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Abstract. Zeckendorf’s theorem states every positive integer has a unique decomposition
as a sum of non-adjacent Fibonacci numbers. This result has been generalized to many
sequences {an} arising from an integer positive linear recurrence, each of which has a corre-
sponding notion of a legal decomposition. Previous work proved the number of summands in
decompositions of m ∈ [an, an+1) becomes normally distributed as n → ∞, and the individual
gap measures associated to each m converge to geometric random variables, when the leading
coefficient in the recurrence is positive. We explore what happens when this assumption is
removed in two special sequences. In one we regain all previous results, including unique
decomposition; in the other the number of legal decompositions exponentially grows and the
natural choice for the legal decomposition (the greedy algorithm) only works approximately
92.6% of the time (though a slight modification always works). We find a connection between
the two sequences, which explains why the distribution of the number of summands and gaps
between summands behave the same in the two examples. In the course of our investigations
we found a new perspective on dealing with roots of polynomials associated to the charac-
teristic polynomials. This allows us to remove the need for the detailed technical analysis of
their properties which greatly complicated the proofs of many earlier results in the subject,
as well as handle new cases beyond the reach of existing techniques.

1. Introduction

Previous work on Positive Linear Recurrence Sequences (PLRS) generalized Zeckendorf’s
theorem, which states that every positive integer can be uniquely written as a sum of noncon-
secutive Fibonacci numbers. Papers such as [28, 29, 10, 11] showed that the decompositions
of positive integers as sums of elements from a PLRS are unique and that the average number
of summands displays Gaussian behavior; see also [9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 30,
31, 32], and see [1, 10, 11] for other types of decomposition laws. Subsequent papers [2, 5]
included proofs of the exponential decay in the gaps between summands. These papers hinge
on technical arguments depending on the leading term of the recurrence relation defining the
sequence being non-zero.

We have two goals in the work below: (1) we explore the behavior of some special integer
sequences satisfying recurrences with leading term zero, and (2) we develop a new combina-
torial method to bypass the technical arguments on polynomials associated to the recurrence
relation which complicated arguments in previous work. The first is particularly interesting
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as all of the previous results are not applicable, and we have to develop new methods. While
the two sequences we focus on may seem unrelated, knowledge of the first yields many results
for the second (and thus explains why we study these two together).

Our first infinite two-parameter family of sequences are called the (s, b)-Generacci sequences.
They were introduced in [6], where we showed that the (1, 2)-Generacci sequence, also referred
to as the Kentucky sequence, has similar behavior to those displayed by a PLRS even though
it is not a PLRS (the (1, 1) case is the Fibonacci numbers, hence the name). This included the
Gaussian behavior for the number of summands and the exponential decay in gaps between
summands [6, Theorems 1.5 and 1.6]. In [7], we further expanded the study of the (s, b)-
Generacci sequences and proved that these sequences lead to unique decompositions of all
positive integers. In this paper, we introduce new methods which lead to proofs of Gaussian
behavior in the number of summands, both for this sequence and others in the literature,
which allow us to avoid complications involving roots of polynomials. This is very much in
contrast to the very technical arguments presented in [28] for Positive Linear Recurrences. In
addition, we provide an analogous result on the geometric decay in the distribution of gaps
between bins (the arguments for gaps between summands is similar but involves uninteresting
additional book-keeping, and hence we omit them here).

The other sequence of interest is called the Fibonacci Quilt sequence. This sequence arises
naturally from a 2-dimensional construction of a log-cabin style quilt. The Fibonacci Quilt
sequence, like the (s, b)-Generacci sequences, satisfies a recurrence with leading term zero, how-
ever in [7] we showed that the legal decompositions arising from this sequence have drastically
different behavior than that of the (s, b)-Generacci sequence, with the major difference being
that the decompositions arising from the Fibonacci Quilt sequence are not unique. In fact, we
showed that the number of legal decompositions of a positive integer grows exponentially as
the integer increases. Another surprising result is that among all of these decompositions, the
decomposition arising from the greedy algorithm is a legal decomposition (approximately) 93%
of the time. In [7], we defined a modified greedy algorithm, called the Greedy-6 algorithm, and
showed that the decomposition arising from this algorithm always terminates in a legal decom-
position. Moreover, we showed that the Greedy-6 algorithm results in a legal decomposition
with minimal number of summands. Interestingly, while there is markedly different behavior
between these two sequences in terms of uniqueness of decompositions, they exhibit similar
behavior in terms of the number of summands and gaps between summands. In particular, for
the Greedy-6 decomposition we obtain Gaussian behavior for the number of summands and
geometric decay for the average and individual gap measures almost immediately by noticing
a connection between the Fibonacci Quilt and (4, 1)-Generacci sequences.

