: isn’t supposed to be hard, but until two weeks ago,
wasn’t known to be aP problem.

Notation: A(x) = O
(
B(x)

)
if there exists aC > 0 (which can be computed;

if it cannot be computed, we say so) such that|A(x)| ≤ CB(x).
Example: One could show every sufficiently large odd number is the sum of

three primes. However, we didn’t know how large sufficiently large was! IE, we
couldn’t go through the calculation and make explicit a numberN0 such that ifn
is odd and greater thanN0, thenn is the sum of three primes. (Note: this has been
removed, and we know have another proof giving an explicitN0).

Theorem 1.1.1 (Agrawal, Kayal, Saxena).There is a procedure which runs in

at mostO
(

log12 n
)

steps determines whethern is prime. (Might be a little more
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than log12 n, ie, might be something likelog12 n(log log n)A).

There were algorithms that were known and faster, but only known to work all
the time assuming certain well believed hypotheses (Riemann Hypothesis, RH).

(Go to http://www.math.nyu.edu/∼millerj/problemlist/problems.htm for a copy
of their paper).

Need a feel for numbers. Whenn is big,log n (to any power) is much less than
n. For practical applications, the size of the constant is important, as a constant
of size10100 would make an algorithm useless for our real world applications (ie,
for the ranges we can reach). In AKS, the constants are tractable.

Technical Point: In AKS, they quote a theorem from number theory (they
treat this as a black box: someone from this class will hopefully investigate this
result further).There are many primesp for whichp−1 has a large prime factorq,
q > p

2
3 . Related to Sophie Germain primes: primesp wherep− 1 = 2q, q prime.

(She showed that for primes like this,xp + yp = zp, you can solve Fermat’s Last
Theorem for such primes. It is not known if there are infinitely many primes
like this). AKS does not need to know there are infinitely many Sophie Germain
primes; fortunately all they need is that there are sufficiently many primesp with
p− 1 with large prime factors.

Similar to Twin Primes: primesp1, p2 with p1−p2 = 2. We don’t know if there
are infinitely many twin primes, but we do have heuristics (Hardy-Littlewood)
predicting how many twin primes there are (and we observe exactly that many).
Sophie Germain primes are more subtle, but should be able to get heuristics. For
twin primes and related quantities, see David Schmidt’s report on Prime Investi-
gations (Princeton Undergraduate Math Lab,2000 − 2001). Anyway, this would
be a good project.

1.2 Arithmetic Modulo p

Number Theory: the study of whole numbers.Z is the integers, look atZ/nZ
= {0, 1, 2, . . . , n− 1}. This is a finite group (under addition); in fact, it is a finite
ring (can also multiply, have inverses for the non-zero elements only ifn is prime).

Notation:x ≡ y modn meansx− y is a multiple ofn.
Try and solve inZ the equation2x+1 = 2y. The left hand side is odd, the right

hand side is even. Thus, there are no solutions. Really, just did arithmetic mod2
or inZ/2Z. Harder:x2+y2+z2 = 8n+7. This never has a solution. Look modulo
8. The RHS is7 modulo8. What are the squares mod8? 11 = 1, 22 = 4, 32 = 1,
42 = 0, repeats. See there is no way to add three squares and get7.
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Idea: First, try and solve the equation modulo different primes. If you cannot
solve it for some prime, then you cannot solve it over the integers.

1.2.1 Algebra Review

Z/nZ: do arithmetic over this ring.
(
Z/nZ

)∗
are the invertible (multiplicatively)

elements in the ringZ/nZ, ie, x is in
(
Z/nZ

)∗
if there is ay such thatxy ≡ 1

modn. Note: if gcd(x, n) > 1 (ie, x andn have a common prime divisorp), then
you cannot invertx (there is noy with xy ≡ 1 mod n). Why? xy ≡ 1 mod n
meansxy = 1 + λn for some integerλ. But if p|x andp|n, thenp|1 which is
absurd. Exercise: ifgcd(x, n) = 1, there is an inverse (Euclidean Algorithm).

The cardinality (number of elements in the set) of
(
Z/nZ

)∗
is the number

of x ∈ {0, 1, 2, . . . , n − 1} such thatgcd(x, n) = 1. We denote the number of
suchx by φ(x), the Euler totient function. (Good Reference: H. Davenport: The
Higher Arithmetic). Note that ifp is prime,φ(p) = p − 1. This implies that∣∣∣
(
Z/pZ

)∗∣∣∣ = p − 1 = Z/pZ − {0}. IE, we have a field ifn is a prime, as every

non-zero element is invertible.(
Z/nZ

)∗
, for anyn, is a finite Abelian group (we have inverses under mul-

tiplication, and order of multiplication doesn’t matter). Finite Abelian Groups is
a trivial subject: Structure Theorem for Finite Abelian Groups: product of cyclic
groups.

Forn = p a prime,
(
Z/nZ

)∗
is a cyclic group of orderp− 1.

If G is a group (have identity, closed under some binary operation, have in-
verses with respect to the binary operation, operation is associative), we say the
order ofx ∈ G, ord(x), is the least positive powerm such thatxm = e, where
e ∈ G is the identity of the group. In a finite group, every element has finite order
(proof: use the pidgeonhole principle).

Theorem 1.2.1 (Lagrange).ord(x) | ord(G).

Corollary 1.2.2 (Fermat’s Little Theorem). For any primep, if gcd(a, p) = 1,
thenap−1 ≡ 1 modp.
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1.2.2 Using Fermat’s Little Theorem

To check and see if a numbern is prime, why not check ifan−1 ≡ 1 mod n
if gcd(a, n) = 1. It is very easy to quickly computegcd(a, n) (use Euclid’s
Algorithm). Sketch: without loss of generality, leta < n. Write n = b0a + b1,
and now the gcd ofa andn is the same as that ofa andb1 (note0 ≤ b1 < a).

How long does it take to raisea to then− 1 power? Use repeated squares and
base2 expansion. Example100 = 64 + 32 + 4, or 1 · 26 + 1 · 25 + 1 · 22. Thus,
doa2, a2 · a2, a4 · a4, a8 · a8, a16 · a16, a32 · a32. Thena100 = a64 · a32 · a4.

If, by choosing ana, you find an−1 6≡ 1 mod n, you have a certificate for
compositeness, but you have no idea what the factors ofn are!

When a machine uses Fermat’s Little Theorem, it randomly chooses a fixed
number ofa’s between1 andn − 1. Problems: how many times should you run
these tests to be very confident of the result; are there any numbers which always
pass this test, yet are composite?

About eight years ago it was proved there are infinitely many Carmichael num-
bers (numbersn such thatan−1 ≡ 1 modn for all a, butn is composite).

1.2.3 Quadratic Reciprocity

p, q odd primes. We define
(

a
p

)
to be1 if a is a non-zero square modp, 0 if a = 0,

and−1 otherwise (ie, ifa is not a square modp). Notea is a square modp if there
exists anx ∈ {0, 1, . . . , p− 1} such thata ≡ x2 modp. Forp an odd prime, half
the non-zero numbers are squares, half are not.

Exercise:
(

a
p

)
= a

p−1
2 modp for oddp. Note the above squared isap−1 ≡ 1.

Theorem 1.2.3 (Quadratic Reciprocity).
(

q
p

)
=

(
p
q

) · (−1)
p−1
2

q−1
2 , p, q odd

primes.

Gauss gave at least four proofs of this deep result. If eitherp or q is equivalent
to 1 mod4, then one has

(
q
p

)
=

(
p
q

)
, ie, I’m a square root modulo you if you are a

square root modulo me.
Carmichael numbers were behaving like primes. We want to get rid of them.

Instead of testingan−1 ≡ 1 modn, test and see ifa
n−1

2 ≡ (
a
n

)
modn. Similar to

the Euclidean Algorithm, can computer
(

a
n

)
in logn steps by constant applications

of Quadratic Reciprocity.
Key Test: Will test thata

n−1
2 ≡ (

a
n

)
modn for 1 ≤ a ≤ C log2 n. If fails for

somea, the number is composite. If it passes, by the Riemann Hypothesis (RH),
then it is true for alla. Will then show this is a valid test for primality (ie, unlike
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Carmichael numbers, if this is satisfied for alla up toC log2 n, thenn is prime.
This will take aboutlog4 n steps).

Algebra Books: Herstein (Topics in Algebra); Birkhoff-Mclean (Algebra),
Lang (Undergraduate Algebra).

1.3 Lecture Next Week

Steve will talk about reciprocity, finite fields.

1.4 WWW Resources

http://mathworld.wolfram.com/ is a good place to look up unfamiliar terms.
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Chapter 2

Notation, Euclid’s Algorithm,
Lagrange’s Theorem, Riemann Zeta
Function

We will review notation, Euclid’s Algorithm, Lagrange’s Theorem, and prove
there are infinitely many primes (three ways: following Euclid, by studying the
Riemann Zeta Functionζ(s) ass → 1, and by analyzingζ(2). Lecture by Steven
J. Miller; notes by Alex Barnett and Steven J. Miller.

2.1 Notation

• a|b : a dividesb, i.e. the remainder after integer divisionb
a

is 0.

• (a, b) : Greatest Common Divisor (GCD) ofa andb. Sometimes written
gcd(a, b).

• x ≡ y( mod n) : An equality once both sides of the equation have been
taken modulon. Equivalently, there exists an integera such thatx = y+an.

• wlog : ‘without loss of generality’. For example, if we have two numbersx
andy, it is often convenient to know which is larger and which is smaller.
Without loss of generality, we can sayx ≤ y, as the casex ≥ y is handled
identically (after permuting the variables).

• s.t. : such that.
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• ∀ : for all.

• ∃ : there exists.

• big O notation :A(x) = O(B(x)), read “A(x) is of orderB(x)”, is short-
hand for, there is aC > 0 (which we can explicitly calculate), s.t.|A(x)| ≤
C B(x), ∀x.

• |S| or #S : number of elements in the setS.

• #{condition} : number of objects satisfying thecondition.

• p : unless otherwise stated, a prime number.

• Z : the set of integers.

• Z/nZ : the additive group of integers modn.

• (Z/nZ)∗ : the multiplicative group of invertible elements modn.

• Q: the set of rational numbers.Q = {x : x = p
q
, p, q ∈ Z, q 6= 0}.

• R: the set of real numbers.

• C: the set of complex numbers.

•
(

a
p

)
: Legendre symbol ofa andp, defined as

(
a

p

)
=





0, if p|a, that is,a = 0( mod p)
1, if ∃x s.t.x2 = a( mod p)
−1, if the above does not exist.

(2.1)

The symbol tests the question, “Doesa have a square root in thefield of
arithmetic modulop?”

• ‘weak bound’ : an inequality constraining some quantity which does a very
poor job of getting close to the true size of the quantity. That is, a not very
useful bound.
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2.2 Euclid’s algorithm for GCD

Tells you if two positive integersx andy have a GCD greater than 1 by finding
it. Therefore it’s a ‘constructive proof’. It is also ‘deterministic’ (involves no
random choices). A fast procedure,i.e. takes only O(logy) steps. Remember that
the number of digits∝ log y. wlog we takey > x.

Each step is the ‘black box’ integer division routine we’ll callD, which given
the pairx, y returns the pair of integersb, r s.t.r < x and satisfying

y = bx + r. (2.2)

Note that this step is polynomial in the number of digits (probably∼ (log y)2 —
anyone?).

ALGORITHM:

Start with the pairy, x and performD to getb1, r1.
PerformD onx, r1 to getb2, r2.
PerformD on r1, r2 to getb3, r3.

...
PerformD on rn−2, rn−1 to getbn, rn.

Stop whenrn is either

• 0, in which casern−1 is the GCD, or

• 1, in which case the GCD is 1, that is,x andy are relatively prime.

The procedure works because theD step gives anr which inheritsall common
divisors ofy andx. This is easy to see by writingD asr = y − bx. Therefore
all the adjacent pairs in the sequencey, x, r1, r2 · · · rn−1 share the same GCDs.
The sequence is also descendingy > x > r1 > r2 > · · · > rn−1, so must reach
the case thatrn−1|rn−2, in which casern−1 is the GCD andrn = 0, or that a
remainder of 1 is reached, which implies no common divisors. We have a worst-
case scenario that each remainder is smaller than the previous by a constant factor
c < 1 (I believe this is the inverse of the Golden Ratio(

√
5 − 1)/2 ≈ 0.618 · · ·

— anyone?), giving geometric (exponential) shrinkage of ther’s. Therefore the
worst case is that the answer is reached inn = O(log y) steps, and the whole
algorithm is therefore polynomial inlog y.
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2.3 Lagrange’s Theorem

2.3.1 Basic group theory

GroupG is a set of elementsgi satisfying the four conditions below, relative to
some binary operation. We often use multiplicative notation (g1g2) or additive
notation (g1 + g2) to represent the binary operation. For definiteness, we use
multiplicative notation below; however, one could replacexy with b(x, y) below.

If the elements ofG satisfy the following four properties, thenG is a group.

1. ∃e ∈ G s.t.∀g ∈ G : eg = ge = g. (Identity.) We often writee = 1 for
multiplicative groups, ande = 0 for additive groups.

2. ∀x, y, z ∈ G : (xy)z = x(yz). (Associativity.)

3. ∀x ∈ G, ∃y ∈ G s.t.xy = yx = e. (Inverse.) We writey = x−1 for
multiplication,y = −x for addition.

4. ∀x, y ∈ G : xy ∈ G. (Closure.)

If commutation holds (∀x, y ∈ G, xy = yx), we say the group is Abelian.
Non-abelian groups exist and are important. For example, consider the group of
N ×N matrices with real entries and non-zero determinant. Prove this is a group
under matrix multiplication, and show this group is not commutative.

H is asubgroupof G if it is a group and its elements form a subset of those
of G. The identity ofH is the same as the identity ofG. Once you’ve shown the
elements ofH are closed (ie, under the binary operation,b(x, y) ∈ H if x, y ∈ H),
then associativity inH follows from closure inH and associativity inG.

For the application to Fermat’s Little Theorem you will need to know that the
set{1, x, x2, · · · xn−1} wheren is the lowest positive integer s.t.xn = 1, called
thecyclic group, is indeed a subgroup of any groupG containingx, as well asn
divides the order ofG.

For a nice introduction to group theory see: M. Tinkham,Group Theory and
Quantum Mechanics, (McGraw-Hill, 1964) or S. Lang,Undergraduate Algebra.

2.3.2 Lagrange’s Theorem

The theorem states that ifH is a subgroup ofG then|H| divides|G|.
First show that the sethH, i.e. all the elements ofH premultiplied by one

element, is justH rearranged (Cayley’s theorem). By closurehH falls within H.
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We only need to show thathhi can never equalhhj for two different elements
i 6= j. If it were true, since a uniqueh−1 exists we could premultiply the equation
hhi = hhj by h−1 to givehi = hj, which is false. Thereforehhi 6= hhj, and we
have guaranteed a 1-to-1 mapping fromH to hH, sohH = H.

Next we show that the setsgiH andgjH must either be completely disjoint, or
identical. Assume there is some element in both. Thengih1 = gjh2. Multiplying
on the right byh−1

i ∈ H (sinceH is a subgroup) givesgi = gjh2h
−1
1 . As H

is a subgroup,∃h3 ∈ H such thath = h2h
−1
1 . Thusgi = gjh3. Therefore, as

h3H = H, giH = gjh3H = gjH, and we see if the two sets have one element in
common, they are identical. We call a setgH acoset(actually, a left coset) ofH.

Clearly

G =
⋃
g∈G

gH (2.3)

Why do we have an equality? Asg ∈ G andH ⊂ G, every set on the right is
contained inG. Further, ase ∈ H, giveng ∈ G, g ∈ gH. Thus,G is a subset of
the right side, proving equality.

There are only finitely many elements inG. As we go through allg in G, we
see if the setgH equals one of the sets already in our list (recall we’ve shown two
cosets are either identical or disjoint). If the set equals something already on our
list, we do not include it; if it is new, we do. Continuing this process, we obtain

G =
k⋃

i=1

giH (2.4)

for some finitek. If H = {e}, k is the number of elements ofG; in general,
however,k will be smaller.

Each setgiH has|H| elements. Thus,|G| = k|H|, proving|H| divides|G|.

2.4 Introduction to Riemann zeta function

2.4.1 Prelude: Euclid’s proof of infinity of primes

Given the set of primesp1 · · · pn you can always construct the number
∏n

i=1 pi +1
which is indivisible by any of the givenp1 · · · pn. Therefore this number must
be divisible only by primes greater thanpn, or must be prime itself. Therefore
there exists a prime greater thanpn. An analysis of this proof gives a very weak
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lower bound on the number of primes less thanx. The worst case scenario is that∏n
i=1 pi +1 is the next prime. Thus, if we hadn−1 primes up tox =

∏n−1
i=1 pi +1,

we would haven primes up to

n−1∏
i=1

pi ·
( n∏

j=1

pj + 1
)

+ 1 (2.5)

Thus, having at leastn − 1 primes less thanx, we have at leastn primes less
than (basically)x2. One can quantify this further. One should get something like
there are at leastn primes less than2n or 4n.

The zeta function will give us other ways to prove this, and to get a better
estimate on theprime counting function,

π(x) ≡ #{p < x}, (2.6)

giving the number of primes below any numberx.

2.4.2 Definition, two forms

The Riemann zeta functionζ(s) is defined, for Re(s) > 1, by

ζ(s) =
∞∑

n=1

1

ns
. (2.7)

We prove the useful fact that, for Re(s) > 1,

∞∑
n=1

1

ns
= ζ(s) =

∏
primes

p

(
1− 1

ps

)−1

, (2.8)

which we call LHS and RHS. We call the product over primes an Euler Product.
To show equivalence, we use the Fundamental Theorem of Algebra (FTA) that

all positive integers can be expressed as a single, unique, product of prime factors.
Expanding all reciprocals in the RHS using the geometric series sum formula
(1− x)−1 = 1 + x + x2 + x3 + · · · , gives for the RHS,

(1 + 2−s + 2−2s + 2−3s + · · · )(1 + 3−s + · · · )(1 + 5−s + · · · ) · · · .

Remarkably, due to the FTA, we can associate 1-to-1 each term (choice of prime
factors) on the RHS with eachn on the LHS. For instance,n = 12 from LHS is
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accounted for by the RHS term,

2−2s · 3−s · 1 · 1 · 1 · · · = 1

(22 · 3)s
=

1

12
.

Each combination of RHS terms corresponds uniquely to a singlen.

2.4.3 ζ(s)’s Behaviour and the Infinitude of Primes

We take the limit ofs going to 1 and compare sides. LHS gives

lim
s→1

ζ(s) = lim
s→1

∞∑
n=1

1

ns
=

∞∑
n=1

1

n
. (2.9)

This sum diverges. Why? Crudely,
∑N

n=1 n−1 is close to
∫ N

1
dy
y

which equals
log N . The definition of ‘close’ can be tightened up. For instance, you can cre-
ate upper and lower bounds by approximating the integral by rectangular strips,
getting

N∑
n=2

1

n
≤

∫ N

1

dy

y
≤

N−1∑
n=1

1

n
. (2.10)

As the two sums differ by a bounded amount, we see the sum grows likelog N .
As s goes to1, if there are only finitely many primes than the product over

primes is well behaved (ie, finite). Therefore, there must be infinitely many
primes!

Further study of the zeta function will lead us to a good estimate forπ(x).
A second proof follows from the fact thatζ(2m) = rational·π2m, for integer

m. This is known as aSpecial Valuesproof, as we are using the value ofζ(s) at
a special value. We need the fact thatπ2 is irrational. ζ(2) =

∑∞
n=1

1
n2 = π2

6
,

which is irrational. Thus, the right hand side (the product over primes) must also
be irrational; however, if there are only finitely many primes, whens = 2 the right
hand side is rational! Thus, there must be infinitely many primes.

Please see Steve’s notes, and URLs for more information on all of the above.
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Chapter 3

Legendre Symbols, Gary Miller’s
Primality Test and GRH

We review the Legendre Symbol. We discuss Gary Miller’s primality test, and
show that if the General Riemann Hypothesis (for Dirichlet Characters) is true,
then Miller’s test correctly determines if a numbern is prime or composite, and
runs in timeO(log4 n). Lecture by Peter Sarnak; notes by Steven J. Miller.

3.1 Review of the Legendre Symbol

Recall Fermat’s Little Theorem:ap−1 ≡ 1 modp if p is prime.
Givenn, checkan−1 ≡ 1 modn for manya’s relatively prime ton. Exercise:

If ever this is not satisfied, thenn mustbe composite.
There are composite numbers (called Carmichael numbers) which satisfyan−1 ≡

1 mod n for all a, yet are not prime. The first Carmichael number is561 =
3 · 11 · 17; the third is1729 = 7 · 13 · 19. Exercise:Prove all Carmichael numbers
mustbe square-free.

Aside: 1729 has an interesting history (Ramanujan, Hardy and taxicabs).
Hardy visited Ramanujan in the hospital, Hardy remarked that his taxicab’s num-
ber was particularly uninteresting; Ramanujan remarks it (1729) is the smallest
number which can be written in two different ways as the sum of two cubes.
1729 = 13 + 123 = 93 + 103.

Recall theLegendre symbol
(

a
p

)
is 0 if p|a, 1 if there is anx 6= 0 with x2 ≡ a

mod p, and−1 if there is no solution tox2 ≡ a mod p. Euler’s condition is(
a
p

) ≡ a
p−1
2 modp.
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Really, the Legendre symbol is a function onFp = Z/pZ. We can extend the
Legendre symbol to all integers. We only need to knowa modp, and we define(

a
p

)
=

(
a modp

p

)
.

Initially the Legendre symbol is define only when the bottom is prime. We
now extend the definition to alln as follows: letn = p1 · p2 · · · pt be the product

of t distinct primes. Then
(

a
n

)
=

(
a
p1

)(
a
p2

)
· · ·

(
a
pt

)
. Note this isnot the same

as saying that ifa is a square (a quadratic residue) modn, thena is a square mod
pi for each prime divisor.

The main result (which allows us to calculate the Legendre symbol quickly
and efficiently) is the celebrated

Theorem 3.1.1 (Quadratic Reciprocity). For m, n odd and relatively prime,(
m
n

) (
n
m

)
= (−1)

m−1
2

n−1
2 .

3.2 Gary Miller’s Primality Test, 1976

Miller Test: Givenn as input (n must be odd), test whether for2 ≤ a ≤ 70 log2 n,(
a
n

) ≡ a
n−1

2 modn (where, of course,a andn are relatively prime). If this test
fails for somea in this range, outputcomposite; if it passes the test for all sucha,
outputPrime.

Note that we can very quickly determine if two number are relatively prime
(use the Euclidean Algorithm, which takesO(log n) steps).

Theorem 3.2.1 (Miller Test Results).The Miller Test runs inO(log4 n) steps. If
the output iscomposite, then the numbern is composite (ie, the algorithm’s result
is correct). If we assume GRH (theGeneral Riemann Hypothesis, the most impor-
tant unsolved problem in mathematics), then the outputprime is also correct.

Running time: we can compute
(

a
n

)
in O(log n) steps. By Quadratic Reci-

procity, to compute
(

a
n

)
(may assume−n

2
≤ a ≤ n

2
), it is enough to compute

(
n
a

)
(with a factor of−1).

Why? We only need to knowa modn, so we may reducea until−n
2
≤ a ≤ n

2
.

Note the top (in absolute value) is at most half the size of the bottom (n). We then
use quadratic reciprocity to evaluate

(
a
n

)
. Up to a factor of−1,

(
a
n

)
=

(
n
a

)
. Thus,

we may reducen moda, so thatn moda lies between−a
2

and a
2
. Again, the top

is half the bottom, and the bottom is at most one-quarter of what we started with
(n).
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We continue this process; we need to do such flippings at mostlog n times.
Why? Each time the size of the denominator is at most half what it was before. If
2r = n, thenr = log2 n < log n. Thus, after at mostlog n passes, the denominator
would be about1. So, a stage or two before would give a denominator around2 or
4. The point is, inlog n steps, we can reduce to evaluating the Legendre symbol
of something where the bottom is of bounded size. Thus, we can evaluate

(
a
n

)
in

O(log n) steps. (Have a lookup table forn < 10, et cetera).
We need to evaluate

(
a
n

)
for C log2 n choices ofa, and for each choice we

need to evaluatea
n−1

2 modn (so we can compare it to
(

a
n

)
), which takesO(log n)

steps. Thus, the number of steps isO(log4 n).
The Riemann Hypothesis plays a very important catalystic role. It leads us to

statements we feel should be true, statements which can often be proved without
the full force of Riemann.

Suppose we pass the test for alla with 2 ≤ a ≤ 70 log2 n anda relatively
prime ton. Gary Miller proved that, if GRH is true, then knowing thatn passes
the test for alla in this little segment allows us to conclude thatn will pass the
testfor all a. Clearly, we know ifn passes the test for alla up ton − 1, then we
known will pass the test for alla relatively prime ton. The power of GRH is that
we need only checklog2 n values ofa.

3.2.1 Aside: Finite Abelian Groups

Let A be a finite Abelian Group, thenA is (ie, is isomorphic to) a product of cyclic
groups.

Look at(Z/nZ, +), the group of integers modn under clock addition. This is
a cyclic group.

The general statement is:

Theorem 3.2.2 (Structure Theorem for Finite Abelian Groups).LetA be a fi-
nite Abelian Group. Then there are integersn1 throughnt such thatA u Z/n1Z×
· · · × Z/nrZ, ie, A is isomorphic to the Cartesian product of groups of the form
Z/mZ.

Noteu means is isomorphic to; we say two groups areisomorphic if there
is a group homomorphism between them which is one-to-one and onto. Agroup
homomorphism φ is a map which preserves the group structure. Consider two
groupsG1 andG2 and a mapφ : G1 → G2. If φ is a group homomorphism, then
for x, y ∈ G1, φ(x+y) = φ(x)

⊕
φ(y), where+ is addition in the first group and⊕

is addition in the second group.
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We now define theCartesian Product of two groups.X × Y is the set of
pairs(x, y) wherex ∈ X andy ∈ Y . If we are writing the group action ofX
andY additively (say by

⊕
X for addition inX and

⊕
Y for addition inY ), then

(x1, y1)
⊕

X+Y (x2, y2) = (x1

⊕
X x2, y1

⊕
Y y2).

Let us consider a group written in additive notation. Recall theorder of an
element is the number of times you must add the element to itself to get the
identity. We define theexponentof a group as the least common multiple of the
orders of the elements of the group.

ConsiderZ/2Z×Z/2Z, the product of two groups. InZ/2Z×Z/2Z, we have
the pairs(0, 0), (0, 1), (1, 0) and(1, 1). (0, 0) is the identity under addition; all
other elements (check) have order2. Thus, the exponent ofZ/2Z× Z/2Z is 2.

Now considerZ/4Z = {0, 1, 2, 3}. 0 is the identity, and under addition1 and
3 have order4, and2 has order2. Thus, the exponent of this group is4. Exercise:
using the exponent, observe thatZ/2Z× Z/2Z andZ/4Z cannot be isomorphic.

Fact: if p is prime, thenZ/pZ = Fp is a field. The non-zero elements have
multiplicative inverses.(Z/pZ)∗ = F∗p = Fp − {0} (the non-zero elements under
multiplication) is a cyclic abelian group withp − 1 elements! IE, there is an ele-
mentg whose powers generate the group.Exercise: Prove that ifn is composite,
thenZ/nZ is not a field. Hint: show some non-zero element has no multiplicative
inverse.

Sketch of Proof of Fact:SupposeF∗p is not cyclic. Letd be the exponent (the
least common multiple of the orders of the elements) ofF∗p. Thend < p − 1. As
the order of every element dividesp− 1 (Lagrange’s Theorem), we haved|p− 1.

For eachx ∈ Fpf , xd = 1 (in the fieldF∗p). This is becaused is the least
common multiple of the orders of the elements of the group. Thus, if ord(x) is
the order ofx, xord(x) = 1. As ord(x)|d, we have ord(x) = kd for somek ∈ Z.
Thus,xd = xkord(x) = (xord(x))k = 1k = 1.

Now use the fact thatF∗p is a field. Considerxd − 1 = 0 overFp (clearly0 is
not a root).Over Fp means look for solutions to this equation withx ∈ Fp). A
polynomial of degreed has at mostd roots (another theorem of Lagrange). But
everyx ∈ F∗p = Fp − {0} is a root, becaused (the exponent of the group) is the
least common multiple of the orders of the elements. This is a contradiction: we
havep− 1 roots (everyx ∈ F∗p solvesxd − 1 ≡ 0 modp), but by Lagrange there
are at mostd roots. Asd < p− 1, contradiction.

Steve Miller will discuss this needed theorem of Lagrange. See also the hand-
out from Davenport’sThe Higher Arithmetic.
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3.2.2 Lehmer’s Proposition

Proposition 3.2.3 (Lehmer). If
(

a
n

) ≡ a
n−1

2 modn for all a up toC log2 n, then
n is prime.

We assumen = p1 · · · pt, t > 1, and all primes are distinct and odd. (When
there are repeated primes, the proof is easier, and is left as an exercise to the
reader). Thenan−1 ≡ 1 mod n for (a, n) = 1 (ie, a andn relatively prime),
implies thatan−1 ≡ 1 modpj (pj one of the prime factors ofn).

Thus,n − 1 ≡ 0 modpj − 1. If there were a remainder (ie, ifn − 1 wasn’t
equivalent to0 modpj − 1 but was equivalent torj 6≡ 0 modpj − 1), if we raised
a to this power (rj), we wouldn’t get1 for all a. Just takea a generator ofF∗pj

,
ie, an element of maximal orderpj − 1. Thenan−1 ≡ arj 6= 1 modpj. Note that
apj−1 ≡ 1 modpj, soan−1 ≡ arj modpj.

We saypj (a factor ofn) is of type 1 if n−1
2
≡ 0 modpj − 1; we saypj is of

type 2 if n−1
2
≡ pj−1

2
modpj − 1.

If at least one of thepj ’s (without loss of generality, sayp1) is of type1, takea
a quadratic non-residue modp1 and a quadratic residue forp2, p3, . . . , pt. One can
find such ana by theChinese Remainder Theoremas the primes are distinct.
For a statement of the Chinese Remainder Theorem, see the Appendix at the end
of the notes.

We have
(

a
p1

)
= −1 and

(
a
pj

)
= 1 for j > 1. As we are assumingn is

composite, there are at least two primes.

As
(

a
n

)
=

(
a
p1

)(
a
p2

)
· · ·

(
a
pt

)
, we obtain

(
a
n

)
= −1 · 1 · · · 1.

As we are assumingp1 is of type1, we haven−1
2
≡ 0 modp1−1. Modp1−1,

each non-zero element in(F/p1F)∗ has order dividingp1 − 1. Thus,a
n−1

2 ≡ 1
modp1.

We are assuming that the Miller Test is satisfied for alla. Thus,
(

a
n

)
= a

n−1
2

modn. Mod p1, we have shown the left hand side is−1 and the right hand side is
1, contradiction!

We are left with the case where all the primes are of type2. We leave this as
an exercise for the reader.
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3.3 GRH Implies Just Need To Check Up ToO(log2 n)

in Miller

Why does GRH imply that
(

a
n

) ≡ a
n−1

2 mod n for all a up to 70 log2 n (and

relatively prime ton) implies that
(

a
n

) ≡ a
n−1

2 modn for all a relatively prime to
n?

3.3.1 Fourier Analysis

Representation Theory (especially characters of Abelian Groups) is the most im-
portant things in Mathematics. LetA be a finite Abelian Group. To each such
group, we associate a dual group, denotedÂ, whereÂ is the set of all homomor-
phisms fromA intoC∗, C∗ are the complex numbers invertible under multiplica-
tion.

Recall ψ is a group homomorphismif ψ(a + b) = ψ(a)ψ(b). Note here
ψ : G1 → G2, andG1 has been written additively andG2 has been written multi-
plicatively. We call such aψ acharacter.

3.3.2 Examples

Let A = Z/nZ, andν ∈ Z/nZ. Let e(z) = e2πiz for z ∈ C. Defineψν(x) =
e(νx

n
). Exercise:Show by direct calculation thatψν(a+b) = ψν(a)ψν(b). In fact,

for eachν ∈ Z/nZ we get a character, and the characters are distinct (exercise).

We only need to know howψν acts on1, asψν(k) = ψν(1+ · · ·+1) =
(
ψν(1)

)k

.

Â is canonically isomorphic toA. What this means is, to eachν ∈ A there
corresponds a characterψν in Â, and to each characterψ ∈ Â there corresponds a
numberνψ ∈ A = Z/nZ.

We can multiply two characters:(ψ1ψ2)(x) = ψ1(x)ψ2(x). It is easy to see
that this is a character. The trivial character (which sends everything to1) is the
identity of the groupÂ.

Consider two groupsA andB. We can use the characters ofA andB to get
the characters of the cartesian productA×B. If we want the characters ofA×B,
take a characterψa of A andφb of B and form the characterψaφb, defined by
(ψaφb)(x, y) = ψa(x)φb(y).
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3.3.3 Characters ofF∗p: Dirichlet Characters

We denote characters ofF∗p by χ. Dirichlet proved the best theorem of mathemat-
ics, introducing a lot of new math to solve the following:

Theorem 3.3.1 (Primes in Arithmetic Progressions,1836, 1839). Let a andn
be relatively prime. There are infinitely many primes which givea when divided
by n; moreover, to first order all residue classesa modn (a, n relatively prime)
have the same number of primes!

In other words, there are infinitely manyx such thatxn + a is prime if a and
n are relatively prime.

Hard Question: without using Dirichlet’s Theorem, can you prove that there
must beoneprime congruent toa modn if a andn are relatively prime?

Clearly, if a andn are not relatively prime, there cannot be infinitely many
primes congruent toa modn. Dirichlet shows this is also a sufficient condition.

Dirichlet introduced characterswithout introducing the concept of a group!
They didn’t have group notation until later.

Look at(Z/nZ)∗ = {x : (x, n) = 1, 0 < x ≤ n− 1}. This is a finite Abelian
group. #(Z/nZ)∗ = φ(n), whereφ(n) is the Euler totient function, andφ(n) is
the number of integers (between0 andn) which are relatively prime ton.

Dirichlet usedq instead ofn, so we change notation and look at(Z/qZ)∗.
A Dirichlet Character is a characterχ of (Z/qZ)∗; ie, χ : (Z/qZ)∗ → C∗

andχ(ab) = χ(a)χ(b). Thus,χ lies in the dual group of(Z/qZ)∗. Recall thatC∗
is the set of complex numbers with multiplicative inverses, ie,C∗ = C− {0}.

Theprincipal or trivial character takes everyx ∈ (Z/qZ)∗ to 1; we denote
the trivial character byχ0.

If χ is a Dirichlet Character of(Z/qZ)∗, we sayχ hasmodulus (also called
conductor) q. We extendχ to be defined on all integers (all ofZ) by χ(m) = 0 if
m andq are not relatively prime, andχ(m) = χ(m modq) otherwise. Clearlyχ is
periodic, asχ(x+λq) = χ(x) for anyλ ∈ Z. Thus, we have the mapχ : Z→ C∗.

If q is prime, we have previously seen the characterχ(a) =
(

a
q

)
. This is an

extremely important character.
Another example: Letq = 4. We defineχ(n) to be0 if n is even,1 if n ≡ 1

mod4, and−1 if n ≡ −1 mod4. Exercise: Show this is a character.
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3.3.4 General Riemann Hypothesis (GRH)

Below,p will always denote a prime.χ will be a Dirichlet character moduloq (q
need not be prime).

Conjecture: GRH: For any q ≥ 1, x ≥ 3, if χ 6= χ0 (ie, if χ is not the
principal character) then

∣∣∣
∑
p≤x

(
1− p

x

)
· log p · χ(p)

∣∣∣ ≤ C log q · √x. (3.1)

If χ = χ0, then

∑
p≤x

(
1− p

x

)
log p ≤ x

2
+ O(

√
x). (3.2)

C is a universal constant, independent ofq.
We are summing primes up tox. The1− p

x
factors are just weight factors. If

q = 4 andχ is the character above,χ(p) gives a positive sign for primes congruent
to 1 mod4 and a minus sign for primes congruent to−1 mod4.

Analysis means cancellation; you want to see cancellation in a sum. The
numbers in these sums are flipping (plus one, minus one); we have aboutx

log x

primes less than x (this is the Prime Number Theorem, first proved in1896).
Random Drunk: each moment he flips a coin. If it is heads he staggers one

unit left, tails he staggers one unit right. Aftern steps, where do you think he’ll
be? Turns out he’ll be about

√
n units from the origin (with high probability).

Steve Miller will prove this in a later lecture or handout.
Motto: random numbers (of size around1) cancel like the square-root of the

number of terms.
What GRH is telling us is that the remainder term behaves like random noise.

3.3.5 Proof of the Miller Test

Theorem 3.3.2.If GRH is true, then if
(

a
n

) ≡ a
n−1

2 modn for all a ≤ C log2 n for
some fixed constantC, then it is true for alla (relatively prime ton, of course).

Remarkable observation:S = {a ∈ (Z/nZ)∗ :
(

a
n

) ≡ a
n−1

2 mod n} is a
subgroup of(Z/nZ)∗. Why? Exercise (Closure: show ifa, b in this set, so isab.
Identity: show1 is in this set. Inverses: show ifa ∈ S, a−1 modn is in S. Note
associativity is inherited from(Z/nZ)∗).
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By assumption,S contains (at least) the firstC log2 n elements. We claim this
impliesS contains alla relatively prime ton.

SupposeS is not all of(Z/nZ)∗. We talked about cosets (of Abelian Groups)
last time. (For more information about cosets and quotient groups, see the follow-
ing lecture by Steven J. Miller, notes by Alex Barnett). As everything is abelian,
we can form a quotient group by dividing our group(Z/nZ)∗ by the abelian sub-
groupS.

Thus,A = (Z/nZ)∗
S

is a group (a quotient group) andA is a non-trivial group
(ie, there is more than one element in this group). Why mustA have more than
one element?A is the group of representative cosets of(Z/nZ)∗ by the abelian
subgroupS. As S is not all of(Z/nZ)∗, there must be at least two cosets. Hence
A is not just the identity coset (which is1 · S or justS).

But this quotient (A) is a finite abelian group. We know for a finite abelian
group that its dual is isomorphic to itself. This means to each element inA we
have a character in̂A, and vice-versa. Further, the identity ofA is mapped to the
trivial character ofÂ.

Thus, there is a non-trivialχ : A → C∗. Now (Z/nZ)∗ → (Z/nZ)∗
S

→ C∗, and
thus we have a non-trivial Dirichlet character of(Z/nZ)∗ which is trivial onS (ie,
χ(s) = 1 for all s ∈ S).

By construction,χ is a Dirichlet character of(Z/nZ)∗, χ 6= χ0, andχ|S = 1
(the last means thatχ, restricted to s ∈ S is the identity map). We knowS is
all elements up to at leastC log2 n. So,χ(a) = 1 for all a ≤ C log2 n (from the
givens).

So, look at

Sum(p, q, x) =
∑
p≤x

(
1− p

x

)
log p · χ(p). (3.3)

By GRH, Sum(p, q, x) is less than a constant multiple oflog q · √x. Calling
the constantC2, we have Sum(p, q, x) ≤ C2 log q · √x.

If x ≤ C log2 n, then there is a contradiction. Why? In Equation 3.3, Sum(p, q, x)

is going to be
∑

p≤x

(
1 − p

x

)
log p, because all theχ(p) = 1 in this range. The

Prime Number Theoremstates that the number of primes less thanx is x
log x

plus
an error term which is smaller thanx

log x
(ie, in the limit, the size of the error term

divided by the number of primes less thanx tends to0 asx goes to infinity).
Thus,Sum(p, q, x) is going to look like a multiple ofx. Why a multiple of

x and not a multiple of x
log x

? Remember we have the factorlog p in the sum;
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this follows fromPartial Summation. Partial Summation is a discrete version of
Integration by Parts; see the Appendices at the end for a further statement.

By GRH, Sum(p, q, x) is bounded byC2 log q · √x. Therefore,x ≤ C2 log q ·√
x. This implies

√
x ≤ C2 log q, or x ≤ C2

2 log2 q.
Remember, we’ve changed notation fromn to q. We are assuming that(

a
q

)
≡ a

q−1
2 mod q for all a ≤ C log2 q for some fixed constantC. TakeC

greater thanC2
2 . Then we have a contradiction! If GRH is true, Sum(p, q, x) ≤

C2 log q ·√x only for x ≤ C2
2 log2 q. But we are assuming thatq passes the Miller

Test for alla up toC log2 q. Thus, we can takex larger thanC2
2 log2 q.

3.3.6 Review of Proof

Intuition: For random sequences, expect square-root cancellation in sums.
If we have a non-trivial character, if we look at these weighted sums ofχ(p),

there is no extra structure; we expect cancellation like
√

x. There has to besome
q-dependence, but GRH says it is like a universal constant timeslog q.

In the Miller Test, we test somethingC log2 n times. If the condition is always
true for theseC log2 n elements, we have a subgroupS of (Z/nZ)∗. If S isn’t all
of (Z/nZ)∗, we can find a character, and we have sums with this character (any
sum with characters is calledHarmonic Analysis). Further, this is a non-trivial
character which is the identity on the original group. The GRH cannot accomodate
a character of this type.

Why does the GRH lead to a contradiction? Basically, GRH says a certain
weighted sum ofχ(p) over the primes less thanx (whereχ is a Dirichlet character
with modulusq) cannot be too large. Specifically, it is at mostC2 log q · √x.

This implies that there is a lot of noise in theχ(p); basically, we need to have
a good mixing of primes which giveχ(p) = +1 with primes givingχ(p) = −1.

However, ifn satisfies the Miller Test fora up to C log2 q (with C > C2
2 ),

then we can find a modulusq and a Dirichlet characterχ where we have a very
long string of primes givingχ(p) = +1. This forces the weighted sum ofχ(p)
over primes less thanx (taking x = C log2 q) to be larger thanC2 log q

√
x, a

contradiction.
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3.4 Appendices

3.4.1 Aside: Forp Odd, Half the Non-Zero Numbers are Quadratic
Residues

Note, for an odd primepj, half of the non-zero numbers are quadratic residues,
and half are quadratic non-residues. TheLegendre symboltakes each element
a ∈ F∗p to an element in the group{−1, 1}. This is a homomorphism; not every
element has a square. The image is{−1, 1}; the kernel is all the elements ofF∗p
which are sent to1. Thus, half the numbers are residues, half are non-residues.

a →
(

a
p

)
= a

p−1
2 mod p. Thus, we have a homomorphism (given by the

Legendre symbol) fromF∗p → {−1, 1}. We claim the map is onto. The kernel is
all elements inF∗p which are mapped by the Legendre symbol to1, ie, the quadratic
residues. (One needs to show the Legendre symbol is a group homomorphism:(

xy
p

)
=

(
x
p

)
·
(

y
p

)
).

Standard Group Theory Arguments:
#F∗p

kernel u {−1, 1}. Thus, half the num-
bers inF∗p are quadratic residues.

3.4.2 Chinese Remainder Theorem

Theorem 3.4.1 (Chinese Remainder Theorem).Let m = m1m2, m1 and m2

relatively prime. ThenZ/mZ u Z/m1Z× Z/m2Z.

This allows us to, givena1 mod m1 anda2 mod m2, find ana mod m such
thata ≡ a1 modm1 anda ≡ a2 modm2. For example, try and solvex ≡ 3 mod
5 andx ≡ 4 mod7.

See any book on Algebra.

3.4.3 Partial Summation

Lemma 3.4.2 (Partial Summation: Discrete Version).

N∑
M

anbn = ANbN − AM−1bM +
N−1∑
M

An(bn − bn+1) (3.4)
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Lemma 3.4.3 (Abel’s Summation Formula - Integral Version).Let h(x) be a
continuously differentiable function. LetA(x) =

∑
n≤x an. Then

∑
n≤x

anh(n) = A(x)h(x)−
∫ x

1

A(u)h′(u)du (3.5)

See, for example, Walter Rudin,Principles of Mathematical Analysis(also
known asThe Blue Book), page70.
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Chapter 4

Cosets, Quotient Groups, and an
Introduction to Probability

Quotient groups. Basic probability theory for random walk. Lecture by Steven J.
Miller; notes by Alex Barnett and Steven J. Miller.

4.1 Quotient groups

Say we have a finite Abelian groupG (this means for allx, y ∈ G, xy = yx)
of orderm which has a subgroupH of orderr. We will use multiplication as
our group operation. Recall thecosetof an elementg ∈ G is defined as the set
of elementsgH = g{h1, h2, · · · , hr}. SinceG is Abelian (commutative) then
gH = Hg and we will make no distinction between left and right cosets here.

Thequotient group(or factor group), symbolized byG/H, is the group formed
from the cosets of all elementsg ∈ G. We treat each cosetgiH as an element,
and define the multiplication operation as usual asgiHgjH. Why do we needG
to be Abelian? The reason is we can then analyzegiHgjH, seeing that it equals
gigjHH. We will analyze this further when we prove that the set of cosets is a
group.

There are several important facts to note. First, ifG is not Abelian, then the set
of cosets might not be a group. Second, recall we proved the coset decomposition
rule: given a finite groupG (with n elements) and a subgroupH (with r elements)
then there exist elementsg1 throughgk such that
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G =
k⋃

i=1

giH. (4.1)

The choices for thegi’s is clearly not unique. Ifg1 throughgk work, so dog1h1

throughgkhk, wherehi is any element ofH. Recall this was proved by showing
any two cosets are either distinct or identical.

We will show below that, forG Abelian, the set of cosets is a group. Note,
however, that while it might at first appear that there are many different ways to
write the coset group, they really are the same. For example, the cosetsgH and
gh1h

4
2h3H are equal. This is similar to looking at integers modn; mod 12, the

integers5,−7 and19 are all equal, even though they look different.
We now prove that the set of cosets is a group (forG Abelian).
Closure. By commutivitygiHgjH = gigjHH. What is “HH”? Just the set

of all r2 possible combinations of elements ofH. By closure, and the existence
of the identity, this just givesH again (recall no element in a group can appear
more than once—duplicates are removed). ThereforegiHgjH = gigjH. Now, as
G is a group and is closed,gigj ∈ G. Thus, there is aα such thatgigj ∈ gαH

(asG =
⋃k

β=1 gβH. Therefore, there is anh ∈ H such thatgigj = gαh, which
implies gigjH = gαhH = gαH. Thus, the set of cosets is closed under coset
multiplication. Note, however, that while the cosetgigjH is in our set of cosets, it
may be written differently.

Identity. If e is identity ofG, theneHgiH = giH andgiHeH = giH, soeH
is the identity of this quotient group.

Associativity. Since as you may have noticed, the quotient group elements
behave just like those ofG, associativity follows from that ofG.

Inverse. It is easy to guessg−1H is the inverse ofgH. Check it:g−1HgH =
g−1gH = eH = identity, also true the other way round of course by commuta-
tivity. Unfortunately,g−1H might not be listed as one of our cosets! Thus, we
must be a little more careful. Fortunately, asg−1 ∈ G =

⋃k
β=1 gβH, there is

an α such thatg−1 ∈ gαH. Then, there is anh ∈ H with g−1 = gαh. Thus,
g−1 = gαhH = gαH, and direct calculation will show that the cosetgαH is the
inverse (under coset multiplication) ofgH.
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4.2 Random walk and discrete probability

Each step in a random walk is a random event. We first study a single random
event, then the combination of two random events, then multiply repeated events.

For other introductory probability theory see
http://engineering.uow.edu.au/Courses/Stats/File24.html

4.2.1 Probability distribution for a single event, mean, vari-
ance

Our single event consists of one of a set of choices happening. The choices are
labelled byi = 1 · · ·N , which are exclusive (no more than one can happen), and
complete (no less than one can happen). For instance, for a single coin toss,

i = 1 H, heads,

i = 2 T, tails.

We take the choicei as arandom variable, meaning all we know is a probability
pi ≥ 0 that each choice can happen.p = 0 means it never happens,p = 1 means
it always happens, and most things are somewhere in between (the unbiased coin
haspi = 1

2
, ∀i, ignoring the small probabilities of the coin landing on its edge or

quantum tunneling through the table.)
The set of{pi} we call theprobability distribution. Completeness implies

∑
i

pi = 1. (4.2)

Note the abbreviation
∑

i for
∑N

i=1.
We have some quantityf which has a valuefi for each choicei. For instance,

f could be the number of dots on each facei of a die, in which casefi = i. Mean
andvarianceare ways to characterize (summarize) the distribution overf .

Mean. The mean orexpectation value(expected value) off over the distribu-
tion is

f̄ ≡ E[f ] =
∑

i

pifi. (4.3)

This is just a weighted average off . Check it for the (unweighted) dice.pi = 1
6
,

∀i. You should get̄f = 7
2
.

Variance. The variance is the square of thestandard deviationσf :
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σ2
f ≡ Var[f ] =

∑
i

pi(fi − f̄)2. (4.4)

Crudelyσf gives the width of the distribution inf . From the definition you
can seeσf is theroot mean square(rms) deviation from the mean. Expanding out
the square, and using earlier results,

Var[f ] =
∑

i

pif
2
i − 2f̄ ·

∑
i

pifi + f̄ 2 ·
∑

i

pi

=
∑

i

pif
2
i − f̄ 2

= E[f 2]− E[f ]2. (4.5)

This is a very useful formula. The first term is often known as thesecond moment
of f . Thefirst momentis just the mean. Themth momentis defined as

∑
i pif

m
i .

A quick comment about units. Iffi andf are measured in feet (for example),
the variance (which gives information on how spread outfi is) has units feet-
squared. If someone asks how tall the people in our class are, one would answer
about51

2
feet. If one is further pressed to give a range for the heights of our class,

one might say51
2

feet, plus or minus1
4

of a foot. One would not give the error
range in feet-squared! Thus, in measuring error it is the square-root of the variance
that comes into play. Note that iffi is in feet, the variance is in feet-squared, and
the square-root of the variance is in feet.

4.2.2 Multiple events

Consider two random events. Let the first have choicesi = 1 · · ·N (with prob-
abilities p1 throughpN ); let the second event have choicesj = 1 · · ·M (with
probabilitiesq1 throughqM ). Then there areNM choices (possibilities) for the
combined event, which we could label byk ≡ ij. Sincek is also a random vari-
able, it has probabilityrk = rij (you could think of this as a matrix ini, j). If the
two events areindependent(also calleduncorrelated), then

rij = piqj, ∀ij independence. (4.6)

(In other words, the matrix is separable in thei andj directions). Many events we
study will be independent. For example, if you flip a fair coin twice, the result of
the first flip has no effect on the result of the second flip. Or if you roll a fair die,
et cetera.
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As before we have a quantityfi associated with each choicei for the first
event. For the second event we have a (in general different) quantitygj for its
choicej. We want to learn about the sum of these two quantities,

s ≡ f + g. (4.7)

Note that for each combined choiceij, this quantitys has valuesij = fi+gj. How
is s is distributed? We will show thatindependenceof the two events implies a
simple law giving the mean and variance ofs in term of those off andg.

We compute the mean ofs, following Eq. 4.3, except now we are summing
over all combined possibilitiesij,

E[s] =
∑
ij

rijsij =
∑
ij

piqj(fi + gj) =
∑

i

pifi ·
∑

j

qj +
∑

i

pi ·
∑

j

qjgj

= f̄ · 1 + 1 · ḡ = f̄ + ḡ. (4.8)

So, the meansadd.
We isolate this important fact:

Lemma 4.2.1.For independent events, the mean of a sum is the sum of the means.
Equivalently, the sum of the expected values is the expected value of the sums.
Thus, for any independent eventsA andB, E[A + B] = E[A] + E[B].

What if we multiplyA by a constantc? For example, consider outcomesAi

with probabilitiespi. The meanĀ = E[A]. What is the mean of the new event
with outcomescAi occurring with probabilitiespi?

Well,

E[cA] =
∑

i

picAi

= c
∑

i

piAi

= cE[A]. (4.9)

We have therefore shown

Lemma 4.2.2.The mean of a multiple is the multiple of the mean. Equivalently,
the expected value of a multiple is the multiple of the expected value. Thus,
E[cA] = cE[A].
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We now calculate the variance of a sum, using the above results. For the
variance ofs = f + g we can use Eq. 4.5 to get

Var[s] = E[s2]− E[s]2

= E[(f + g)2]− (E[f + g])2

= E[(f + g)2]− (E[f ] + E[g])2 by Lemma 4.2.1

= E[(f + g)2]− (f̄ + ḡ)2

= E[f 2] + 2E[fg] + E[g2]− (f̄ + ḡ)2. (4.10)

We justify the last step as follows:

E[(f + g)2] = E[f 2 + 2fg + g2]

= E[(f 2 + 2fg) + g2]

= E[(f 2 + 2fg)] + E[g2] by Lemma 4.2.1

= E[f 2] + E[2fg] + E[g2] by Lemma 4.2.1

= E[f 2] + 2E[fg] + E[g2] by Lemma 4.2.2. (4.11)

Using independence again we can factorizeE[fg] =
∑

ij rijfigj =
∑

i pifi ·∑
j qjgj = E[f ]E[g] = f̄ ḡ. Elegantly, this term is responsible for cancelling the

cross-term in(f̄ + ḡ)2, and collecting the remaining terms leaves

Var[s] = Var[f ] + Var[g] (4.12)

So, the variancesalsoadd.
We now take the special case when the second event is identical to the first.

That is,M = N , qi = pi, gi = fi, ∀i. In this case the above shows thats̄ = 2f̄
and Var[s] = 2Var[f ].

We can repeat the above combination law for successively repeated events.
Such events are calledidentical independently distributed(iid) events. Suppose
we haveK repetitions of iid events, with totals ≡ f + g + · · · + z, we can just
repeatedly apply the above rules to get

s̄ = K f̄ (4.13)

Var[s] = K Var[f ]. (4.14)

The mean and variance are not the only characteristics of the distribution that
add like in this way. Amazingly, there is an infinite sequence of special combina-
tions of the higher moments, calledcumulants, which add just like this. The mean
and variance are just the first two cumulants.
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4.2.3 Simplest random walk

We now have the tools to characterize a random walk. We chooseN = 2 and
p1 = p2 = 1

2
, just as with the coin toss, and define the “step” displacements

f1 = +1 andf2 = −1. This corresponds to a drunkard taking (uncorrelated) steps
of unit length along the integer line.

We use Eqs. 4.3 and 4.5 to evaluate the mean and variance of a single step
event.

f̄ = +
1

2
− 1

2
= 0 (4.15)

Var[f ] =
1

2
.(1)2 +

1

2
.(−1)2 − (0)2 = 1. (4.16)

ForK steps, starting from the origin, we have the final displacement ofs, the sum
of all the steps, using the formulae above,

s̄ = K · 0 = 0 (4.17)

Var[s] = K · 1 = K. (4.18)

So the standard deviation,i.e. the width of the distribution ofs, has value

σs ≡
√

Var[s] =
√

K. (4.19)

This is our first vital fact about all but the most pathological1 random walks: the
distribution has width which scales likeK1/2. This means that atypical distance
from the origin is

√
K. This is called adiffusion processand is very common in

the real world.
Again, remember that if the person walks in feet, the variance (which is a

measure of how much the distribution spreads out) will be in feet-squared. By
taking the square-root we again have units of feet.

4.2.4 Central Limit Theorem

The Central Limit Theorem (CLT) states that the distribution ons tends to aGaus-
sian distribution,

p(s) ≈ N (µ, σ2) ≡ 1√
2πσ

e−
(s−µ)2

2σ2 (4.20)

1Random walks which donot exhibit this power law have infinite variance and ex-
hibit anomalous diffusion. For more on this, see M. Bazant’s excellent course at
http://www-math.mit.edu/ ∼bazant/teach/18.325
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with meanµ = s̄ and varianceσ2 = Var[s] as given above, asK → ∞. This is
a very common “bell curve” with widthσ centered aboutµ. We have not defined
p(s) very rigorously—it is simply the probability of being displaceds from the
origin at the end of theK-step random walk. An exact formula forp(s) involves
counting all the ways that±1 can be addedK times to get exactlys. We will
postpone this, and the proof of CLT, for next time.

Remarkably the CLT applies toanyN with any discrete step distribution{pi}
and any step displacements{fi}. It also applies to the case of continous-valued
steps with distributionp(f) along the real line. However a criterion for validity is
always thefiniteness of the second momentof p(f).

39



Chapter 5

Quadratic Reciprocity, Central
Limit Theorem and Graph Problems

We give Eisenstein’s proof of Quadratic Reciprocity, and then introduce the Graph
Theory problems. Lecture by Steven J. Miller and Peter Sarnak; notes by Steven
J. Miller.

5.1 Eisenstein’s Proof of Quadratic Reciprocity

5.1.1 Preliminaries

Theorem 5.1.1 (Quadratic Reciprocity). Let p and q be distinct odd primes.
Then

(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 . (5.1)

As p andq are distinct, odd primes, both
(

q
p

)
and

(
p
q

)
are±1. The difficulty

is figuring out which signs are correct, and how the two signs are related.
We use Euler’s Criterion, proved in a previous lecture:

Lemma 5.1.2 (Euler’s Criterion).
(

q

p

)
≡ q

p−1
2 modp. (5.2)
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The idea behind Eisenstein’s proof is as follows:
(

q
p

) (
p
q

)
is −1 to a power.

Further, we only need to determine the power mod2. Eisenstein shows many
expressions are equivalent, mod2, to this power. Eventually, we arrive at an
expression which is trivial to calculate (mod2).

5.1.2 First Stage

Consider all even multiples ofq by ana ≤ p − 1: {2q, 4q, 6q, . . . , (p − 1)q}.
Denote a generic multiple byaq. Recall [x] is the greatest integer less than or
equal tox. By integer division,

aq =

[
aq

p

]
p + ra, 0 ≤ ra < p− 1. (5.3)

Thus,ra is the least non-negative number equivalent toqa modp.
The numbers(−1)rara are equivalent to even numbers in{0, . . . , p− 1}. If ra

is even this is clear; ifra is odd, then(−1)rara ≡ p − ra modp, and asp andra

are odd, this is even.

Lemma 5.1.3. If (−1)rara ≡ (−1)rbrb, thena = b.

Proof: We quickly get±ra ≡ rb modp. If the plus sign holds, thenra ≡ rb

mod p implies qa ≡ qb mod p. As q is invertible modp, we geta ≡ b mod p,
which yieldsa = b (asa andb are even integers between0 andp− 1).

If the minus sign holds, thenra + rb ≡ 0 mod p, or qa + qb ≡ 0 mod p.
Multiplying by q−1 mod p now givesa + b ≡ 0 mod p. As a and b are even
integers between0 andp − 1, 0 < a + b ≤ 2(p − 1). The only integer strictly
between0 and2p which is equivalent to0 modp is p; however,p is odd anda + b
is even. Thus, the minus sign cannot hold, and the elements are all distinct.2.

Lemma 5.1.4. (
q

p

)
= (−1)

P
aevenra . (5.4)

Proof: For each evena, qa ≡ ra modp. Thus, modp:
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∏
a even

qa ≡
∏
a even

ra

q
p−1
2

∏
a even

a ≡
∏
a even

ra

(
q

p

) ∏
a even

a ≡
∏
a even

ra, (5.5)

where the above follows from the fact that we havep−1
2

choices for an evena

(to getq
p−1
2 and Euler’s Criterion (to replaceq

p−1
2 with

(
q
p

)
).

As a ranges over all even number from0 to p − 1, so too do the numbers
(−1)rara modp. Thus, modp,

∏
a even

a ≡
∏
a even

(−1)rara

∏
a even

a = (−1)
P

a evenra
∏
a even

ra. (5.6)

Combining gives
(

q

p

)
(−1)

P
a evenra

∏
a even

ra ≡
∏
a even

ra. (5.7)

As eachra is invertible modp, so is the product. Thus,
(

q

p

)
(−1)

P
a evenra ≡ 1 modp. (5.8)

As
(

q
p

)
is its own inverse, the Lemma now follows by multiplying both sides

by
(

q
p

)
. 2.

Therefore, it is sufficient to determine
∑

a even
ra mod2.

We make one last simplification. By integer division, we have

∑
a even

qa =
∑
a even

([
qa

p

]
p + ra

)

=
∑
a even

[
qa

p

]
p +

∑
a even

ra. (5.9)
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As we are summing over evena, the Left Hand Side above is even. Thus, the
Right Hand Side is even, so

∑
a even

[
qa

p

]
p ≡

∑
a even

ra mod2

p
∑
a even

[
qa

p

]
≡

∑
a even

ra mod2

∑
a even

[
qa

p

]
≡

∑
a even

ra mod2, (5.10)

where the last line follows from the fact thatp is odd, so mod2, dropping the
factor ofp from the Left Hand Side doesn’t change the parity.

We have shown

Lemma 5.1.5. It is sufficient to calculate
∑

a even

[
qa
p

]

5.1.3 Second Stage

Consider the rectangle with vertices atA = (0, 0), B = (p, 0), C = (p, q) and
D = (0, q). The upward slopping vertical is given by the equationy = q

p
x. As p

andq are distinct odd primes, there are no pairs of integers(x, y) on the lineAC.

We now interpret
∑

a even

[
qa
p

]
. Consider the vertical line withx coordinate

a. Then
[

qa
p

]
gives the number of pairs(x, y) with x-coordinate equal toa and

y-coordinate an integer at most
[

qa
p

]
. Thus,

∑
a even

[
qa
p

]
is the number of integer

pairs (in the rectangleABCD) with evenx-coordinate that are below the lineAC.
We add some additional points:E = (p

2
, 0), F = (p

2
, q

2
), G = (0, q

2
) and

H = (p
2
, q). We prove

Lemma 5.1.6. The number of integer pairs under the lineAC (inside the rect-
angle) with evenx-coordinate is congruent mod2 to the number of integer pairs
under the lineAF .

Let a > p
2

be an even integer. The integer pairs on the linex = a are(a, 0),
(a, 1), . . . , (a, q). There areq + 1 pairs. Asq is odd, there are an even number of
integer pairs on the linex = a. As there are no integer pairs on the lineAC, for a
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fixeda > p
2
, mod2 there are the same number of integer pairsaboveAC as there

arebelowAC.
Further, the number of integer pairsaboveAC is equivalent mod2 to the

number of integer pairs belowAF on the linex = p− a. To see this, consider the
map which takes(x, y) to (p− x, q − y). As a > p

2
and is even,p− a < p

2
and is

odd. Further, every odda < p
2

is hit (givenaodd < p
2
, start with the even number

p− aodd > p
2
).

Let #FCHeven be the number of integer pairs(x, y) in triangleFCH with x
even.

Let#EBCH be the number of integer pairs in the rectangleEBCH; #EBCH ≡
0 mod2 (we’ve shown each vertical line has an even number of pairs).

Let #AFEeven be the number of integer pairs(x, y) in the triangleAFE with
x even, and let#AFE be the number of integer pairs in the triangleAFE.

We need to calculate
∑

a even

[
qa
p

]
mod2:

∑
a even

[
qa

p

]
= #AFEeven + #EBCH −#FCH

≡ #AFEeven + #EBCH + #FCH

= #AFEeven + #FCH + #EBCH

= #AFE + #EBCH

= #AFE. (5.11)

Therefore,µ =
∑

a even

[
qa
p

]
≡ #AFE mod2, and we have
(

q

p

)
= (−1)µ. (5.12)

Reversing the rolls ofp andq, we see that
(

p

q

)
= (−1)ν , (5.13)

whereν ≡ #AFG mod2, with #AFG equal to the number of integer pairs
in the triangleAFG.

Now, µ + ν = #AFE + #AFG, which is the number of integer pairs in
the rectangleAEFG. There arep−1

2
choices forx and q−1

2
choices fory, giving

p−1
2

q−1
2

pairs of integers in the rectangleAEFG.
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Thus,

(
q

p

)(
p

q

)
= (−1)µ+ν

= (−1)#AFE+#AFG

= (−1)
p−1
2

q−1
2 , (5.14)

which completes the proof of Quadratic Reciprocity.2.

5.2 Central Limit Theorem

X1, X2, X3, . . . an infinite sequence of random variables such that theXj are
independent identically distributed random variables (abbreviated i.i.d.r.v.) with
E[Xj] = X̄j = 0 (can always renormalize by shifting) and varianceE[X2

j ] = 1.

Let SN =
∑N

j=1 Xj.

Theorem 5.2.1.Fix −∞ < a ≤ b < ∞. Then asN →∞,

Prob
( SN√

N
∈ [a, b]

)
→ 1√

2π

∫ b

a

e−
t2

2 dt. (5.15)

The probability function is called the Gaussian or the Normal distribution.
This is the universal curve of probability. Note how robust the Central Limit
Theorem is: it doesn’t depend on fine properties of theXj.

5.3 Possible Problems

5.3.1 Combinatorics and Probability

Combinatorics is the number of ways of doing something. Agraph is a set of
vertices (V ) andedges(E) between them. Thus, edges are unordered pairs of
vertices.

Four Color Theorem (proved by an exhaustive search by the computer). Say
you have a graph in the plane (thus, if you draw the vertices and edges in the
plane, no two edges cross). Call such a graph aplanar graph. Can you color the
vertices such that if two vertices are joined by an edge, they have different colors?
Sure, by using|V | colors! What is the least number of colors needed?
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Theorem 5.3.1 (Four Coloring Theorem).You can color the vertices of a planar
graph using at most four colors such that no two joined vertices have the same
color.

A k-regular graph is a graph such that there arek-edges out of each vertex.
A 2-regular graph has no freedom: you get a closed cycle.

Consider3-regular graphs. To each graph associate theadjacency matrix A.
(First to study may be Kirchhoff). SayG = (V, E) has|V | = n vertices. For now,
assume there are nomultiple edges(ie, between any two vertices is at most one
edge, and there are no edges connecting a vertex to itself).A is ann × n matrix,
rows and columns indexed by the vertices, andAij = 1 if there is an edge fromvi

to vj and0 otherwise.
Thus, the adjacency matrix is a matrix with0s and1s, and is symmetric.

Problem: What is the second largest eigenvalue ofA? How does it vary?
What do we expect?

In Linear Algebra, we learn we can diagonalize a real symmetric matrix. The
eigenvalues are real, and satisfypA(λ) = det(λI − A), the characteristic poly-
nomial. This is a polynomial inλ of degreen with integer coefficients. Thus,
the eigenvalues are algebraic numbers. The leading coefficient isλn, the constant
term is det(A).

Thus,pA(λ) = λn+· · ·+det(A), and by the Fundamental Theorem of Algebra,
there aren complex roots. If the leading coefficient of the defining polynomial is
1, we say the roots arealgebraic integers. These roots are the eigenvalues ofA.

Why must the eigenvalues be real? WantAv = λv, v a non-zero vector.
Fact: if v = (1, 1, . . . , 1)T , v is an eigenvector ofA with eigenvaluek. Why?

As each vertex is connected tok distinct vertices, each row has exactlyk entries
that are1 andn− k entries that are0. Thus,k is an eigenvalue, denote byλ0.

Exercise 5.3.2.Show, for such adjacency matricesA, that all eigenvalues satisfy
−k ≤ λ ≤ k.

Consider connected graphsG. How big is λ1(G) for the random3-regular
graph?

Theorem 5.3.3 (Kirchhoff’s Theorem). Let det∗(kI − A) be the product of the
non-zero eigenvalues ofA. Then det∗(kI−A) equals the number of vertices times
the number of spanning trees.
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A tree is a connected graph with no cycles. Aspanning tree is a connected
sub-graph containing all the vertices. Sometimes called complexity of the graph.

47



Chapter 6

Efficient Algorithms, Probability,
Alg+Transcendental, Pidgeon Hole,
Chebychev

We review many basic number theory results. We give efficient algorithms for
polynomial evaluation, calculatingxn, and finding the greatest common divisor.
We briefly review probability theory. After an introduction to Algebraic and Tran-
scendental Numbers, we review Dirichlet’s Box Principle (aka the Pidgeonhole
Principle), and give an application. We prove a weak version of Chebyshev’s The-
orem on the approximate number of primes. Lecture by Steven J. Miller. Notes by
Steven J. Miller (and Florin Spinu, who helped write up the notes on Dirichlet’s
Box Principle and Chebyshev).

6.1 Notation

1. W : the set of whole numbers:{1, 2, 3, 4, . . . }.
2. N : the set of natural numbers:{0, 1, 2, 3, . . . }.
3. Z : the set of integers:{. . . ,−2,−1, 0, 1, 2, . . . }.
4. Q: the set of rational numbers:{x : x = p

q
, p, q ∈ Z, q 6= 0}.

5. R: the set of real numbers.

6. C: the set of complex numbers:{z : z = x + iy, x, y ∈ R}.
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7. Z/nZ : the additive group of integers modn.

8. (Z/nZ)∗ : the multiplicative group of invertible elements modn.

9. a|b : a dividesb, i.e. the remainder after integer divisionb
a

is 0.

10. (a, b) : greatest common divisor (gcd) ofa andb, often writtengcd(a, b).

11. x ≡ y( mod n) : there exists an integera such thatx = y + an.

12. wlog : without loss of generality.

13. s.t. : such that.

14. ∀ : for all.

15. ∃ : there exists.

16. big O notation :A(x) = O(B(x)), read “A(x) is of orderB(x)”, means
∃C > 0 such that∀x, |A(x)| ≤ C B(x).

17. |S| or #S : number of elements in the setS.

18. p : usually a prime number.

19. n : usually an integer.

6.2 Efficient Algorithms

For computational purposes, often having an algorithm to compute a quantity is
not enough; we need an algorithm which will computequickly. Below we study
three standard problems, and show how to either rearrange the operations more
efficiently, or give a more efficient algorithm than the obvious candidate.

6.2.1 Polynomial Evaluation

Let f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0. The obvious way to evaluate is to

calculatexn and multiply byan (n multiplications), calculatexn−1 and multiply
by an−1 (n − 1 multiplications) and add, et cetera. There aren additions and∑n

k=0 k multiplications, for a total ofn + n(n+1)
2

operations. Thus, the standard
method leads toO(n2) computations.
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Instead, consider the following:
((

(anx + an−1)x + an−2

)
x + · · ·+ a1

)
x + a0. (6.1)

For example,

7x4 + 4x3 − 3x2 − 11x + 2 =

((
(7x + 4)x− 3

)
x− 11

)
x + 2. (6.2)

Evaluating the long way takes14 steps; cleverly rearranging takes8 steps.

Exercise 6.2.1.Prove that the second method takes at most2n steps to evaluate
anx

n + · · · a0.

6.2.2 Exponentiation

Considerxn. The obvious way to evaluate involvesn − 1 multiplications. By
writing n in base two, we can evaluatexn in at most2 log2 n steps.

Let k be the largest integer such that2k ≤ n. Then∃ai ∈ {0, 1} such that

n = ak2
k + ak−12

k−1 + · · ·+ a12 + a0. (6.3)

It costsk multiplications to evaluatex2i
, i ≤ k. How? Considery0 = x20

,
y1 = y0 · y0 = x20 · x20

= x21
, y2 = y1 · y1 = x22

, . . . , yk = yk−1 · yk−1 = x2k
.

Then

xn = xak2k+ak−12k−1+···+a12+a0

= xak2k · xak−12k−1 · · · xa12 · xa0

=
(
x2k

)ak ·
(
x2k−1

)ak−1 · · ·
(
x2

)a1 ·
(
x1

)a0

= yak
k · yak−1

k−1 · · · ya1
1 · ya0

0 . (6.4)

As eachai ∈ {0, 1}, we have at mostk + 1 multiplications above (ifai = 1
we have the termyi in the product, ifai = 0 we don’t).

Thus, it costsk multiplications to evaluate thex2i
(i ≤ k), and at most another

k multiplications to finish calculatingxn. As k ≤ log2 n, we see thatxn can be
determined in at most2 log2 n steps.

Note, however, that we do need more storage space for this method, as we
need to store the valuesyi = x2i

, i ≤ log2 n.
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Exercise 6.2.2.Instead of expandingn in base two, expandn in base three. How
many calculations are needed to evaluatexn this way? Why is it preferable to
expand in base two rather than any other base?

6.2.3 Euclidean Algorithm

The Euclidean Algorithm is an efficient way to determine the greatest common
divisor ofx andy, denotedgcd(x, y) or (x, y). Without loss of generality, assume
1 < x < y.

The obvious way to determinegcd(x, y) is to dividex andy by all positive
integers up tox. This takes at most2x steps.

Let [z] denote the greatest integer less than or equal toz. We write

y =
y

x
· x + r1, 0 ≤ r1 < x. (6.5)

Exercise 6.2.3.Prove thatr1 ∈ {0, 1, . . . , x− 1}.
Exercise 6.2.4.Provegcd(x, y) = gcd(r1, x). Hint: r1 = y − y

x
· x.

We proceed in this manner untilrk equals zero or one. As each execution
results inri < ri−1, we proceed at mostx times (although later we prove we need
to apply these steps at most2 log2 x times).

x =
x

r1

· r1 + r2, 0 ≤ r2 < r1

r1 =
r1

r2

· r2 + r3, 0 ≤ r3 < r2

r2 =
r2

r3

· r3 + r4, 0 ≤ r4 < r3

...

rk−2 =
rk−2

rk−1

· rk−1 + rk, 0 ≤ rk < rk−1. (6.6)

Exercise 6.2.5.Prove that ifrk = 0, thengcd(x, y) = rk−1, while if rk = 1, then
gcd(x, y) = 1.

We now analyze how largek can be. The key observation is the following:

Lemma 6.2.6.Consider three adjacent remainders in the expansion:ri−1, ri and
ri+1 (wherey = r−1 andx = r0). Thengcd(ri, ri−1) = gcd(ri+1, ri), andri+1 <
ri−1

2
.
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Proof: We have the following relation:

ri−1 =
ri−1

ri

· ri + ri+1, 0 ≤ ri+1 < ri. (6.7)

If ri ≤ ri−1

2
, then asri+1 < ri, we immediately conclude thatri+1 < ri. If

ri > ri−1

2
, then we note that

ri+1 = ri−1 − ri−1

ri

· ri. (6.8)

But ri−1

ri
= 1 (easy exercise). Thusri−1 < ri−1

2
. 2

We count how often we apply Euclid’s Algorithm. Going from(x, y) =
(r0, r−1) to (r1, r0) costs one application. Every two applications leads to the
first entry in the last pair being at most half of the second entry of the first pair.

Thus, if k is the largest integer such that2k ≤ x, we see we apply Euclid’s
Algorithm at most1 + 2k ≤ 1 + 2 log2 x times. Each application requires one
integer division, where the remainder is the input for the next step.

We have proven

Lemma 6.2.7.Euclid’s Algorithm requires at most1 + 2 log2 x divisions to find
the greatest common denominator ofx andy.

Let us assume thatri = gcd(x, y). Thus, the last equation before Euclid’s
Algorithm terminated was

ri−2 =
ri−2

ri−1

· ri−1 + ri, 0 ≤ ri < ri−1. (6.9)

Therefore, we can find integersai−1 andbi−2 such that

ri = ai−1ri−1 + bi−2ri−2. (6.10)

Looking at the second to last application of Euclid’s algorithm, we find that
there are integersa′i−2 andb′i−3 such that

ri−1 = a′i−2ri−2 + b′i−3ri−3. (6.11)

Substituting forri−1 = ri−1(ri−2, ri−3) in the expansion ofri yields that there
are integersai−2 andbi−3 such that

ri = ai−2ri−2 + bi−3ri−3. (6.12)

Continuing by induction, and recallingri = gcd(x, y) yields
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Lemma 6.2.8.There exist integersa andb such thatgcd(x, y) = ax + by. More-
over, Euclid’s Algorithm gives a constructive procedure to finda andb.

Exercise 6.2.9.Find a andb such thata · 244 + b · 313 = gcd(244, 313).

Exercise 6.2.10.Add details to complete an alternate proof of the existence ofa
andb with ax + by = gcd(x, y):

1. Letd be the smallest positive value attained byax+ by as we varya, b ∈ Z.
Such ad exists: consider(a, b) = (1, 0) or (0, 1). Thus,d = ax + by. We
now showd = gcd(x, y).

2. gcd(x, y)|d.

3. Let e = Ax + By > 0. Thend|e. Therefore, for any choice ofA,B ∈ Z,
d|(Ax + By).

4. d|x and d|y (consider clever choices ofA and B; one choice givesd|x,
one givesd|y). Therefored| gcd(x, y). As we’ve showngcd(x, y)|d, this
completes the proof.

Note this is a non-constructive proof. By minimizingax + by, we obtain
gcd(x, y), but we have no idea how many steps is required. Prove that a so-
lution will be found either among pairs(a, b) with a ∈ {1, . . . , y − 1} and
−b ∈ {1, . . . , x− 1}, or−a ∈ {1, . . . , y − 1} andb ∈ {1, . . . , x− 1}.

6.3 Probabilities of Discrete Events

6.3.1 Introduction

Let Ω = {ω1, ω2, ω3, . . . } be an at most countable set of events. We callΩ the
sample (or outcome) space. We call the elementsω ∈ Ω the events. Let x :
Ω → R. That is, for each eventω ∈ Ω, we attach a real numberx(ω). We callx a
random variable.

Example 6.3.1.Flip a fair coin3 times. The possible outcomes areΩ = {HHH, HHT, HTH, THH,HTT, THT, TTH, TTT}.
One possible random variable isx(ω) equals the number of heads inω. Thus,
x(HHT ) = 2 andx(TTT ) = 0.
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Example 6.3.2.LetΩ be the space of all flips of a fair coin where all but the last
flip are tails, and the last is a head. Thus,Ω = {H, TH, TTH, TTTH, . . . }. One
possible random variable isx(ω) is the number of tails; another isx(ω) equals
the number of the flip which is a head.

We sayp(ω) is aprobability function onΩ if

1. 0 ≤ p(ωi) ≤ 1 for all ωi ∈ Ω.

2. p(ω) = 0 if ω 6∈ Ω.

3.
∑

i p(ωi) = 1.

We callp(ω) the probability of eventω.
Often, we have a random variables wherex(ω) = ω. In a convenient abuse of

notation, we writeX for Ω andx for x(ω) andω. For example, consider two rolls
of a fair die. LetX be the result of the first roll, andY of the second. Then the
sample space isX = Y = {1, 2, 3, 4, 5, 6}.

In general, considerX andY with xi occurring with probabilityp(xi) and
yj occurring with probabilityq(yj). We analyze thejoint probability r(x, y) of
observingx andy.

X andY are independent if ∀x, y, r(x, y) = p(x)q(y). In the example of
rolling a fair die twice,r(x, y) = p(x)q(y) = 1

6
· 1

6
if x, y ∈ X = Y , and0

otherwise.

Exercise 6.3.3.Consider again two rolls of a fair die. Now, letX represent the
first roll, andY the sum of the first two rolls. ProveX andY are not independent.

EventsX1 throughXN areindependentif p(x1, . . . , xN) = p1(x1) · · · p(xN).

Exercise 6.3.4.Construct three events such that any two are independent, but all
three are not independent. Hint: roll a fair die twice.

6.3.2 Means

If x(ω) = ω, themean (or expected value)of an eventx is defined by

x̄ =
∑

i

xip(xi). (6.13)

More generally, for a sample spaceΩ with eventsω and a random variable
x(ω), we have
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x̄(ω) =
∑

i

x(ωi)p(ωi). (6.14)

For example, the mean of one roll of a fair die is3.5.

Exercise 6.3.5.LetX be the number of tosses of a fair coin needed before getting
the first head. Thus,X = {1, 2, . . . }. Calculatep(xi) and x̄. We could letΩ be
the space of all tosses of a fair coin where all but the last toss are tails, and the
last toss is a head. Thenx(ω) is the number of tosses ofω.

Instead of writinḡx, we often writeE[x] or E[X], read asthe expected value
of x or X. More generally, we would havēx(ω) andE[x(ω)].

The kth moment ofX is the expected value ofxk:

E[xk] =
∑

i

xk
i p(xi) (6.15)

or

E[xk(ω)] =
∑

i

xk(ωi)p(ωi). (6.16)

Lemma 6.3.6 (Additivity of the Means). LetX andY be two independent events
with joint probabilityr(x, y) = p(x)q(y). Letz = x+y. ThenE[z] = E[x+y] =
E[x] + E[y].

Proof:

E[x + y] =
∑

(i,j)

(xi + yj)r(xi, yj)

=
∑

i

∑
j

(xi + yj)p(xi)q(yj)

=
∑

i

∑
j

xip(xi)q(yj) +
∑

i

∑
j

yjp(xi)q(yj)

=
∑

i

xip(xi)
∑

j

q(yj) +
∑

i

p(xi)
∑

j

yjq(yj)

= E[x] · 1 + 1 · E[y] = E[x] + E[y]. (6.17)
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The astute reader may notice that some care is needed to interchange the order
of summations. If

∑
i

∑
j |xiyj|r(xi, yj) < ∞, then Fubini’s Theorem is applica-

ble, and we may interchange the summations at will.
We used the two events were independent to go from

∑
(i,j) xir(xi, yj) to∑

i xip(xi)
∑

j q(yj) = E[x]. Lemma 6.3.6 is true even if the two events are
not independent.