Below we describe the sequences in greater detail and then state our main results. In the
companion paper [7] we have collected many of the basic properties of the sequences we study;
we repeat the statements here so this paper may be read independently of [7]. As many of the
calculations follow analogously to similar computations in the literature, we only provide the
details for the new arguments; the more standard proofs are available in the expanded arXiv
version of this paper, [8].

1.1. (s, b)-Generacci Sequences and the Fibonacci Quilt Sequence.

1.1.1. (s, b)-Generacci Sequences.
We begin by restating the definition and some computational results for the (s, b)-Generacci
sequences. The proofs of these results appeared in [7], and follow from straightforward algebra
applied to the definitions.
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Briefly, the sequence is defined as follows. We have a collection of bins Bj, each containing
b numbers. We construct a sequence {an} such that each positive integer has a decomposition
as a sum of elements such that (1) we take at most one element in a bin, and (2) if we take
an element in bin Bj, then we do not take any elements in any of the s bins preceding Bj nor
the s bins succeeding Bj . We formalize the above in the following two definitions.

Definition 1.1 ((s, b)-Generacci legal decomposition). For fixed integers s, b ≥ 1, let an
increasing sequence of positive integers {ai}∞i=1 and a family of subsequences

Bn = {ab(n−1)+1, . . . , abn}
be given (we call these subsequences bins). We declare a decomposition of an integer m =
aℓ1 + aℓ2 + · · · + aℓk where aℓi > aℓi+1

to be an (s, b)-Generacci legal decomposition provided
{aℓi , aℓi+1

} 6⊂ Bj−s ∪ Bj−s+1 ∪ · · · ∪ Bj for all i, j, with the convention that Bj = ∅ for j ≤ 0.

Definition 1.2 ((s, b)-Generacci sequence). For fixed integers s, b ≥ 1, an increasing sequence
of positive integers {ai}∞i=1 is the (s, b)-Generacci sequence if every ai for i ≥ 1 is the smallest
positive integer that does not have an (s, b)-Generacci legal decomposition using the elements
{a1, . . . , ai−1}.

We recall that Zeckendorf’s theorem gave an equivalent definition of the Fibonacci numbers
as the unique sequence which allows one to write all positive integers as a sum of noncon-
secutive elements in the sequence. Note this holds provided we define the Fibonacci numbers
beginning with 1, 2, 3, . . .. It is then clear that the (1, 1)-Generacci sequence is the Fibonacci
sequence. However, other interesting sequences are also (s, b)-Generacci sequences. For ex-
ample, Narayana’s cow sequence is the (2, 1)-Generacci sequence and the Kentucky sequence
(studied at length by the authors in [6]) is the (1, 2)-Generacci sequence.

Theorem 1.3 (Recurrence Relation and Explicit Formula). For n > (s+1)b+1, the nth term
of the (s, b)-Generacci sequence satisfies

an = an−b + ban−(s+1)b = c1λ
n
1 [1 +O ((λ2/λ1)

n)] , (1.1)

where λ1 is the largest root of x(s+1)b − xsb − b = 0, and c1 and λ2 are constants with λ1 > 1,
c1 > 0 and |λ2| < λ1.

The proof of the recurrence follows from standard arguments involving the construction of
the (s, b)-sequence (see, e.g., [7, Theorem 1.3]). The proof of the main term and error bound
follows from a generalized Binet formula (see, e.g., [2, Theorem A.1]) and we provide a proof
in §2.1 of [7]. There is a slight complication in that the leading coefficient of the recurrence
is zero; we surmount this by passing to a related recurrence where the leading coefficient is
positive and thus the standard arguments apply.

1.1.2. Fibonacci Quilt Sequence.

We state the definition and some computational results for the Fibonacci Quilt sequence;
the proofs follow immediately by straightforward algebra (see [7]). Unlike many other works in
the subject, here we use the more common convention for the Fibonacci numbers that F0 = 1,
F1 = 1 (and of course still taking Fn+1 = Fn + Fn−1). With this notation an interesting
property of the Fibonacci numbers is that they can be used to tile the plane by squares (see
Figure 1).

We have a different notion of legality based on the spiral and motivated by the Zeckendorf
rule for the Fibonacci numbers involving the use of non-adjacent terms. We create a sequence
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Figure 1. The (start of the) Fibonacci Spiral.

of integers by placing the integers of the sequence in the squares of the spiral (in the order the
spiral is created) using the rule that we must be able to decompose every positive integer as a
sum of elements in the sequence provided the squares they lie in do not share part of a side.

Definition 1.4 (FQ-legal decomposition). Let an increasing sequence of positive integers
{qi}∞i=1 be given. We declare a decomposition of an integer

m = qℓ1 + qℓ2 + · · ·+ qℓt (1.2)

(where qℓi > qℓi+1
) to be an FQ-legal decomposition if for all i, j, |ℓi − ℓj| 6= 0, 1, 3, 4 and

{1, 3} 6⊂ {ℓ1, ℓ2, . . . ℓt}.
We compress the Fibonacci spiral so that the nth square is replaced with a rectangle of

thickness 1 (this allows us to display more of the pattern in the same space); we call this
the Fibonacci Quilt (see Figure 3). The adjacency of the squares in the Fibonacci spiral is
identical to the adjacency of the rectangles in the Fibonacci Quilt. (The latter figure is known
in the quilting community as the log cabin quilt pattern, and we adopt the name Fibonacci
Quilt sequence from this connection.) The definition above states that we cannot use two
terms if the rectangles they are placed in share part of an edge. We see that qn + qn−1 is not
legal but qn + qn−2 is legal for n ≥ 4. For small n, the starting pattern of the quilt forbids
decompositions that contain q3 + q1.
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Figure 2. Log Cabin Quilt Pattern
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Figure 3. Fibonacci Quilt Sequence

The discussion above motivates the following definition of the Fibonacci Quilt Sequence.

4 VOLUME, NUMBER



NEW BEHAVIOR IN LEGAL DECOMPOSITIONS ARISING FROM NON-PLRS

Definition 1.5 (Fibonacci Quilt Sequence). The Fibonacci Quilt Sequence {qi}∞i=1 has q1 = 1
and every qi (i ≥ 2) is the smallest positive integer that does not have an FQ-legal decomposi-
tion using the elements {q1, . . . , qi−1}.

We display the first few terms of this sequence in Figure 3: {1, 2, 3, 4, 5, 7, 9, 12, . . . }.
Theorem 1.6 (Recurrence Relations). Let qn denote the nth term in the Fibonacci Quilt
Sequence. Then (1) for n ≥ 6, qn+1 = qn + qn−4, (2) for n ≥ 5, qn+1 = qn−1 + qn−2, and (3)
we have

qn = α1λ
n
1 + α2λ

n
2 + α3λ2

n
, (1.3)

where α1 ≈ 1.26724,

λ1 =
1

3

(
27

2
− 3

√
69

2

)1/3

+

(
1
2

(
9 +

√
69
))1/3

32/3
≈ 1.32472 (1.4)

and λ2 ≈ −0.662359 − 0.56228i (which has absolute value approximately 0.8688).

The above result appeared in [7, Theorem 1.6 and Proposition 2.4], and follows from a
straightforward constructive proof using induction.

1.2. Results. Both the (s, b)-Generacci sequences and the Fibonacci quilt sequence satisfy
recurrence relations with leading term zero. They display drastically different behavior in some
respects, but also have very similar behavior for other problems (which allows us to deduce
results for the Fibonacci Quilt sequence from results for the (4, 1)-Generacci sequence). We
begin by stating results related to the decompositions arising from these sequences, many of
which are proved in the companion paper [7]. We then state new results on Gaussian behavior
in the number of summands, and exponential decay in the gap measures between summands.

1.2.1. Decompositions. The (s, b)-Generacci legal decompositions are unique ([7, Theorem
1.9]) whereas FQ-legal decompositions are not. The average number of FQ-legal decompo-
sitions grows exponentially [7, Theorem 1.11].