If the events are not independent, we encounter sums like
∑

i

∑
j xir(xi, yj);

however,
∑

j r(xi, yj) = p(xi). Why? By summing over all possibley, we are
asking what is the probability thatx = xi; we do not care whaty is. Thus,∑

i

∑
j xir(xi, yj) =

∑
i xip(xi) = E[x], and similarly for the other piece.

Exercise 6.3.7.Write out the proof of the generalization of Lemma 6.3.6, where
X andY are not assumed independent.

Given an outcome spaceX = {x1, x2, . . . } with probabilitiesp(xi), let aX
be shorthand for the eventa times X with outcome space{ax1, ax2, . . . } and
probabilitiespa(axi) = p(xi).

Lemma 6.3.8. Let X1 throughXN be a finite collection of independent events.
Leta1 throughaN be real constants. Then

E[a1x1 + · · ·+ aNxN ] = a1E[x1] + · · ·+ aNE[xN ]. (6.18)

Lemma 6.3.9.LetX andY be independent events. ThenE[xy] = E[x]E[y].

Exercise 6.3.10.Prove Lemmas 6.3.8 and 6.3.9.

6.3.3 Variances

The variance σ2
x (and its square-root, thestandard deviation σx) measure how

spread out a probability distribution is. Assumex(ω) = ω. Given an eventX
with meanx̄, we define the standard deviationσ2

x by

σ2
x =

∑
i

(xi − x̄)p(xi). (6.19)

More generally, given a sample spaceΩ, eventsω, and a random variable
x : Ω → R,

σ2
x(ω) =

∑
i

(
x(ωi)− x̄(ω)

)
p(ωi). (6.20)
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Exercise 6.3.11.LetX = {0, 25, 50, 75, 100}with probabilities{.2, .2, .2, .2, .2}.
LetY be the same outcome space, but with probabilities{.1, .25, .3, .25, .1}. Cal-
culate the means and the variances ofX andY .

For computing variances, instead of equation 6.19 one often uses

Lemma 6.3.12.σ2
x = E[x2]− E[x]2.

Proof: Recall̄x = E[x]. Then

σ2
x =

∑
i

(
xi − E[x]

)2

p(xi)

=
∑

i

(x2
i − 2xiE[x] + E[x]2)p(xi)

=
∑

i

x2
i p(xi)− 2E[x]

∑
i

xip(xi) + E[x]2
∑

i

p(xi)

= E[x2]− 2E[x]2 + E[x]2 = E[x2]− E[x]2. (6.21)

The main result on variances is

Lemma 6.3.13 (Variance of a Sum).Let X andY be two independent events.
Thenσ2

x+y = σ2
x + σ2

y.

Proof: We constantly use the expected value of a sum of independent events
is the sum of expected values (Lemma 6.3.6 and Lemma 6.3.8).

σ2
x+y = E[(x + y)2]− E[(x + y)]2

= E[x2 + 2xy + y2]−
(
E[x] + E[y]

)2

=
(
E[x2] + 2E[xy] + E[y2]

)
−

(
E[x]2 + 2E[x]E[y] + E[y]2

)

=
(
E[x2]− E[x]2

)
+

(
E[y2]− E[y]2

)
+ 2

(
E[xy]− E[x]E[y]

)

= σ2
x + σ2

y + 2
(
E[xy]− E[x]E[y]

)
. (6.22)

By Lemma 6.3.9,E[xy] = E[x]E[y], completing the proof.

Lemma 6.3.14.Considern independent copies of the same event (for example,n
flips of a coin orn rolls of a die). Thenσnx =

√
nσx.
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Exercise 6.3.15.Prove Lemma 6.3.14.

Note that, if the eventX has units of meters, then the varianceσ2
x has units

meters-squared, and the standard deviationσx and the mean̄x have units meters.
Thus, it is the standard deviation that gives a good measure of the deviations of an
event around the mean.

There are, of course, alternate measures one can use. For example, one could
consider

∑
i

(xi − x̄)p(xi). (6.23)

Unfortunately, this is a signed quantity, and large positive deviations can can-
cel with large negatives. This leads us to consider

∑
i

|xi − x̄|p(xi). (6.24)

While this has the advantage of avoiding cancellation of errors (as well as
having the same units as the events), the absolute value function is not a good
function analytically. For example, it is not differentiable. This is primarily why
we consider the standard deviation (the square-root of the variance).

Exercise 6.3.16.Consider the following set of data: fori ∈ {1, . . . , n}, given
xi one observesyi. Believing thatX and Y are linearly related, find the best
fit straight line. Namely, determine constantsa and b that minimize the error
(calculated via the variance)

n∑
i=1

(
yi − (axi + b)

)2

=
n∑

i=1

(
Observedi − Predictedi

)2

. (6.25)

Hint: use Multi-variable Calculus to find linear equations fora and b, and
then solve with Linear Algebra.

If instead of measuring total error by the squares of the individual error (for
example, using the absolute value), closed form expressions fora and b become
significantly harder.

If one requires thata = 0, show that theb leading to least error isb = ȳ =
1
n

∑
i yi.
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6.3.4 Random Walks

Consider the classical problem of a drunk staggering home from a lamp post late
at night. We flip a fair coinN times. With probability1

2
we get heads (tails).

For each head (tail) the drunk staggers one unit to the right (left). How far do we
expect the drunk to be?

It is very unlikely the drunk will be very far to the left or right.

Exercise 6.3.17.Letx be+1 if we flip a head,−1 for a tail. For a fair coin, prove
E[x] = 0, σ2

x = 1, σx = 1.

Exercise 6.3.18.LetpN(y) be the probability that afterN flips of a fair coin, the
drunk isy units to the right of the origin (lamp post).

1. ProvepN(y) = pN(−y).

2. ConsiderN = 2M . Provep2M(2k) =
(

2M
M+k

)
1

22M , where
(

n
r

)
= n!

r!(n−r)!

3. Use Stirling’s formula (n! ≈ nne−n
√

2πn =
√

2πnn+ 1
2 e−n) to approximate

pN(y).

Label the coin tossesX1 throughXN . Let X denote a generic toss of the
coin, andYN be the distance of the drunkard afterN tosses. By Lemma 6.3.8,
E[yN ] = E[x1 + · · · + xN ] = E[x1] + · · · + E[xN ]. As eachE[xi] = E[x] = 0,
E[yN ] = 0.

Thus, we expect the drunkard to be at the lamp post. How spread out is his
expected position? By Lemma 6.3.14,

σyN
= σNx =

√
Nσx =

√
N. (6.26)

This means that atypical distance from the origin is
√

N . This is called a
diffusion processand is very common in the real world.

6.3.5 Bernoulli Process

Recall
(

N
r

)
= N !

r!(N−r)!
is the number of ways to chooser objects fromN objects

when order does not matter. Considern independent repetitions of an event with
only two possible outcomes. We typically call one outcomesuccessand the other
failure , the event aBernoulli Trial , and a collection of independent Bernoulli
Trials aBernoulli Process.

In each Bernoulli Trial, let there be probabilityp of success andq = 1− p of
failure. Often, we represent a success with1 and a failure with0.
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Exercise 6.3.19.For a Bernoulli Trial, showx̄ = p, σ2
x = pq, andσx =

√
pq.

Let YN be the number of successes inN trials. Clearly, the possible values are
YN = {0, 1, · · · , N}. We analyzepN(k). Rigorously, the sample spaceΩ is all
possible sequences ofN trials, and the random variableyN : Ω → R is given by
yN(ω) equals the number of successes inω.

If k ∈ YN , we needk successes andN − k failures. We don’t care what
order we have them (ie, ifk = 4 andN = 6 thenSSFSSF andFSSSSF both
contribute). Each such string ofk successes andN − k failures has probability of
pk · (1− p)N−k. There are

(
N
k

)
such strings.

Thus,pN(k) =
(

N
k

)
pk · (1− p)N−k if k ∈ {0, 1, · · · , N} and0 otherwise.

By clever algebraic manipulations, one can directly evaluate the meanyN and
the varianceσ2

yN
; however, Lemmas 6.3.8 and 6.3.14 allow one to calculate both

quantities immediately, once one knows the mean and variance for one occur-
rence.

Lemma 6.3.20.For a Bernouilli Process withN trials, each having probability
p of success, the expected number of successes isyN = Np, and the variance is
σ2

yN
= Npq.

Exercise 6.3.21.Prove Lemma 6.3.20.

Consider the following problem: LetZ = {0, 1, 2, . . . } be the number of trials
before the first success. What isz̄ andσ2

z?
First, we determinep(k), the probability that the first success occurs afterk

trials. Clearly this probability is non-zero only fork a positive integer, in which
case the string of results must bek − 1 failures followed by1 success. Therefore,

p(k) = p · (1− p)k−1 if k ∈ {1, 2, . . . }, and0 otherwise. (6.27)

To determine the mean̄z we must evaluate

z̄ =
∞∑

k=1

k · p · (1− p)k−1

= p

∞∑

k=1

kqk−1, 0 < q = 1− p < 1. (6.28)

Consider the geometric series
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f(q) =
∞∑

k=0

qk =
1

1− q
. (6.29)

A careful analysis shows we can differentiate term by term if0 ≤ q < 1. Then

f ′(q) =
∞∑

k=0

kqk−1 =
1

(1− q)2
. (6.30)

Recallingq = 1− p and substituting yields

z̄ = p

∞∑

k=1

kqk−1

=
p(

1− (1− p)
)2 =

1

p
. (6.31)

Differentiating under the summation sign is a powerful tool in Probability The-
ory.

Exercise 6.3.22.Calculateσ2
z . Hint: differentiatef(q) twice.

6.3.6 Poisson Distribution

Divide the unit interval intoN equal pieces. ConsiderN independent Bernoulli
Trials, one for each sub-interval. If the probability of a success isλ

N
, then by

Lemma 6.3.20 the expected number of successes isN · λ
N

= λ.
We consider the limit asN → ∞. Obviously, we still expectλ successes in

each interval, but what is the probability of3λ successes? How long do we expect
to wait between successes?

We call this aPoisson process with parameterλ. For example, look at the
midpoints of theN intervals. At each midpoint we have a Bernoulli Trial with
probability of successλ

N
and failure1− λ

N
.

We determine theN →∞ limits. For fixedN , the probability ofk successes
in a unit interval is
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pN(k) =

(
N

k

)( λ

N

)k(
1− λ

N

)N−k

=
N !

k!(N − k)!

λk

Nk

(
1− λ

N

)N−k

=
N · (N − 1) · · · (N − k + 1)

N ·N · · ·N
λk

k!

(
1− λ

N

)N(
1− λ

N

)−k

= 1 ·
(
1− 1

N

)
· · ·

(
1− k − 1

N

)λk

k!

(
1− λ

N

)N(
1− λ

N

)−k

.(6.32)

For fixed, finitek, asN → ∞, the firstk factors inpN(k) tend to1,
(
1 −

λ
N

)N

→ e−λ, and
(
1− λ

N

)−k

→ 1.

Thus, we are led to thePoisson Distribution: Given a parameterλ (interpreted
as the expected number of occurrences per unit interval), the probability ofk
occurrences in a unit interval isp(k) = λk

k!
e−λ for k ∈ {0, 1, 2, . . . }.

Exercise 6.3.23.Check thatp(k) given above is a probability distribution. Namely,
show

∑
k≥0 p(k) = 1.

Exercise 6.3.24.Show, for the Poisson Distribution, that the meanx̄ = λ and the
varianceσ2

x = λ. Hint: let

f(λ) =
∞∑

k=0

λk

k!
= eλ. (6.33)

Differentiate once to determine the mean, twice to determine the variance.

6.3.7 Continuous Poisson Distribution

We calculate a very important quantity related to the Poisson Distribution (with
parameterλ), namely, how long does one expect to wait between successes?

We’ve discussed that we expectλ successes per unit interval, and we’ve cal-
culated the probability ofk successes per unit interval.

Start counting at0, and assume the first success is atx. What ispS(x)? As
before, we divide each unit interval intoN equal pieces, and consider a Bernoulli
Trial at the midpoint of each sub-interval, with probabilityλ

N
of success.
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We have approximatelyx−0
1/N

= Nx midpoints from0 to x (with N midpoints
per unit interval). Letdye be the smallest integer greater than or equal toy. Then
we havedNxe midpoints, where the results of the Bernoulli Trials of the first
dNxe − 1 midpoints are all failures and the last is a success.

Thus, the probability of the first success occuring in an interval of length1
N

containingx (with N divisions per unit interval) is

pN,S(x) =

(
1− λ

N

)dNxe−1

·
(

λ

N

)1

. (6.34)

ForN large, the above converges toe−λx λ
N

.

We sayp(x) is acontinuous probability distribution on R if

1. p(x) ≥ 0 for all x ∈ R.

2.
∫
R p(x)dx = 1.

3. Probability(a ≤ x ≤ b) =
∫ b

a
p(x)dx.

We callp(x) theprobability density function .
Thus, asN → ∞, we see the probability density functionpS(x) = λe−λx. In

the special case ofλ = 1, we get the standard exponential decay,e−x.
For instance, letπ(M) be the number of primes that are at mostM . The Prime

Number Theorem statesπ(M) = M
log M

plus lower order terms.
Thus, the average spacing between primes aroundM is aboutlog M . We can

model the distribution of primes as a Poisson Process, with parameterλ = λM =
1

log M
. While possible locations of primes (obviously) is discrete (it must be an

integer, and in fact the location of primes aren’t independent), a Poisson model
often gives very good heuristics.

We can often renormalize so thatλ = 1. This is denotedunit mean spacing.
For example, one can show theM th prime pM is aboutM log M , and spacings
between primes aroundpM is aboutlog M . Then the normalized primes,qM ≈

pM

log M
will have unit mean spacing andλ = 1.
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6.3.8 Central Limit Theorem

X1, X2, X3, . . . are an infinite sequence of random variables such that theXj are
independent identically distributed random variables (abbreviated i.i.d.r.v.) with
E[Xj] = X̄j = 0 (can always renormalize by shifting) and varianceE[X2

j ] = 1.

Let SN =
∑N

j=1 Xj.

Theorem 6.3.25.Fix −∞ < a ≤ b < ∞. Then asN →∞,

Prob
( SN√

N
∈ [a, b]

)
→ 1√

2π

∫ b

a

e−
t2

2 dt. (6.35)

The probability function is called the Gaussian or the Normal distribution.
This is the universal curve of probability. Note how robust the Central Limit
Theorem is: it doesn’t depend on fine properties of theXj.

6.4 Algebraic and Transcendental Numbers

6.4.1 Definitions

A function f : A → B is one-to-oneif f(x) = f(y) impliesx = y; f is onto if
given anyb ∈ B, ∃a ∈ A with f(a) = b. f is abijection if f is a one-to-one and
onto function.

We say two setsA andB have the same cardinality(ie, are the same size) if
there is a bijectionf : A → B. We denote this by|A| = |B|. If A has finitely
many elements (sayn elements),A is finite and|A| = n < ∞.

Exercise 6.4.1.Show two finite sets have the same cardinality if and only if they
have the same number of elements.

Exercise 6.4.2.If f is a bijection fromA to B, prove there is a bijectiong = f−1

fromB to A.

A is countable if there is a bijection betweenA and the integersZ. A is at
most countableif A is either finite or countable.

Recall a binary relationR is anequivalence relationif

1. Reflexive:R(x, x) is true (x is equivalent tox).

2. Symmetric:R(x, y) true impliesR(y, x) is true (ifx is equivalent toy then
y is equivalent tox).
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3. Transitive:R(x, y) andR(y, z) true implyR(x, z) is true (ifx is equivalent
to y andy is equivalent toz, thenx is equivalent toz).

We often denote equivalence by≡ or =.

Exercise 6.4.3.Letx, y, z ∈ Z, and letn ∈ Z be given. DefineR(x, y) to be true
if n|(x− y) and false otherwise. ProveR is an equivalence relation. We denote it
byx ≡ y.

Exercise 6.4.4.Let x, y, z be subsets ofX (for example,X = Q,R,C,Rn, et
cetera). DefineR(x, y) to be true if|x| = |y| (the two sets have the same cardi-
nality), and false otherwise. ProveR is an equivalence relation.

6.4.2 Countable Sets

We show several sets are countable. Consider the set of non-negative integersN.
Definef : N→ Z by f(2n) = n, f(2n + 1) = −n− 1. By inspection, we seef
gives the desired bijection.

ConsiderW = {1, 2, 3, . . . } (the positive integers). Thenf : W→ Z defined
by f(2n) = n, f(2n + 1) = −n gives the desired bijection.

Thus, we have proved

Lemma 6.4.5.To show a setS is countable, it is sufficient to find a bijection from
S to eitherZ, N orW.

We need the intuitively plausible

Lemma 6.4.6. If A ⊂ B, then|A| ≤ |B|.
We can then prove

Lemma 6.4.7. If f : A → C is a one-to-one function (not necessarily onto), then
|A| ≤ |C|. Further, ifC ⊂ A, then|A| = |C|.
Exercise 6.4.8.Prove Lemmas 6.4.6 and 6.4.7.

If A andB are sets, thecartesian productA×B is {(a, b) : a ∈ A, b ∈ B}.
Theorem 6.4.9.If A andB are countable, so isA ∪B andA×B.
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Proof: we have bijectionsf : N→ A andg : N→ B. Thus, we can label the
elements ofA andB by

A = {a0, a1, a2, a3, . . . }
B = {b0, b1, b2, b3, . . . }. (6.36)

AssumeA∩B is empty. Defineh : N→ A∪B byh(2n) = an andh(2n+1) =
bn−1. We leave to the reader the case whenA ∩B is not empty.

To prove the second claim, consider the following functionh : W → A×B:

h(1) = (a0, b0)

h(2) = (a1, b0), h(3) = (a1, b1), h(4) = (a0, b1)

h(5) = (a2, b0), h(6) = (a2, b1), h(7) = (a2, b2), h(8) = (a1, b2), h(9) = (a0, b2)
...

h(n2 + 1) = (an, b0), h(n2 + 2) = (an, bn−1), . . . ,

h(n2 + n + 1) = (an, bn), h(n2 + n + 2) = (an−1, bn), . . . ,

h((n + 1)2) = (a0, bn)
... (6.37)

Basically, look at all pairs of integers in the first quadrant (including those on
the axes). Thus, we have pairs(ax, by). The above functionh starts at(0, 0), and
then moves through the first quadrant, hitting each pair once and only once, by
going up and over. Draw the picture!2

Corollary 6.4.10. Let Ai be countable∀i ∈ N. Then for anyn, A1 ∪ · · · ∪ An

andA1 × · · · × An are countable, where the last set is alln-tuples(a1, . . . , an),
ai ∈ Ai. Further, ∪∞i=0Ai is countable. If eachAi is at most countable, then
∪∞i=0Ai is at most countable.

Exercise 6.4.11.Prove Corollary 6.4.10. Hint: for∪∞i=0Ai, mimic the proof used
to showA×B is countable.

As the natural numbers, integers and rationals are countable, by taking each
Ai = N, Z orQ we immediately obtain

Corollary 6.4.12. Nn, Zn andQn are countable. Hint: proceed by induction. For
example writeQn+1 asQn ×Q.

Exercise 6.4.13.Prove there are countably many rationals in the interval[0, 1].
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6.4.3 Algebraic Numbers

Consider a polynomialf(x) = 0 with rational coefficients. By multiplying by
the least common multiple of the denominators, we can clear the fractions. Thus,
without loss of generality it is sufficient to consider polynomials with integer co-
efficients.

The algebraic numbers, A, are the set of allx ∈ C such that there is a
polynomial of finite degree and integer coefficients (depending onx, of course!)
such thatf(x) = 0. The remaining complex numbers are thetranscendentals.

Thealgebraic numbers of degreen,An, are the set of allx ∈ A such that

1. there exists a polynomial with integer coefficients of degreen such that
f(x) = 0

2. there is no polynomialg with integer coefficients and degree less thann
with g(x) = 0.

Thus,An is the subset of algebraic numbersx where for eachx ∈ An, the
degree of the smallest polynomialf with integer coefficients andf(x) = 0 is n.

Exercise 6.4.14.Show the following are algebraic: any rational, the square-root
of any rational, the cube-root of any rational,r

p
q wherer, p, q ∈ Q, i =

√−1,√
3
√

2− 5.

Theorem 6.4.15.The Algebraic Numbers are countable.

Proof: If we show eachAn is at most countable, then asA = ∪∞n=1An, by
Corollary 6.4.10A is at most countable.

Recall theFundamental Theorem of Algebra (FTA): Let f(x) be a poly-
nomial of degreen with complex coefficients. Thenf(x) hasn (not necessarily
distinct) roots. Of course, we will only need a weaker version, namely that the
Fundamental Theorem of Algebra holds for polynomials with integer coefficients.

Fix ann ∈ N. We now showAn is at most countable. We can represent every
integral polynomialf(x) = anxn + · · · + a0 by an (n + 1)-tuple (a0, . . . , an).
By Corollary 6.4.12, the set of all(n + 1)-tuples with integer coefficients (Zn+1)
is countable. Thus, there is a bijection fromN to Zn+1, and we can index each
(n + 1)-tuplea ∈ Zn+1:

{a : a ∈ Zn+1} =
∞⋃
i=1

{αi}, (6.38)
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where eachαi ∈ Zn+1.
For each tupleαi (or a ∈ Zn+1), there aren roots. LetRαi

be the roots of the
integer polynomial associated toαi. The roots inRαi

need not be distinct, and the
roots may solve an integer polynomial of smaller degree. For example,f(x) =
(x2− 1)4 is a degree8 polynomial. It has two roots,x = 1 with multiplicity 4 and
x = −1 with multiplicity 4, and each root is a root of a degree1 polynomial.

Let Rn = {x ∈ C : x is a root of a degreen polynomial}. One can show that

Rn =
∞⋃
i=1

Rαi
⊃ An. (6.39)

By Lemma 6.4.10,Rn is countable. Thus, by Lemma 6.4.6, asRn is at most
countable,An is at most countable.

Therefore, eachAn is at most countable, so by Corollary 6.4.10A is at most
countable. AsA1 ⊃ Q (given p

q
∈ Q, considerqx − p = 0), A1 is at least

countable. As we’ve shownA1 is at most countable, this impliesA1 is countable.
Thus,A is countable.2

6.4.4 Transcendental Numbers

A set isuncountable if there is no bijection between it and the rationals (or the
integers, or any countable set).

Theorem 6.4.16.The set of irrationals in[0, 1] is uncountable.

Proof: LetI = [0, 1] − Q = {x : 0 ≤ x ≤ 1 andx 6∈ Q}. Assume thatI is
countable (the case whereI is finite is even easier).

We can write every number inI in a base two expansion, sayy = .y1y2y3y4 · · · ,
yi ∈ {0, 1}, y =

∑
i yi2

−1. Certain numbers can be written two different ways.
For example,0.010011111111111 · · · = .0101. As we are assumingI is count-
able, including both representations of these numbers is equivalent to taking the
union of two countable sets, which by Theorem 6.4.9 is countable.

Further, we can add back all the rationals in[0, 1], as there are countably many
rationals in[0, 1]. Call this setS (the union of the irrationals, the alternate repre-
sentation of some of the irrationals, and the rationals). AsX is contained in the
union of three at most countable sets (and two are countable),X is countable by
Theorem 6.4.9.

There is therefore a bijection betweenN andX. We can enumerate the ele-
ments by{x1, x2, x3, . . . }.
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For eachxi, let .xi1xi2xi3 · · · xii · · · be its binary expansion. We list the count-
able members ofX:

x1 = x11x12x13x14 · · ·
x2 = x21x22x23x24 · · ·
x3 = x31x32x33x34 · · ·

...

xn = xn1xn2xn3xn4 · · · xnn · · ·
... (6.40)

We construct a real numberx ∈ [0, 1] not in X. As this was supposed to be
(more than a) complete list of all reals in[0, 1], this will contradict the assumption
thatI is countable.

Consider the numberz = .z1z2z3 · · · zn · · · defined byzn = 1 − xnn. Canz
be one of the numbers in our list? For example, couldz = xm?

No, as they differ in themth digit. Thus,z is not on our list, violating the
assumption that we had a complete enumeration. Note we had to be careful and
make sure we included all equivalent ways of writing the same number. Thus,
while z disagrees with the base two expansion ofxm, it cannot be an equivalent
way of representingxm, as all equivalent ways of representingxm are in our list.
This is merely an annoying technical detail.

Thus, the set of irrationals in[0, 1] is not countable.2.

The above proof is due to Cantor (1873 − 1874), and is known asCantor’s
Diagonalization Argument. Note Cantor’s proof shows thatmostnumbers are
transcendental, though it doesn’t tell uswhich numbers are transcendental. We

can easily show many numbers (such as
√

3 + 2
3
5

√
7) are algebraic. What of

other numbers, such asπ ande?
Lambert (1761), Legendre (1794), Hermite (1873) and others provedπ irra-

tional; Legendre (1794) also provedπ irrational. In1882 Lindemann provedπ
transcental.

What aboute? Euler (1737) proved thate and e2 are irrational, Liouville
(1844) provede is not an algebraic number of degree2, and Hermite (1873) proved
e is transcendental.

Liouville (1851) showed transcendental numbers exist; we will discuss his
construction later.
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6.5 Introduction to Number Theory

6.5.1 Dirichlet’s Box Principle

Definition 6.5.1 (Dirichlet’s Box Principle / Pidgeon Hole Principle).Consider
n boxes, and placen + 1 objects in then boxes. Then some box contains at least
two objects.

We will use Dirichlet’s Box Principle to find good rational approximations to
irrational numbers.

Approximation by Rationals

Let α ∈ R − Q be an irrational number. We are looking for a rational numberp
q

such that
∣∣∣α− p

q

∣∣∣ is small, so thatp
q

is a good rational approximation toα.

Lemma 6.5.2.Letα ∈ R−Q. Then there existp, q ∈ Z, q 6= 0 such that:
∣∣∣∣∣α−

p

q

∣∣∣∣∣ ≤
1

q
(6.1)

Proof. It is enough to prove this forα ∈ (0, 1). Let q ≥ 1 and divide the
interval[0, 1) into q intervals[p

q
, p+1

q
) of length 1

q
. Thenα belongs to one of these

intervals. For some0 < p < q we then have:

α ∈
[

p

q
,
p + 1

q

)
⇒

∣∣∣∣∣α−
p

q

∣∣∣∣∣ ≤
1

q
. (6.2)

To obtain a better approximation, we start with an irrational numberα ∈ (0, 1)
and an integer parameterQ > 1. As before, divide the interval(0, 1) into Q equal
pieces( a

Q
, a+1

Q
). Consider theQ + 1 numbers inside the interval(0, 1):

{α}, {2α}, ..., {(Q + 1)α}, (6.3)

where{x} denotes the fractional part ofx. Letting [x] denote the greatest
integer less than or equal tox, we havex = [x] + {x}.

By Dirichlet’s Box Principle, at least two of these numbers, say{q1α} and
{q2α}, belong to a common interval of length1

Q
. Without loss of generality, we

may take1 ≤ q1 < q2 ≤ Q + 1.
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Hence

∣∣∣{q2α} − {q1α}
∣∣∣ ≤ 1

Q
(6.4)

and

|(q2α− n2)− (q1α− n1)| ≤ 1

Q
, ni = [qiα]. (6.5)

Now let q = q1 − q2, 1 ≤ q ≤ Q andp = n1 − n2 ∈ Z. Then

∣∣∣qα− p
∣∣∣ ≤ 1

Q
(6.6)

and hence

∣∣∣α− p

q

∣∣∣ ≤ 1

qQ
≤ 1

q2
. (6.7)

We have proven

Theorem 6.5.3.Givenα ∈ R, there existp, q ∈ Z, q 6= 0, such that

∣∣∣α− p

q

∣∣∣ <
1

q2
. (6.8)

6.5.2 Counting the Number of Primes

Euclid

Lemma 6.5.4 (Euclid). There are infinitely many primes.

Proof by contradiction: Assume there are only finitely many primes, say
p1, p2, . . . , pn. Consider

x = p1p2..pn + 1. (6.9)

x cannot be prime, as we are assumingp1 throughpn is a complete list of
primes. Thus,x is composite, and divisible by a prime. However,pi cannot divide
x, as it gives a remainder of1. Thus,x would have to be divisible by some prime
not in our list, again contradicting the assumption thatp1 throughpn is a complete
enumeration of the primes.2
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Exercise 6.5.5.Try, using Euclid’s argument, to find an explicit lower bound (as
weak as you like) to the function:

π(X) = #{p : p is prime andp ≤ X}. (6.10)

Dirichlet’s Theorem

Theorem 6.5.6 (Primes in Arithmetic Progressions).Let a and b be relatively
prime integers. Then there are infinitely many primes in the progressionan + b.
Further, for a fixeda, to first order all relatively primeb give progressions having
the same number of primes.

Notice that the condition(a, b) = 1 is necessary. Ifgcd(a, b) > 1, an + b
can never be prime. Dirichlet’s remarkable result is that this condition is also
sufficient.

Exercise 6.5.7.Dirichlet’s theorem is not easy to prove, but try to prove it in the
particular casea = 4, b = −1, i.e. for the arithmetic progression4n − 1, using
an argument similar to Euclid’s. Proving there are infinitely many primes of the
form4n + 1 is a lot harder.

Prime Number Theorem

Theorem 6.5.8.(Prime Number Theorem or PNT) AsX →∞,

π(X) ∼ X

log X
(6.11)

The Prime Number Theorem was proved in 1896 by Jacques Hadamard and
Charles Jean Gustave Nicolas Baron de la Vallee Poussin. Of course, we need to
quantify whatπ(X) ∼ X

log X
means. Basically, there is an error functionE(X)

such that|π(X)− X
log X

| ≤ E(X), andE(X) grows slower than X
log X

.
A weaker version was proved by Pafnuty Chebyshev (around1850).

Theorem 6.5.9 (Chebyshev).There exist explicit positive constantsA andB such
that, forn > 30:

AX

log X
≤ π(X)

X
≤ BX

log X
. (6.12)
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Chebyshev showed one can takeA = log
(

2
1
2 3

1
3 4

1
4

30
1
30

)
≈ .921 andB = 6A

5
≈

1.105, which are indeed very close to 1. To highlight the method, we will use
cruder arguments and prove the theorem for a smallerA and a largerB.

Chebyshev’s argument uses an identity using von Mangoldt’s Lambda func-
tion Λ(n), whereΛ(n) = log p if m = pk for some primep, and0 otherwise.

Define the function

T (X) =
∑

1≤n≤X

Λ(n)

[
X

n

]
=

∑
n≥1

Λ(n)

[
X

n

]
. (6.13)

Exercise 6.5.10.Show thatT (X) =
∑

n≤X log n.

Now, it is easy to see (compare upper and lower sums) that

∑
n≤X

log n =

∫ X

1

log t dt + O(log X) = X log X −X + O(log X), (6.14)

giving a good approximation to the functionT (X). The trick is to look at

T (X)− 2T
(X

2

)
=

∑
n

Λ(n)

([
X

n

]
− 2

[
X

2n

])
(6.15)

By the previous remarks, the LHS= X log 2 + O(log X). Also,

RHS≤
∑
p≤X

(log p)
log X

log p
= π(X) log X. (6.16)

Hence we immediately obtain the lower bound:

π(X) ≥ X log 2

log X
+ O(log X) (6.17)

Exercise 6.5.11.Prove the bound in Equation 6.16.

To obtain an upper bound forπ(X), we notice that, since[2α] ≥ 2[α], the
sum in equation (6.15) has only positive terms. By dropping terms we get a lower
bound.
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T (X)− 2T
(X

2

)
≥

∑

X/2<n≤X

Λ(n)

([
X

n

]
− 2

[
X

2n

])

≥
∑

X/2<p≤X

log p

≥ log
(X

2

) ∑

X/2<p≤X

1

= log
(X

2

)(
π(X)− π

(X

2

))
(6.18)

Hence we obtain an upper bound for the number of primes betweenX
2

andX:

π(X)− π(X/2) ≤ X log 2

log(X
2
)

+ O(1) (6.19)

Now, if we write inequality (6.19) forX, X
2
, X

22 , . . . we get

π(X)− π(X/2) ≤ 2
X/2

log(X/2)

π(X/2)− π(X/22) ≤ 2
X/22

log(X/22)
...

π(X/2k−1)− π(X/2k) ≤ 2
X/2k

log(X/2k)
(6.20)

as long asX
2k ≥ 1, i.e. k ≤ [log2 X] = k0. Summing the above inequalities we

get on the left hand side a telescoping sum. All the terms cancel, except for the
leading termπ(X) andπ(X/2k0) = 0.

Thus

π(X) ≤ 2

k0∑

k=1

X/2k

log(X/2k)
(6.21)

To evaluate the sum in the above inequality we split it into two parts,k "small"
andk "large". More precisely, letn0 = log2(X

1/10) so that2n0 = X1/10 and note
that:
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2
∑

k>n0

X/2k

log(X/2k)
≤ 2

∑

k>n0

X

2k
≤ 2X

2n0
=

2X

X1/10
= 2X9/10. (6.22)

Hence the contribution fromk "large" is very small compared to what we
expect (i.e. order of magnitudeX

log X
), or we can say that the main term comes

from the sum overk small.
We now evaluate the contribution from smallk.

2

n0∑

k=1

X

2k

1

log(X/2k)
≤ 2X

log(X/2n0)

n0∑

k=1

1

2n0
≤ 2X

log(X9/10)
=

20

9

X

log X
(6.23)

Hence the right hand side of the equation (6.21) is made up of two parts,
a main term of sizeBX

log X
coming from equation (6.23), and a lower order term

coming from equation (6.22).
ForX sufficiently large,

π(X) ≤ BX

log X
(6.24)

whereB can be any constant strictly bigger than20
9

.
To obtain Chebyshev’s better constant we would have to work a little harder

along these lines, but it is the same method.
Gathering equations (6.17) and (6.24) we see we have proven

AX

log X
≤ π(X) ≤ BX

log X
. (6.25)

While this is not an asymptotic forπ(X), it does give the right order of mag-
nitude forπ(X), namely X

log X
.

Exercise 6.5.12.Using Chebyshev’s Theorem, Prove Bertrand’s Postulate: for
any integern ≥ 1, there is always a prime number betweenn and2n.

75



Chapter 7

More of an Introduction to Graph
Theory

We review some basic definitions of Graph Theory, and prove a simple result
about the size of the eigenvalues of adjacency graphs. Lecture by Peter Sarnak;
notes by Steven J. Miller.

7.1 Definitions

Definition 7.1.1. For a graphG, let V (G) be the set of vertices andE(G) the set
of edges (an edge is a pair(v, w) with v, w ∈ V ). We often just writeV andE.

Definition 7.1.2 (Connected Graph).A graph G is connected if for any two
verticesv, w ∈ G, there is a path of edges inE starting atv and ending atw.

Definition 7.1.3 (Boundary). ∂A = {v ∈ V − A : there is aw ∈ A with
(v, w) ∈ E}.

Definition 7.1.4 (k-regular). A graphG is k-regular if there arek edges coming
out from each vertex.

Definition 7.1.5 (Expander Graph). LetG be a connected graph withn vertices.
Let A ⊂ V (G) be any subset of vertices with|A| ≤ n

2
(ie, at most half of the

vertices). We sayG is a (n, c, k) expander if for any suchA, |∂A| ≥ c|A|.
Example 7.1.6.Let G be a2-regular graph withn vertices. For definateness,
label the vertices{1, 2, . . . , n}. Let the edges be(1, 2), (2, 3), (3, 4), . . . , (n, 1).
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Let A be the first half of the vertices:A = {1, 2, . . . ,
[

n
2

]
}. Then|∂A| = 2, and

G is not an(n, c, 2) expander.

7.2 Size of Eigenvalues

Consider a3-regular graph withn vertices. We want the graph to have certain
desirable connectivity properties.

Let A = (avw) is the adjacency matrix attached to the graphG, andavw = 1
if there is an edge fromv to w and0 otherwise. This is a very sparse matrix
(only three non-zero entries in each row or column). Compute its eigenvalues
(real numbers).

Lemma 7.2.1.The eigenvaluesλi ∈ [−3, 3].

Proof: Letf : V → R, define the action of the adjacency matrixA onf by

Af(v) =
∑

(v,w)∈E

f(w). (7.1)

As there are finitely many vertices (n, in fact), we can regard the functionf(v)

as living inRn, with coordinates
(
f(v1), . . . , f(vn)

)
.

Suppose∀w ∈ V , Af(w) = λf(w), f 6= 0. Thenλ is an eigenvalue (which
must be real asA is real symmetric).

We use the Maximum Modulus Principle. Asf 6= 0, letw0 be such thatf(w0)
is the maximum value off(w) (not zero, and exists as we have finitely many
vertices). Then

f(w0) =
1

λ

∑

(w,w0)

f(w). (7.2)

If λ > 3, this cannot happen (we’re assuming the graph isk-regular and con-
nected). Ifλ = 3, thenf is constant. Working with absolute values, we similarly
obtainλ > −3.

Exercise 7.2.2.Prove ak-regular graphG is connected if and only ifλ = k is a
simple eigenvalue.

Let λ1 be the second largest eigenvalue;λ = k is always an eigenvalue for a
k-regular connected graph. How big can the gap be betweenλ1 andk?
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Chapter 8

Linear Algebra Review, especially
Spectral Theorem for Real
Symmetric Matrice

We review some basic facts about Linear Algebra and Matrix Groups, and give
an introduction to Random Matrix Theory. Lecture by Steven J. Miller; notes by
Steven J. Miller and Alex Barnett.

8.1 Linear Algebra Review

Matrices can either be thought of as rectangular (often square) arrays of numbers,
or as linear transformations from one space to another (or possible to the same
space). The former picture is the simplest starting point, but as Professor Sarnak
emphasized, it is the latter, geometric view that gives a deeper understanding.

To connect with the simpler vector case, a vector can be thought of as a list of
real numbers which change in a certain way when the coordinate system changes,
or as a geometric object with length and direction. The latter object iscoordinate-
independent, and has different representations in different choices of coordinate
axes. Try to keep the geometric picture in mind for matrices.

8.1.1 Definitions

Given ann×m matrixA (wheren is the number of rows andm is the number of
columns), thetranspose ofA, denotedAT , is them×n matrix where the rows of
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AT are the columns ofA (or, equivalently, the columns ofAT are the rows ofA).

Lemma 8.1.1.(AB)T = BT AT and(AT )T = A.

We leave the proof to the reader.
If an n× n matrix (also called asquarematrix)A satisfiesAT = A, then we

sayA is symmetric

Example 8.1.2.LetA be the matrix



2 2 4 2
1 1 −2 2
−2 0 0 1
1 1 2 1


 (8.1)

ThenAT is 


2 1 −2 1
2 1 0 1
4 −2 0 2
2 2 1 1


 (8.2)

Note the above matrix is not symmetric.

The number ofdegrees of freedomin a symmetric matrix (i.e. independent real
numbers needed to completely specify the matrix) isn(n+1)/2. Why? There are
n2 entries,n on the diagonal. If you specify all entries above the diagonal and all
entries on the diagonal, then you know the symmetric matrix.

There aren2 − n non-diagonal entries (half above the diagonal, half below).
Thus, one needs to specifyn2−n

2
+ n = n2+n

2
entries.

Exercise 8.1.3.If A andB are symmetric, showAB is symmetric.

Matrix multiplication. We call the element in theith row andjth columnaij.
Think of i = 1 · · ·n going down the left side, andj = 1 · · ·M going across the
top. A vectorv we represent as a column of elements with theith beingvi. A
nice way to see matrix-vector multiplication is that thevi give thecoefficientsby
which the columns ofA are linearly mixed together. For the productw = Av to
make sense, the length (dimension) ofv must equalm, and the dimension ofw
will be n. A is therefore a linear transform fromm-dim space ton-dim space.

Multiple transformations appear written backwards: if we applyA thenB then
C to a vector, we write

w = CBAv. (8.3)

Note that taking the product of twon× n matrices requiresO(n3) effort.
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Exercise 8.1.4.Show that there are two ways to evaluate triple matrix products
of the typeCBA. The slow way involvesO(n4) effort. How about the fast way?
How do these results scale for the case of a product ofk matrices?

Definition 8.1.5 (Invertible Martices). A is invertible if a matrixB can be found
such thatBA = AB = I. The inverse is then writtenB = A−1. Invertibility
requiresA to be square.

Transformations of a matrix. Just as with vectors, we can find out how the
components of a square matrixA change under transformation. Say we have a
scalar quantityx = wT Av. We transform our coordinate system linearly such
that the vectorv has componentsv′ = Mv, whereM is some invertible matrix
representing the transformation. Therefore alsow′ = Mw. The only way thatx
can remain unchanged by the transformation (as any scalar must), for all choices
of v andw, is if the transformed matrix is writtenA′ = M−T AM−1. Check this
via

x′ = w′T A′v′ = (Mw)T (M−T AM−1)(Mv) = wT IAIv = wT Av = x. (8.4)

This is called asimilarity transformation, or aconjugation. Really we have one
object, the transformationA, but it may have different representations by a matrix
of numbers, depending on the choice of basis.

Definition 8.1.6 (Orthogonal Matrices). Q is an orthogonaln × n matrix if it
has real entries andQT Q = QQT = I.

Q is invertible, with inverseQT . The geometric meaning ofQ is a rotation:
the vectorw = Qv is justv rotated (about the origin).

The number of degrees of freedom in an orthogonal matrix isn(n− 1)/2.

Exercise 8.1.7.In 3 dimensions a general rotation involves 3 angles (for example,
azimuth, elevation, and ‘roll’). How many angles are needed in 4 dimensions? In
3d you rotate about a line-like axis (the set of points which do not move under
rotation); what object do you rotate about in 4d?

Exercise 8.1.8.Show that the identity matrixI, always has representationIij =
δij regardless of the choice of basis. Hint: perform orthogonal tranformation on
the matrixδij.

The set of orthogonal matrices of ordern forms acontinuous(or topologi-
cal) group, which we callO(n). (Not to be confused with “of order N”). Group
properties:
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• Associativity follows from that of matrix multiplication.

• The identity matrix acts as an identity element, since it is in the group.

• Inverse is the transpose (see above):Q−1 = QT .

• Closure is satisfied because any productQR of orthogonal matrices is itself
orthogonal.

Exercise 8.1.9.Prove the last assertion.

However, not all the elements ofO(n) can ‘talk’ to each other,i.e.you cannot
reach all the elements by continuous transformation from the identityI.

Example forn = 2: a general order-2 orthogonal matrix can be written

(
cos θ − sin θ
sin θ cos θ

)
or

(
cos θ − sin θ
− sin θ − cos θ

)
, (8.5)

where0 ≤ θ < 2π is a real angle. The first has determinant+1 and defines the
‘special’ (i.e. unit determinant) groupSO(2) which is a subgroup ofO(2) with
identity I. The second has determinant−1 and corresponds to rotations with a
reflection; this subgroup is disjoint fromSO(2), and has the weird (reflecting)
identity can be written in some basis as

(
1 0
0 −1

)
. (8.6)

Note thatSO(2), alternatively written as the family of planar rotationsR(θ), is
isomorphicto the unit length complex numbers under the multiplication operation:

R(θ) ←→ eiθ. (8.7)

Therefore we haveR(θ1)R(θ2) = R(θ1 + θ2). This commutativity relation does
nothold in highern > 2.

Orthogonal transformations. If an orthogonal matrixQ is used for con-
jugation of a general square matrixA, then the rule Eq. 8.4 for transformation
becomes,

A′ = QAQT . (8.8)

This tells you how to ‘rotate’ a (square) matrix.
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Definition 8.1.10 (Complex Conjugate Transpose).LetA be ann×m matrix.
Then the complex conjugate transpose ofA, denotedA∗, is obtained by the follow-
ing: (1) take the complex conjugate ofA; ie, replace every entryajk = xjk + iyjk

with ajk = xjk − iyjk, and call this matrixA1; (2) take the transpose ofA1.

Exercise 8.1.11.Prove that(AB)∗ = B∗A∗.

Definition 8.1.12 (Dot or Inner Product). The dot (or inner) product of two real
vectorsv andw is defined asvT w; if the vectors are complex, we instead usev∗w.

Exercise 8.1.13.Show that the dot product is invariant under orthogonal trans-
formation. That is, show that given two vectors, transforming them using the same
orthogonal matrix leaves their dot product unchanged.

Definition 8.1.14 (Length of a vector).The length of a real vectorv is |v|2 =
vT v; for a complex vector, we have|v|2 = v∗v.

Definition 8.1.15 (Orthogonality). Two real vectors are orthogonal (also called
perpendicular) ifvT w = 0; for two complex vectors, the equivalent condition is
v∗w = 0.

Definition 8.1.16 (Eigenvalue, Eigenvector).Recallλ is aneigenvalueandv is
aneigenvectorif Av = λv andv is not the zero vector.

Exercise 8.1.17.If v is an eigenvector ofA with eigenvalueλ, showw = av,
a ∈ C, is also an eigenvector ofA with eigenvalueλ.

Exercise 8.1.18.Show that given an eigenvalueλ and an eigenvectorv, you can
always find an eigenvectorw with the same eigenvalue, but|w| = 1.

To find the eigenvalues, we solve the equationdet(λI − A) = 0. This gives a
polynomialp(λ) = 0. We callp(λ) thecharacteristic polynomial.

Thetrace of a matrixA, denote Tr(A) is the sum of the diagonal entries ofA:

Tr(A) =
n∑

i=1

aii. (8.9)

Lemma 8.1.19.Tr(A) =
∑n

i=1 λi.
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The proof relies on writing out the characteristic equation and comparing pow-
ers ofλ with the factorized version. By the fact that the polynomial has rootsλi

we can write

det(λI − A) = p(λ) =
n∏

i=1

(λ− λi). (8.10)

Note the coefficient ofλn is 1, thus we have
∏

i(λ− λi) and notc
∏

i(λ− λi)
for some constantc.

By expanding out the RHS, the coefficient ofλn−1 is −∑n
i=1 λi, which we

will show is −Tr(A). Expanding the LHS, we want to find the corresponding
coefficient in

∣∣∣∣∣∣∣∣∣

λ− a11 −a12 · · · −a1n

−a21 λ− a22
...

. ..
−an1 λ− ann

∣∣∣∣∣∣∣∣∣
.

We have to remember the expansion of the determinant. Taking the top-left-most
2× 2 block, we see its determinant is(λ− a11)(λ− a22)− a12a21 = λ2 − (a11 +
a22)λ+(a11a22−a12a21). The determinant of the top-left-most3×3 block is then
formed by(λ− a33) times the above2× 2 determinant, plus two other multiples
of determinants which can give only a highest power ofλ of λ1. Thus we see that
the coefficient inλ2 is−(a11 +a22 +a33). Repeating this argument for4×4 block
up ton× n gives us the coefficient ofλn−1 in the full determinant is−∑n

i=1 aii.
Since the LHS and RHS must be equal∀λ, the LHS and RHS coefficients inλn−1

are equal.2

Corollary 8.1.20. Tr(A) is invariant under rotation of basis.

The proof follows immediately from the invariance of the eigenvalues under
rotation of basis. We need the following:

Lemma 8.1.21.det(AB) = det(A) det(B). Further, by induction one can show
det(AB · · ·Z) = det(A) det(B) · · · det(Z). Further,det(I) = 1.

Proof of Corollary: LetA = QT BQ. We showA andB have the same trace
by showingA andB have the same eigenvalues. To find the eigenvalues ofA we
must solve:
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det(λI − A) = det(λI −QT BQ)

= det(λQT Q−QT BQ)

= det(QT λIQ−QT BQ)

= det
(
QT (λI −B)Q

)

= det(QT ) det(λI −B) det(Q)

= det(QT ) det(Q) det(λI −B)

= det(QT Q) det(λI −B) = det(I) det(λI −B) = det(λI −B).

(8.11)

As the eigenvalues ofA andB satisfy the same equation, they are equal.2

8.1.2 Spectral Theorem for Real Symmetric Matrices

The main theorem we will prove is

Theorem 8.1.22 (Spectral Theorem).Let A be a real symmetricn × n matrix.
Then there exists an orthogonaln×n matrixQ and a diagonal matrixΛ such that
QT AQ = Λ. Moreover, then eigenvalues ofA are the diagonal entries ofΛ.

This result is remarkable: it tells you that any real, symmetric matrix is diago-
nal when rotated into an appropriate basis (recall the rotation effect of conjugation
usingQ). In other words, the operation of matrixA on a vectorv can be broken
down into three steps:

Av = QΛQT v = (undo the rotation)(stretch along coord axes)(rotation)v.
(8.12)

Recall the ordering of transformations is read like Hebrew, right to left. The rota-
tion is just the rotation into the basis of eigenvectors.

Furthermore, the eigenvaluesλi (= diag els ofΛ) are a set of numbers invari-
ant under rotations ofA. In other words, ifA′ = PAP T is an orthogonally-
conjugated (i.e.P is orthogonal) version ofA, thenA′ has the same{λi} asA. Of
course the ordering of theλi has to be chosen the same.

For the Spectral Theorem we prove a sequence of needed lemmas:

Lemma 8.1.23.The eigenvalues of a real symmetric matrix are real.
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Let A be a real symmetric matrix with eigenvalueλ and eigenvectorv. Note
that we do not yet know thatv has only real coordinates!

Therefore,Av = λv. Take the dot (or inner) product of both sides with the
vectorv∗, the complex conjugate transpose ofv:

v∗Av = λv∗v. (8.13)

But the left hand side is real. The two sides are clearly complex numbers
(ie, 1-dimensional matrices). Taking the complex conjugate transpose of the LHS
gives

(
v∗(Av)

)∗
= (Av)∗(v∗)∗ = v∗Av. (8.14)

Therefore, the LHS is real, implying the RHS is real. But clearlyv∗v is real
(similar calculation). Thus,λ is real.2

We will only prove the Spectral Theorem when all the eigenvalues are distinct.
Henceforth, we shall always assumeA is a real symmetric matrix.

Lemma 8.1.24.The eigenvectors of a real symmetric matrix are real.

The eigenvalues solve the equation(λI − A)v = 0. Let λ be an eigenvalue.
Thendet(λI − A) = 0. Therefore the matrixB = λI − A is not invertible.
Therefore it send a vector to0 (standard linear algebra calculation).

Lemma 8.1.25. If λ1 and λ2 are two distinct eigenvalues of a real symmetric
matrixA, then their corresponding eigenvectors are perpendicular.

We studyvT
1 Av2. Now

vT
1 Av2 = vT

1 (Av2) = vT
1 (λ2v2) = λ2v

T
1 v2. (8.15)

Also,

vT
1 Av2 = vT

1 AT v2 = (vT
1 AT )v2 = (Av1)

T v2 = (λ1v1)
T v2 = λ1v

T
1 v2. (8.16)

Therefore
λ2v

T
1 v2 = λ1v

T
1 v2 or (λ1 − λ2)v

T
1 v2 = 0. (8.17)

As λ1 6= λ2, vT
1 v2 = 0. Thus, the eigenvectorsv1 andv2 are perpendicular.2
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We can now prove the Spectral Theorem for real symmetric matricesif there
are n distinct eigenvectors.

Let λ1 to λn be then distinct eigenvectors, and letv1 to vn be the correspond-
ing eigenvectors chosen so that eachvi has length1.

Consider the matrixQ, where the first column ofQ is v1, the second column
of Q is v2, all the way to the last column ofQ which isvn:

Q =




↑ ↑ ↑
v1 v2 · · · vn

↓ ↓ ↓


 (8.18)

The transpose ofQ is

QT =



← v1 →

...
← vn →


 (8.19)

Exercise 8.1.26.Show thatQ is an orthogonal matrix. Use the fact that thevi all
have length one, and are orthogonal (perpendicular) to each other.

ConsiderQT AQ. This is a matrix, call itB. To find its entry in theith row
andjth column, we look at

eT
i Bej (8.20)

where theek are column vectors which are1 in the kth position and0 else-
where:

ek =




0
...
0
1
0
...
0




(8.21)

Thus, we need only show thateT
i Bej = 0 if i 6= j and equalsλj if i = j.

Exercise 8.1.27.ShowQei = vi andQT vi = ei.
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We calculate

eT
i Bej = eT

i QT AQej

= (eT
i QT )A(Qej)

= (Qei)
T A(Qej)

= vT
i Avj

= vT
i (Avj)

= vT
i λjvj = λjv

T
i vj. (8.22)

As vT
i vj equals0 if i 6= j and1 if i = j, this proves the claim.

Thus, the off-diagonal entries ofQT AQ are zero, and the diagonal entries are
the eigenvaluesλj. This shows thatQT AQ is a diagonal matrix whose entries are
then eigenvalues ofA. 2

Note that, in the case ofn distinct eigenvalues, not only can we write down
the diagonal matrix, we can easily write down whatQ should be. Further, by
reordering the columns ofQ, we see we reorder the positioning of the eigenvalues
on the diagonal.
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Chapter 9

Central Limit Theorem, Spectral
Theorem for Real Symmetric,
Spectral Gaps

Proof of the Central Limit Theorem (via the Fourier Transform). Proof of the
Spectral Theorem for Real Symmetric Matrices (via maximization). Spectral Gap
and Families of Expanders. Lecture by Peter Sarnak; notes by Steven J. Miller.

9.1 Central Limit Theorem

Let X : Ω → R be a random variable (x(ω) ∈ R). Define the density functionµ
onR by

µ[a, b] = Prob
(
ω : x(ω) ∈ [a, b]

)
. (9.1)

Thus,X gives rise to the probability measureµ onR.
Assume

1. X1, X2, . . . are independent identically distributed random variables (iidrv)
with densityµ.

2. E(X) =
∫
Ω

x(ω)dp(ω) =
∫
R xdµ(x).

3. Var(X) =
∫
Ω

x2(ω)dp(ω) =
∫

R
x2dµ(x) = 1.
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DefineSN =
∑

Xj, and letN(0, 1) denote the standard Gaussian or normal
distribution (mean zero, variance one).

Theorem 9.1.1.
SN√
N

−→
in probability

N(0, 1), (9.2)

ie,

Prob
( SN√

N
∈ [a, b]

)
→ 1√

2π

∫ b

a

e−
x2

2 dx. (9.3)

Proof: We have a random variableX, induces a probability measureµ on the
real lineR. Thus,dµ = f(x)dx, f(x) is a nice function. Asµ is a probability
measure onR, we must havef(x) ≥ 0 and

∫
R

f(x)dx = 1.
The given assumptions about theXis imply

1.
∫

R
xf(x)dx = 0.

2.
∫

R
x2f(x)dx = 1.

Definition 9.1.2 (Fourier Transform).

f̂(ξ) =

∫

R

f(x)e−2πixξdx. (9.4)

Clearly,|f̂(ξ) ≤ ∫
R

f(x)dx ≤ 1. Further,f̂(0) =
∫

R
f(x)dx = 1.

Now

f̂ ′(ξ) =

∫

R

(2πix)f(x)e−2πixξdx. (9.5)

Thus,f̂ ′(0) = 0 (from E(x) = 0).
We will assumef̂ is continuous (although this is implied by our assumptions).
Further,

f̂ ′′(ξ) = −4π2

∫

R

x2f(x)e−2πixξdx. (9.6)

Therefore,f̂ ′′(0) = −4π2 (by our assumption on the variance).
Using Taylor to expand̂f we obtain
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f̂(ξ) = 1 +
f ′′(0)

2
ξ2 + · · ·

= 1− 2π2ξ2 + · · · (9.7)

Near the origin, the above showŝf looks like a concave down parabola.

Theorem 9.1.3 (Fourier Inversion). If f is a nice function (so all the quantities
below make sense, ie,f decays fast enough):

f(x) =

∫

R

f̂(ξ)e2πixξdξ. (9.8)

Definition 9.1.4. e(y) = e2πiy.

Exercise 9.1.5.If φξ(x + y) = e
(
(x + y)ξ

)
, proveφξ(x + y) = φξ(x)φξ(y). φξ

is a characterof (R, +).

Exercise 9.1.6.Is there aψ : R → R such thatψ(x + y) = ψ(x) + ψ(y)? IE,
can you find a homomorphism that takes addition to addition? If yes (of course:
see above!) what can you say aboutψ? If we assumeψ is continuous, it must be
of the formφξ.

Think ofR as a vector space overQ (ie, the scalars areQ). What is the
dimension ofR overQ, and what is a basis? As the reals are uncountable and the
rationals are countable, there are uncountably many basis vectors.

Any linear transformation will satisfy the desired condition! For example,
choose any basis (called aHamel Basis) ofR overQ (very hard! need the Axiom
of Choice).

To show every character of the reals is of the formφξ, you need more. If you
assume the character is continous, then it must be of the formφξ.

Suppose we have random variablesX andY with measuresµ andν, with
induced functionsf(x) andg(x). If we chooseX andY independently, what is
the distribution ofX + Y ?

Lemma 9.1.7.The distribution ofX +Y clearly cannot be the sum (as that won’t
be a probability measure). It isf ∗ g, andf ∗ g is a probability measure.

Definition 9.1.8 (Convolution).

(f ∗ g)(x) =

∫

R

f(x− y)g(y)dy (9.9)
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We show the convolution is a probability measure. We assume our functionsf
andg are nice (ie, that we may use Fubini to interchange the order of integration).

∫

R

(f ∗ g)(x)dx =

∫

R

∫

R

f(x− y)g(y)dydx

=

∫

R

∫

R

f(x− y)g(y)dxdy

=

∫

R

g(y)

( ∫

R

f(x− y)dx

)
dy

=

∫

R

g(y)

( ∫

R

f(t)dt

)
dy

=

∫

R

g(y) · 1dy = 1. (9.10)

Exercise 9.1.9.f̂ ∗ g(ξ) = f̂(ξ) · ĝ(ξ). Thus, Fourier Transform converts convo-
lution to multiplication.

Let Z = X + Y . What is

Prob
(
Z ∈ [z, z + dz]

)
= h(z)dz. (9.11)

x can be anywhere; givenx, y must lie betweenz − x andz − x + dz.

Prob
(
X + Y ∈ [z, z + dz]

)
=

∫

x∈R
Prob

(
X ∈ [x, x + dx] and

Y ∈ [z − x, z − x + dz]
)
f(x)dx

=

∫

x∈R
f(x)g(z − x)dx = h(z), (9.12)

where the last step follows from the definition of the density functions.
By Induction, we seeX1 + · · ·XN has distributionf ∗ · · · ∗ f (as the random

variables are iidrv).
However, we want to studySN = X1+···XN√

N
.

Definition 9.1.10 (FT). LetFT (f) = f̂ ; FT denotes the Fourier Transform.
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Lemma 9.1.11.

FT

(
the distribution of

X1 + · · ·+ XN√
N

)
=

[
f̂
( ξ√

N

)]N

. (9.13)

We take the limit asN → ∞ for fixed ξ. Recall we showed that̂f(ξ) =
1− 2π2ξ2 + · · · . Thus, we have to study

[
1− 2π2ξ2

N
+ O

(
|ξ|3
N

3
2

)]N

. (9.14)

But asN →∞, the above goes to

e−2πξ2

. (9.15)

The universality arises becauseonly terms up to the second order in the
Taylor Series contribute.

Exercise 9.1.12.Show the Fourier Transform of the Gaussian is the Gaussian.

Key point:

• Used Fourier Analysis to study the sum of independent identically dis-
tributed random variables, as it converts convolution to multiplication.

Exercise 9.1.13.Fix g a nice, smooth, rapidly decreasing function. Consider the
linear transformationA:

(Af)(x) =

∫

R

g(x− y)f(y)dy. (9.16)

Any convolution operator is diagonalized by these characters (exponentials).
At a formal level,

(Aφξ)(x) =

∫

R

g(x− y)φξ(y)dy

=

∫

R

g(x− y)e−2πiξydy

=

∫

R

g(t)e−2πiξ(x−t)dt

= e−2πixξ

∫

R

g(t)e2πiξtdt = ĝ(ξ)φξ(x). (9.17)

Thus,φξ is an eigenvector ofA with eigenvaluêg(ξ).
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9.2 Spectral Theorem for Real Symmetric Matrices

Let A be a real symmetric matrix acting onRn. ThenA has an orthonormal basis
v1, . . . , vn such thatAvj = λjvj.

A simpler proof, assuming all eigenvalues are distinct, is available in the
September25th lecture notes.

Write the inner or dot product〈v, w〉 = vtw. As A is symmetric,〈Av, w〉 =
〈v,Aw〉.
Definition 9.2.1. V ⊥ = {w : ∀v ∈ V, 〈w, v〉 = 0}.
Lemma 9.2.2.SupposeV ⊂ Rn is an invariant vector subspaceunderA (ifv ∈
V , thenAv ∈ V ). ThenV ⊥ is alsoA-invariant: A(V ⊥) ⊂ V ⊥.

This proves the spectral theorem. Suppose we find av0 6= 0 such thatAv0 =
λ0v0. TakeV = {µv0 : µ ∈ R} for the invariant subspace.

By Lemma 9.2.2,V ⊥ is left invariant underA, and is one dimension less.
Thus, by whatever method we used to find an eigenvector, we apply the same
method onV ⊥.

Thus, all we must show is given anA-invariant subspace, there is an eigenvec-
tor.

Consider

max
v with 〈v,v〉=1

{
〈Av, v〉

}
. (9.18)

Standard fact: every continuous function on a compact set attains its maximum
(not necessarily uniquely). See, for example, W. Rudin,Principles of Mathemati-
cal Analysis.

Let v0 be a vector giving the maximum value, and denote this maximum value
by λ0. As 〈v0, v0〉 = 1, v0 is not the zero vector.

Lemma 9.2.3.Av0 = λ0v0.

Clearly, if Av0 is a multiple ofv0 it has to beλ0 (from the definition ofv0 and
λ0).

Thus, it is sufficient to show

Lemma 9.2.4.{µv0 : µ ∈ R} is anA-invariant subspace.
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Proof: letw be an arbitrary vector perpendicular tov0, andε be an arbitrary
small real number. Consider

〈A(v0 + εw), v0 + εw〉 (9.19)

We need to renormalize, asv0+εw is not unit length; it has length1+ε2〈w, w〉.
As v0 was chosen to maximize〈Av, v〉 subject to〈v, v〉 = 1, after normalizing the
above cannot be larger. Thus,

〈A(v0 + εw), v0 + εw〉 = 〈Av0, v0〉+ 2ε〈Av0, w〉+ ε2〈w, w〉. (9.20)

Normalizing the vectorv0 + εw by its length, we see that in Equation 9.20, the
orderε terms must be zero. Thus,

〈Av0, w〉 = 0; (9.21)

however, this impliesAv0 is in the space spanned byv0 (asw was an arbitrary
vector perpendicular tov0), completing our proof.2

Corollary 9.2.5. Any local maximum will lead to an eigenvalue-eigenvector pair.

The second largest eigenvector (denotedλ1) is

λ1 = max
〈v,v0〉=0

〈Av, v〉
〈v, v〉 . (9.22)

We can either divide by〈v, v〉, or restrict to unit length vectors.

9.3 Applications to Graph Theory

Let G be ak-regular graph,f : V → R. Recallv ∼ w if there is an edge
connectingv andw. Let A be the adjacency matrix ofG, and define

Af(v) =
∑
v∼w

f(w)

〈f, g〉 =
∑
v∈V

f(v)g(v). (9.23)

Consider the functionf0(v) = 1 for all v ∈ V . Then
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Af0(v) =
∑
v∼w

f0(w) = kf0(v). (9.24)

Thus,f0 is an eigenfunction with eigenvaluek.

Theorem 9.3.1 (Expander Families).Fix k. Suppose we have a sequence ofk-
regular graphsGj with |Vj| → ∞ and supposek− λ1(G) ≥ δ > 0, δ fixed. Then
Gj is an expander family.

Remark 9.3.2. If you have an algorithm that has a random element, then one
can show there is another algorithm which does what this algorithm does without
having a random component. (More or less, some slight of hand).

Suppose we have abipartite graph : there are two sets of verticesI (inputs)
andO (outputs). Edges run only betweenI andO; there are no edges between two
vertices inI or between two vertices inO. Let there ben inputs andn outputs,
and join each input withk outputs.

Fix δ0 > 0. We want, for anyB ⊂ I, |∂B| ≥ δ0|B|.
We give a sketch of the proof. We will show that knowledge of a spectral

gap ensures that the boundary ofanysubset ofI will be big. We do bipartite for
simplicity.

Let B ⊂ I. Define

f(v) =

{
2n− |B| for v ∈ B

−|B| otherwise.
(9.25)

Then

∑
v∈V

f(v) = |B| · (2n− |B|) + (2n− |B|) · (−|B|) = 0. (9.26)

Then

λ1 = max
〈f̃ ,f0〉=0

=
〈Af̃, f̃〉
〈f̃ , f̃〉 . (9.27)

In particular,

〈Af1, f1〉
〈f1, f1〉 ≤ λ1. (9.28)
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Definition 9.3.3 (Laplacian). ∆ = kI − A.

Thus,∆f0 = kf0 − Af0 = 0 · f0.
The eigenvalues of∆ are trivially related to the eigenvalues ofA.

Remark 9.3.4 (Motivation for Laplacian). On the line we haved2

dx2 . A discrete
version is (exercise)

f(x + h)− 2f(x) + f(x− h)

h2
. (9.29)

In the plane, we would haved
2

dx2
1

+ d2

dx2
2
. Integrating by parts we have

∫

Ω

(∆f) · gdx1dx2 = −
∫

Ω

∇f · ∇gdx1dx2

=

∫

Ω

f · (∆g)dx1dx2. (9.30)

We want to integrate by parts on a graph!

(∆F )(x) = kF (x)−
∑
x∼y

F (y). (9.31)

Therefore

〈∆F, F 〉 =
∑
x∈V

(
kF (x)−

∑
y∼x

F (y)

)
F (x)

= k
∑
x∈V

F (x)2 −
∑
x∈V

∑
x∼y

F (x)F (y). (9.32)

For each edgee, orient it bye+ ande−. The analogue of the Laplacian be-
comes

∑
e

(
F (e+)− F (e−)

)2

=
∑

e

F 2(e+)− 2F (e+)F (e−) + F 2(e−)

= 2〈∆F, F 〉, (9.33)
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where the last line follows by thinking about what it means for vertices to be
connected, and how often each vertex is hit.

Recall

k − λ1 = min
〈F,f0〉=0

〈∆F, F 〉
〈F, F 〉 = min

〈F,f0〉=0

1

2

||dF ||2
〈F, F 〉 . (9.34)

Plug in the functionf defined above, namely,

f(v) =

{
2n− |B| for v ∈ B

−|B| otherwise.
(9.35)

If the edge runs from input to input or output to output, we get zero. The only
way we get non-zero contribution is from an input to an output (or vice-versa).
For ourf ,

1

2

∑
e∈E

∣∣∣f(e+)− f(e−)
∣∣∣
2

=
1

2
(2n)2 ·#{edges e running fromB to Bc}, (9.36)

whereBc is the complement ofB. We want0 < δ0 = k − λ1. Divide the
previous equation by〈F, F 〉, where〈F, F 〉 = (2n−|B|)2 · |B|+ |B|2 · (2n−|B|)
= |B| · (2n− |B|) · 2n.

Thus,

δ0 ≤
1
2
(2n)#{edges}

|B| · (2n− |B|) · 2n. (9.37)

Therefore,

#{edges} ≥ δ0|B| · (2n− |B|)
n

≥ δ0|B|, (9.38)

as|B| ≤ n.
Thus, the total number of edges is at leastδ0|B|. But each vertex getsk edges.

Thus,

|∂B| ≥ δ0|B|
k

. (9.39)
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9.4 2
√

k − 1

Let G be ak-regular connected graph.A is the adjacency matrix. Biggest eigen-
value isλ0 = k. Eigenvalues cannot be smaller than−k. How big is the gap
betweenk andλ1?

Theorem 9.4.1 (Alon-Boppana).Fix k. Take any sequencce of graphs where the
number of vertices|G| → ∞. Then

lim|G|→∞λ1(AG) ≥ 2
√

k − 1. (9.40)

Remark 9.4.2. In 1-dimension, with probability one the drunk returns home;
same in2-dimensions. He escapes with finite probability in3 and higher dimen-
sions!

Consider a3 regular graph with many vertices. Go tov, look locally. If there
are no short circuits, know what it looks like locally: it will look like a tree. (This
is p-adic hyperbolic geometry).

Let T be the infinite tree where each vertex is connected to three other vertices
(and a vertex cannot be connected to itself). Suppose a drunk is walking on a tree.
The only way he can get back is to exactly undo what he’s done.

Consider the following operator: consider an infinite dimensional Hilbert space
l2(V ), the set of allf : V → R such that

∑
v |f(v)|2 < ∞. This space is infinite

dimensional (for eachv, take the functionfv(w) = 1 if w = v and0 otherwise).
Using|ab| ≤ a2+b2

2
,

〈f, g〉 =
∑

v

f(v)g(v) (9.41)

exists (and is our inner product). We define

Af(v) =
∑
w∼v

f(w). (9.42)

It is not obvious that there are any eigenvectors (and, in fact, there are no
eigenvectors!). There is still a notion of spectrum. We will show the spectrum of
this operator (k = 3) is [−2

√
2, 2

√
2].

Note the constant function is horrendously not in this space (not evencloseto
being square-integrable.
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Chapter 10

Properties of Eigenvalues of
Adjacency Matrices of Random
Graphs

We discuss properties of eigenvalues of adjacency matrices arising from Random
Graphs. Lecture by Peter Sarnak; notes by Steven J. Miller.

10.1 Definitions

Let G be a connected, simple (no multiple bonds or edges)k-regular graph with
adjacency matrixA = (av,w). Here

av,w =

{
1 if v ∼ w

0 otherwise
(10.1)

Thus,av,w is the number of paths of length one fromv to w.
Let A2 = (a

(2)
v,w), and here

a(2)
v,w = number of paths of length2 from v to w. (10.2)

Thus,
a(2)

v,w =
∑

v′
av,v′av′,w. (10.3)

Similarly letAn = (a
(n)
v,w), and here
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a(n)
v,w = number of paths of lengthn from v to w. (10.4)

Recall

Trace(B) = Tr(B) =
∑

v

bv,v. (10.5)

Given an adjacency matrixA, let D be the diagonal matrix of eigenvalues.

D =




λ0

λ1

.. .
λN−1


 (10.6)

A = Q−1DQ for some orthogonal matrixQ. Thus,An = Q−1DQ, and we
find:

Lemma 10.1.1.Tr(An) = Tr(Dn).

Lemma 10.1.2 (Trace Formula).For anyn ≥ 0,

N−1∑
j=0

λn
j =

∑
v∈V

a(n)
v,v . (10.7)

10.2 ρk(2n) and λmax

To count walks of lengthn from v to v, it is clearly at least as many walks as there
are on ak-regular infinite tree.

A tree is a homogeneous object: any vertex looks exactly the same as any
other. There is no special vertex on a tree, though we will often name a vertexthe
root.

Definition 10.2.1. ρk(n) is the number of paths of lengthn from v to v, wherev
is anyvertex ofthek-regular tree.

Remark 10.2.2.ρk(n) = 0 for n odd.
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Remark 10.2.3.The number of paths of lengthn fromv to v on our graphG is at
least the number of paths of lengthn from any vertex to itself on the infinite tree.
Thus,

∀v ∈ V, a(n)
v,v ≥ ρk(n). (10.8)

Remember that we’ve labeled theN eigenvalues byλ0 = k, . . . , λN−1.
In the trace formula, we find

N−1∑
j=0

λ2n
j ≥ Nρk(2n). (10.9)

Therefore

1

N

N−1∑
j=0

λ2n
j ≥ ρk(2n). (10.10)

and asλ0 = k

k2n

N
+

1

N

N−1∑
j=1

λ2n
j ≥ ρk(2n). (10.11)

Fix n and letN →∞.
Let λmax = max

(
|λ1|, |λN−1|

)
.

Thus, substituting into Equation 10.11 we find

k2n

N
+ λ2n

max ≥ ρk(2n) (10.12)

in the limit asN →∞ (as we haveλmax a total ofN −1 times, and we divide
by N ; in the limit, N−1

N
→ 1.

As N →∞, we find

λ2n
max ≥ ρk(2n)

or λmax ≥
(
ρk(2n)

) 1
2n

. (10.13)

Exercise 10.2.4.Show

1. ρk(2n) ≥ 1
m

(
2m−2
m−1

)
k(k − 1)m−1.
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2.
(
ρk(2n)

) 1
2n → 2

√
k − 1.

Using the above exercise, we now find that

λmax ≥ 2
√

k − 1. (10.14)

10.3 Measure from the Eigenvalues

The trace formula told us that

N−1∑
j=0

λn
j =

∑
v∈V

a(n)
v,v . (10.15)

Definition 10.3.1 (girth). The girth of a graph is the length of the shortest closed
cycle that returns to the starting vertex without any backtracking.

Assume that the girth ofGN tends to∞ asN →∞.
Fix n, let N be very large. Then by assumption the girth is greater than say

2n+1. Thus,a(n)
v,v cannot have any contribution from cycles without backtracking.

Thus, locally, to calculatea(n)
v,v , we look like a tree, and we finda(n)

v,v = ρk(n) for
everyv ∈ V . It is essentialthat we have fixedn.

Therefore, we now have (for fixedn under our assumption) that

N−1∑
j=0

λn
j = Nρk(n)

1

N

N−1∑
j=0

λn
j = ρk(n). (10.16)

The left hand side looks like a Riemann sum.
Suppose the density of the eigenvalues of the3-regular graph isdµ = f(x)dx.
We have just shown, for polynomialspn(x) = xn, that

1

N

N−1∑
j=0

pn(λj) →
∫ 3

−3

pn(x)dµ(x), (10.17)

where the above converges toρk(n) (herek = 3).
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Thus, we are looking for a density functionf(x) such that

∫ 3

−3

xnf(x)dx = ρ3(n), n ≥ 0. (10.18)

Is there such a function? Is it unique? What does it look like? This is the
Inverse Moment Problem.

If there were two such functions, they would have to be equal by theWeier-
strass Approximation Theorem, as their difference integrates to zero against any
polynomial.

Exercise 10.3.2.Compute the generating function

F (z) =
∞∑

n=0

ρ3(n)zn, (10.19)

which is something like

1√
4(k − 1)2 − z2

(10.20)

if |z| is small (or maybe complex and outside[−k, k]).

∞∑
n=0

ρ3(n)zn =
∞∑

n=0

(∫ 3

−3

xnf(x)dx

)
zn

=

∫ 3

−3

f(x)
∞∑

n=0

(zx)ndx

=

∫ 3

−3

f(x)dx

1− zx
= F (z). (10.21)

If we letz = 1
w

we find

F (w) =
∞∑

n=0

ρ3(n)
1

wn

= w

∫ 3

−3

f(x)dx

w − x
. (10.22)
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Let w ∈ C be such thatw 6∈ [−3, 3]. Letting w → a ∈ [−3, 3], one gets
a different value (a jump) ifw approaches from above or below, and the jump is
basicallyf(a).

Look ata + ib anda− ib, b → 0.

10.4 Summary

The above is all based on the assumption that the girth was big. For the ran-
dom graph, there are very few short closed cycles. Thus, when we use the trace
formula, we now have

1

N

N−1∑
j=0

λn
j = ρk(n) + O

( 1

N

)
. (10.23)
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Chapter 11

Spacings of Eigenvalues of Real
Symmetric Matrices; Semi-Circle
Law

Joint Density Function for eigenvalues of real symmetric matrices; spacing of
eigenvalues for2 × 2 real symmetric matrices; Semi-Circle Rule. Lecture by
Steven J. Miller; notes by Steven J. Miller and Alex Barnett.

11.1 Joint density function of eigenvalues of real sym-
metric matrices (‘GOE’)

11.1.1 Dirac Notation

The derivation handed out in lecture used physics notation which should be ex-
plained. The matrix is called the ‘Hamiltonian’ (meaning that it happened to arise
in a quantum physics problem). Vectors are often calledstates(referring to quan-
tum states), however they can be thought of as your usual vectors. (Quantum
mechanics is just linear algebra, amazingly). A general vector in 2D is written

|u〉 equivalent to u =

(
u1

u2

)
, (11.1)

the latter being its coordinate representation in some basis. The unit vectors are

|1〉 , |2〉 equivalent to

(
1
0

)
,

(
0
1

)
. (11.2)
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The|u〉 is a column vector, and〈u| ≡ |u〉T is a row vector. Inner product can be
written as〈v |u〉 = vT · u. General bilinear product can be written〈v |M |u〉 =
vT ·M · u.

11.1.2 2× 2 Gaussian Orthogonal Ensemble (GOE)

We consider2× 2 real symmetric matrices,

A ≡
(

x y
y z

)
. (11.3)

Understanding this case isvital to building intuition about Random Matrix Theory
for N ×N matrices.

A can always be diagonalized by an orthogonal matrixQ as follows,

QT

(
x y
y z

)
Q =

(
λ1 0
0 λ2

)
≡ D. (11.4)

In 2× 2 case, the characteristic equationdet(A− λI) = 0 is quadratic:

λ2 − Tr(A)λ + det(A) = 0, (11.5)

where
Tr(A) = x + z, det(A) = xz − y2. (11.6)

Solutions are

λ1,2 =
x + z

2
±

√(
x− z

2

)2

+ y2, (11.7)

where 1 is the+ case, 2 the−.
If the two eigenvalues are equal, we say the matrix is degenerate. Initially we

are in a three-dimensional space (asx, y andz are arbitrary). Degeneracy requires
thatx, y andz satisfy

(x− z

2

)2

+ y2 = 0, (11.8)

or, equivalently,

x− z = 0, y = 0. (11.9)

Thus, we lose two degrees of freedom, because there are two equations which
must be satisfied. The set of solutions is{(x, y, z) = (x, 0, x)}.
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Exercise 11.1.1.Show thatλ1 − λ2 is twice the distance from the origin in this
2D subspace.

Corresponding eigenvectors are,

v1 =

(
c
s

)
, v2 =

( −s
c

)
. (11.10)

We use abbreviationsc ≡ cos θ ands ≡ sin θ.
Why can we write the eigenvectors as above? We can always normalize the

eigenvector attached to a given eigenvalue to have length1. We have previously
shown that, if the eigenvalues are distinct, then the eigenvectors of a real symmet-
ric matrix are perpendicular. This forces the above form for the two eigenvectors,
at least whenλ1 6= λ2.

One rotation angleθ defines the orthogonal matrix,

Q = Q(θ) =

(
v1 v2

)
=

(
c −s
s c

)
. (11.11)

The structure of the eigenvectors is actually quite rich.

Exercise 11.1.2.Find θ in terms ofx, y, z. Hint: use trigonometric identities to
simplify the resulting form. Hint: solve(A− λ1v1) = 0.

Exercise 11.1.3.Show that a generalA can be written

A = α

(
cos β sin β
sin β − cos β

)
+ γ

(
1 0
0 1

)
(11.12)

Exercise 11.1.4.Find λ1,2 in terms ofα, β, γ. Show that the eigenvector angle
is given byθ = β/2. This result is quite deep; for instance notice that taking
a complete2π cycle inβ reverses the signs of the eigenvectors! This isn’t that
relevant for the rest of this lecture.

We adopt two assumptions about the joint distribution overA, calledp(A) ≡
p(x, y, z):

1. Invariance ofp under orthogonal transformations (aka ‘basis-invariance’),
p(MT AM) = p(A) for all orthogonalM .

2. Independence of distributions of individual matrix elements,p(x, y, z) =
px(x)py(y)pz(z).
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Section 2C-1 of the handout reminds us that these two assumptions taken together
demand a unique form of distribution,

p(x, y, z) ∝ e−CTr(A2), (11.13)

depending on only one parameterC; we chooseC = 1. Note∝ means propor-
tional to; the constant of proportionality is what is needed to makeP9x, y, z) a
probability distribution (ie, the integral of

∫ ∫ ∫
p(x, y, z)dxdydz = 1.

This corresponds to Gaussian distributions of matrix elements,

py(y) =

√
2

π
e−2y2

off-diag

px(x) = pz(x) =
1√
π

e−x2

diag. (11.14)

Note that the diag elements have variance1
2 , the off-diag variance14 . We show

how to compute the normalization prefactors later on. This form (for generalC)
is the so-called GOE. Then× n case is derived in Miller’s handout of 9/25/02.

11.1.3 Transformation to diagonal representation

The operation of diagonalizingA can be viewed as the transformation from one
3D space to another 3D space,

r ≡ (x, y, z)︸ ︷︷ ︸
A

←→ r′ ≡ (λ1, λ2, θ)︸ ︷︷ ︸
D,Q

. (11.15)

This is 1-to-1 apart from the set of measure zero (ie, a lower dimensional sub-
space) corresponding to degenerate eigenvalues. Looking at Eq. 11.4 we can see
the transformation is linear in the eigenvalues, nonlinear inθ. We are interested in
themarginaldistribution of the eigenvalues,

p′(λ1, λ2) ≡
∫

dθ p′(λ1, λ2, θ), (11.16)

in other words we don’t care whatθ is. We use primes to signify distributions over
final (Q,D) variables.