Let m be a positive integer and let dFQ(m) denote the number of FQ-legal decompositions
of m. Let dFQ;ave(n) denote the average number of FQ-legal decompositions of integers in
In := [0, qn+1). Hence

dFQ;ave(n) :=
1

qn+1

qn+1−1∑

m=0

dFQ(m). (1.5)

Theorem 1.7 (Growth Rate of Average Number of Decompositions). There exist computable
constants λ ≈ 1.05459 and C2 > C1 > 0 such that for all n sufficiently large,

C1λ
n ≤ dFQ;ave(n) ≤ C2λ

n. (1.6)

Thus the average number of FQ-legal decompositions of integers in [0, qn+1) tends to infinity
exponentially fast.

The proof of Theorem 1.7 (found in [7]) derived recurrence relations and an explicit formula
for the number of FQ-legal decompositions.

In many decomposition schemes including the (s, b)-Generacci case, there is a unique legal
representation which can be found through a greedy algorithm. For the Fibonacci Quilt, not
only does uniqueness often fail, but frequently the greedy algorithm does not terminate in a
FQ-legal decomposition. For example, if we try to decompose 6 ∈ [q5, q6), the greedy algorithm
would start with the largest summand possible, q5 = 5. Unfortunately at this point we would
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need to take q1 = 1 as our next term, but we cannot as q1 and q5 share a side. The only
decomposition of 6 bypasses q5 and uses q4, writing it as q4 + q2. In [7, Theorem 1.13], we
determined how often the greedy algorithm yields a legal decomposition.

Theorem 1.8. There is a constant ρ ∈ (0, 1) such that, as n → ∞, the percentage of positive
integers in [1, qn) where the greedy algorithm terminates in a Fibonacci Quilt legal decomposi-
tion converges to ρ. This constant is approximately 0.92627.

The proof of Theorem 1.8 (found in [7]) used a recurrence for hn which denotes the number of
positive integers between 1 and qn+1−1 where the greedy algorithm successfully terminates in
a legal decomposition. The result then follows from the recurrence and the use of a generalized
Binet formula.

Even though Theorem 1.8 shows that the greedy algorithm does not always terminate in a
FQ-legal decomposition, a simple modification does always terminate in a FQ-legal decompo-
sition. The Greedy-6 Algorithm (defined in Definition 1.9) is identical to the greedy algorithm
with the caveat that if the greedy algorithm yields a decomposition including q1 and q5 (which
sum to 6) we exchange them with the summands q2 and q4 (also summing to 6).

Definition 1.9. (Greedy-6 Algorithm) Decompose m into sums of FQ-numbers as follows.

• If there is an n with m = qn then we are done.
• If m = 6, then we decompose m as q4 + q2 and we are done.
• If m ≥ q6 and m 6= qn for all n ≥ 1, then we write m = qℓ1 + x where qℓ1 < m < qℓ1+1

and x > 0. We then iterate the process with m := x.

We denote the decomposition of m that results from the Greedy-6 Algorithm by G(m).

Theorem 1.10. For all m > 0, the Greedy-6 Algorithm results in a FQ-legal decomposition.
Moreover, if G(m) = qℓ1+qℓ2+· · ·+qℓt−1+qℓt with qℓ1 > qℓ2 > · · · > qℓt, then the decomposition
satisfies exactly one of the following conditions:

(1) ℓi − ℓi+1 ≥ 5 for all i or
(2) ℓi − ℓi+1 ≥ 5 for i ≤ t− 3 and ℓt−2 ≥ 10, ℓt−1 = 4, ℓt = 2.

Further, if m = qℓ1 + qℓ2 + · · ·+ qℓt−1+ qℓt with qℓ1 > qℓ2 > · · · > qℓt denotes a decomposition
of m where either

(1) ℓi − ℓi+1 ≥ 5 for all i or
(2) ℓi − ℓi+1 ≥ 5 for i ≤ t− 3 and ℓt−2 ≥ 10, ℓt−1 = 4, ℓt = 2,

then qℓ1 + qℓ2 + · · · + qℓt−1 + qℓt = G(m). That is, the decomposition of m is the Greedy-6
decomposition.

The proof is straightforward; see [7, Theorem 1.15].
Let D(m) be a given decomposition of m as a sum of Fibonacci Quilt numbers (not neces-

sarily legal):
m = c1q1 + c2q2 + · · ·+ cnqn, ci ∈ {0, 1, 2, . . . }. (1.7)

We define the number of summands by

#summands(D(m)) := c1 + c2 + · · ·+ cn. (1.8)

We can now state our final result for the Fibonacci Quilt sequence and the number of summands
in FQ-legal decompositions; the proof is again standard and given in [7, Theorem 1.16].