We want to know how to transform probability density fromr space tor′

space. In general this must follow the law,

p(r)dr = p′(r′)dr′, (11.17)
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giving
p′(r′) = det(J)p(r). (11.18)

The ratio of the volume elements is| det J | whereJ is the3× 3 Jacobean matrix
of the transformation.J has elementsJij = ∂rj/∂r′i.

Inverting Eq. 11.4 we can writeA(r′) as
(

x y
y z

)
= QDQT =

(
c −s
s c

)(
λ1 0
0 λ2

)(
c s
−s c

)

=

(
λ1c

2 + λ2s
2 (λ1 − λ2)sc

(λ1 − λ2)sc λ1s
2 + λ2c

2

)
(11.19)

We evaluateJ for this case,

J ≡




∂x
∂λ1

∂y
∂λ1

∂z
∂λ1

∂x
∂λ2

. . .
∂x
∂θ


 . (11.20)

We seeλ’s only appear in the bottom three entries, and furthermore they only
appear as factors(λ1 − λ2) in each entry.

Exercise 11.1.5.Evaluate the bottom row ofJ to prove the above.

Therefore this factor of a row ofJ can be brought out in evaluating the deter-
minant:

det(J) =

∣∣∣∣messyθ-dep3× 3 matrix

∣∣∣∣ · (λ1 − λ2) = g(θ)(λ1 − λ2). (11.21)

Warning! The Jacobian is the absolute value of the determinant. Thus, we
need|λ1 − λ2| above, or we need to adopt the convention that we label the eigen-
values so thatλ1 ≥ λ2.

The only dependence on theλ’s is given by the second factor. Plugging into
Eq. 11.18 and marginalizing overθ gives,

p′(λ1, λ2) =

∫
dθ g(θ) (λ1 − λ2)e

−(λ2
1+λ2

2)

∝ (λ1 − λ2)e
−(λ2

1+λ2
2). (11.22)

Note that we do not need the absolute value sign around(λ1 − λ2) because we
choseλ1 > λ2. This is the joint density of the eigenvalues in2× 2 GOE.
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11.1.4 Generalization ton× n case

The above generalizes quite easily, with the dimension of the two spaces being
N = 1

2n(n + 1). The 1
2n(n + 1) degrees of freedom inA equaln degrees of

freedom inD (namely the eigenvalues{λi}) plus 1
2n(n − 1) degrees of freedom

in Q (namely the generalized anglesΩ). We sort the eigenvalues such thatλ1 ≥
λ2 ≥ · · · ≥ λn.

Theorem 11.1.6.If λi = λj for some1 ≤ i < j ≤ n, then the Jacobean of the
transformationA ↔ (D,Q) vanishes, that isdet(J) = 0.

The proof relies on realising that the two eigenvectorsvi andvj span a 2D sub-
space, invariant underA. (Recall here we refer to a subspace of then-dim vector
space upon whichA operates by multiplication). The invariance means that the
choices of directions of the eigenvectors is arbitrary in this 2D plane. Therefore
there is one angle degree of freedom inΩ which in not constrained byA, that is,
it is independent of the elements ofA. Now think of the inverse transformation
from (D, Q) → A. An infinitesimal volume element is transformed as

dr = det(J)dr′. (11.23)

Changes of eigenvector angle within the 2D subspace have no effect onA, so the
volume elementdr is collapsed to zero. (Another way of putting this is thatJ
acquires a null-space of dimension 1). Thereforedet(J) = 0. 2.

This vanishing of the Jacobean at degeneracies renders the non-uniqueness of
the forward mapA → (D, Q) at these points harmless in the following.

The uppern rows ofJ are messy functions of anglesΩ, and the bottom1
2n(n−

1) rows contain entries each which islinear in the eigenvalues. Thereforedet(J)
is a polynomial of degree12n(n− 1) in the eigenvaluesλi. Further,det(J) = 0 if
any two eigenvalues are equal.

Consider the polynomial
∏

1≤i<j≤n(λi − λj). First, note that this polynomial
vanishes whenever two eigenvalues are the same. We claim it is a polynomial of
degree1

2
n(n − 1) in the eigenvalues. For eachj, there arej − 1 choices fori.

Thus, the degree is

n∑
j=2

j − 1 =
n−1∑

k=1

k =
(n− 1)(n− 1 + 1)

2
=

n(n− 1)

2
. (11.24)

Thus,det(J) and
∏

1≤i<j≤n(λi − λj) both vanish whenever two eigenvalues
are equal, and they have the same degree. Therefore, they must be scalar multiples
of each other.
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So,

det(J) ∝
∏

1≤i<j≤n

(λi − λj). (11.25)

Combining with the GOE form ofp(A) gives, after marginalizing overΩ as
before,

p({λi}) =
∏

1≤i<j≤n

(λi − λj) · e−
Pn

i=1 λ2
i . (11.26)

The vanishing of this probability density as any two eigenvalues come close is
calledlevel repulsion.

11.2 Eigenvalue spacing distribution in2 × 2 real
symmetric matrices

11.2.1 Reminder: Integral of the Gaussian

We want

I =

∫ ∞

−∞
e−x2

dx. (11.27)

Square it and rearrange the summation over area by using polar coordinates:

I2 =

∫ ∞

−∞
e−x2

dx ·
∫ ∞

−∞
e−y2

dy =

∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dx dy

=

∫ 2π

0

dθ

∫ ∞

0

r dr e−r2

= 2π ·
[
−1

2
e−r2

]∞

0

= π. (11.28)

Introduction of the radius factorr producedre−r2
, a known differential. So,

I =
√

π. (11.29)

Changing the variable in the above, and rearranging, gives

1√
2πσ2

∫ ∞

−∞
e−

x2

2σ2 dx = 1. (11.30)

This is therefore the correct normalization for a 1D Gaussian probability density,
of varianceσ2.

111



11.2.2 Spacing distribution

λ2

λ1

λ1 λ2

λ2λ1−

+

E=

S=

Figure 11.1: Change of coordinates to get spacing distribution inE. Light shading
suggests form of density across the 2D plane. Dark shading shows a graph of its
projection onto theE axis.

Here for convenience we present a slightly simpler derivation than in lec-
ture. Given the 2D densityp′(λ1, λ2) we want the 1D density of the difference
E ≡ λ1 − λ2. This will require marginalizing again, since there is a reduc-
tion in dimensionality. We defineS ≡ λ1 + λ2. The linear transformation
(λ1, λ2) → (E, S) has fixed Jacobean (it is a rotation by−45o and a compres-
sion by

√
2 in each axis). See Fig. 11.1.

Therefore, substituting inλ1 = (S +E)/2 andλ1 = (S−E)/2 into Eq. 11.22
gives

p′(E, S) ∝ p′(λ1(E, S), λ2(E, S)) = Ee−
1
4 [(S+E)2+(S−E)2]

= Ee−E2/2 · e−S2/2, (11.31)

which is separable. Therefore integrating overS gives anE-independent number,
and

p′(E) ∝ Ee−E2/2. (11.32)
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This is the so-called ‘Wigner Surmise’ for the eigenvalue spacing density. Re-
markably, in then× n case, even for largen, this density is very close to the true
spacing distribution of adjacent eigenvalues. The limiting powerlawlimE→0 p′(E) ∝
Eβ with β = 1 is intimately related to the matrix symmetry class GOE that we
close. It is also possible to achieveβ = 2 and β = 4 by choosing different
symmetry classes.

Finally, let’s say you couldn’t be bothered to construct your second variable
S. Instead you could derive the above using the Dirac delta-function (see below)
to marginalize:

p′(E) =

∫ ∞

−∞
dλ1

∫ λ1

−∞
dλ2 p′(λ1, λ2) δ(E − (λ1 − λ2)). (11.33)

Apart from the unusual limits (due to ordering of eigenvalues), this is the standard
procedure to extract a marginal density.

Exercise 11.2.1.Simplify the above to arrive atp′(E).

11.3 Delta Function(al)

Let f(x) be a nice function; for example, letf(x) be an infinitely differentiable
function whose Taylor Series converges tof(x):

f(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 + · · · (11.34)

Let

δn(x) =

{
n if x ∈

[
− 1

2n
, 1

2n

]

0 otherwise
(11.35)

Exercise 11.3.1.Show that
∫ ∞

−∞
f(x)δn(x)dx = f(0) + O

( 1

n

)
. (11.36)

Let δ be the limit asn →∞ of δn. We find / define

lim
n→∞

∫ ∞

−∞
f(x)δn(x)dx =

∫ ∞

−∞
f(x)δ(x)dx = f(0). (11.37)
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Exercise 11.3.2.Show that
∫ ∞

−∞
f(x)δ(x− a)dx = f(a). (11.38)

A good analogy for theδ functional is a point mass. A point mass has no
extension (no length, width or height) but finite mass. Therefore, a point mass has
infinite density.

A probability density must integrate to one. This corresponds to
∫

1·δ(x)dx =
1. We often refer toδ(x) as a point mass at the origin, andδ(x − a) as a point
mass ata.

11.4 Definition of the Semi-Circle Density

Consider

P (x) =

{
2
π

√
1− x2 if |x| ≤ 1

0 otherwise
(11.39)

Exercise 11.4.1.Show thatP (x) is a probability density. IE, show that it is non-
negative and integrates to1. GraphP (x).

We callP (x) the semi-circle density.

11.5 Semi-Circle Rule: Preliminaries

Let λj be the eigenvalues of a real, symmetricN × N matrix A. We normalize
the eigenvalues ofA by dividing by2

√
N .

Define

µA,N(x) =
1

N

N∑
j=1

δ
(
x− λj(A)

2
√

N

)
. (11.40)

δ
(
x − λj(A)

2
√

N

)
is a point mass atλj(A)

2
√

N
. By summing these point masses and

dividing byN , we have a probability distribution. For example,

∫ ∞

−∞
f(x)µA,N(x)dx =

N∑
j=1

f
(λj(A)

2
√

N

)
. (11.41)
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We will show that, asN →∞, the above converges to the integral off against
the semi-circle density:

∫ ∞

−∞
f(x)P (x)dx. (11.42)

What does this mean?

N∑
j=1

f
(λj(A)

2
√

N

)
(11.43)

looks like a Riemann Sum. The statement that, for nicef(x),

N∑
j=1

f
(λj(A)

2
√

N

)
→

∫ ∞

−∞
f(x)P (x)dx (11.44)

means that asN → ∞, the number of eigenvalues of a randomA in [a, b]
equals

∫ b

a

P (x)dx. (11.45)

Theorem 11.5.1.Choose the entriesaij of a real, symmetric matrix independently
from a fixed probability distributionp with mean zero, variance one, and finite
higher moments. For eachA, form the probability measureµA,N . AsN → ∞,
with probability one the measuresµA,n(x)dx converge to the semi-circle proba-
bility P (x)dx.

This is not the most general version; however, it is rich enough for our pur-
poses.

11.6 Sketch of Proof of the Semi-Circle Law

11.6.1 Calculation of Moments via Trace Formula

We will show that the expected value of the moments of theµA,N(x) equal the
moments of the semi-circle.
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Definition 11.6.1.MA,N(k) is thekth moment of the probability measure attached
to µA,N(x)dx:

MA,N(k) =

∫
xkµA,N(x)dx =

1

N

N∑
j=1

(λj(A)

2
√

N

)k

. (11.46)

Note that
∑

λj(A)k = Trace(Ak). Thus, we have

MA,N(k) =
1

2kN1+ k
2

Trace(Ak). (11.47)

We now calculate the expected values of the first few moments (k = 0, 1, 2
and3).

Lemma 11.6.2.The expected value ofMA,N(0) = 1.

Proof:

E
[
MA,N(0)

]
=

1

N
E

[
Trace(I)

]
= 1. (11.48)

Note that summing the eigenvalues to the zeroth power is the same as taking
the trace of the identity matrix.2

Lemma 11.6.3.The expected value ofMA,N(1) = 0.

Proof:

E
[
MA,N(1)

]
=

1

2N3/2
E

[
Trace(A)

]

=
1

2N3/2
E

[∑
i

aii

]

=
1

2N3/2

∑
i

E[aii] = 0, (11.49)

because we have assumed that eachaij is drawn from a probability distribution
with mean zero.2

Lemma 11.6.4.The expected value ofMA,N(2) = 1
4
.
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Proof: Note that

Trace(A2) =
∑

i

∑
j

aijaji. (11.50)

As our matrix is symmetric,aij = aji. Thus, the trace is
∑

i

∑
j a2

ij.
Now

E
[
MA,N(2)

]
=

1

4N2
E

[
Trace(A2)

]

=
1

4N2
E

[ ∑
i

∑
j

a2
ij

]

=
1

4N2

∑
i

∑
j

E[a2
ij] =

1

4
, (11.51)

where the last line follows from eachaij has variance1. As their means are
zero, the varianceE[a2

ij] − E[aij]
2 = 1 impliesE[aij] = 1. There areN2 pairs

(i, j). Thus, we have 1
4N2 · (N · 1) = 1

4
. 2

Lemma 11.6.5.The expected value ofMA,N(3) = 0 asN →∞.

We need
Trace(A3) =

∑
i

∑
j

∑

k

aijajkaki. (11.52)

We find

E
[
MA,N(3)

]
=

1

8N2.5
E

[
Trace(A3)

]

=
1

8N2.5
E

[ ∑
i

∑
j

∑

k

aijajkaki

]

=
1

8N2.5

∑
i

∑
j

∑

k

E[aijajkaki]. (11.53)

There are three cases. If the subscriptsi, j andk are all distinct, thenaij, ajk,
andaki are three independent variables. Hence

E[aijajkaki] = E[aij] · E[ajk] · E[aki] = 0. (11.54)
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If two of the subscripts are the same (sayi = j) and the third is distinct, we
have

E[aiiaikaki] = E[aii] · E[a2
ik] = 0 · 1 = 0. (11.55)

If all three subscripts are the same, we have

E[a3
ii] (11.56)

This is the third moment ofaii. It is the same for all variablesaii, and is finite
by assumption. There areN triples wherei = j = k.

Thus,

E
[
MA,N(3)

]
=

1

8N2.5
·NE[a3

11] =
E[a3

11]

8
· 1

N1.5
. (11.57)

Thus, asN →∞, the expected value of the third moment is zero.2

To calculate the higher moments requires significantly more delicate combi-
natorial arguments.

11.6.2 Calculation of Moments from the Semi-Circle

We now calculate the moments of the semi-circle. Fork ≤ 3, thekth moment of
the semi-circleC(k) equals the expectedkth moment ofµA,N(x) asN →∞.

C(k) =

∫ ∞

−∞
xkP (x)dx =

2

π

∫ 1

−1

xk
√

1− x2dx. (11.58)

We note that, by symmetry,C(k) = 0 for k odd, andC(0) = 1 asP (x) is a
probability density.

Fork = 2m even, we change variablesx = sin θ.

C(2m) =
2

π

∫ π
2

−π
2

sin2m θ · cos2 θdθ. (11.59)

Usingsin2 θ = 1− cos2 θ gives

C(2m) =
2

π

∫ π
2

−π
2

sin2m θdθ − 2

π

∫ π
2

−π
2

sin2m+2 θdθ. (11.60)
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The above integrals can be evaluated exactly. We constantly use

cos2(φ) =
1

2
+

1

2
cos(2φ)

sin2(φ) =
1

2
− 1

2
cos(2φ). (11.61)

Repeated applications of the above allow us to writesin2m(θ) as a linear com-
bination of1, cos(2θ), . . . , cos(2mθ).

Let

n!! =

{
n · (n− 2) · · · 2 if n is even

n · (n− 2) · · · 1 if n is odd
(11.62)

We find (either prove directly or by induction) that

2

π

∫ π
2

−π
2

sin2m θdθ = 2
(2m− 1)!!

(2m)!!
. (11.63)

Exercise 11.6.6.Show the above gives

C(2m) = 2
(k − 1)!!

(k + 2)!!
. (11.64)

Also, showC(2) agrees with our earlier calculation.
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Chapter 12

More Graphs, Maps mod p, Fourier
Series and n alpha

More on Graphs; Arithmetic maps modp. Lecture by Peter Sarnak; notes by
Steven J. Miller. Appendix: Introduction to Fourier Series and{nα}, by Steven J.
Miller.

12.1 Kesten’s Measure

For ak-regular graph, define

dµk(t) =





ck

q
(k−1)− t2

4

1−( t
k
)2

dt if |t| ≤ 2
√

k − 1

0 otherwise
(12.1)

Fix a andb, and consider theN eigenvaluesλj. Count

#{j : λj ∈ [a, b]}
N

. (12.2)

Then

Claim 12.1.1.

lim
N→∞

#{j : λj ∈ [a, b]}
N

= µk

(
[a, b]

)
. (12.3)

We have

(
ρk(2n)

) 1
2n → 2

√
k − 1. (12.4)
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12.2 Generating Functions onk-Regular Trees

12.2.1 R(z)

Fix k. Thegenerating functionR(z) is

R(z) =
∞∑

n=0

rnz
n, (12.5)

where

rn =
ρ(n)

kn
= Probability that we return tov in n steps. (12.6)

For |z| < 1, the series expansion forR(z) converges.
Let qn be the probability of starting atv and ending atv for the first time (after

n steps).

12.2.2 Q(z)

Define

Q(z) =
∞∑

n=0

qnz
n. (12.7)

Exercise 12.2.1.Prove

R(z) =
1

1−Q(z)
. (12.8)

12.2.3 T (z)

Define

T (z) =
∞∑

n=0

tnzn, (12.9)

where forw adjacent tov, tn is the probability of going fromw to v in n-steps
for the first time.

Further, lettw,v(n) be the probability of going fromw to v in n-steps first time
andd(w, v) = m ≥ 1. Remember thatd(w, v) is the distance fromw to v.
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Exercise 12.2.2.Prove

1. Q(z) = zT (z).

2.
∑∞

n=0 tw,v(n)zn =
(
T (z)

)n

.

Exercise 12.2.3.Prove

T (z) =
z

k
+

k − 1

k
zT 2(z). (12.10)

Note that this explicitly gives usT (z) by application of the quadratic formula:

T (z) =

1±
√

1− 4
(

k−1
k

z
)

z
k

2k−1
k

z
. (12.11)

Now that we haveT (z) we haveQ(z), from which we getR(z). T (z) will
have a square-root – it will be an algebraic function ofz.

12.3 Recovering the Measuref (x) from R(z)

We have

R(z) =
∞∑

n=0

rnz
n. (12.12)

As we knowT (z), we knowR(z), hence we know the numbersrn.
Now,

rn =

∫ ∞

∞
xnf(x)dx =

∫ k

−k

xnf(x)dx. (12.13)

How do we recoverf(x) given the numbersrn? We’ve now normalized the
eigenvalues to lie in[−1, 1].
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R(z) =
∞∑

n=0

( ∫ 1

−1

xnf(x)dx

)

=

∫ 1

−1

( ∞∑
n=0

(xz)n

)
f(x)dx

=

∫ 1

−1

f(x)

1− xz
dx

B(z) =
1

z
R

(1

z

)
=

∫ 1

−1

f(x)

z − x
dx. (12.14)

Suppose we know the LHS. Can we recoverf(x)? If z ∈ [−1, 1], the function
will have a singularity. Thus, iff(x) is a nice function, we do not expect to be
able to make sense of the above relation ifz ∈ [−1, 1]. We will, however, consider
z closeto the interval[−1, 1].

Let z = ξ + iy, ξ ∈ [−1, 1], y > 0. Later we will takez = ξ − iy.
Look at

B(ξ + iy)−B(ξ − iy) =

∫ 1

−1

f(x)

[
1

ξ + iy − x
− 1

ξ − iy − x

]
dx

= 2i

∫ 1

−1

yf(x)

(ξ − x)2 + y2
dx. (12.15)

We will study the above asy → 0.

12.3.1 Poisson Kernel

Recallξ ∈ [−1, 1], f(x) fixed, we are integratingf(x) against thePoisson Kernel

y

(ξ − x)2 + y2
. (12.16)

As y → 0, the above looks singular atx = ξ.
At x = ξ, the kernel has height1

y
, which is quite large.

If x = ξ + ε, then asy → 0, the kernel goes to0 very rapidly.
Basically, asy → 0, the kernel becomes a higher, thinner spike centered atξ.
Now
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∫ ∞

∞

y

(x− ξ)2 + y2
dx =

∫ ∞

−∞

y

t2 + y2
dt

=

∫ ∞

−∞

y2

y2η2 + y2
dη, from

t

y
= η

=

∫ ∞

−∞

1

1 + η2
dη

= π. (12.17)

This is anapproximation to the identity .
Thus,

B(ξ + iy)−B(ξ − iy) → 2πif(ξ). (12.18)

12.3.2 Cauchy Integral Formula

If you have an analytic functionf(z) andγ is a curve enclosingz then

1

2πi

∫

γ

f(ζ)

z − ζ
dζ (12.19)

In our case above, we cannot apply Cauchy’s Integral Formula, as our function
f(x) is not analytic. It is compactly supported, and no non-zero analytic function
is compactly supported.

Call this permutationφ:

φ : F∗p → F∗p, (12.20)

whereφ2 is the identity.

Question 12.3.1.Doesφ behave like a random permutation?

12.4 Third Problem

12.4.1 Introduction

Let p be a large prime, and consider the map
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x 7→ x−1 modp, x 6= 0. (12.21)

This is a map fromFp → Fp. The map is not completely random, as

1 7→ 1

2 7→ p + 1

2
p− 1 7→ p− 1. (12.22)

The map which sendsx → x−1 is a permutation ofF∗p. It is not a completely
arbitrary permutation, as it pairsx with x−1 (away from a few very specialx’s,
such asp− 1 and1).

Thus, this permutation is a product of transpositions.

12.4.2 Character Sums

Let

1 ≤ A ≤ B ≤ p, B − A large. (12.23)

Let

m be the inverse ofm modp (12.24)

IE, mm ≡ 1 modp.
Let

e(z) = 22πiz. (12.25)

Forν ∈ Z/pZ, consider

S =
∑

A≤m≤B

e
(mν

p

)
. (12.26)

These sums will measure how equidistributed or random the mapm → m is.

Exercise 12.4.1.Prove the trivial bound for|S|:
|S| ≤ B − A. (12.27)

Let N = B − A + 1. By the Central Limit Theorem, with high probability if
we addN random numbers of modulus one we expect square-root cancellation.
Thus, we expect (if the inverse map is random) that|S| ≈ √

N .
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12.4.3 Completing the Square

Let a, b ∈ Z, and consider theKloosterman Sum

Kl(a, b, p) =
∑

x mod p
x6=0

e
(ax + bx

p

)
. (12.28)

How large can the Kloosterman Sum be? Ifa = b = 0, then trivially Kl(0, 0, p) =
p− 1.

If b = 0 anda 6= 0 (or, by symmetry, the other way around) then

Kl(a, b, p) =
∑

x mod p
x6=0

e
(ax

p

)

=
∑

y mod p
y 6=0

e
(y

p

)

=

p−1∑
y=0

e
(y

p

)
− 1 = −1. (12.29)

Exercise 12.4.2.Prove
∑p−1

y=0 e
(

y
p

)
= 0. Hint: Let T be this sum. Then show

e
(

1
p

)
T = T ; thusT = 0.

12.4.4 Weil’s Bound

Let a 6≡ 0 modp. Then

|Kl(a, b, p)| ≤ 2
√

p. (12.30)

This is a very deep result.
How big is

∑

a mod p

|Kl(a, 1, p)|2 (12.31)

If we believe Weil’s bound, each term is of size at most2
√

p, we square, then
sump terms. Thus, we expect a size of at most4p2. We will show on average that
Weil’s bound is correct.
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∑

a mod p

|Kl(a, 1, p)|2 =
∑

a(p)

∣∣∣∣∣
∑

x mod p
x6=0

e
(x + ax

p

)∣∣∣∣∣

=
∑

a(p)

∑
x1,x2 mod p

x1,x2 6=0

e
(x1 − x2 + a(x1 − x2)

p

)

=
∑

x1,x2 mod p
x1,x2 6=0

e
(x1 − x2

p

) ∑

a(p)

e
(a(x1 − x2)

p

)

= (p− 1)p, (12.32)

where the last line follows from thea-sum vanishes unlessx1 = x2, which
then collapses the sums. There arep− 1 waysx1 = x2, and when this occurs, the
a-sum givesp.

Exercise 12.4.3.Consider ∑

a(p)

|Kl(a, 1, p)|4. (12.33)

Above there arep-terms, each term of size(2
√

p)4 = 16p2. Thus, show the
sum is at most16p3. You will findcp3 for somec independent ofp.

By looking at one term, as every summand is positive, we find

|Kl(a, 1, p)|4 ≤ cp3. (12.34)

Thus, taking the fourth-root yields

|Kl(a, 1, p)| ≤ c
1
4 p

3
4 . (12.35)

12.4.5 Fourier Expansion of Sums

Define the indicator function

I(y) =

{
1 A ≤ y ≤ A + N

0 otherwise
(12.36)

Consider
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S =
∑

A≤x≤A+N

e
(νx

p

)

=
∑

x(p)

e
(νx

p

)
I(x). (12.37)

We want to writeI(x) in terms of its Fourier Coefficients

Î(m) =

∫ 1

0

e(−mt)I(t)dt. (12.38)

Then

I(y) =
∞∑

m=−∞
Î(m)e

(my

p

)
. (12.39)

12.4.6 Brief Review of Fourier Series

Consider the unit interval[0, 1]. Define

φm(x) = e(mx). (12.40)

Then (if our function is sufficiently nice)

f(x) =
∑

m∈Z
f̂(m)e(mx), (12.41)

where

f̂(m) =

∫ 1

0

f(x)e(−mx)dx. (12.42)

12.5 Fourier Analysis and the Equi-Distribution of
{nα}

12.5.1 Inner Product of Functions

We define the exponential function by means of the series
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ex =
∞∑

n=0

xn

n!
, (12.43)

which converges everywhere. Given the Taylor series expansion ofsin x and
cos x, we can verify the identity

eix = cos x + i sin x. (12.44)

Exercise 12.5.1.Proveex converges for allx ∈ R (even better, for allx ∈ C.
Show the series forex also equals

lim
n→∞

(
1 +

x

n

)n

, (12.45)

which you may remember from compound interest problems.

Exercise 12.5.2.Prove, using the series definition, thatex+y = exey. Use this
fact to calculate the derivative ofex. If instead you try to differentiate the series
directly, you must justify the derivative of the infinite sum is the infinite sum of the
derivatives.

Remember the definition ofinner or dot product : for two vectors~v =
(v1, · · · , vn), ~w = (w1, · · · , wn), we take theinner product~v · ~w (also denoted
〈v, w〉) to mean

~v · ~w = 〈v, w〉 =
∑

i

viw̄i. (12.46)

Further, the length of a vectorv is

|v| = 〈v, v〉. (12.47)

We generalize this for functions. For definiteness, assumef andg are func-
tions from[0, 1] to C. Divide the interval[0, 1] into n equal pieces. Then we can
represent the functions by

f(x) ←→
(

f(0), f
( 1

n

)
, . . . , f

(n− 1

n

))
, (12.48)

and similarly forg. Call these vectorsfn andgn. As before, we consider
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〈fn, gn〉 =
n−1∑
i=0

f
( i

n

)
· ḡ

( i

n

)
. (12.49)

In general, as we continue to divide the interval (n → ∞), the above sum
diverges. For example, iff andg are identically1, the above sum isn.

There is a natural rescaling: we multiply each term in the sum by1
n
, the size

of the sub-interval. Note for the constant function, the sum is now independent of
n.

Thus, for goodf andg we are led to

〈f, g〉 = lim
n→∞

n−1∑
i=0

f
( i

n

)
· ḡ

( i

n

) 1

n
=

∫ 1

0

f(x)g(x)dx. (12.50)

The last result follows by Riemann Integration.

Definition 12.5.3. We say two continuous functions on[0, 1] are orthogonal (or
perpendicular) if their dot product equals zero.

Exercise 12.5.4.Provexn andxm are not perpendicular on[0, 1] for n 6= m.

We will see that the exponential function behaves very nicely under the inner
product. Define

en(x) = e2πinx for n ∈ Z. (12.51)

Then a straightforward calculation shows

〈en(x), em(x)〉 =

{
1 if n = m

0 otherwise.
(12.52)

Thuse0(x), e1(x), e2(x), · · · are anorthogonal setof functions, which means
they are pairwise perpendicular. As each function has length1, we say the func-
tionsen(x) are anorthonormal set of functions.

Exercise 12.5.5.Prove〈en(x), em(x)〉 is 1 if n = m and0 otherwise.
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12.5.2 Fourier Series and{nα}
Fourier Series

Let f be continuous and periodic onR with period one. Define thenth Fourier
coefficient f̂(n) of f to be

f̂(n) = an = 〈f(x), en(x)〉 =

∫ 1

0

f(x)e−2πinxdx. (12.53)

Returning to the intuition ofRm, we can think of theen(x)’s as an infinite
set of perpendicular directions. The above is simply the projection off in the
direction ofen(x).

Exercise 12.5.6.Show

〈f(x)− f̂(n)en(x), en(x)〉 = 0. (12.54)

This agrees with our intuition, namely, that if you remove the projection in a cer-
tain direction, what is left is perpendicular to that direction.

TheN th partial Fourier series of f is

sN(x) =
N∑

n=−N

f̂(n)en(x). (12.55)

Exercise 12.5.7.Prove

1. 〈f(x)− sN(x), en(x)〉 = 0 if |n| ≤ N .

2. |f̂(n)| ≤ ∫ 1

0
|f(x)|dx.

3. If 〈f, f〉 < ∞, then
∑∞

n=−∞ |f̂(n)|2 ≤ 〈f, f〉.
4. If 〈f, f〉 < ∞, thenlim|n|→∞ f̂(n) = 0.

As 〈f(x)− sN(x), en(x)〉 = 0 if |n| ≤ N , we might think that we just have to
let N go to infinity to obtain a seriess∞ such that

〈f(x)− s∞(x), en(x)〉 = 0. (12.56)

Assume that for a periodic functiong(x) to be orthogonal toen(x) for everyn
it must be zero for everyx. Thenf(x)− s∞(x) = 0, and hencef = s∞. Voilá –
an expression forf as a sum of exponentials! Be careful, however. We have just
glossed over the two central issues – completeness and, even worse, convergence.
We will now see a way of avoiding some of our problems.
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Weighted partial sums

Define

DN(x) =
N∑

n=−N

en(x) =
sin((2N + 1)πx)

sin πx
,

FN(x) =
sin2(Nπx)

N sin2 πx
=

1

N

N−1∑
n=0

Dn(x).

(12.57)

Here F stands for Féjer,D for Dirichlet. In general, functions which we are
interested in taking their inner product againstf are calledkernels; thus, the
Dirichlet kernel, the Féjer kernel, etc.

Note that, no matter whatN is, FN(x) is positive for allx.
We say that a sequencef1(x), f2(x), f3(x), . . . of functions is anapproxima-

tion to the identity if

1. fN(x) ≥ 0 for all x and everyN ;

2.
∫ 1

0
fN(x)dx = 1;

3. limN→∞
∫ 1−δ

δ
fN(x)dx = 0 if 0 < δ < 1

2
.

Theorem 12.5.8.The Féjer kernelsF1(x), F2(x), F3(x), . . . are an approxima-
tion to the identity.

Proof: The first property is immediate. The second follows from the observa-
tion thatFN(x) can be written as

FN(x) = e0(x) +
N − 1

N

(
e−1(x) + e1(x)

)
+ · · · , (12.58)

and all integrals are zero but the first, which is1.
To prove the third property, note thatFN(x) ≤ 1

N sin2 πδ
for δ ≤ x ≤ 1− δ. 2

Let f be a continuous, periodic function onR with period one. Thus, we can
considerf as a function on just[0, 1], with f(0) = f(1). Define

TN(x) =

∫ 1

0

f(y)FN(x− y)dy. (12.59)

Recall the following definition and theorem:
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Definition 12.5.9 (Uniform Continuity). A continuous function is uniformly con-
tinuous if given anε > 0, there exists aδ > 0 such that|x − y| < δ implies
|f(x)− f(y)| < ε. Note that the sameδ works for all points.

Theorem 12.5.10.Any continuous function on a closed, compact interval is uni-
formly continuous.

Exercise 12.5.11.Showxn is uniformly continuous on[a, b] for −∞ < a < b <
∞.

Theorem 12.5.12.Givenε > 0, there is anN such that

|f(x)− TN(x)| ≤ ε (12.60)

for everyx ∈ [0, 1].

Proof. For any positiveN ,

TN(x)− f(x) =

∫ 1

0

f(x− y)FN(y)dy − f(x) · 1

=

∫ 1

0

f(x− y)FN(y)dy −
∫ 1

0

f(x)Fn(y)dy (property 2 ofFN)

=

∫ δ

0

(
f(x− y)− f(x)

)
FN(y)dy

+

∫ 1−δ

δ

(
f(x− y)− f(x)

)
FN(y)dy

+

∫ 1

1−δ

(
f(x− y)− f(x)

)
FN(y)dy.

(12.61)
Let δ ∈ (0, 1/2). Then, using the fact that theFN(x)’s are an approximation

to the identity, we find

∣∣∣∣
∫ 1−δ

δ

(
f(x− y)− f(x)

)
FN(y)dy

∣∣∣∣ ≤ 2 max |f(x)| ·
∫ 1−δ

δ

FN(y)dy. (12.62)

Since

lim
N→∞

∫ 1−δ

δ

FN(y)dy = 0, (12.63)
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we obtain

lim
N→∞

∫ 1−δ

δ

(f(x− y)− f(x))FN(y)dy = 0. (12.64)

Thus, by choosingN large enough (where large depends onδ), we can insure
that this piece is at mostε

3
.

It remains to estimate what happens near zero. Sincef is continuous and[0, 1]
is compact,f is uniformly continuous. Thus, we can chooseδ small enough that
|f(x− y)− f(x)| < ε

3
for anyx and any positivey < δ. Then

∣∣∣∣
∫ δ

0

(
f(x− y)− f(x)

)
FN(y)dy

∣∣∣∣ ≤
∫ δ

0

ε

3
FN(y)dy ≤ ε

3

∫ 1

0

FN(y)dy ≤ ε

3
.

(12.65)
Similarly

∣∣∣∣
∫ 1

1−δ

(
f(x− y)− f(x)

)
FN(y)dy

∣∣∣∣ ≤
ε

3
. (12.66)

Therefore
|TN(x)− f(x)| ≤ ε (12.67)

for all N sufficiently large.

Definition 12.5.13 (Trigonometric Polynomials).Any finite linear combination
of the functionsen(x) is called a trigonometric polynomial.

From Theorem 12.5.12 we immediately get the Stone-Weierstrass theorem:

Theorem 12.5.14 (Stone-Weierstrass).Any continuous period function can be
uniformly approximated by trigonometric polynomials.

12.5.3 Equidistribution

We say that a sequence{xn}, xn ∈ [0, 1] is equidistributedif

lim
N→∞

1

2N + 1
#{n : |n| ≤ N, xn ∈ (a, b)} = b− a (12.68)

for all (a, b) ⊂ [0, 1].
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Theorem 12.5.15 (Weyl).Let α be an irrational number in[0, 1]. Let xn =
{nα}, where{y} denotes the fractional part ofy. Then the sequence{xn} is
equidistributed.

Proof. We will estimate 1
2N+1

∑N
−N χ(a,b)(xn) asN → ∞, whereχ(a,b) is the

function taking the value0 outside(a, b) and1 inside (a, b). We callχ(a,b) the
characteristic function of the interval(a, b).

Thus, we must show

lim
N→∞

1

2N + 1

N∑
n=−N

χ(a,b)(xn) = b− a. (12.69)

Considerek(x) = e2πikx. Sincexn = {nα} = nα − [nα] and ek(x) =
ek(x + m) for every integerm,

ek(xn) = e2πiknα. (12.70)

Hence

1

2N + 1

N∑
n=−N

ek(xn) =
1

2N + 1

N∑
n=−N

ek(nα)

=
1

2N + 1

N∑
n=−N

(e2πikα)n

=

{
1 if k = 0

1
2N+1

ek(−Nα)−ek((N+1)α)
1−ek(α)

if k > 0.

(12.71)

Now for a fixed irrationalα, |1− ek(α)| > 0. Therefore ifk 6= 0:

lim
N→∞

1

2N + 1

ek(−Nα)− ek((N + 1)α)

1− ek(α)
= 0. (12.72)

Let P (x) =
∑

k akek(x) be a finite sum (ie,P (x) is a trigonometric polyno-
mial). By possibly adding some zero coefficients, we can writeP (x) as a sum
over a symmetric range:P (x) =

∑K
k=−K akak(x).

Exercise 12.5.16.Show
∫ 1

0
P (x)dx = a0.
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By the above arguments, we have shown that for any (finite) trigonometric
polynomialP (x):

lim
N→∞

1

2N + 1

N∑
n=−N

P (xn) → a0 =

∫ 1

0

P (x)dx. (12.73)

Consider two approximations to the characteristic functionχ(a,b):

1. f1m: f1m(x) = 1 if a + 1
m
≤ x ≤ b− 1

m
, drops linearly to0 ata andb, and

is zero elsewhere.

2. f2m: f1m(x) = 1 if a ≤ x ≤ b, drops linearly to0 ata− 1
m

andb + 1
m

, and
is zero elsewhere.

Note there are trivial modifications ifa = 0 or b = 1. Clearly

f1m(x) ≤ χ(a,b)(x) ≤ f2m(x). (12.74)

Therefore

1

2N + 1

N∑
n=−N

f1m(xn) ≤ 1

2N + 1

N∑
n=−N

χ(a,b)(xn) ≤ 1

2N + 1

N∑
n=−N

f2m(xn).

(12.75)
By Theorem 12.5.12, for eachm, given ε > 0 we can find trigonometric

polynomialsP1m(x) andP2m(x) such that|P1m(x)− f1m(x)| < ε and|P2m(x)−
f2m(x)| < ε.

As f1m andf2m are continuous functions, we can replace

1

2N + 1

N∑
n=−N

fim(xn) with
1

2N + 1

N∑
n=−N

Pim(xn) (12.76)

at a cost of at mostε.
As N →∞,

1

2N + 1

N∑
n=−N

Pim(xn) →
∫ 1

0

Pim(x)dx. (12.77)

But
∫ 1

0
P1m(x)dx = (b− a)− 1

m
and

∫ 1

0
P2m(x)dx = (b− a) + 1

m
. Therefore,

givenm andε, we can chooseN large enough so that
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(b− a)− 1

m
− ε ≤ 1

2N + 1

N∑
n=−N

χ(a,b)(xn) ≤ (b− a) +
1

m
+ ε. (12.78)

Letting m tend to∞ andε tend to0, we see 1
2N+1

∑N
n=−N χ(a,b)(xn) → b −

a.

Exercise 12.5.17.Rigorously do the necessary book-keeping to prove the previous
theorem.

Exercise 12.5.18.Prove

1. If α ∈ Q, then{nα} is periodic.

2. If α 6∈ Q, then no two{nα} are equal.
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Chapter 13

Liouville’s Theorem Constructing
Transcendentals

1. We prove Liouville’s Theorem for the order of approximation by rationals
of real algebraic numbers.

2. We construct several transcendental numbers.

3. We define Poissonian Behaviour, and study the spacings between the or-
dered fractional parts of{nkα}.

Lecture by Steven J. Miller; notes for the first two by Steven J. Miller and
Florin Spinu; notes for the third by Steven J. Miller.

13.1 Review of Approximating by Rationals

Definition 13.1.1 (Approximated by rationals to order n). A real numberx
is approximated by rationals to ordern if there exist a constantk(x) (possibly
depending onx) such that there are infinitely many rationalp

q
with

∣∣∣∣x−
p

q

∣∣∣∣ <
k(x)

qn
. (13.1)

Recall that Dirichlet’s Box Principle gaves us:
∣∣∣∣x−

p

q

∣∣∣∣ <
1

q2
(13.2)
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for infintely many fractionsp
q
. This was proved by choosing a large parameter

Q, and considering theQ + 1 fractionary parts{qx} ∈ [0, 1) for q ∈ {0, . . . , Q}.
The box principle ensures us that there must be two differentq’s, say:

0 ≤ q1 < q2 ≤ Q (13.3)

such that both{q1x} and{q2x} belong to the same interval[ a
Q
, a+1

Q
), for some

0 ≤ a ≤ Q − 1. Note that there are exactlyQ such intervals partitioning[0, 1),
andQ + 1 fractionary parts! Now, the length of such an interval is1

Q
so we get

|{q2x} − {q1x}| < 1

Q
. (13.4)

There exist integersp1 andp2 such that

{q1x} = q1x− p, {q2x} = q2x− p. (13.5)

Lettingp = p2 − p1 we find

|(q2 − q1)x− p| ≤ 1

Q
(13.6)

Let q = q2 − q1, so1 ≤ q ≤ Q, and the previous equation can be rewriten as
∣∣∣∣x−

p

q

∣∣∣∣ <
1

qQ
≤ 1

q2
(13.7)

Now, letting Q → ∞, we get an infinite collection of rational fractionsp
q

satisfying the above equation. If this collection contains only finitely many dis-
tinct fractions, then one of these fractions, sayp0

q0
, would occur for infintely many

choicesQk of Q, thus giving us:
∣∣∣∣x−

p0

q0

∣∣∣∣ <
1

qQk

→ 0, (13.8)

ask → ∞. This implies thatx = p0

q0
∈ Q. So, unlesx is a rational number,

we can find infinitely manydistinct rational numbersp
q

satisfying Equation 13.7.
This means that any real, irrational number can be approximated to ordern = 2
by rational numbers.
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13.2 Liouville’s Theorem

Theorem 13.2.1 (Liouville’s Theorem).Let x be a real algebraic number of
degreen. Thenx is approximated by rationals to order at mostn.