Theorem 1.11. If D(m) is any decomposition of m as a sum of Fibonacci Quilt numbers,
then

#summands(G(m)) ≤ #summands(D(m)). (1.9)
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1.2.2. Gaussian Distribution of the Number of Summands. One of our main theorems regard-
ing the (s, b)-Generacci sequences states that the number of summands in the (s, b)-Generacci
legal decompositions of the positive integers follow a Gaussian distribution. We reiterate that
previous results for Positive Linear Recurrences do not apply since the (s, b)-Generacci se-
quences are not Positive Linear Recurrences. Moreover, previous proofs of Gaussian behavior
were very technical and relied heavily on knowledge of roots of polynomials. In this paper,
some of the ideas we use are similar to those employed when studying Positive Linear Re-
currence sequences but there is a major difference. We present a new technique that allows
us to bypass all of the technical assumptions required in the other papers in their proofs of
Gaussianity; see also [3, 24] for two different approaches (the first using Markov chains, the
second using two dimensional recurrences) which also successfully avoid these complications.
In §2 we give a proof to this main result, and then show it is applicable to the two sequences
of this paper.

Theorem 1.12 (Gaussian Behavior of Summands for (s, b)-Generacci). Let the random vari-
able Yn denote the number of summands in the (unique) (s, b)-Generacci legal decomposi-
tion of an integer chosen uniformly at random from [a(n−1)b+1, anb+1). Normalize Yn to
Y ′
n = (Yn − µn)/σn, where µn and σn are the mean and variance of Yn respectively, which

satisfy

µn = An+B + o(1), σ2
n = Cn+D + o(1), (1.10)

for some positive constants A,B,C,D. Then Y ′
n converges in distribution to the standard

normal distribution as n → ∞.

Remark 1.13. Using the methods of [4], these results can trivially be extended to hold for
an integer chosen uniformly at random from [1, anb+1) by trivially combining the results for
intervals of the form [aℓb+1, a(ℓ+1)b+1).

By specializing the above to the (4, 1)-Generacci sequence we immediately obtain the same
result for the Greedy-6 decompositions of the Fibonacci Quilt.

Theorem 1.14 (Gaussian Behavior of Summands for Greedy-6 FQ-Legal Decompositions).
Let the random variable Yn denote the number of summands in the (unique) Greedy-6 FQ-
legal decomposition of an integer chosen uniformly at random from [qn, qn+1).

1 Normalize Yn

to Y ′
n = (Yn − µn)/σn, where µn and σn are the mean and variance of Yn respectively, which

satisfy

µn = Ãn+ B̃ + o(1), σ2
n = C̃n+ D̃ + o(1), (1.11)

for some positive constants Ã, B̃, C̃, D̃. Then Y ′
n converges in distribution to the standard

normal distribution as n → ∞.

1.2.3. Gaps between Summands. The following results concern the behavior of gaps between
bins for (s, b)-Generacci sequences. For m ∈ [a(n−1)b+1, anb+1), the legal decomposition

m = aℓ1 + aℓ2 + · · ·+ aℓk with ℓ1 > ℓ2 > · · · > ℓk, (1.12)

where aℓi ∈ B⌈

ℓi
b

⌉ for all 1 ≤ i ≤ k, we define the set of bin gaps as follows:

BGaps(m) :=

{⌈
ℓ1
b

⌉
−
⌈
ℓ2
b

⌉
,

⌈
ℓ2
b

⌉
−
⌈
ℓ3
b

⌉
, . . . ,

⌈
ℓk−1

b

⌉
−
⌈
ℓk
b

⌉}
. (1.13)

1Using the methods of [4], these results can be extended to hold almost surely for sufficiently large sub-
interval of [qn, qn+1).
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Notice we do not include the wait to the first bin,
⌈
ℓ1
b

⌉
− 0, as a bin gap. We could include

this if we wish; one additional bin gap will not affect the limiting behavior. We study the
gaps between bins, and not between individual summands, because each bin contains at most
one summand, and it is natural to view each bin as either ‘on’ or ‘off’. At the cost of more
involved formulas we could deduce similar results about gaps between summands.

In the theorem below we consider all the bin gaps in (s, b)-Generacci legal decompositions of
all m ∈ [a(n−1)b+1, anb+1). We let Pn(g) be the fraction of all these bin gaps that are of length
g (i.e., the probability of a bin gap of length g among (s, b)-Generacci legal decompositions of
m ∈ [a(n−1)b+1, anb+1)). For example, when considering the (4, 9)-Generacci sequence notice
m = a3 + a53 + a99 + a171 + a279 with a3 ∈ B1, a53 ∈ B6, a99 ∈ B11, a171 ∈ B19 and a279 ∈ B31,
contributes two bin gaps of length 5, one bin gap of length 8, and one bin gap of length 12.

Theorem 1.15 (Average Bin Gap Measure for the (s, b)-Generacci Sequences). For Pn(g) as
above, the limit P (g) := limn→∞ Pn(g) exists. For g < (s + 1), P (g) = 0, and

P (g) = b(λb
1)

−g (g ≥ s+ 1), (1.14)

where λ1 is the largest root of x(s+1)b − xsb − b = 0.

The proof of Theorem 1.15 is given in §3.1.
We obtain similar results for the individual spacing gap bin measure. We can use the result

from [12] by showing certain combinatorial conditions are met. We quickly review the needed
notation from that paper, then state the result.

Given a sequence {bn} and a decomposition rule that leads to unique decomposition, fix
constants c1, d1, c2, d2 such that In := [bc1n+d1 , bc2n+d2) is a well-defined interval for all n > 0.
Below δ(x − a) denotes the Dirac delta functional, assigning a mass of 1 to x = a and 0
otherwise.

• Spacing gap measure: The spacing gap measure of a z ∈ In with k(z) summands is

νz,n(x) :=
1

k(z)− 1

k(z)∑

j=2

δ(x − (ℓj − ℓj−1)). (1.15)

• Average spacing gap measure: The total number of gaps for all z ∈ In is

Ngaps(n) :=

bc2n+d2
−1∑

z=bc1n+d1

(k(z) − 1). (1.16)

The average spacing gap measure for all z ∈ In is

νn(x) :=
1

Ngaps(n)

bc2n+d2
−1∑

z=bc1n+d1

k(z)∑

j=2

δ (x− (ℓj − ℓj−1))

=
1

Ngaps(n)

bc2n+d2
−1∑

z=bc1n+d1

(k(z)− 1) νz,n(x). (1.17)

Letting Pn(g) denote the probability of a gap of length g among all gaps from the
decompositions of all m ∈ In, we have

νn(x) =

c2n+d2−1∑

g=0

Pn(g)δ(x − g). (1.18)
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• Limiting average spacing gap measure, limiting gap probabilities: If the limits exist, let

ν(x) = lim
n→∞

νn(x), P (g) = lim
n→∞

Pn(g). (1.19)

Although this notation was originally defined for gaps between summands, by taking the ℓi
to represent the gaps between bins, this notation is applicable to our sequences.

Theorem 1.16 (Spacing Bin Gap Measure for (s, b)-Generacci sequences). Let {an} denote the
(s, b)-Generacci sequence, then for z ∈ In := [ab(n−1)+1, abn+1), the spacing bin gap measures
νz,n(x) converge almost surely in distribution to the limiting bin gap measure ν(x).

As ν(x) = P (x), the spacing bin gap measure converges in distribution to geometric decay
behavior.

The same ideas which gave us Gaussian behavior for the Fibonacci Quilt Greedy-6 de-
composition from the Gaussian behavior for the (4, 1)-Generacci sequence also, with trivial
tweaking, yield similar results on the average and spacing gap measures. We consider all
m ∈ In := [qn, qn+1), i.e., those m with a Greedy-6 decomposition beginning with qn. We let
Pn(g) be the fraction of all gaps from all m ∈ In that are of length g.

Theorem 1.17 (Average and Spacing Gap Measures for the Greedy-6 Decomposition). Let
{qn} denote the Fibonacci Quilt sequence, Pn(g) as above, and consider m ∈ In := [qn, qn+1).
The limit P (g) := limn→∞ Pn(g) exists and agrees with the (4, 1)-Generacci limit, and the
spacing gap measures νz,n(x) from the Greedy-6 decomposition converge almost surely in dis-
tribution to the limiting gap measure from the (4,1)-Generacci sequence.

1.2.4. New behavior for Fibonacci quilt sequence: kmin vs kmax. We do not have unique decom-
positions with the Fibonacci Quilt sequence. By Theorem 1.11, we know that the Greedy-6
algorithm results in a legal decomposition with a minimal number of summands. Here we
investigate the range of the number of summands in any FQ-legal decomposition.