Proof. Let

f(X) = anX
n + · · · a1X + a0 (13.9)

be the polynomial with integer coefficients of smallest degree (minimal poly-
nomial) such thatx satisfies

f(x) = 0. (13.10)

Note thatdeg x = deg f and the condition of minimality implies thatf(X)
is irreducible overZ. Further, a well known result from algebra states that a
polynomial irreducible overZ is also irreducible overQ.

In particular, asf(X) is irreducible overQ, f(X) does not have any rational
roots. If it did, thenf(X) would be divisible by a linear polynomial(X − a

b
). Let

G(X) = f(X)
X−a

b
. Clear denominators (multiply throughout byb), and letg(X) =

bG(X). Thendeg g = deg f − 1, andg(x) = 0. This contradicts the minimality
of f (we choosef to be a polynomial of smallest degree such thatf(x) = 0).
Therefore,f is non-zero at every rational.

Let

M = sup
|z−x|<1

|f ′(z)|. (13.11)

Let now p
q

be a rational such that
∣∣∣x− p

q

∣∣∣ < 1. The Mean Value Theorem gives

us that
∣∣∣∣f

(
p

q

)
− f(x)

∣∣∣∣ =

∣∣∣∣f ′(c)
(

x− p

q

)∣∣∣∣ ≤ M

∣∣∣∣x−
p

q

∣∣∣∣ (13.12)

wherec is some real number betweenx and p
q
; |c − x| < 1 for p

q
moderately

close tox.
Now we use the fact thatf(X) does not have any rational roots:

0 6= f

(
p

q

)
= an

(
p

q

)n

+ · · ·+ a0 =
anpn + · · · a1p

n−1q + a0q
n

qn
(13.13)
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The numerator of the last term is a nonzero integer, hence it has absolute value
at least1. Since we also know thatf(x) = 0 it follows that

∣∣∣∣f
(

p

q

)
− f(x)

∣∣∣∣ =

∣∣∣∣f
(

p

q

)∣∣∣∣ =
|anp

n + · · · a1p
n−1q + a0q

n|
qn

≥ 1

qn
. (13.14)

Combining the equations 13.12 and 13.14, we get:

1

qn
≤ M

∣∣∣∣x−
p

q

∣∣∣∣ ⇒
1

Mqn
≤

∣∣∣∣x−
p

q

∣∣∣∣ (13.15)

whenever|x− p
q
| < 1. This last equation shows us thatx can be approximated

by rationals to order at mostn. For assume it was otherwise, namely thatx can be
approximated to ordern + ε. Then we would have an infinite sequence of distinct
rational numbers{pi

qi
}i≥1 and a constantk(x) depending only onx such that

∣∣∣∣x−
pi

qi

∣∣∣∣ <
k(x)

qn+ε
i

. (13.16)

Since the numberspi

qi
converge tox we can assume that they already are in the

interval(x− 1, x + 1). Hence they also satisfy Equation 13.15:

1

qn
i

≤ M

∣∣∣∣x−
pi

qi

∣∣∣∣ . (13.17)

Combining the last two equations we get

1

Mqn
i

≤
∣∣∣∣x−

pi

qi

∣∣∣∣ <
k(x)

qn+ε
i

, (13.18)

hence

qε
i < M (13.19)

and this is clearly impossible for arbitrarily largeq sinceε > 0 andqi →∞.

Exercise 13.2.2.Justify the fact that if{pi

qi
}i≥1 is a rational approximation to

ordern ≥ 1 of x, thenqi →∞.
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Remark 13.2.3.So far we have seen that the order to which an algebraic num-
ber can be approximated by rationals is bounded by its degree. Hence if a real,
irrational numberα /∈ Q can be approximated by rationals to an arbitrary large
order, thenα must be transcendental! This provides us with a recipe for construct-
ing transcendental numbers.

13.3 Constructing Transcendental Numbers

13.3.1
∑

m 10−m!

The following construction of transcendental numbers is due to Liouville.

Theorem 13.3.1.The number

x =
∞∑

m=1

1

10m!
(13.20)

is transcendental.

Proof. The series definingx is convergent, since it is dominated by the geometric
series

∑
1

10m . In fact, the series converges very rapidly and it is this high rate of
convergence that will yieldx is transcendental.

Fix N large, and letn > N . Write

pn

qn

=
n∑

m=1

1

10m!
(13.21)

with pn, qn > 0 and(pn, qn) = 1. Then{pn

qn
}n≥1 is a monotone increasing

sequence converging tox. In particular, all these rational numbers are distinct.
Not also thatqn must divide10n!, which implies

qn ≤ 10n!. (13.22)

Using this, we get
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0 < x− pn

qn

=
∑
m>n

1

10m!
=

1

10(n+1)!

(
1 +

1

10n+2
+

1

10(n+2)(n+3)
+ · · ·

)

<
2

10(n+1)!
=

2

(10n!)n+1

<
2

qn+1
n

≤ 2

qN
n

. (13.23)

This gives an approximation by rationals of orderN of x. SinceN can be
chosen arbitrarily large, this implies thatx can be approximated by rationals to
arbitrary order. We can conclude, in view of our precious remark 13.2.3 thatx is
transcendental.

13.3.2 [101!, 102!, . . . ]

Theorem 13.3.2.The number

y = [101!, 102!, . . . ] (13.24)

is transcendental.

Proof. Let pn

qn
be the continued fraction of[101! · · · 10n!]. Then

∣∣∣∣y −
pn

qn

∣∣∣∣ =
1

qnq′n+1

=
1

qn(a′n+1qn + qn−1)

<
1

an+1

=
1

10(n+1)!
. (13.25)

Sinceqk = anqk−1 + qn−2, it implies thatqk > qk−1 Also, qk+1 = ak+1qn +
qk−1, so we get

qk+1

qk

= ak+1 +
qk−1

qk

< ak+1 + 1. (13.26)

Hence writing this inequality fork = 1, · · · , n− 1 we obtain
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qn = q1
q2

q1

q3

q2

· · · qn

qn−1

< (a1 + 1)(a2 + 1) · · · (an + 1)

= (1 +
1

a1

) · · · (1 +
1

an

)a1 · · · an

< 2na1 · · · an = 2n101!+···+n!

< 102n! = a2
n (13.27)

Combining equations 13.25 and 13.27 we get:

∣∣∣∣y −
pn

qn

∣∣∣∣ <
1

an+1

=
1

an+1
n

<

(
1

a2
n

)n
2

<

(
1

q2
n

)n
2

=
1

q
n/2
n

. (13.28)

In this way we get, just as in the previous theorem, an approximation ofy by
rationals to arbitrary order. This proves thaty is transcendental.

13.3.3 Buffon’s Needle andπ

Consider a collection of infinitely long parallel lines in the plane, where the
spacing between any two adjacent lines isd. Let the lines be located atx =
0,±d,±2d, . . . . Consider a rod of lengthl, where for convenience we assume
l < d.

If we were torandomlythrow the rod on the plane, what is the probability it
hits a line? This question was first asked by Buffon in1733.

Because of the vertical symmetry, we may assume the center of the rod lies on
the linex = 0, as shifting the rod (without rotating it) up or down will not alter the
number of intersections. By the horizontal symmetry, we may assume−d

2
≤ x <

d
2
. We posit that all values ofx are equally likely. Asx is continuous distributed,

we may add inx = d
2

without changing the probability. The probability density
function ofx is dx

d
.

Let θ be the angle the rod makes with thex-axis. As each angle is equally
likely, the probability density function ofθ is dθ

2π
.
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We assume thatx andθ are chosen independently. Thus, the probability den-
sity for (x, θ) is dxdθ

d·2π
.

The projection of the rod (making an angle ofθ with the x-axis) along the
x-axis isl · | cos θ|. If |x| ≤ l · | cos θ|, then the rod hits exactly one vertical line
exactly once; ifx > l · | cos θ|, the rod does not hit a vertical line. Note that if
l > d, a rod could hit multiple lines, making the arguments more involved.

Thus, the probability a rod hits a line is

p =

∫ 2π

θ=0

∫ l·| cos θ|

x=−l·| cos θ|

dxdθ

d · 2π

=

∫ 2π

θ=0

l · | cos θ|
d

dθ

2π

=
2l

πd
. (13.29)

Exercise 13.3.3.Show
1

2π

∫ 2π

0

| cos θ|dθ =
2

π
. (13.30)

Let A be the random variable which is the number of intersections of a rod of
lengthl thrown against parallel vertical lines separated byd > l units. Then

A =

{
1 with probability 2l

πd

0 with probability1− 2l
πd

. (13.31)

If we were to throwN rods independently, since the expected value of a sum
is the sum of the expected values (Lemma 6.3.8), we expect to observe

N · 2l

πd
(13.32)

intersections.
Turning this around, let us throwN rods, and letI be the number of observed

intersections of the rods with the vertical lines. Then

I ≈ N · 2l

πd
→ π ≈ N

I
· 2l

d
. (13.33)

The above is anexperimentalformula forπ!
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Chapter 14

Poissonian Behavior and{nkα}

We now define Poissonian Bevahior, and investigate the normalized spacings of
the fractional parts ofn2α. Lecture and notes by Steven J. Miller.

14.1 Equidistribution

We say a sequence of numberxn ∈ [0, 1) is equidistributed if

lim
N→∞

#{n : 1 ≤ n ≤ N andxn ∈ [a, b]}
N

= b− a (14.1)

for any subinterval[a, b] of [0, 1].
Recall Weyl’s Result: Ifα 6∈ Q, then the fractional parts{nα} are equidis-

tributed. Equivalently,nα mod1 is equidistributed.
Similarly, one can show that for any integerk, {nkα} is equidistributed. See

Robert Lipshitz’s paper for more details.

14.2 Point Masses and Induced Probability Measures

Recall from physics the concept of a unit point mass located atx = a. Such a point
mass has no length (or, in higher dimensions, width or height), but finite mass. As
mass is the integral of the density over space, a finite mass in zero volume (or zero
length on the line) implies an infinite density.

We can make this more precise by the notion of an Approximation to the
Identity.
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Definition 14.2.1 (Approximation to the Identity). A sequence of functionsgn(x)
is an approximation to the identity (at the origin) if

1. gn(x) ≥ 0.

2.
∫

gn(x)dx = 1.

3. Givenε, δ > 0 there existsN > 0 such that for alln > N ,
∫
|x|>δ

gn(x)dx <
ε.

We represent the limit of any such family ofgn(x)s byδ(x).

If f(x) is a nice function (say near the origin its Taylor Series converges) then
∫

f(x)δ(x)dx = lim
n→∞

∫
f(x)gn(x) = f(0). (14.2)

Exercise 14.2.2.Prove Equation 14.2.

Thus, in the limit the functionsgn are acting like point masses. We can con-
sider the probability densitiesgn(x)dx and δ(x)dx. For gn(x)dx, asn → ∞,
almost all the probability is concentrated in a narrower and narrower band about
the origin;δ(x)dx is the limit with all the mass at one point. It is a discrete (as
opposed to continuous) probability measure.

Note thatδ(x− a) acts like a point mass; however, instead of having its mass
concentrated at the origin, it is now concentrated ata.

Exercise 14.2.3.Let

gn(x) =

{
n if |x| ≤ 1

2n

0 otherwise
(14.3)

Provegn(x) is an approximation to the identity at the origin.

Exercise 14.2.4.Let

gn(x) = c
1
n

1
n2 + x2

. (14.4)

Find c such that the above is an approximation to the identity at the origin.

Given N point masses located atx1, x2, . . . , xN , we can form a probability
measure
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µN(x)dx =
1

N

N∑
n=1

δ(x− xn)dx. (14.5)

Note
∫

µN(x)dx = 1, and iff(x) is a nice function,

∫
f(x)µN(x)dx =

1

N

N∑
n=1

f(xn). (14.6)

Exercise 14.2.5.Prove Equation 14.6 for nicef(x).

Note the right hand side of Equation 14.6 looks like a Riemann sum. Or it
would look like a Riemann sum if thexns were equidistributed. In general thexns
will not be equidistributed, but assume for any interval[a, b] that asN → ∞, the
fraction ofxns (1 ≤ n ≤ N ) in [a, b] goes to

∫ b

a
p(x)dx for some nice function

p(x):

lim
N→∞

#{n : 1 ≤ n ≤ N andxn ∈ [a, b]}
N

→
∫ b

a

p(x)dx. (14.7)

In this case, iff(x) is nice (say twice differentiable, with first derivative uni-
formly bounded), then

∫
f(x)µN(x)dx =

1

N

N∑
n=1

f(xn)

≈
∞∑

k=−∞
f
( k

N

)#{n : 1 ≤ n ≤ N andxn ∈
[

k
N

, k+1
N

]
}

N

→
∫

f(x)p(x)dx. (14.8)

Definition 14.2.6 (Convergence top(x)). If the sequence of pointsxn satis-
fies Equation 14.7 for some nice functionp(x), we say the probability measures
µN(x)dx converge top(x)dx.
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14.3 Neighbor Spacings

We now consider finer questions. Letαn be a collection of points in[0, 1). We
order them by size:

0 ≤ ασ(1) ≤ ασ(2) ≤ · · · ≤ ασ(N), (14.9)

whereσ is a permutation of123 · · ·N . Note the ordering depends crucially on
N . Let βj = ασ(j).

We consider how the differencesβj+1 − βj are distributed. We will use a
slightly different definition of distance, however.

Recall[0, 1) is equivalent to the unit circle under the mapx → e2πix. Thus, the
numbers.999 and.001 are actually very close; however, if we used the standard
definition of distance, then|.999 − .001| = .998, which is quite large. Wrapping
[0, 1) on itself (identifying0 and1), we see that.999 and .001 are separated by
.002.

Definition 14.3.1 (mod1 distance). Let x, y ∈ [0, 1). We define the mod1 dis-
tance fromx to y, ||x− y||, by

||x− y|| = min
{
|x− y|, 1− |x− y|

}
. (14.10)

Exercise 14.3.2.Show that the mod1 distance between any two numbers in[0, 1)
is at most1

2
.

In looking at spacings between theβjs, we haveN − 1 pairs of neighbors:

(β2, β1), (β3, β2), . . . , (βN , βN−1). (14.11)

These pairs give rise to spacingsβj+1 − βj ∈ [0, 1).
We can also consider the pair(β1, βN). This gives rise to the spacingβ1−βN ∈

[−1, 0); however, as we are studying this sequence mod1, this is equivalent to
β1 − βN + 1 ∈ [0, 1).

Henceforth, whenever we perform any arithmetic operation, we always
mean mod1; thus, our answers always live in[0, 1)

Definition 14.3.3 (Neighbor Spacings).Given a sequence of numbersαn in
[0, 1), fix anN and arrange the numbersαn (n ≤ N ) in increasing order. La-
bel the new sequenceβj; note the ordering will depend onN . Let β−j = βN−j

andβN+j = βj.
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1. The nearest neighbor spacings are the numbersβj+1 − βj, j = 1 to N .

2. Thekth-neighbor spacings are the numbersβj+k − βj, j = 1 to N .

Remember to take the differencesβj+k − βj mod1.

Exercise 14.3.4.Letα =
√

2, and letαn = {nα} or {n2α}. Calculate the nearest
neighbor and the next-nearest neighbor spacings in each case forN = 10.

Definition 14.3.5 (wrapped unit interval). We call [0, 1), when all arithmetic
operations are done mod1, the wrapped unit interval.

14.4 Poissonian Behavior

Let α 6∈ Q. Fix a positive integerk, and letαn = {nkα}. As N → ∞, look
at the orderedαns, denoted byβn. How are the nearest neighbor spacings ofβn

distributed? How does this depend onk? Onα? OnN?
Before discussing this problem, we consider a simpler case. FixN , and con-

siderN independent random variablesxn. Each random variable is chosen from
the uniform distribution on[0, 1); thus, the probability thatxn ∈ [a, b) is b− a.

Let yn be thexns arranged in increasing order. How do the neighbor spacings
behave?

First, we need to decide what is the correct scale to use for our investigations.
As we haveN objects on the wrapped unit interval, we haveN nearest neighbor
spacings. Thus, we expect the average spacing to be1

N
.

Definition 14.4.1 (Unfolding). Let zn = Nyn. The numberszn = Nyn have unit
mean spacing. Thus, while we expect the average spacing between adjacentyns
to be 1

N
units, we expect the average spacing between adjacentzns to be1 unit.

So, the probability of observing a spacing as large as1
2

between adjacentyns
becomes negligible asN → ∞. What we should ask is what is the probability
of observing a nearest neighbor spacing of adjacentyns that ishalf the average
spacing. In terms of thezns, this will correspond to a spacing between adjacent
zns of 1

2
a unit.

150



14.4.1 Nearest Neighbor Spacings

By symmetry, on the wrapped unit interval the expected nearest neighbor spacing
is independent ofj. Explicitly, we expectβj+1 − βj to have the same distribution
asβi+1 − βi.

What is the probability that, when we order thexns in increasing order, the
nextxn afterx1 is located betweent

N
and t+∆t

N
? Let thexns in increasing order

be labeledy1 ≤ y2 ≤ · · · ≤ yN , yn = xσ(n).
As we are choosing thexns independently, there are

(
N−1

1

)
choices of subscript

n such thatxn is nearest tox1. This can also be seen by symmetry, as eachxn is
equally likely to be the first to theright of x1 (where, of course,.001 is just a little
to the right of.999), and we haveN − 1 choices left forxn.

The probability thatxn ∈
[

t
N

, t+∆t
N

]
is ∆t

N
.

For the remainingN − 2 of thexns, each must be further thant+∆t
N

from xn.
Thus, they mustall lie in an interval (or possibly two intervals if we wrap around)

of length1− t+∆t
N

. The probability that they all lie in this region is
(
1− t+∆t

N

)N−2

.

Thus, if x1 = yl, we want to calculate the probability that||yl+1 − yl|| ∈[
t
N

, t+∆t
N

]
. This is

Prob

(
||yl+1 − yl|| ∈

[ t

N
,
t + ∆t

N

])
=

(
N − 1

1

)
· ∆t

N
·
(
1− t + ∆t

N

)N−2

=
(
1− 1

N

)
·
(
1− t + ∆t

N

)N−2

∆t.

(14.12)

ForN enormous and∆t small,

(
1− 1

N

)
≈ 1

(
1− t + ∆t

N

)N−2

≈ e−(t+∆t) ≈ e−t. (14.13)

Thus

Prob

(
||yl+1 − yl|| ∈

[ t

N
,
t + ∆t

N

])
→ e−t∆t. (14.14)
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Remark 14.4.2. The above argument is infinitesimally wrong. Once we’ve lo-
catedyl+1, the remainingxns do not need to be more thant+∆t

N
units to the right

of x1 = yl; they only need to be further to the right thanyl+1. As the incremental
gain in probabilities for the locations of the remainingxns is of order∆t, these
contributions will not influence the largeN , small ∆t limits. Thus, we ignore
these effects.

To rigorously derive the limiting behavior of the nearest neighbor spacings
using the above arguments, one would integrate overxm ranging from t

N
to t+∆t

N
,

and the remaining eventsxn would be in the a segment of length1− xm. As

∣∣∣
(
1− xm

)
−

(
1− t + ∆t

N

)∣∣∣ ≤ ∆t

N
, (14.15)

this will lead to corrections of higher order in∆t, hence negligible.
We can rigorously avoid this by instead considering the following:

1. Calculate the probability that all the otherxns are at leastt
N

units to the
right of x1. This is

pt =
(
1− t

N

)N−1

→ e−t. (14.16)

2. Calculate the probability that all the otherxns are at leastt+∆t
N

units to the
right of x1. This is

pt+∆t =
(
1− t + ∆t

N

)N−1

→ e−(t+∆t). (14.17)

3. The probability that noxns are within t
N

units to the right ofx1 but at least
onexn is betweent

N
and t+∆t

N
units to the right ispt+∆t − pt:

pt − pt+∆t → e−t − e−(t+∆t)

= e−t
(
1− e−∆t

)

= e−t

(
1− 1 + ∆t + O

(
(∆t)2

)

→ e−t∆t. (14.18)
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Definition 14.4.3 (Unfolding Spacings).If yl+1−yl ∈
[

t
N

, t+∆t
N

]
, thenN(yl+1−

yl) ∈ [t, t + ∆t]. The new spacingszl+1− zl have unit mean spacing. Thus, while
we expect the average spacing between adjacentyns to be 1

N
units, we expect the

average spacing between adjacentzns to be1 unit.

14.4.2 kth Neighbor Spacings

Similarly, one can easily analyze the distribution of thekth neighbor spacings
when eachxn is chosen independently from the uniform distribution on[0, 1).

Again, considerx1 = yl. Now we want to calculate the probability thatyl+k is
between t

N
and t+∆t

N
units to theright of yl.

Therefore, we need exactlyk−1 of thexns to lie between0 and t
N

units to the
right of x1, exactly onexn (which will beyl+k) to lie betweent

N
and t+∆t

N
units to

the right ofx1, and the remainingxns to lie at leastt+∆t
N

units to the right ofyl+k.

Remark 14.4.4.We face the same problem discussed in Remark 14.4.2; a similar
argument will show that ignoring these affects will not alter the limiting behavior.
Therefore, we will make these simplifications.

There are
(

N−1
k−1

)
ways to choose thexns that are at mostt

N
units to the right of

x1; there is then
(
(N−1)−(k−1)

1

)
ways to choose thexn betweent

N
and t+∆t

N
units to

the right ofx1.
Thus,

Prob

(
||yl+k − yl|| ∈

[ t

N
,
t + ∆t

N

])
=

=

(
N − 1

k − 1

)( t

N

)k−1

·
(

(N − 1)− (k − 1)

1

)
∆t

N
·
(
1− t + ∆t

N

)N−(k+1)

=
(N − 1) · · · (N − 1− (k − 2))

Nk−1

(N − 1)− (k − 1)

N

tk−1

(k − 1)!

(
1− t + ∆t

N

)N−(k+1)

∆t

→ tk−1

(k − 1)!
e−t∆t. (14.19)

Again, one way to avoid the complications is to integrate overxm ranging
from t

N
to t+∆t

N
.

Or, similar to before, we can proceed more rigorously as follows:
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1. Calculate the probability that exactlyk − 1 of the otherxns are at mostt
N

units to the right ofx1, and the remaining(N − 1)− (k − 1) of thexns are
at least t

N
units to the right ofx1. As there are

(
N−1
k−1

)
ways to choosek − 1

of thexns to be at mostt
N

units to the right ofx1, this probability is

pt =

(
N − 1

k − 1

)( t

N

)k−1(
1− t

N

)(N−1)−(k−1)

→ Nk−1

(k − 1)!

tk−1

Nk−1
e−t

→ tk−1

k − 1!
e−t. (14.20)

2. Calculate the probability that exactlyk − 1 of the otherxns are at mostt
N

units to the right ofx1, and the remaining(N − 1)− (k − 1) of thexns are
at leastt+∆t

N
units to the right ofx1. Similar to the above, this gives

pt =

(
N − 1

k − 1

)( t

N

)k−1(
1− t + ∆t

N

)(N−1)−(k−1)

→ Nk−1

(k − 1)!

tk−1

Nk−1
e−(t+∆t)

→ tk−1

(k − 1)!
e−(t+∆t). (14.21)

3. The probability that exactlyk−1 of thexns are within t
N

units to the right of
x1 and at least onexn is betweent

N
and t+∆t

N
units to the right ispt+∆t−pt:

pt − pt+∆t → tk−1

(k − 1)!
e−t − tk−1

(k − 1)!
e−(t+∆t) → tk−1

(k − 1)!
e−t∆t.

(14.22)

Note that whenk = 1, we recover the nearest neighbor spacings.
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14.5 Induced Probability Measures

We have proven the following:

Theorem 14.5.1.ConsiderN independent random variablesxn chosen from the
uniform distribution on the wrapped unit interval[0, 1). For fixedN , arrange the
xns in increase order, labeledy1 ≤ y2 ≤ · · · ≤ yN .

Form the induced probability measureµN,1 from the nearest neighbor spac-
ings. Then asN →∞ we have

µN,1(t)dt =
1

N

N∑
n=1

δ
(
t−N(yn − yn−1)

)
dt → e−tdt. (14.23)

Equivalently, usingzn = Nyn:

µN,1(t)dt =
1

N

N∑
n=1

δ
(
t− (zn − zn−1)

)
dt → e−tdt. (14.24)

More generally, form the probability measure from thekth nearest neighbor
spacings. Then asN →∞ we have

µN,k(t)dt =
1

N

N∑
n=1

δ
(
t−N(yn − yn−k)

)
dt → tk−1

(k − 1)!
e−tdt. (14.25)

Equivalently, usingzn = Nyn:

µN,k(t)dt =
1

N

N∑
n=1

δ
(
t− (zn − zn−k)

)
dt → tk−1

(k − 1)!
e−tdt. (14.26)

Definition 14.5.2 (Poissonian Behavior).We say a sequence of pointsxn has
Poissonian Behavior if in the limit asN → ∞ the induced probability measures
µN,k(t)dt converge to tk−1

(k−1)!
e−tdt.

Exercise 14.5.3.Let α ∈ Q, and defineαn = {nmα} for some positive integer
m. Show the sequence of pointsαn does not have Poissonian Behavior.
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Exercise 14.5.4.Let α 6∈ Q, and defineαn = {nα}. Show the sequence of
pointsαn does not have Poissonian Behavior. Hint: for eachN , show the nearest
neighbor spacings take on at most three distinct values (the three values depend
on N ). As only three values are ever assumed for a fixedN , µN,1(t)dt cannot
converge toe−tdt.

14.6 Non-Poissonian Behavior

Conjecture 14.6.1.With probability one (with respect to Lebesgue Measure), if
α 6∈ Q, if αn = {n2α} then the sequence of pointsαn is Poissonian.

There are constructions which show certain irrationals give rise to non-Poissonian
behavior.

Theorem 14.6.2.Let α ∈ Q such that
∣∣∣α − pn

qn

∣∣∣ < an

q3
n

holds infinitely often, with

an → 0. Then there exist integersNj → ∞ such thatµNj ,1(t) does not converge
to e−tdt.

As an → 0, eventuallyan < 1
10

for all n large. LetNn = qn, wherepn

qn
is a

good rational approximation toα:
∣∣∣α− pn

qn

∣∣∣ <
an

q3
n

. (14.27)

Remember that all subtractions are performed on the wrapped unit interval.
Thus,||.999− .001|| = .002.

We look atαk = {k2α}, 1 ≤ k ≤ Nn = qn. Let theβks be theαks arranged
in increasing order, and let theγks be the numbers{k2 pn

qn
} arranged in increasing

order:

β1 ≤ β2 ≤ · · · ≤ βN

γ1 ≤ γ2 ≤ · · · ≤ γN . (14.28)

14.6.1 Preliminaries

Lemma 14.6.3.If βl = αk = {k2α}, thenγl = {k2 pn

qn
}. Thus, the same permuta-

tion orders both theαks and theγks.
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Proof. Multiplying both sides of Equation 14.27 byk2 ≤ q2
n yields

∣∣∣k2α− k2pn

qn

∣∣∣ < k2an

q2
n

≤ an

qn

<
1

2qn

. (14.29)

Thus,k2α andk2 pn

qn
differ by at most 1

2qn
. Therefore

∣∣∣
∣∣∣
{

k2α
}
−

{
k2pn

qn

}∣∣∣
∣∣∣ <

1

2qn

. (14.30)

As the numbers{m2 pn

qn
} all have denominators of size at most1

qn
, we see that

{k2 pn

qn
} is the closest of the{m2 pn

qn
} to {k2α}.

This implies that ifβl = {k2α}, thenγl = {k2 pn

qn
}, completing the proof.

Exercise 14.6.4.Prove the ordering is as claimed. Hint: about eachβl = {k2α},
the closest number of the form{c2 pn

qn
} is {k2 pn

qn
}.

14.6.2 Proof of Theorem 14.6.2

Exercise 14.6.5.Assume||a− b||, ||c− d|| < 1
10

. Show

||(a− b)− (c− d)|| < ||a− b||+ ||c− d||. (14.31)

Proof of Theorem 14.6.2: We have shown

||βl − γl|| <
an

qn

. (14.32)

Thus, asNn = qn:
∣∣∣
∣∣∣Nn(βl − γl)

∣∣∣
∣∣∣ < an, (14.33)

and the same result holds withl replaced byl − 1.
By Exercise 14.6.5,

∣∣∣
∣∣∣Nn(βl − γl)−Nn(βl−1 − γl−1)

∣∣∣
∣∣∣ < 2an. (14.34)

Rearranging gives
∣∣∣
∣∣∣Nn(βl − βl−1)−Nn(γl − γl−1)

∣∣∣
∣∣∣ < 2an. (14.35)
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Asan → 0, this implies the difference between
∣∣∣
∣∣∣Nn(βl−βl−1)

∣∣∣
∣∣∣ and

∣∣∣
∣∣∣Nn(γl−

γl−1)
∣∣∣
∣∣∣ goes to zero.

The above distance calculations were done mod1. The actual differences will
differ by an integer. Thus,

µα
Nn,1(t)dt =

1

Nn

Nn∑

l=1

δ
(
t−Nn(βl − βl−1)

)
(14.36)

and

µ
pn
qn

Nn,1(t)dt =
1

Nn

Nn∑

l=1

δ
(
t−Nn(γl − γl−1)

)
(14.37)

are extremely close to one another; each point mass from the difference be-
tween adjacentβls is either withinan units of a point mass from the difference
between adjacentγls, or is withinan units of a point mass an integer number of
units from a point mass from the difference between adjacentγls. Further,an → 0.

Note, however, that ifγl = {k2 pn

qn
}, then

Nnγl = qn

{
k2pn

qn

}
∈ N. (14.38)

Thus, the induced probability measureµ
pn
qn

Nn,1(t)dt formed from theγls is sup-

ported on the integers! Thus, it is impossible forµ
pn
qn

Nn,1(t)dt to converge toe−tdt.
As µα

Nn,1(t)dt, modulo some possible integer shifts, is arbitrarily close to

µ
pn
qn

Nn,1(t)dt, the sequence{k2α} is not Poissonian along the subsequence ofNs
given byNn, whereNn = qn, qn is a denominator in a good rational approxima-
tion toα. 2

14.6.3 Measure ofα 6∈ Q with Non-Poissonian Behavior along
a sequenceNn

What is the (Lebesgue) measure ofα 6∈ Q such that there are infinitely manyn
with

∣∣∣α− pn

qn

∣∣∣ <
an

qn

, an → 0. (14.39)
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If the above holds, then for any constantk(α), for n large (large depends on
bothα andk(α)) we have

∣∣∣α− pn

qn

∣∣∣ <
k(α)

q2+ε
n

. (14.40)

Exercise 14.6.6.Show this set has (Lebesgue) measure or size0.

Thus, almost no irrational numbers satisfy the conditions of Theorem 14.6.2,
wherealmost nois relative to the (Lebesgue) measure.

Exercise 14.6.7.In a topological sense, how many algebraic numbers satisfy the
conditions of Theorem 14.6.2? How many transcendental numbers satisfy the
conditions?

Exercise 14.6.8.Let α satisfy the conditions of Theorem 14.6.2. Consider the
sequenceNn, whereNn = qn, qn the denominator of a good approximation to

α. We know the induced probability measuresµ
pn
qn

Nn,1(t)dt andµα
Nn,1(t)dt do not

converge toe−tdt. Do these measures converge to anything?

Remark 14.6.9. In The Distribution of Spacings Between the Fractional Parts of
{n2α} (Z. Rudnick, P. Sarnak, A. Zaharescu), it is shown that for mostα satisfying
the conditions of Theorem 14.6.2, thereis a sequenceNj along whichµα

Nn,1(t)dt
doesconverge toe−tdt.
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Chapter 15

More Graphs, Kloosterman,
Randomness ofx → x mod p

More on Graphs, Kloosterman, and the Third Problem on the Randomness ofx 7→
x mod p. Review of projective geometry and fractional linear transformations.
Lecture by Peter Sarnak; notes by Steven J. Miller.

15.1 Kloosterman Sums

Recall

S(a, b, p) =
∗∑

x mod p

e
(ax + bx

p

)
, (15.1)

where
∑∗ means sum over allx relatively prime top, andx ≡ x−1 modp.

Theorem 15.1.1 (Weil).For p an odd prime anda, b ∈ Z,

|S(a, b, p)| ≤ 2
√

p. (15.2)

The above captures the randomness. We addp − 1 numbers of modulus1,
and we see square-root cancellation. Weil’s Theorem says the cancellation is
"like" random numbers. Recall when we added±1, we expected to observe a
sum around

√
N if we hadN summands.
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15.2 Projective Geometry

Consider the map

C → C ∪ {∞}
z 7→ az + b

cz + d
. (15.3)

We define the above as the action of the matrix
(

a b
c d

)
(15.4)

on z.
P1(R) is identified with the perimeter of a circle, with antipodal points (points

on a diagonal, separated byπ radians) identified.

15.3 Example

Definition 15.3.1 (P1(Fp)). P1(Fp) is the projective line,

P1(Fp) = {0, 1, . . . ,∞}. (15.5)

We construct a3-regular graphGp onp + 1 vertices as follows:

1. Joinx to x + 1 modp.

2. Joinx to x− 1 modp.

3. Joinx to−x modp,

where 1
∞ = 0.

Form the adjacency matrix of the above graph. Is there a spectral graph?

Theorem 15.3.2.There is a spectral gap!

λ1(Gp) ≤ 2.99. (15.6)

These graphs arenotRamanujan in general.
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We can look at the three maps as matrices

T =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
, T−1 =

(
1 −1
0 1

)
(15.7)

Exercise 15.3.3.(ST )3 = ±I.

Exercise 15.3.4.Show the three maps we used to createGp can be given by

1. x → Tx (corresponding tox → x + 1),

2. x → T−1x (corresponding tox → x− 1),

3. x → Sx (corresponding tox → −x.

15.4 Stereographic Projections and Fractional Lin-
ear Transformations

What are the analytic,1−1 invertible maps fromC→ C? What if we include∞.
First, one might ask what is∞?
Take a sphere, call the north poleN . Consider the infinite planez = 0.
To each pointP on the sphere, draw the line fromN to P , and write down the

point of intersection on the planez = 0. Call this mapS (stereographic projection;
preserves angles), and call the sphereS2 = P1.

Thus,

S(P ) ∈ C, S(∞) ↔ N, S2 ∼= C ∪ {∞}. (15.8)

Recall GL2 are the2 × 2 matrices with non-zero determinant.SL2(C) is the
group of2× 2 matrices with determinant1.

Fractional Linear Transformation:z 7→ az+b
cz+d

.
If we have two linear transformations

γ =

(
a b
c d

)
, δ =

(
a1 b1

c1 d1

)
(15.9)

then

γ(δz) = (γδ)z, (15.10)

where(γδ) is usual matrix multiplication.
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15.5 More Kesten

Let Γ be a group generated by

A1, A−1
1 , A2, A−1

2 , . . . , Ak, A−1
k . (15.11)

We make a2k-regular graph by joiningx andy with an edge (x ∼ y) if and
only if x = A±1

j y for somej.
Define, forf : Γ → C,

Bf(x) =
∑
x∼y

f(y). (15.12)

To make the sum make sense if we have infinitely many vertices we require
f ∈ l2(Γ), the space of functionsg where

∑ |g(γ)|2 < ∞.
One could ask about the spectrum ofB on this space. The HW problem

was on ak-regular tree. Make words using the generators. Have the notion of
a free group: no relation (ie, no word is the identity word) except the trivial ones
(AiA

−1
i = I).

Γ = 〈A1, A2, . . . , Ak〉. (15.13)

Definition 15.5.1 (Free Group).Γ is a free group if the only relations inΓ giv-
ing the identity are the obvious ones (ie, the only word inA1, . . . , Ak that is the
identity word is words of the formA−1

k AiA
−1
i A−1

j AjAk, and so on).

The graph we just spoke about,G(Γ) onA1, A
−1
1 up toAk, A

−1
k is a2k-regular

tree if and only ifΓ is a free group onA1, . . . , Ak. This is called a Cayley Graph
(relative to the given generators).

Theorem 15.5.2 (Kesten).The spectrum ofB whenΓ is free onk generators is

spectrum(B) =
[
− 2

√
2k − 1, 2

√
2k − 1

]
. (15.14)

Further,Γ is free onA1, . . . , Ak if and only if

spectrum(B) ⊂
[
− 2

√
2k − 1, 2

√
2k − 1

]
. (15.15)

Thus, the spectrum contains a pointoutsidethis interval if and only ifΓ is not
free.

Finally, 2k is in the spectrum if and only ifΓ is amenable (for example,
abelian).
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Corollary 15.5.3. Our graphsGp cannot be Ramanujan, as thereis a relation
among the generators, namely(ST )3 = ±I.

15.6 SL2(Z)

Definition 15.6.1 (SL2(Z)). SL2(Z) is the group of2 × 2 matrices with unit de-
terminant and integer coefficients.

Exercise 15.6.2.Consider the matrices

T =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
, T−1 =

(
1 −1
0 1

)
(15.16)

Show these three matrices generate SL2(Z); as (ST )3 = ±I, this shows
SL2(Z) is not a free group.

Where should SL2(Z) act? Lubotsky: you don’t understand a group until it
acts on something you know. Galois had groups acting on roots of polynomials
(permuting roots).

What does SL2(Z) act on? It does act on the sphere, but it is too big a space.
We want to study the smallest space where it acts reasonably.

Look at SL2(R), the group of2 × 2 matrices with determinant1 and real
entries. Letz be in the upper half plane, soz = x + iy, y > 0. Then

z 7→ az + b

cz + d
, Im

(az + b

cz + d

)
> 0. (15.17)

A similar statement holds forz in the lower half plane. Thus, SL2(R) maps
the upper (lower) half plane to itself.

By shifting by an integer, we can bring anyx ∈ R to x′ ∈ [0, 1).
Gauss was the first to draw the fundamental domain for SL2(Z) acting on the

upper half plane:
Draw a circle of radius1 with center0; draw vertical lines atx = ±1

2
, going

from the point on the circle to infinity. The region formed is called the fundamen-
tal domain for SL2(Z) on the upper half plane. This means that anyz in the upper
half plane can be brought into this region.
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15.7 Isx → x mod p Random?

15.7.1 First Test

Question 15.7.1.To what extent is / how random isx → x modp?

There arep numbers.
If look at all numbers1 ≤ x ≤ p − 1, we get all the numbers back (in some

new order). We can look at a long segment (on what scale?), say

√
p ≤ x ≤ 2

√
p. (15.18)

Now x will be all over [1, p − 1]. This generates
√

p numbers between1 and
p− 1. The average spacing is is approximatelyp−1√

p≈√p
. How are numbers spaced?

First, we need to write them in increasing order

1 ≤ a1 < a2 < · · · < al ≤ p− 1. (15.19)

Let us denote the nearest neighbor spacings by∆1 = a2 − a1, ∆2 = a3 − a2

and so on. Let

δj =
∆j√

p
. (15.20)

Note theδjs have unit mean spacing.

Conjecture 15.7.2 (Naive Conjecture).We expect the spacings to follow Poisso-
nian Statistics. Explicitly, the distribution of spacings we see here should be the
same as that from choosing

√
p numbers independently from the uniform distribu-

tion on [0, 1).

15.7.2 Second Test

Question 15.7.3 (Jim Propp).Doesx → x behave like a random permutation of
order2?

What is the distribution of the longest increasing sub-sequence?
Given a permutation of1, 2, . . . , N , we havei 7→ σ(i). Permutations are often

denoted by
(

1

σ(1)

2

σ(2)
· · · N

σ(N)

)
(15.21)
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Look at the distribution of the longest increasing sub-sequence about the mean.
Normalized appropriately, what does it look like?

15.7.3 Third Test: Hooley’sR∗

A+N∑
x=A

e
(x

p

)
, (15.22)

where1 ≤ A ≤ A + N ≤ p− 1.
When we add numbers of modulus one, we expect square-root cancellation.
Then

Conjecture 15.7.4 (Hooley’sR∗). For everyε > 0,
∣∣∣∣∣

A+N∑
x=A

e
(x

p

)∣∣∣∣∣ ¿ε N
1
2 pε. (15.23)

Note¿ε means the left hand side is less thancε times the right hand side (for
somecε > 0).

Note there is no dependence onA – the only dependence is on the size of
summationN and the primep.

If N >
√

p, the above can be proven. by Weil’s bound.

15.8 Note on Non-trivial Bound of Fourth Powers of
Kloosterman Sums

Note on conditions arising in non-trivial bound on sum of fourth powers of Kloost-
erman sums (Heath-Brown review). Supplemental notes by Alex Barnett.

Please refer to Professor Sarnak’s lecture of 10/16/02, and Heath-Brown’s re-
view article on Kloosterman Sums.

There are six summations inherent in the desired sum

p−1∑
a=0

p−1∑

b=0

|Kl(a, b, p)|4 , (15.24)
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namely the two sums shown and one internal sum in each of the Kl’s. Using the
result

p−1∑
a=0

e

(
an

p

)
=

{
p− 1, n = 0 (modp)
0, otherwise

(15.25)

twice, turns the twoe(·) functions into counting conditions on the variables inter-
nal to the four Kl’s. Calling these variablesw, x, y, z, we want the total number of
ways that, with1 ≤ w, x, y, z ≤ p− 1 (the four surviving sums), we satisfy both

w + x− y − z = 0 (p) (15.26)

and
w̄ + x̄− ȳ − z̄ = 0 (p). (15.27)

Multiplying Eq. 15.27 bywxyz gives

(w + x)yz − (y + z)wx = 0 (p). (15.28)

Substituting Eq. 15.26 gives

(w + x)(yz − wx) = 0 (p). (15.29)

So eitherw + x = 0 (p) or yz − wx = 0 (p), or both.
The first set of cases hasx = −w from (15.26) givingz = −y, so there are

(p−1)2 choices ofw andy. For each choicex andz are fixed uniquely. Therefore
these cases contribute(p− 1)2 ways.

For the second set, we have two equations

y + z = w + x (p) (15.30)

yz = wx (p) (15.31)

for two unknownsy, z, for any of the arbitrary choices ofw, x. You could combine
these equations into the single quadratic

y2 − y(w + x) + wx = 0 (p). (15.32)

Two solutions fory are y = w and y = x (check by substitution). Since it
is a quadratic, these are the only two solutions. Therefore the number of ways
contributed is at most 2 times the(p− 1)2 ways of choosingw, x.

Over-counting due to the and/or is at least of orderp or smaller, but also can
only reduce the number of ways. Therefore the total number of ways≤ 3(p−1)2,
which isO(p2). From this follows the bound on the sum given in the article and
lecture.
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Chapter 16

Introduction to the
Hardy-Littlewood Circle Method

Introduction to the Hardy-Littlewood Circle Method. Lecture and notes by Steven
J. Miller.

16.1 Problems where the Circle Method is Useful

For eachN , let AN be a set of non-negative integers such that

1. AN ⊂ AN+1,

2. |AN | → ∞ asN →∞.

Let A = limN→∞ AN .

Question 16.1.1.Let s be a fixed positive integer. What can one say abouta1 +
· · ·+ as? Ie, what numbersn are representable as a sum ofs summands fromA?

We consider three problems; we will mention later why we are considering
setsAN .

16.1.1 Waring’s Problem

Let A be the set ofkth powers of non-negative numbers, and let

AN = {0k, 1k, . . . , Nk}. (16.1)
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Question 16.1.2.Fix a positive integerk. For what positive integerss can every
integer be written as a sum ofs numbers, each number akth power?

Thus, in this case, we are trying to solve

n = ak
1 + · · ·+ ak

N . (16.2)

16.1.2 Goldbach’s Problem

Let A be the set of all prime numbers, and letAN be the set of all primes at most
N .

Question 16.1.3.Can every even number be written as the sum of two primes?

In this example, we are trying to solve

2n = a1 + a2, (16.3)

or, in more suggestive notation,

2n = p1 + p2. (16.4)

16.1.3 Sum of Three Primes

Again, letA be the set of all primes, andAN all primes up toN .

Question 16.1.4.Can every odd number be written as the sum of three primes?

Again, we are studying

2n + 1 = p1 + p2 + p3. (16.5)

16.2 Idea of the Circle Method

16.2.1 Introduction

Definition 16.2.1 (e(z)). We definee(z) = e2πiz.
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Exercise 16.2.2.Letm,n ∈ Z. Prove

∫ 1

0

e(nx)e(−mx)dx =

{
1 if n = m

0 otherwise
(16.6)

Let A, AN be as in any of the three problems above. Consider

fN(x) =
∑

a∈AN

e(ax). (16.7)

We investigate
(
fN(x)

)s

:

(
fN(x)

)s

=
s∏

j=1

∑
aj∈AN

e(ajx)

=
∑
m

rN(m)e(mx). (16.8)

The last result follows by collecting terms. When you multiply two exponen-
tials, you add the exponents.

Thus, when we multiply thes products, how can we get a product which gives
e(mx)?

We haves products, saye(a1x) throughe(aNx). Thus,

e(a1x) · · · e(aNx) = e
(
(a1 + · · ·+ aN)x

)
= e(mx). (16.9)

Thus, the coefficientrN(m) in
(
fN(x)

)s

is the number of ways of writing

m = a1 + · · ·+ aN , (16.10)

with eachaj ∈ AN .
As the elements ofAN are non-negative, ifN is sufficiently largerN(m) is

equal to the number of ways of writingm as the sum ofs elements ofA.
The problem is, ifm is larger than the largest term inAN , then there may be

other ways to writem as a sum ofs elements ofA.

Lemma 16.2.3.

rN(m) =

∫ 1

0

(
fN(x)

)s

e(−mx)dx. (16.11)
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Proof: direct calculation.
Note that, just because we have a closed form expression forrN(m), this does

not mean we can actuallyevaluatethe above integral. Recall, for example, the
inclusion - exclusion formula for the number of primes at mostN . This is an
exact formula, but very hard to evaluate.

16.2.2 Useful Number Theory Results

We will use the following statements freely:

Theorem 16.2.4 (Prime Number Theorem).Let π(x) denote the number of
primes at mostx. Then

π(x) =
∑
p≤x

1 =
x

log x
+ smaller. (16.12)

Upon applying Partial Summation, we may rewrite the above as

∑
p≤x

log p = x + smaller. (16.13)

Theorem 16.2.5 (Siegel-Walfisz).Let C, B > 0, and leta and q be relatively
prime. Then

∑
p≤x

p≡a(q)

log p =
x

φ(q)
+ O

( x

logC x

)
(16.14)

for q ≤ logB x, and the constant above does not depend onx, q or a (ie, it
only depends onC andB).

For completeness, we include a review of partial summation as an appendix to
these notes.

16.2.3 Average Sizes of
(
fN(x)

)s

Henceforth we will considerfN(x) arising from the three prime case. Thus,s = 3.
For analytic reasons, it is more convenient to instead analyze the function

FN(x) =
∑
p≤N

log p · e(px). (16.15)
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Working analogously as before, we are led to

RN(m) =

∫ 1

0

(
FN(x)

)3

e(−mx)dx. (16.16)

By partial summation, it is very easy to go fromRN(m) to rN(m).

Exercise 16.2.6.Prove the trivial bound for|FN(x)| is N . Take absolute values
and use the Prime Number Theorem.

We can, however, show that the average square ofFN(x) is significantly smaller:

Lemma 16.2.7.The average value of|FN(x)|2 is N log N .

Proof: The following trivial observation will be extremely useful in our ar-
guments. Letg(x) be a complex-valued function, and letg(x) be its complex
conjugate. Then|g(x)|2 = g(x)g(x).

In our case, asFN(x) = FN(−x) we have

∫ 1

0

|FN(x)|2 =

∫ 1

0

FN(x)FN(−x)dx

=

∫ 1

0

∑
p≤N

log p · e(px)
∑
q≤N

log q · e(−qx)dx

=
∑
p≤N

∑
q≤N

log p log q

∫ 1

0

e
(
(p− q)x

)
dx

=
∑
p≤N

log2 p. (16.17)

Using
∑

p≤N log p = N + small and Partial Summation, we can show

∑
p≤N

logp = N log N + smaller. (16.18)

Thus,

∫ 1

0

|FN(x)|2 = N log N + smaller. (16.19)

Thus, taking square-roots, we see on average|
(
FN(x)

)
|2 is N log N , signifi-

cantly smaller than the maximum possible value (N2). Thus, we see we are getting
almost square-root cancellation on average.2
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16.2.4 Definition of the Major and Minor Arcs

We split the unit interval[0, 1) into two disjoint parts, the Major and the Minor
arcs.

Roughly, the Major arcs will be a union of very small intervals centered at
rationals with small denominator (relative toN ). Near these rationals, we will be
able to approximateFN(x) very well, andFN(x) will be of sizeN .

The minor arcs will be the rest of[0, 1); we will show thatFN(x) is signifi-
cantly smaller thanN here.

Major Arcs

Let B > 0, and letQ = (log N)B ¿ N .
For eachq ∈ {1, 2, . . . , Q} anda ∈ {1, 2, . . . , q}with a andq relatively prime,

consider the set

Ma,q =
{

x ∈ [0, 1) :
∣∣∣x− a

q

∣∣∣ <
Q

N

}
. (16.20)

We also add in one interval centered at either0 or 1, ie, the "interval" (or
wrapped-around interval)

[
0,

Q

N

]
∪

[
1− Q

N
, 1

]
. (16.21)

Exercise 16.2.8.Show, ifN is large, that the major arcsMa,q are disjoint for
q ≤ Q anda ≤ q, a andq relatively prime.

We define the Major Arcs to be the union of each arcMa,q:

M =

Q⋃
q=1

⋃
a=1

(a,q)=1

Ma,q, (16.22)

where(a, q) is the greatest common divisor ofa andq.

Exercise 16.2.9.Show|M| < 2Q3

N
. AsQ = logB N , this implies asN →∞, the

major arcs are zero percent of the unit interval.
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Minor Arcs

The Minor Arcs,m, are whatever isnot in the Major Arcs. Thus,

m = [0, 1)−M. (16.23)

Clearly, asN →∞, almost all of[0, 1) is in the Minor Arcs.

16.3 Contributions from the Major and Minor Arcs

16.3.1 Contribution from the Minor Arcs

We bound the contribution from the minor arcs torN(m):

∣∣∣
∫

m

F 3
N(x)e(−mx)dx

∣∣∣ ≤
∫

m

|FN(x)|3dx

≤
(

max
x∈m

|FN(x)|
) ∫

m

|FN(x)|2dx

≤
(

max
x∈m

|FN(x)|
) ∫ 1

0

FN(x)FN(−x)dx

≤
(

max
x∈m

|FN(x)|
)
N log N. (16.24)

As the minor arcs are most of the unit interval, replacing
∫

m
with

∫ 1

0
doesn’t

introduce much of an over-estimation.
In order for the Circle Method to succeed, we need a non-trivial, good bound

for

max
x∈m

|FN(x)| (16.25)

This is where most of the difficulty arises, showing that there is good cancel-
lation in FN(x) if we stay away from rationals with small denominator.

We will show that the contribution to the major arcs is

S(N)
N2

2
+ smaller, (16.26)

where∃c1, c2 > 0 such that, for allN , c1 < S(N) < c2.
Thus, we need the estimate that
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max
x∈m

|FN(x)| ≤ N

log1+ε N
. (16.27)

Relative to the average size of|FN(x)|2, this is significantly smaller; however,
as we are showing that the maximum value of|FN(x)| is bounded, this is a sig-
nificantly more delicate question. We know such a bound cannot be true for all
x ∈ [0, 1) (see below, and not thatFN(0) = N ). The hope is that ifx is not near a
rational with small denominator, we will get moderate cancellation.

While this is very reasonable to expect, it is not easy to prove.

16.3.2 Contribution from the Major Arcs

Fix a q ≤ Q and ana ≤ q with a andq relatively prime. We evaluateF
(

a
q

)
.

F
(a

q

)
=

∑
p≤N

log p · e2πip a
q

=

q∑
r=1

∑
p≡r(q)
p≤N

log p · e2πi ap
q

=

q∑
r=1

∑
p≡r(q)
p≤N

log p · e2πi ar
q

=

q∑
r=1

e2πi ar
q

∑
p≡r(q)
p≤N

log p (16.28)

Note the beauty of the above. The dependence onp in the original sums is

very weak – there is alog p factor, and there ise
(

ap
q

)
. In the exponential, we only

need to knowp modq. Now, p runs from2 to N , andq is at mostlogB N . Thus,
in generalp À q.

We use the Siegel-Walfisz Theorem. We first remark that we may assumer
andq are relatively prime. Why? Ifp ≡ r mod q, this meansp = αq + r for
someα ∈ N. If r andq have a common factor, there can be at most one primep
(namelyr) such thatp ≡ r modq, and this can easily be shown to give a negligible
contribution.

For anyC > 0
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∑
p≡r(q)
p≤N

log p =
N

φ(q)
+ O

( N

logC N

)
. (16.29)

Now, asφ(q) is at mostq which is at mostlogB N , we see that the main term
is significantly greater than the error term (chooseC much greater thanB).

Note the Siegel-Walfisz Theorem would be useless ifq ≈ N ε. Then the main
term would be likeN1−ε, which would be smaller than the error term.

This is one reason why, in constructing the major arcs, we take the denomina-
tors to be small.

Thus, we find

F
(a

q

)
=

q∑
r=1

(r,q)=1

e2πi ar
q

N

φ(q)
+ smaller

=
N

φ(q)

q∑
r=1

(r,q)=1

e2πi ar
q . (16.30)

We merely sketch what happens now.

First, one shows that forx ∈ Ma,q thatFN(x) is very close toF
(

a
q

)
. This

is a standard analysis (Taylor Series Expansion – the constant term is a good
approximation if you are sufficiently close).

Thus, as the major arcs are distinct,

∫

M
F 3

N(x)e(−mx)dx =

Q∑
q=1

∑
a=1

(a,q)=1

∫

Ma,q

F 3
N(x)e(−mx)dx. (16.31)

We can approximateF 3
N(x) byF

(
a
q

)
; integrating a constant gives the constant

times the length of the interval. Each of the major arcs has length2Q3

N
. Thus we

find that, up to a smaller correction term, the contribution from the Major Arcs is
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∫

M
F 3

N(x)e(−mx)dx =
2Q3

N

Q∑
q=1

∑
a=1

(a,q)=1

(
N

φ(q)

q∑
r=1

(r,q)=1

e2πi ar
q

)3

e
(−2πima

q

)

= N2 · 2Q3

Q∑
q=1

1

φ(q)3

∑
a=1

(a,q)=1

(
q∑

r=1
(r,q)=1

e2πi ar
q

)3

e
(−2πima

q

)
.

(16.32)

To complete the proof, we need to show that what is multiplyingN2 is non-
negative, and not too small.

We will leave this for another day, as it is getting quite late here.

16.4 Why Goldbach is Hard

Using

FN(x) =
∑
p≤N

log p · e2πipx, (16.33)

we find we must study

∫ 1

0

F s
N(x)dx, (16.34)

wheres = 3 if we are looking atp1 + p2 + p3 = 2n + 1 ands = 2 if we are
looking atp1 + p2 = 2n. Why does the circle method work fors = 3 but fail for
s = 2?

16.4.1 s = 3 Sketch

Let us recallbriefly the s = 3 case. Near rationalsa
q

with small denominator

(small meansq ≤ logB N ), we can evaluateFN(a
q
). Using Taylor, ifx is very

close toa
q
, we expectFN(x) to be close toFN(a

q
).

The Major Arcs have sizelogB N
N

. As FN(x) is aroundN near such ratio-
nals, we expect the integral ofF 3

N(x)e(−mx) to beN2 times a power oflog N .
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Doing a careful analysis of the singular series shows that the contribution is actu-
ally S(N)N2, where there exist constants independent ofN such that0 < c1 <
S(N) < c2 < ∞.

A direct calculation shows that

∫ 1

0

|FN(x)|2dx =

∫ 1

0

FN(x)FN(−x)dx = N. (16.35)

Thus, ifm denotes the minor arcs,

∣∣∣
∫

m

F 3
N(x)e(−mx)dx

∣∣∣ ≤ max
x∈m

|FN(x)|
∫ 1

0

|FN(x)|2dx

≤ N max
x∈m

|FN(x)|. (16.36)

As the major arcs contributeS(N)N2, we need to show

max
x∈m

|FN(x)| ¿ N

logD N
. (16.37)

Actually, we just need to show the above is¿ o(N). This is the main difficulty
– the trivial bound is|FN(x)| ≤ N . As FN(0) = N plus lower order terms, we
cannot do better in general.

Exercise 16.4.1.ShowFN(1
2
) = N − 1 plus lower order terms.

The key observation is that, if we stay away from rationals with small de-
nominator, we can prove there is cancellation inFN(x). While we don’t go into
details here (see, for example, Nathanson’s Additive Number Theory: The Clas-
sical Bases, Chapter7), the savings we obtain is small. We show

max
x∈m

|FN(x)| ¿ N

logD N
. (16.38)

Note that Equation 16.35 gives us significantly better cancellation on average,
telling us that|FN(x)|2 is usually of sizeN .

Thus, it is our dream to be so lucky as to see
∣∣∣
∫

I
|FN(x)|2dx

∣∣∣ for any I ⊂
[0, 1), as we can evaluate this extremely well.
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16.4.2 s = 2 Sketch

What goes wrong whens = 2? As a first approximation, ifs = 3 has the Major
Arcs contributing a constant timesN2 (andFN(x) was of sizeN on the Major
Arcs), one might guess that the Major Arcs fors = 2 will contribute a constant
timesN .

How should we estimate the contribution from the Minor Arcs? We have
F 2

N(x). If we just throw in absolute values we get

∣∣∣
∫

m

F 2
N(x)e(−mx)dx

∣∣∣ ≤
∫ 1

0

|FN(x)|2dx = N. (16.39)

Note, unfortunately, that this is the same size as the expected contribution from
the Major Arcs!

We could try pulling amaxx∈m |FN(x)| outside the integral, and hope to get a
good savings. The problem is this leaves us with

∫
m
|FN(x)|dx.

Recall

Lemma 16.4.2.
∫ 1

0

|f(x)g(x)|dx ≤
( ∫ 1

0

|f(x)|2dx
) 1

2 ·
( ∫ 1

0

|g(x)|2dx
) 1

2
. (16.40)

For a proof, see Lemma 16.5.1.
Thus,

∣∣∣
∫

m

F 2
N(x)e(−mx)dx

∣∣∣ ≤ max
x∈m

|FN(x)|
∫ 1

0

|FN(x)|dx

≤ max
x∈m

|FN(x)|
( ∫ 1

0

|FN(x)|2dx
) 1

2 ·
( ∫ 1

0

12dx
) 1

2

≤ max
x∈m

|FN(x)| ·N 1
2 · 1. (16.41)

As the Major Arcs contribute something of sizeN , we would need

max
x∈m

|FN(x)| ¿ o(
√

N). (16.42)

There is almost no chance of such cancellation. We know

∫ 1

0

|FN(x)|2dx = N plus lower order terms. (16.43)
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Thus, the average size of|FN(x)| is N , so we expect|FN(x)| to be about
√

N .
To geto(N) would be unbelievably good fortune!

While the above sketch shows the Circle Method is not, at present, powerful
enough to handle the Minor Arc contributions, all is not lost. The quantity we
needto bound is

∣∣∣
∫

m

F 2
N(x)e(−mx)dx

∣∣∣. (16.44)

However, we have instead been studying
∫

m

|FN(x)|2dx (16.45)

and

max
x∈m

|FN(x)|
∫ 1

0

|FN(x)|dx. (16.46)

Thus, we are ignoring the probable oscillation / cancellation in the integral∫
FN(x)e(−mx)dx. It is this cancellationthat will lead to the Minor Arcs con-

tributing significantly less than the Major Arcs.
However, showing there is cancellation in the above integral is very difficult.

It is a lot easier to work with absolute values.

16.5 Cauchy-Schwartz Inequality

Lemma 16.5.1.[Cauchy-Schwarz]

∫ 1

0

|f(x)g(x)|dx ≤
( ∫ 1

0

|f(x)|2dx
) 1

2 ·
( ∫ 1

0

|g(x)|2dx
) 1

2
. (16.47)

For notational simplicity, assumef andg are real-valued, positive functions.
Working with |f | and|g| we see there is no harm in the above.

Let

h(x) = f(x) + λg(x), λ = −
∫ 1

0
f(x)g(x)dx∫ 1

0
g(x)2dx

(16.48)

As
∫ 1

0
h(x)2dx ≥ 0, we have
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0 ≤
∫ 1

0

(
f(x) + λg(x)

)2

dx

=

∫ 1

0

f(x)2dx + 2λ

∫ 1

0

f(x)g(x)dx + λ2

∫ 1

0

g(x)2dx

=

∫ 1

0

f(x)2dx − 2

( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

+

( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

=

∫ 1

0

f(x)2dx −

( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

( ∫ 1

0
f(x)g(x)dx

)2

∫ 1

0
g(x)2dx

≤
∫ 1

0

f(x)2dx

( ∫ 1

0

f(x)g(x)dx
)2

≤
∫ 1

0

f(x)2dx ·
∫ 1

0

g(x)2dx

∫ 1

0

f(x)g(x)dx ≤
( ∫ 1

0

f(x)2dx
) 1

2 ·
( ∫ 1

0

g(x)2dx
) 1

2
. (16.49)

Again, for generalf and g, replacef(x) with |f(x)| and g(x) with |g(x)|
above. Note there is nothing special about

∫ 1

0
. 2

The Cauchy-Schwarz Inequality is often useful wheng(x) = 1. In this special
case, it is important that we integrate over a finite interval.

Exercise 16.5.2.For whatf andg is the Cauchy-Schwarz Inequality an equality?

16.6 Partial Summation

Lemma 16.6.1 (Partial Summation: Discrete Version).Let AN =
∑N

n=1 an.
then

N∑
n=M

anbn = ANbN − AM−1bM +
N−1∑
n=M

An(bn − bn+1) (16.50)
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Proof. SinceAn − An1 = an,

N∑
n=M

anbn =
N∑

n=M

(An − An−1)bn

= (AN − AN−1)bN + (AN−1 − AN−2)bN−1 + · · ·+ (AM − AM−1)bM

= ANbN + (−AN−1bN + AN−1bN−1) + · · ·+ (−AMbM+1 + AMbM)− aM−1bM

= ANbN − aM1bM +
N−1∑
n=M

An(bn − bn+1). (16.51)

Lemma 16.6.2 (Abel’s Summation Formula - Integral Version).Leth(x) be a
continuously differentiable function. LetA(x) =

∑
n≤x an. Then

∑
n≤x

anh(n) = A(x)h(x)−
∫ x

1

A(u)h′(u)du (16.52)

See, for example, W. Rudin,Principles of Mathematical Analysis, page70.
Partial Summation allows us to take knowledge of one quantity and convert

that to knowledge of another.
For example, suppose we know that

∑
p≤x

log p = x + O(x
1
2
+ε). (16.53)

We use this to glean information about
∑

p≤x 1.
Define

h(n) =
1

log n
and an =

{
log n if n is prime

0 otherwise.
(16.54)

Applying partial summation to
∑

p≤x anh(n) will give us knowledge about∑
p≤x 1. Note as long ash(n) = 1

log n
for n prime, it doesn’t matter how we define

h(n) elsewhere; however, to use the integral version of Partial Summation, we
needh to be a differentiable function.

Thus
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∑
p≤x

1 =
∑
p≤x

anh(n)

=
(
x + O(x

1
2
+ε)

) 1

log x
−

∫ x

2

(
u + O(u

1
2
+ε)

)
h′(u)du. (16.55)

The main term (A(x)h(x)) equals x
log x

plus a significantly smaller error.
We now calculate the integral, notingh′(u) = − 1

u log2 u
. The error piece in the

integral gives a constant multiple of

∫ x

2

u
1
2
+ε

u log2 u
du. (16.56)

As 1
log2 u

≤ 1
log2 2

for 2 ≤ u ≤ x, the integral is bounded by

1

log2 2

∫ x

2

u−
1
2
+ε <

1

log2 2

1
1
2

+ ε
x

1
2
+ε, (16.57)

which is significantly less thanA(x)h(x) = x
log x

.
We now need to handle the other integral:

∫ x

2

u

u log2 u
du =

∫ x

2

1

log2 u
du. (16.58)

The obvious approximation to try is 1
log2 u

≤ 1
log2 2

. Unfortunately, plugging
this in bounds the integral by x

log2 2
. This is larger than the expected main term,

A(x)h(x)!
As a rule of thumb, whenever you are trying to bound something, try the sim-

plest, most trivial bounds first. Only if they fail should you try to be clever.
Here, we need to be clever, as we are bounding the integral by something

larger than the observed terms.
We split the integral into two pieces:

∫ x

2

=

∫ √
x

2

+

∫ x

√
x

(16.59)

For the first piece, we use the trivial bound for1
log2 u

. Note the interval has

length
√

x− 2 <
√

x. Thus, the first piece contributes at mostx
1
2

log2 2
, significantly

less thanA(x)h(x).
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The reason trivial bounds failed for the entire integral is the length was too
large (of sizex); there wasn’t enough decay in the function.

The advantage of splitting the integral in two is that in the second piece, even
though most of the length of the original interval is here (it is of lengthx−√x ≈
x), the function 1

log2 u
is small here. Instead of bounding it by a constant, we now

bound it by substituting in the smallest value ofu on this interval,
√

x. Thus,
the contribution from this integral is at mostx−

√
x

log2√x
< 4x

log2 x
. Note that this is

significantly less than the main termA(x)h(x) = x
log x

.

184



Chapter 17

Multiplicative Functions,
Kloosterman, p-adic Numbers, and
Review of the Three Problems:
Germain Primes,λ1(G) for Random
Graphs, Randomness ofx → x mod
p

Multiplicative Functions, Kloosterman Sums and Bounds,p-adic Numbers. Re-
view of the Three Problems (Germain Primes, Randomness ofx → x mod p,
Random Graphs). Lecture by Peter Sarnak; notes by Steven Miller.

17.1 Multiplicative Functions, Kloosterman and p-
adic Numbers

17.1.1 Multiplicative Functions

Definition 17.1.1 (Multiplicative Functions). Let f be defined on the positive
integersN. f is multiplicative if

f(mn) = f(m)f(n) if m andn are relatively prime. (17.1)
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This is the same as

∞∑
n=1

f(n)

ns
=

∏
p

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
. (17.2)

We call the above anEuler Product. The standard example is theRiemann
Zeta Function,

ζ(s) =
∞∑

n=1

1

ns
=

∏
p

1

1− p−s
. (17.3)

There are many multiplicative functions (some, like Dirichlet Characters, do
not even requirem andn to be relatively prime).

The Kloosterman sums arenot multiplicative.

17.1.2 Kloosterman Sums

If c1 andc2 are relatively prime,

K(a, b, c1c2) = K(∗, ∗, c1) ·K(∗, ∗, c2), (17.4)

where the∗s are functions ofa, b, c1 andc2.
Say we show|K(a, b, p)| ¿ pν , whereν does not depend ona or b or p.
Then, ifc =

∏
i p

ri
i , we have

K
(
a, b,

∏
i

pri
i

)
=

∏
i

K(∗, ∗, pri
i ). (17.5)

Thus, we just need to get bounds over prime powers to bound a general Kloost-
erman sum.

Theorem 17.1.2 (Salie).If α ≥ 2,

K(a, b, pα) ≤ 2p
α
2 . (17.6)

Proof: elementary.

∑

x modp2

=

p−1∑
x1=0

p−1∑
x2=0

, (17.7)
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wherex = x1 + x2p andx1, x2 ∈ {0, 1, . . . , p− 1}.
Thus, when we encounter terms likee

(
x1+px2

p2

)
, we need the inverse ofx1 + px2.

Let x−1
1 be the inverse ofx1 modp. Then

(x1 + px2)
−1 = x−1

1 (1 + x−1
1 x2p)−1. (17.8)

Note that

(1− pb)−1 = 1 + pb + O(p2). (17.9)

Say we want the inverse modp2 of (1− bp). Try multiplying by(1 + bp). We
get

(1− pb)(1 + pb) = 1− b2p2 ≡ 1 modp2. (17.10)

The above arguments is Hensel’s Lemma.

17.1.3 p-adic numbers

We define thep-adic norm of a rationalα = a
b
, a andb relatively prime, by

||α||p = p−m, where
a

b
= pml, (p, l) = 1. (17.11)

Note that numbers that are highly divisible byp are smallp-adically.
We have the rationalsQ and thep-adic norm|| ∗ ||p. Similar to completing

the rationalsQ with the usual norm to getR, we can complete the rationals with
respect to this norm. The resulting field is called thep-adic numbers,Qp.
Q ⊂ R, andQ is dense inR. SimilarlyQ ⊂ Qp andQ is dense inQp.
Let x ∈ Qp. Then

x =
a−m

pm
+

a−m+1

pm−1
+ · · ·+ a0 + a1p + a2p

2 + · · · , (17.12)

where0 ≤ ai ≤ p− 1.
Suppose we have a solutionf(x0) ≡ 0 modp. We then try and findx1 such

thatf(x0 + px1) ≡ 0 modp2. Hensel noted that all we need to findx1 is some
knowledge of the derivative at the previous stage.
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17.2 Germain Primes

p− 1 = 2q, p andq prime. What are the statistics? How many are there up tox?
Do they know about each other? What are their correlations? What aboutp− 3?

The Circle Method is a way of trying to solve additive equations (Waring’s
Problem, Goldbach’s Problemp1+p2 = 2n, Vinogradov’s Three Primes Theorem
p1 + p2 + p3 = 2n + 1, Twin Primesp2 − p1 = 2).

Definition 17.2.1 (Germain Primes).If p is prime andp−1 = 2q for some prime
q, we sayp is a Germain Prime.

Definition 17.2.2 (πG(x)). Recallπ(x) is the number of primes at mostx. Then
π(x) ∼ x

log x
. Let πG(x) be the number of Germain primes at mostx. If the

probability of getting a prime islog x, then we might expect that

πG(x) =
∑
p≤x

p−1=2q

1 ∼ Const· x

log2 x
. (17.13)

Using the circle method, we will try and estimate the above constant, and hope
the minor arcsdo not contribute to the main term.

Major McMahan (from the army, friendly with Hardy and Littlewood) made
tables of primes to themillions. He checked, and Hardy and Littlewood’s constant
(for twin primes) was correct and Sylvester (who made a probabilistic argument)
was shown to be slightly off.

See Hardy and Littlewood, Acta Mathematica, v44, 1923, Partitio numerorum.
III: On the expression of a number as a sum of primes.

We will then investigate the nearest neighbor andkth-nearest neighbor spac-
ings.

Also look at Robert Vaughn,The Hardy Littlewood Method.

17.3 Randomness ofx → x

Given a primep, look atx → x. How do we computex?
One can computex by using the Euclidean Algorithm (very fast,log p steps).

Recall the Euclidean Algorithm givesa andb such thatax + bp = 1. Thus, mod
p, ax ≡ 1, or a = x modp.

We now study the spacings betweenx asx ranges in some interval modp. If
the interval is very small, we don’t expect randomness. What if we take an interval
of length

√
p. Do we see Poissonian Behavior there for a fixed prime?
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Now, fix a numbera. Look at a modp
p

as you varyp.

Theorem 17.3.1 (Duke-Iwaniec).Supposep ≡ 1 mod4. There is a square root
of−1 modp; ie, ∃x such thatx2 ≡ 1 modp. Now we can take1 ≤ x ≤ p−1

2
, so

x
p
∈

[
0, 1

2

]
. Thenx

p
, as we varyp, is equi-distributed.

One can also look at the longest increasing sub-sequence.
Knuth, volume2 of the Art of Computer Programming. Look at the stuff on

generating random numbers.

17.4 Random Graphs / Ramanujan Graphs

Bollobas,Random Graphs: he will have a model of the random3-regular graphs
(what it means, how to generate, how many are there).Very hard if you don’t
distinguish between isomorphic graphs (which have the same spectrum).

Look at the distribution of the second largest eigenvalueλ1 of the random
3-regular graph. Find the mean and the variance, graph.

Professor Sarnak will give a lecture on the Tracy-Widom distribution (which
is the distribution of the biggest eigenvalue in some random ensemble – will we
see the same distribution here)?

What is the scale for normalizing?
Take an interval, see how many eigenvalues in it, slide the interval down, and

see how the number varies.
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Chapter 18

Random Graphs, Autocorrelations,
Random Matrix Theory and the
Mehta-Gaudin Theorem

Random Graphs (especially graphs with large girth and chromatic number), Au-
tocorrelation, Random Matrix Theory (Vandermonde determinants, orthonormal
polynomials) and the Mehta-Gaudin Theorem (largeN limits of quantities related
to the joint density function of the eigenvalues). Lecture by Peter Sarnak; notes
by Steven Miller.

18.1 Random Graphs

Definition 18.1.1 (Chromatic Number). The chromatic number is the least num-
ber of colors such that each vertex has a different color than all of its neighbors.

Example 18.1.2.A bi-partite graph is2-colorable, as is a tree (alternate colors
as you go through the generations).

What can force you to have a lot of colors? If a vertex is joined tonv vertices,
you need a lot of colorsif the vertices it is joined to are joined to each other.

Definition 18.1.3 (Girth). The girth is the shortest closed cycle.

If the girth is large, make a vertex blue, yellow next level, blue on next level,
et cetera until you come back on yourself.
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Question 18.1.4.Can you make a graph with large girth and large chromatic
number?

The two fight each other. Erdos solved this problem by showing that if you
take aRandom Graph(with suitable properties), then that graph will have large
girth and large chromatic number with high probability.

Take a Random Graph withn vertices and basicallyn1+ε edges placed at ran-
dom among the

(
n
2

)
= O(n2) possible edges.

The random graph has short cycles, but the number of short cycles is small.
Erdos removes certain graphs with small girth, and shows with high probability
the graphs left have large girth and large chromatic number.

See Mckay’s paper: he proves Kesten’s measure holds for the random graph
as the number of vertices goes to infinity.

18.2 Baire Category

Givenα 6∈ Q andCα, how often can we finda
q
∈ Q such that

∣∣∣α− a

q

∣∣∣ ≥ Cα

q2+ε
. (18.1)

In Lebesgue Measure, almost allα satisfy the above infinitely often.
In the Baire Category, this inequality does not hold infinitely often.

18.3 Autocorrelation

Note: Alex Barnett lectured on this section.
x-axis is number of swapsn, y-axis is number of graphs with givenλ1, λ1(n).

Say takes100 swaps to randomize. Then they-value at101 swaps should be
independent of they-value at1 swap.

But we don’t know the number of swaps before we have moved far enough.
Let λ′1(n) = λ1(n)− λ1, whereλ1 is the average value.
Autocorrelation: Say thex-axis runs tom.

A(c) =
1

m

∑
n

λ′1(n)λ′1(n + c). (18.2)

The above is a function ofc, symmetric inc. As c gets large,A(c) dies to zero,
and has largest value atc = 0.
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Look for c such that say10% of the area is fromc onward.

18.4 Gaudin’s Method

18.4.1 Introduction

From Random Matrix Theory: we have a probability distribution onRn:

pβ(x1, . . . , xN) = cN(β)
∏

j<k

|xj − xk|βe−
PN

j=1 x2
j dx1 · · · dxN . (18.3)

Start off with a realN×N matrix, diagonalize with eigenvaluesx1, . . . , xN . If
you choose the matrix at random, you getN numbers, and you have a probability
distribution on the eigenvalues.

We’ve derived the probability above forN × N matrices. For convenience,
we order the eigenvalues.

If β = 1 we call the ensemble GOE (Gaussian Orthogonal Ensembles); if
β = 2 we have GUE (Unitary) and ifβ = 4 we have GSE (Symplectic).

What is the correlation between two eigenvalues? What is the probability of
observing a given spacing between two eigenvalues? We’ve done this in the2× 2
case.

In theN × N case, we would need to integrate out most of the eigenvalues.
The difficulty is

∏ |xj − xk|β.
For β = 1, 2 or 4, we can evaluate these integrals; we are fortunate that these

values are the ones that arise in practice.
In fact, even just determiningcN(β) is difficult. This is called theSelberg

Integral, which A. Selberg solved in high school!
We will only considerβ = 2, and will be interested in the limit asN → ∞

(under appropriate re-scaling).

RN(x1, . . . , xN) =

∫

R
· · ·

∫

R
p2(x1, x2, . . . , xn, xn+1, . . . , xN)dxn+1 · · · dxN .

(18.4)
This will be a symmetric function of the firstn variables. If we integrate all

but1 variable we get the density of eigenvalues; if we integrate all but two we get
information on pairs of eigenvalues.

Remark 18.4.1.β = 0 is Poissonian.
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18.4.2 Vandermonde Determinants

Notation:dp means

dp(θ1, . . . , θN) = cN

∏

j<k

∣∣∣eiθj − eiθk

∣∣∣
2

dθ1 · · · dθN . (18.5)

We are now working on theN -torus[0, 2π] × · · · × [0, 2π]. This goes under
the name CUE (Circular Unitary Ensemble).

Remember the group

U(N) = {N ×N matricesA with AA? = I}. (18.6)

Similar to the diagonalization of symmetric matrices, for any unitary matrixU
there is a unitary matrixV such thatV −1UV is diagonal; further, the eigenvalues
have absolute value1, and hence can be written aseiθ.

Suppose we havef1, . . . , fN . We form the Vandermonde of theN -variables

Van(f1, . . . , fN) =
∏
i<j

(fi − fj). (18.7)

Today we will only use the square, so we don’t worry about ordering so that
fi < fj.

Exercise 18.4.2.

Van(f1, . . . , fN) = det
(
f j−1

i

)
1≤i,j≤N

. (18.8)

Thus, we have
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f1 f2 · · · fN
...

...
.. .

...
fN−1

1 fN−1
2 · · · fN−1

N

∣∣∣∣∣∣∣∣∣
(18.9)

18.4.3 Orthonormal Polynomials

On the unit circleT , we have the measure

dµ(t) =
dt

2π
. (18.10)
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Let f(t) be a function such that
∫

T

f(t)dµ(t) = 0,

∫

T

|f(t)|2dµ(t) = 1. (18.11)

Define a sequence of monic polynomialsPn(x) for n ∈ N andφn(t) with

φn(t) = Pn(f(t)), φ0(t) =
1√
µ(T )

,

∫

T

φi(t)φj(t)dµ(t) = δij. (18.12)

This is Gramm-Schmidt, where the inner product between two functionsf and
g is given by

〈f, g〉 =

∫

T

f(t)g(t)dµ(t), (18.13)

and the ‘Kronecker delta’ symbol (the discrete analog of the continuous delta
‘function’ δ(·)) is defined by

δij =

{
1 if i = j

0 otherwise
(18.14)

We introduce orthogonal polynomials to handle the integral. The above pro-
cess (constructing thePns and theφns) gives an orthonormal sequence of polyno-
mials.

18.4.4 KernelKN(x, y)

Define the kernel

KN(x, y) =
N−1∑
j=0

φj(x)φj(y). (18.15)

Exercise 18.4.3.Prove the following:

1.
∫

T
KN(x, x)dµ(x) = N .

2.
∫

T
KN(x, y)KN(y, z)dµ(y) = KN(x, z).
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Remark 18.4.4.

∫

T

KN(x, y)g(y)dµ(y) =
N−1∑
j=0

[ ∫

T

φj(y)g(y)dµ(y)
]
φj(x). (18.16)

Thus, integratingg againstKN projectsg onto the firstN vectors.

Define, for1 ≤ n ≤ N ,

Dn,N(t1, . . . , tn) = det
(
KN(tj, tk)

)
1≤j,k≤n

. (18.17)

For example,

D1,N = KN(t1, t1) (18.18)

and

D2,N =

∣∣∣∣
KN(t1, t1) KN(t1, t2)
KN(t2, t1) KN(t2, t2)

∣∣∣∣ (18.19)

18.4.5 Gaudin-Mehta Theorem

Theorem 18.4.5 (Gaudin-Mehta).We have

1.

1

µ(T )
Van

(
f(t1), . . . , f(tN)

)
= detN×N

(
φi−1(tj)

)
1≤i,j≤N

. (18.20)

2.
1

µ(T )

∣∣∣Van
(
f(t1), . . . , f(tN)

)∣∣∣
2

= DN,N(t1, . . . , tN). (18.21)

3. For 1 ≤ n ≤ N ,

∫

T

Dn,N(t1, . . . , tn)dµ(tn) = (N + 1− n)Dn−1,N(t1, . . . , tn−1). (18.22)
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The third statement is the beef, allowing us to integrate out one variable at a
time by induction.

Remember

Dn,N(t1, . . . , tn) = detn×n

(
KN(tj, tk)

)
1≤j,k≤n

. (18.23)

Corollary 18.4.6. LetF be a symmetric function oft1, . . . , tn, and define

Fn,N(t1, . . . , tN) =
∑

1≤i1<i2···<in<N

F (ti1 , . . . , tin)

dµn,N(t1, . . . , tN) =
1

n!
Dn,N(t1, . . . , tN)dµ(t1) · · · dµ(tN). (18.24)

Then

∫

T N

FN,N(t1, . . . , tN)dµn,N(t1, . . . , tN) =

∫

T n

F (t1, . . . , tn)dµn,N(t1, . . . , tn).

(18.25)

How might we use the above? For example, consider for1 ≤ j, k ≤ N , and
consider forf even

∑

1≤j<k≤N

f(xj − xk). (18.26)

What is the expectation of the above? In this case,F is a function of two
variables, andF (x1, x2) = f(|x1−x2|) and we now just need to integratef(|x1−
x2|) against the determinant of a2× 2 matrix, and this is the only place whereN
will arise.

Suppose we had

dp(x1, . . . , xN) = e−
P

x2
j

∏

j<k

|xj − xk|2dx1 · · · dxN . (18.27)

Consider the expectation of

∑

1≤j<k≤N

f(|xj − xk|). (18.28)

According to the corollary, the answer is just
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∫

R

∫

R
f(|x1 − x2|) 1

2!

∣∣∣∣
KN(x1, x1) KN(x1, x2)
KN(x2, x1) KN(x2, x2)

∣∣∣∣ e−x2
1−x2

2dx1dx2. (18.29)

This is enormousprogress – we started withN variables; we now have2
variables. We need to take theN → ∞ limit of the determinant, a much easier
question.

18.4.6 Example

T = [0, 2π], dµ(x) = dx
2π

, f(x) = eix, fn(x) = einx, andPn(x) = xn. These
Pns are monic,φn(x) = Pn(f(x)) is orthonormal, which givesφn(x) = einx, and
clearly

∫ 2π

0

einxe−imxdx = δij. (18.30)

Finally, we obtain a geometric progression

KN(x, y) =
N−1∑
n=0

ein(x−y)

=
1− eiN(x−y)

1− ei(x−y)
. (18.31)

We will symmetrize (and go from−N to N ), and when we take the2 × 2
determinant, we get something like

sin
(

N(x−y)
2

)

sin
(

x−y
2

) . (18.32)

The most famous pair correlation: we haveN eigenvalues so that the mean
spacing is1. Thepair correlation is

1−
[

sin
(
π(x− y)

)

π(x− y)

]2

. (18.33)
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Chapter 19

Increasing Length Subsequences
and Tracy-Widom

More on increasing length subsequence and the Tracy-Widom distribution. Lec-
ture by Peter Sarnak, notes by Steven Miller.

19.1 Increasing Length Subsequences

Consider the set of permutationsSn on n numbers. Letσ ∈ Sn be a random per-
mutation, and letLσ be the length of the longest increasing sub-sequence. What
is the expected value ofLσ?

Conjecture 19.1.1 (Ulam).
E[Lσ] ∼ 2

√
n. (19.1)

Proved by several people (Schepp, Vircheck (?), ...).
At Bell Labs, many people (including Odlyzko) investigated. Monte-Carlo

simulations for variance (beginning1993). Dividing variance byn
1
3 was good.

Looking at the expectation of

Lσ − 2
√

n

n
1
6

(19.2)

and investigated whether or not it went to a limit. Noticed this distribution is
negative (shifted to the left). Prefers to belessthan2

√
n.
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19.2 Tracy-Widom

OnRn, we have

PN(x)dx = e−
PN

j=1 x2
j

∏

j<k

|xj − xi|β dx1 · · · dxn, β ∈ {1, 2, 4}. (19.3)

Will use the weighte−x2
dx, which will give rise to Hermite polynomials.

Definition 19.2.1 (FN,β(s)). FN,β(s) is the probability that there is nox ∈ [s,∞).

We can write this as a determinant (see the papers by Mehta and Mehta-
Gaudin). We will have again

KN(x, y) =
∑

0≤j≤N−1

φj(x)φj(y). (19.4)

Remember the semi-circle rule, that (with some normalization) the eigenval-
ues lie in[−2

√
N, 2

√
N ].

What is the expected value of the largest eigenvalue? We know most are in
[−2

√
N, 2

√
N ]. We haven’t discussed whether or not there are outliers. With

probability one, we can show that there will be no such outliers.
We haveN eigenvalues. Near0 is calledthe bulk. As there areN numbers,

we expect eigenvalues in an interval of size1
N

near the origin.
What about eigenvalues near the edges,±2

√
N? Lets ∈ (−∞,∞). Look at

FN

(
2
√

N +
s

N
1
6

)
. (19.5)

This is the scaling limit. Says = 0. this would give us what is happening at
the origin.

Theorem 19.2.2 (Tracy-Widom).

lim
N→∞

FN

(
2
√

N +
s

N
1
6

)
= Fβ(s), Fβ(s) =

dFβ(s)

ds
. (19.6)

Here theN
1
6 arises from the particular problem we’re interested in. Here, we

are looking at eigenvalues from random matrices.
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Chapter 20

Circle Method and Germain Primes

Using the Hardy-Littlewood Circle Method (and assuming no main term contribu-
tion from the Minor Arcs), we calculate the expected number of Germain primes.
Calculations and notes by Steven Miller.

20.1 Preliminaries

20.1.1 Definitions

Let

e(x) = e2πix (20.1)

and

λ(n) =

{
log p if n = p is prime

0 otherwise
(20.2)

Finally, define

cq(a) =

q∑
r=1

(r,q)=1

e
(
r
a

q

)
. (20.3)
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20.1.2 Partial Summation

Lemma 20.1.1 (Partial Summation: Discrete Version).Let AN =
∑N

n=1 an.
then

N∑
n=M

anbn = ANbN − AM−1bM +
N−1∑
n=M

An(bn − bn+1) (20.4)

Proof. SinceAn − An−1 = an,

N∑
n=M

anbn =
N∑

n=M

(An − An−1)bn

= (AN − AN−1)bN + (AN−1 − AN−2)bN−1 + · · ·+ (AM − AM−1)bM

= ANbN + (−AN−1bN + AN−1bN−1) + · · ·+ (−AMbM+1 + AMbM)− aM−1bM

= ANbN − aM1bM +
N−1∑
n=M

An(bn − bn+1). (20.5)

Lemma 20.1.2 (Abel’s Summation Formula - Integral Version).Leth(x) be a
continuously differentiable function. LetA(x) =

∑
n≤x an. Then

∑
n≤x

anh(n) = A(x)h(x)−
∫ x

1

A(u)h′(u)du (20.6)

See, for example, W. Rudin,Principles of Mathematical Analysis, page70.

20.1.3 Siegel-Walfisz

Theorem 20.1.3.[Siegel-Walfisz] LetC, B > 0, and leta and q be relatively
prime. Then

∑
p≤x

p≡a(q)

log p =
x

φ(q)
+ O

( x

logC x

)
(20.7)

for q ≤ logB x, and the constant above does not depend onx, q or a (ie, it
only depends onC andB).
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20.1.4 Germain Integral

Define

f1N(x) =
∑
p1≤N

log p1 · e(p1x)

f2N(x) =
∑
p2≤N

log p2 · e(−2p2x)

fN(x) =
∑
p1≤N

∑
p2≤N

log p1 log p2 · e
(
(p1 − 2p2)x

)
. (20.8)

Consider

∫ 1
2

− 1
2

fN(x)e(−x)dx =
∑
p1≤N

∑
p2≤N

log p1 log p2

∫ 1
2

− 1
2

e
(
(p1 − 2p2 − 1)x

)
dx.

(20.9)
Note

∫ 1
2

− 1
2

e
(
(p1 − 2p2 − 1)x

)
dx =

{
1 if p1 − 2p2 − 1 = 0

0 if p1 − 2p2 − 1 6= 0
(20.10)

Thus, we get a contribution oflog p1 log p2 if p1 andp2 = p1−1
2

are both primes.
Thus,

∫ 1
2

− 1
2

fN(x)e(−x)dx =
∑
p1≤N

p2=
p1−1

2 prime

log p1 log p2. (20.11)

The above is a weighted counting of Germain primes.

20.1.5 Major and Minor Arcs

Let B be a positive integer,Q = logB N , and define the Major ArcMa,q

Ma,q =
{

x ∈ [0, 1) :
∣∣∣x− a

q

∣∣∣ <
Q

N

}
. (20.12)
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We also add in one interval centered at either0 or 1, ie, the "interval" (or
wrapped-around interval)

[
0,

Q

N

]
∪

[
1− Q

N
, 1

]
. (20.13)

For convenience, we often use the interval[−1
2
, 1

2
] instead of[0, 1], in which

case we would have
[
− 1

2
,−1

2
+

Q

N

] ⋃ [
1

2
− Q

N
,
1

2

]
. (20.14)

For functions that are periodic of period one, we could instead consider
[

1

2
− Q

N
,
1

2
+

Q

N

]
. (20.15)

The Major Arcs are defined by

M =
⋃
q≤Q

q⋃
a=1

(a,q)=1

Ma,q. (20.16)

The Minor Arcs,m, are whatever isnot in the Major Arcs.
Then

∫ 1
2

− 1
2

fN(x)e(−x)dx =

∫

M
fN(x)e(−x)dx +

∫

m

fN(x)e(−x)dx. (20.17)

We will assume that there is no net contribution over the minor arcs. Thus, in
the sequel we investigate

∫

M
fN(x)e(−x)dx. (20.18)
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20.1.6 Reformulation of Germain Integral

f1N(x) =
∑

m1≤N

λ(m1) · e(m1x)

f2N(x) =
∑

m2≤N

λ(m2) · e(−2m2x)

fN(x) =
∑

m1≤N

∑
m2≤N

λ(m1)λ(m2) · e
(
(m1 − 2m2)x

)
. (20.19)

We investigate
∫

M
fN(x)e(−x)dx. (20.20)

We will show the Major Arcs contribute, up to lower order terms,T2N , where
T2 is a constant independent ofN . The length of the Major ArcMa,q is Q

N
. We

sum over(a, q) = 1 andq ≤ Q. Thus, the total length is bounded by

∑
q≤Q

q · Q

N
¿ Q3

N
¿ logB

N
. (20.21)

By choosingB sufficiently large, we will be able to make all the errors from
the Major Arc calculations less than the main term from the Major Arcs. Of
course, we have absolutely no control over what happens on the minor arcs, and
we will simply assume there is no contribution from the minor arcs.

Thus, on the Major ArcMa,q, success will be in finding a function of sizeN2

such that the error from this function tofN(x) onMa,q is much smaller thanN2,
sayN2 divided by a large power oflog N .

Similarly, when we integrate over the Major Arcs, we will find the main terms
will be of sizeN ; again, success will be in showing the errors in the approxima-
tions are much smaller thanN , sayN divided by a large power oflog N .

We are able to do this because of the Siegel-Walfisz Theorem (Theorem 20.1.3).
GivenanyB > 0, we can find aC > 0 such that, ifq ≤ logB N , then

∑
p≤N

p≡r(q)

log p =
N

φ(q)
+ O

( N

logC N

)
, (20.22)
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(r, q) = 1. Thus, we can takeC enormous, large enough so that even when we
multiply by the length of the Major Arcs (of sizelog3B N

N
, we still have something

small.

20.2 fN(x) and u(x)

20.2.1 f
(

a
q

)

We now calculatefN

(
a
q

)
for q ≤ logB N .

Up to lower order terms,

fN

(a

q

)
=

∑
p1≤N

log p1 · e
(
p1

a

q

) ∑
p2≤N

log p2 · e
(
− 2p2

a

q

)

=

q∑
r1=1

∑
p1≤N

p1≡r1(q)

log p1 · e
(
p1

a

q

) q∑
r2=1

∑
p2≤N

p2≡r1(q)

log p2 · e
(
− 2p2

a

q

)

=

q∑
r1=1

e
(
r1

a

q

) q∑
r2=1

e
(
r2
−2a

q

) ∑
p1≤N

p1≡r1(q)

log p1

∑
p2≤N

p2≡r2(q)

log p2

=
N2

φ2(q)

q∑
r1=1

(r1,q)=1

e
(
r1

a

q

) q∑
r2=1

(r2,q)=1

e
(
r2
−2a

q

)

=
N2

φ2(q)
cq(a)cq(−2a), (20.23)

where the second to last line follows from the Siegel-Walfisz Theorem (Theo-
rem 20.1.3). We restrict to(ri, q) = 1 because if(ri, q) > 1, there is at most one
primepi ≡ ri modq.

20.2.2 u(x)

Let

u(x) =
∑

m1≤N

∑
m2≤N

e
(
(m1 − 2m2)x

)
. (20.24)

205



We will often look at

cq(a)cq(−2a)

φ2(q)
u(x). (20.25)

Note

u(0) = N2. (20.26)

20.3 fN(α)− cq(a)cq(−2a)

φ2(q)
u(α− a

q ), α ∈Ma,q

Let

Cq(a) =
cq(a)cq(−2a)

φ2(q)
. (20.27)

We writeα asβ + a
q
, β ∈

[
− Q

N
, Q

N

]
, Q = logB N . As always, we ignore

lower order terms.
NotefN(x) is approximatelyCq(a)N2 for x neara

q
. We now expand and show

fN(α) is Cq(a)u
(
α− a

q

)
plus errors of size N2

logC−2B N
for α ∈Ma,q.

20.3.1 Setup

Sa,q(α) = fN(α)− Cq(a)u
(
α− a

q

)

=
∑

m1,m2≤N

λ(m1)λ(m2)e
(
(m1 − 2m2)α

)
− Cq(a)

∑
m1,m2≤N

e
(
(m1 − 2m2)β

)

=
∑

m1,m2≤N

[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]
e
(
(m1 − 2m2)β

)

=
∑

m1≤N

[ ∑
m2≤N

[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]
e(−2m2β)

]
e(m1β)

(20.28)

We now apply Partial Summation multiple times. First, we apply Partial Sum-
mation to them2-sum:
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S2;a,q =
∑

m2≤N

[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]
e(−2m2β)

=
∑

m2≤N

am2bm2

= A2(N)e(−2Nβ) + 4πiβ

∫ N

0

∑
m2≤u

am2e(−uβ)du. (20.29)

We hit the above withe(m1β), and sum fromm1 = 1 toN . We get two pieces:

S1
P

;a,q =
∑

m1≤N

A2(N)e(−2Nβ) · e(m1β)

S1
R
;a,q =

∑
m1≤N

4πiβ

∫ N

0

∑
m2≤u

am2e(−uβ)du · e(m1β)

Sa,q = S1
P

;a,q + S1
R

;a,q. (20.30)

20.3.2 S1
∑

;a,q

S1
P

;a,q =
∑

m1≤N

A2(N)e(−2Nβ) · e(m1β)

= e(−2Nβ)
∑

m1≤N

A2(N)e(m1β)

= e(−2Nβ)
∑

m1≤N

∑
m2≤N

[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]
e(m1β)

= e(−2Nβ)

[
A1(N)e(Nβ)

−2πiβ

∫ N

0

∑
m1≤t

∑
m2≤N

[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]
e(tβ)dt.

(20.31)
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First Piece

The first piece, theA1(N)e(Nβ) term, is small forq ≤ Q. Why? We have (up to
lower order terms)

A1(N)e(Nβ) =
∑

m1,m2≤N

λ(m1)λ(m2)e
(
(m1 − 2m2)

a

q

)
−

∑
m1,m2≤N

Cq(a)

= Cq(a)N2 −N2Cq(a) = 0. (20.32)

Thus, because of our choice of functions, the leading terms vanish, and the
remaining term is small.

Second Piece

We now study the second piece. Note|β| ≤ Q
N

= log2 B
N

, andCq(a) = cq(a)

φ2(q)

cq(−2a)

φ2(q)
.

Up to lower order terms, them2-sum will leave us with

β
cq(−2a)N

φ(q)

∫ N

0

∑
m1≤t

[
λ(m1)e

(
m1

a

q

)
− cq(a)

φ(q)

]
e(tβ)dt. (20.33)

NotefN(x) is a multiple ofN2 for x neara
q
. Thus, we want to make sure the

above is well dominated byN2.
For t ≤ √

N , this is immediate. Fort ≥ √
N , using Siegel-Walfisz (Theorem

20.1.3), we can make the bracketed quantity in the integrant dominated byN
logC N

for anyC whenq ≤ logB N . Thus, we integrate a quantity that is at mostN
logC N

over an interval of lengthN , we multiply byNβ ¿ Q = logB N .
Thus, choosingC appropriately, the integral contributes N2

logC−B N
, and hence

is negligible.

Remark 20.3.1. Note, of course, that the contribution is only negligible while
|β| ≤ Q

N
.

Lemma 20.3.2.S1
P

;a,q is a lower order correction.
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20.3.3 S1
∫

;a,q

We must evaluate

S1
R
;a,q =

∑
m1≤N

4πiβ

∫ N

0

∑
m2≤u

am2e(−uβ)du · e(m1β), (20.34)

where

am2 =
[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]
. (20.35)

We bring the sum overm1 inside the integral and again use Partial Summation.
We will ignore the integration andβ for now, as these will contributeβN ¿

Q = logB N times the maximum value of the integrand. We will leave the
e(−uβ)du with this integration.

Whenu ≤ √
N , we can immediately show the above is a lower order correc-

tion. Thus, below we always assumeu ≥ √
N .

First Piece

We have

S1
R P

;a,q =
∑

m1≤N
m2≤u

[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]
e(Nβ)

= e(Nβ)

[ ∑
m1≤N
m2≤u

λ(m1)λ(m2)e
(
(m1 − 2m2)

a

q

)
− Cq(a)

∑
m1≤N
m2≤u

1

]
.

= e(Nβ)

[
Cq(a)uN − Cq(a)uN + Lower Order Terms

]
, (20.36)

where by the Siegel-Walfisz Theorem (Theorem 20.1.3), the error in the brack-
eted quantity is of size uN

logC N
.

We then integrate fromu =
√

N to N and multiply byβ, giving a contribution
bounded by

βN · N2

logC N
¿ logB

N

N3

logC N
¿ N2

logC−B N
, (20.37)
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again getting a lower order correction tofN(x) for x neara
q

(rememberfN(x)

is of sizeN2).

Second Piece

Again,u ≥ √
N , and we have

2πiβ

∫ N

0

∑
m1≤t

[ ∑
m2≤u

[
λ(m1)λ(m2)e

(
(m1 − 2m2)

a

q

)
− Cq(a)

]]
e(tβ)dt.

(20.38)
Again, for t ≤ √

N , the contribution will be a lower order correction. For
t, u ≥ √

N ,
Again, executing the sum overm1 andm2 will give us

Cq(a)ut− Cq(a)ut + Lower Order Terms, (20.39)

with the lower order terms of sizeut
logC N

.

Integrating overt (from
√

N to N ), then integrating overu (from
√

N to N )
and then multiplying byβ2 gives an error bounded by

β2N2 · N2

logC N
¿ log2B N

N2

N4

logC N
¿ N2

logC−2B N
, (20.40)

again a lower order correction.

20.4 Integrals ofu(x)

20.4.1 Formulations

Remember

u(x) =
∑

m1,m2≤N

e
(
(m1 − 2m2)x

)
. (20.41)

We need to study
∫ 1

2

− 1
2

fN(x)e(−x)dx. We have shown that

fN(α) = Cq(a)u
(
α− a

q

)
+ O

( N2

logC−2B N

)
, α ∈Ma,q. (20.42)
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Thus, we must evaluate

∫

Ma,q

u
(
α− a

q

)
· e(−α)dα =

∫ a
q
+ Q

N

a
q
−Q

N

u
(
α− a

q

)
· e(−α)dα

=

∫ Q
N

−Q
N

u(β) · e
(
− q

q
− β

)
dβ

= e
(
− a

q

) ∫ Q
N

−Q
N

u(β)e(−β)dβ. (20.43)

20.4.2
∫ 1

2

− 1
2

u(x)e(−x)dx

∫ 1
2

− 1
2

u(x)e(−x)dx =

∫ 1
2

− 1
2

∑
m1,m2≤N

e
(
(m1 − 2m2)x

)
· e(−x)dx

=
∑

m1,m2≤N

∫ 1
2

− 1
2

e
(
(m1 − 2m2 − 1)x

)
dx. (20.44)

If m1 − 2m2 − 1 = 0, the integral gives1. There are approximatelyN
2

ways
to choosem1,m2 ≤ N such thatm1 − 2m2 − 1 = 0.

Assume nowm1 − 2m2 − 1 6= 0. Then the integral vanishes.
Hence,

Lemma 20.4.1. ∫ 1
2

− 1
2

u(x)e(−x)dx =
N

2
+ O(1). (20.45)

20.4.3
∫ −Q

N

− 1
2

+
∫ 1

2
Q
N

u(x)e(−x)dx

Define
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I1 =
[
− 1

2
,−1

2
+

Q

N

]

I2 =
[
− 1

2
+

Q

N
,−Q

N

]

I3 =
[Q

N
,
1

2
− Q

N

]

I4 =
[1

2
− Q

N
,
1

2

]

I = I1 ∪ I2 ∪ I3 ∪ I4. (20.46)

20.4.4 Integral overI2, I3

We have

∫

Ii

u(x)e(−x)dx =

∫

Ii

∑
m1,m2≤N

e
(
(m1 − 2m2 − 1)x

)
dx

=

∫

Ii

∑
m1≤N

e(m1x)
∑

m2≤N

e(−2m2x) · e(−x)dx

=

∫

Ii

e(x)− e((N + 1)x)

1− e(x)

e(−2x)− e(−2(N + 1)x)

1− e(−2x)
e(−x)dx.

(20.47)

On I2 andI3, the integral is

¿
∫

Ii

2

x

2

x
dx ¿ N

Q
=

N

logB N
, (20.48)

see, for example, Nathanson (Additive Number Theory: The Classical Bases,
Chapter8).

20.4.5 Integral overI1, I4

Each of these intervals has lengthQ
N

= logB N
N

. There areN
2

+O(1) pairs such that
m1− 2m2− 1 = 0. Each of these pairs will contribute (bound the integrand by1)
Q
N

. As there are at mostN
2

pairs, these contribute at mostN
2

Q
N
¿ logB N .

Henceforth we assumem1 − 2m2 − 1 6= 0. We write
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I1 ∪ I4 =
[1

2
− Q

N
,
1

2
+

Q

N

]
= I ′. (20.49)

We have

∑
m1,m2≤N

m1−2m2−16=0

∫

I′
e
(
(m1 − 2m2 − 1)x

)
dx

= e
(
− 1

2

) ∑
m1,m2≤N

m1−2m2−16=0

(−1)m1

∫ Q
N

−Q
N

e
(
(m1 − 2m2 − 1)x

)
dx

= e
(
− 1

2

) 1

2πi

∑
m1,m2≤N

m1−2m2−16=0

(−1)m1

2 sin
(
(m1 − 2m2 − 1) Q

N

)

m1 − 2m2 − 1
,(20.50)

because, changing variables by sendingx to (x − 1
2
) + 1

2
gives factors of

e
(
(m1 − 2m2 − 1)1

2

)
= e(−1

2
)e(m1

2
)e(−m2), ande(m1

2
) = (−1)m1.

0 < |m1 − 2m2 − 1| ≤ N1−ε

Let w = m1 − 2m2 − 1. We will do the case0 < w ≤ N1−ε, the case with
−N1−ε > w > 0 being handled similarly.

For eachw, there are at mostN pairs ofm1,m2 giving rise to such aw. For

suchw,
sin(w Q

N
)

w
¿ Q

N
(because we are taking the sin of a quantity very close to

zero).
Thus, these pairs contribute at most

¿ N · Q

N
¿ Q = logB N. (20.51)

Inserting absolute values in Equation 20.50 gives a contribution of at most
logB N for suchw, 0 < w < N1−ε.

N1−ε < |m1 − 2m2 − 1| ≤ N

Again, let w = m1 − 2m2 − 1 and assumeN1−ε < |w| ≤ N . We will only
considerw > 0; w < 0 is handled similarly.
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The cancellation is due to the presence of the factor(−1)m1; note that for the
pair (m1, m2) we only care about the parity ofm1.

Considerw andw − 1.
Form1 − 2m2 − 1 = w, the solutions are

m1 = w + 3, m2 = 1

m1 = w + 5, m2 = 2

m1 = w + 7, m2 = 3 (20.52)

and so on; thus there are aboutN−w
2

pairs, all with parity−(−1)w.
Form1−2m2−1 = w−1, we again have aboutN−w

2
pairs, but now the parity

is (−1)w. Thus, each of theN−w
2

pairs withm1 − 2m2 − 1 = w is matched with
one of theN−w

2
pairs withm1− 2m2− 1 = w− 1, and we are off by at mostO(1)

pairs, which will contribute

¿
N∑

w=N1−ε

1

w
¿ log N. (20.53)

For the remaining terms, we subtract in pairs, using the first order Taylor Ex-
pansion ofsin(x). We have

N∑

w=N1−ε

[
sin

(
w Q

N

)

w
−

sin
(
w Q

N
− Q

N

)

w − 1

]
. (20.54)

The Main Term of the Taylor Expansion gives¿ 1
w2 , which when summed

overw gives 1
N1−ε . As we have aboutN−w

2
¿ N pairs for eachw, this contributes

at mostN · 1
N1−ε ¿ N ε.

We also have the first order term from the Taylor Expansion:

sin
(
w

Q

N
− Q

N

)
= sin

(
w

Q

N

)
+ O

(Q

N

)
. (20.55)

This error leads to (remembering there areN−w
2

¿ N pairs for eachw)

¿ N

N∑

w=N1−ε

Q
N

w − 1
¿ Q log N ε ¿ logB+1 N. (20.56)
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20.4.6 Collecting the Pieces

We have shown

∫

[− 1
2
, 1
2
]

u(x)e(−x)dx =
N

2
+ O(1)

∫

[− 1
2
, 1
2
]−[−Q

N
, Q
N

]

u(x)e(−x)dx = O
( N

logB N

)
. (20.57)

Therefore

Lemma 20.4.2.

∫ Q
N

−Q
N

u(x)e(−x)dx =
N

2
+ O

( N

logB N

)
. (20.58)

Remembering that we had

∫

Ma,q

u
(
α− a

q

)
· e(−α)dα =

∫ a
q
+ Q

N

a
q
−Q

N

u
(
α− a

q

)
· e(−α)dα

=

∫ Q
N

−Q
N

u(β) · e
(
− q

q
− β

)
dβ

= e
(
− a

q

) ∫ Q
N

−Q
N

u(β)e(−β)dβ, (20.59)

we see that

Lemma 20.4.3.
∫

Ma,q

u
(
α− a

q

)
· e(−α)dα = e

(
− a

q

)N

2
. (20.60)

20.5 Determination of the Main Term

We now calculate the contribution from the Major Arcs. Up to lower order terms,

215



∫

M
fN(x)e(−x)dx =

∑
q≤Q

q∑
a=1

(a,q)=1

∫ a
q
+ Q

N

a
q
−Q

N

fN(α)e(−α)dα

=
∑
q≤Q

q∑
a=1

(a,q)=1

∫ a
q
+ Q

N

a
q
−Q

N

Cq(a)u
(
α− a

q

)
e(−α)dα

=
∑
q≤Q

q∑
a=1

(a,q)=1

e
(
− a

q

) ∫ Q
N

−Q
N

Cq(a)u(β)e(−β)

=
∑
q≤Q

q∑
a=1

(a,q)=1

Cq(a)e
(
− a

q

)N

2

=
N

2

∑
q≤Q

q∑
a=1

(a,q)=1

cq(a)cq(−2a)

φ2(q)
· e

(
− a

q

)

=
N

2

Q∑
q=1

[
q∑

a=1
(a,q)=1

Cq(a)e
(
− a

q

)]

=
N

2

Q∑
q=1

ρq

= SN
N

2
, (20.61)

where we have defined
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cq(a) =

q∑
r=1

(r,q)=1

e
(
r
a

q

)

Cq(a) =
cq(a)cq(−2a)

φ2(q)

ρq =

q∑
a=1

(a,q)=1

Cq(a)e
(
− a

q

)

SN =

q∑
a=1

(a,q)=1

ρq. (20.62)

20.5.1 Properties ofCq(a) and ρq

We will follow the presentation of Nathanson (Additive Number Theory: The
Classical Bases, Chapter8 and AppendixA).

cq(a) is Multiplicative

We follow Nathanson, Pages320−321, TheoremA.23. Note that we are labeling
by r what he labelsa, and we are labeling bya what he labelsn.

Lemma 20.5.1.cq(a) is multiplicative; ie, if(q, q′) = 1, thencqq′(a) = cq(a)cq′(a).

Proof: We have

qq′∑
er=1

(er,qq′)=1

e
(
r̃

a

qq′

)
. (20.63)

Exercise 20.5.2.Show that we can write thẽrs above as̃r ≡ rq′ + r′q modqq′,
where1 ≤ r ≤ q, 1 ≤ r′ ≤ q′, and(r, q) = (r′, q′) = 1.

Thus
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cq(a)cq′(a) =

q∑
r=1

(r,q)=1

e
(
r
a

q

) q′∑
r′=1

(r′,q′)=1

e
(
r′

a

q′

)

=

q∑
r=1

(r,q)=1

q′∑
r′=1

(r′,q′)=1

e
((rq′ + r′q)a

qq′

)

=

qq′∑
er=1

(er,qq′)=1

e
(
r̃
a

q

)
= cqq′(a). (20.64)

cq(a) for (a, q) = 1

Exercise 20.5.3.Show that

hd(a) =
d∑

r=1

e
(
r
a

d

)
=

{
d if d|a
0 otherwise

(20.65)

Recall the moebius function:

µ(d) =

{
(−1)r if d is the product ofr distinct primes

0 otherwise
(20.66)

Exercise 20.5.4.Prove

∑

d|(r,q)
µ(d) =

{
1 if (r, q) = 1

0 otherwise
(20.67)

Then
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cq(a) =

q∑
r=1

(r,q)=1

e
(
r
a

q

)

=

q∑
r=1

e
(
r
a

q

) ∑

d|(r,q)
µ(d)

=
∑

d|q
µ(d)

q∑
r=1
d|r

e
(
r
a

q

)

=
∑

d|q
µ(d)

q
d∑

l=1

e
(
l
a
q
d

)

=
∑

d|q
µ(d)h q

d
(a)

=
∑

d|q
µ
(q

d

)
hd(a)

=
∑
d|q
d|a

µ
(q

d

)
· d

=
∑

d|(a,q)

µ
(q

d

)
d. (20.68)

Note that if(a, q) = 1, then there is only one term above, namelyd = 1, which
yields

cq(a) = µ(q) if (a, q) = 1. (20.69)

Corollary 20.5.5. If q = pk, k ≥ 2 and(a, q) = 1, thencq(a) = 0.

Cq(a) is Multiplicative

We have showncqq′(a) = cq(a)cq′(a) if (q, q′) = 1. Recall the Euler phi-function,
φ(q), is the number of numbers less thanq which are relatively prime toq.

Exercise 20.5.6.Prove thatφ(q) is multiplicative; ie, if(q, q′) = 1, thenφ(qq′) =
φ(q)φ(q′).
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We now have

Lemma 20.5.7.Cq(a) is multiplicative.

Proof: Assume(q, q′) = 1. We have

Cqq′(a) =
cqq′(a)cqq′(−2a)

φ2(qq′)

=
cq(a)cq′(a)cq(−2a)cq′(−2a)

φ2(q)φ2(q′)

=
cq(a)cq(−2a)

φ2(q)
· cq′(a)cq′(−2a)

φ2(q′)
= Cq(a)Cq′(a). (20.70)

ρq is Multiplicative

We first prove a needed lemma.

Lemma 20.5.8.ConsiderCq1(a1q2). Then

Cq1(a1q2) = Cq1(a1) (20.71)

if (q1, q2) = 1.

Proof:

Cq1(a1q2) =

q1∑
r1=1

(r1,q1)=1

e
(
r1

a1q2

q1

)

=

q1∑
r1=1

(r1,q1)=1

e
(
r1q2

a1

q1

)

=

q1∑
r=1

(r,q1)=1

e
(
r
a1

q1

)
= Cq1(a), (20.72)

because(q1, q2) = 1 implies that asr1 goes through all residue classes that are
relatively prime toq1, so too doesr = r1q2. 2
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Lemma 20.5.9.ρq is multiplicative.

Recall

ρq =

q∑
a=1

(a,q)=1

Cq(a)e
(
− a

q

)
. (20.73)

Assume(q1, q2) = 1. Then we can write the congruence classes modq1q2 as
a1q2 + a2q1, with 1 ≤ a1 ≤ q1, 1 ≤ a2 ≤ q2 and(a1, q1) = (a2, q2) = 1.

ρq1q2 =

q1q2∑
a=1

(a,q1q2)=1

Cq1q2(a)e
(
− a

q1q2

)

=

q1q2∑
a=1

(a,q1q2)=1

Cq1(a)Cq2(a)e
(
− a

q1q2

)

=

q1∑
a1=1

(a1,q1)=1

q2∑
a2=1

(a2,q2)=1

Cq1(a1q2 + a2q1)Cq2(a1q2 + a2q1)e
(
− a1q2 + a2q1

q1q2

)
.

(20.74)

Exercise 20.5.10.Witha1, a2, q1, q2 as above,

Cq1(a1q2 + a2q1) = Cq1(a1q2) and Cq2(a1q2 + a2q1) = Cq2(a2q1). (20.75)

Thus, we have

ρq1q2 =

q1∑
a1=1

(a1,q1)=1

q2∑
a2=1

(a2,q2)=1

Cq1(a1q2)Cq2(a2q1)e
(
− a1q2 + a2q1

q1q2

)

=

q1∑
a1=1

(a1,q1)=1

Cq1(a1q2)e
(
− a1

q1

) q2∑
a2=1

(a2,q2)=1

Cq2(a2q1)e
(
− a2

q2

)

=

q1∑
a1=1

(a1,q1)=1

Cq1(a1)e
(
− a1

q1

) q2∑
a2=1

(a2,q2)=1

Cq2(a2)e
(
− a2

q2

)

= ρq1 · ρq2 . (20.76)

Thus,ρq is multiplicative.2
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Calculation of ρq

Lemma 20.5.11.ρpk = 0 if k ≥ 2 andp is a prime.

Proof: This follows immediately fromCpk(a) = 0. 2

Lemma 20.5.12.If p > 2 is prime,ρp = − 1
(p−1)2

.

Proof:

ρp =

p∑
a=1

(a,p)=1

Cp(a)e
(
− a

p

)

=

p−1∑
a=1

cp(a)cp(−2a)

φ2(p)
e
(
− a

p

)
. (20.77)

But asp > 2, cp(a) = cp(−2a) = µ(p) as (a, p) = 1. As µ2(p) = 1 and
φ(p) = p− 1 we have

ρp =

p−1∑
a=1

1

(p− 1)2
e
(
− a

p

)

=
1

(p− 1)2

[
− e

(
− 0

p

)
+

p−1∑
a=0

e
(
− a

p

)]

= − 1

(p− 1)2
. (20.78)

Lemma 20.5.13.If p = 2, thenρ2 = 1.

Proof:

ρ2 =
2∑

a=1
(a,2)=1

C2(a)e
(
− a

2

)

= C2(1)e
(
− 1

2

)

=
c2(1)c2(−2)

φ2(2)
· e−πi

=
eπie−2πi

12
· e−πi = 1, (20.79)
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where we have usedc2(1) = eπi andc2(−2) = e−2πi.

Exercise 20.5.14.Provec2(1) = eπi andc2(−2) = e−2πi.

20.5.2 Determination ofSN and S

Recall

SN =
∑
q≤Q

ρq. (20.80)

We define

S =
∑

q

ρq. (20.81)

Exercise 20.5.15.Let hq be any multiplicative sequence (with whatever growth
conditions are necessary to ensure the convergence of all sums below). Then

∑
q

hq =
∏

p prime

(
1 +

∞∑

k=1

hpk

)
. (20.82)

S

We have

S =
∑

q

ρq

=
∏

p prime

(
1 +

∞∑

k=1

ρpk

)

=
∏

p

(
1 + ρp

)
(20.83)

becauseρpk = 0 for k ≥ 2 andp prime by Lemma 20.5.11. We have previ-
ously shown (see Lemmas 20.5.12 and 20.5.13) thatρ2 = 1 andρp = − 1

(p−1)
for

p > 2 prime. Therefore
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S =
∏

p

(
1 + ρp

)

= (1 + ρ2)
∏
p>2

(1 + ρp)

= 2
∏
p>2

[
1− 1

(p− 1)2

]

= 2T2, (20.84)

where

Definition 20.5.16 (Twin Prime Constant).

T2 =
∏
p>2

[
1− 1

(p− 1)2

]
≈ .6601618158 (20.85)

is the twin prime constant.

SN

We need to estimate|S− SN |. Asρq is multiplicative and zero ifq = pk (k ≥ 2),
we see we need only look at sums ofρp. Asρp = − 1

(p−1)2
, one can show that the

difference betweenS andSN tends to zero asN →∞.

Thus,

Lemma 20.5.17.
S = 2T2. (20.86)

20.5.3 Number of Germain Primes and Weighted Sums

Combining the above arguments, we have shown that, up to lower order terms,

∑
p≤N

p,
p−1
2 prime

log(p) · log
(p− 1

2

)
= S

N

2

= 2T2
N

2
= T2N. (20.87)
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Note that we are counting Germain prime pairs by
(

p−1
2

, p
)

and not(p, 2p+1).

Such a difference in counting will introduce a factor of2.
We can pass from this weighted sum to a count of the number of Germain

prime pairs
(

p−1
2

, p
)

with p ≤ N .

Again we follow Nathanson, Chapter8. Define

πG(N) =
∑
p≤N

p,
p−1
2 prime

1

G(N) =
∑
p≤N

p,
p−1
2 prime

log(p) · log
(p− 1

2

)
. (20.88)

Clearly

G(N) ≤ log2 N · πG(N). (20.89)

Therefore,

Lemma 20.5.18.Up to lower order terms,

πG(N) ≥ G(N)

log2 N
=

T2N

log2 N
. (20.90)

We now provide a bound in the opposite direction.

πG(N1−δ) =
∑

p≤N1−δ

p,
p−1
2 prime

1 ¿ N1−δ

log N
. (20.91)

Then

225



G(N) ≥
∑

p≥N1−δ

p,
p−1
2 prime

log p · log
(p− 1

2

)

= (1− δ)2 log2 N
∑

p≥N1−δ

p,
p−1
2 prime

1

= (1− δ)2 log2 N
(
πG(N)− πG(N1−δ)

)

≥ (1− δ)2 log2 NπG(N) + O

(
(1− δ)2 log2 N · N1−δ

log N

)
.(20.92)

Therefore

log2 N · πG(N) ≤ (1− δ)−2 ·G(N) + O

(
log2 N · N1−δ

log N

)

0 ≤ log2 N · πG(N)−G(N) ≤
[
(1− δ)−2 − 1

]
G(N) + O

(
log N ·N1−δ

)
.(20.93)

If 0 < δ < 1
2
, then(1− δ)−2 − 1 ¿ δ. We thus have

0 ≤ log2 N · πG(N)−G(N) ¿ N

[
δ + O

( log N

N δ

)]
. (20.94)

Chooseδ = 2 log log N
log N

. Then we get

0 ≤ log2 N · πG(N)−G(N) ≤ O
(
N

log log N

log N

)
. (20.95)

RecallingG(N) ≈ T2N gives

Lemma 20.5.19.

πG(N) ≤ T2N

log2 N
. (20.96)

Combining with the other bound we have finally shown

226



Theorem 20.5.20.Assuming there is no contribution to the main term from the
Minor Arcs, up to lower order terms we have

πG(N) =
T2N

log2 N
, (20.97)

whereT2 is the twin prime constant

T2 =
∏
p>2

[
1− 1

(p− 1)2

]
≈ .6601618158. (20.98)
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