Definition 1.18. We define kmin(m) (resp. kmax(m)) to be the smallest (resp. largest) number
of summands in any FQ-legal decomposition of m.

The following result gives a lower bound for the growth of kmax(m)−kmin(m) which holds for
almost all m ∈ [qn, qn+1) as n → ∞. In particular, we almost always have kmax(m) 6= kmin(m).
The proof is given in §5.

Theorem 1.19. There is a CFQ > 0 such that, as n → ∞, we have

kmax(m)− kmin(m) ≥ CFQ log(n)

for almost all m ∈ [qn, qn+1).

2. Gaussian Behavior of Number of Summands

The following sections provide the pieces needed to prove Theorems 1.12 and 1.14. We
introduce a new method that allows us to bypass many of the technical obstructions that arise
when using standard techniques to handle the determination of the mean and variance in the
number of summands. Using this approach we not only can reprove existing results, but also
handle cases such as the (s, b)-Generacci and the Fibonacci Quilt sequences of this paper.
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2.1. Proof of Positivity of Linear Terms. The idea of this section is to reprove and
generalize many of the technical results from [28] without doing the involved analysis that is
needed in order to derive properties of roots of certain polynomials in several variables. In
many other papers the methods from [28] can be used without too much trouble, as there
are explicit formulas available for all the polynomials which arise; however, there are many
situations where this is not the case. These difficulties greatly lengthened that paper (and
restricted the reach of other works) and resulted in several technical appendices on the behavior
of the roots. We avoid these calculations by adopting a more combinatorial view.

Letting {an} be any sequence of interest, we prove that the mean and the variance in the
number of summands of m ∈ [an, an+1) diverge linearly with n. Standard generating function
arguments show that the first grows like Cn+d+o(1) and the second like C ′n+d′+o(1), where
the constants are values of roots of certain associated polynomials (and their derivatives). The
difficulty in the subsequent analysis of the Gaussianity of the number of summands is that C
or C ′ could vanish. Briefly, the idea behind our combinatorial approach below is that if C were
to vanish, we would count incorrectly and not have the right number of decompositions. The
proof for C (the mean) is very straightforward; the proof for C ′ (the variance) is more involved,
though it essentially reduces to a good approach to counting and then careful book-keeping.

In the arguments below we use an to denote the nth term of the sequence; we use this and
not Gn to emphasize the generality of the results (i.e., the results below are true for more than
just PLRS).

2.2. The Mean. We introduce some terminology to help us prove results in great generality.
Given a length L, a segment of summands in a generalized Zeckendorf decomposition starting at
index i are the summands taken from {ai, ai+1, . . . , ai+L−1}; note that for some decomposition
rules we may choose a summand with multiplicity. If we write the expansion for m ∈ [an, an+1)
we get

m = ar1 + ar2 + · · ·+ ark(m)
(2.1)

with ar1 ≥ ar2 ≥ · · · ≥ ark(m)
, where frequently r1 = n. We denote the number of summands

of m as k(m), while the number of summands in the segment of length L starting at i is just
the number of indices rj with i ≤ rj < i+ L.

Definition 2.1. We say the legal decomposition acts over a fixed distance if there is some
finite number f such that two segments of a legal decomposition do not interact if they are
separated by at least f consecutive summands that are not chosen. This means that whatever
summands we have (or do not have) in one segment does not affect our choices in the other,
and for the entire decomposition to be legal each of these two segments must be legal.

Note that the sequences we study in this paper both act over a fixed distance. For the
(s, b)-Generacci sequence we can take f = sb+1 and for the Fibonacci Quilt sequence we can
take f = 5. It is also the case that Positive Linear Recurrence relations, which come with a
notion of a legal decomposition, act over a fixed distance (we can take f to be at least the
length of the recurrence).

The next theorem states that for many generalized Zeckendorf decompositions, µn, the
average number of summands of integers in [an, an+1), is a linear function in n with positive
slope, up to an o(1) term which vanishes in the limit.

Theorem 2.2. Consider an increasing sequence {an} which gives rise to unique legal decom-
positions of the positive integers such that

• the rule for the legal decomposition acts over a fixed distance,
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• the average number of summands used for m ∈ [an, an+1) is µn = Cn+ d+ o(1), and
• given any constant A > 0 there is a length L and a probability p = p(A,L) > 0 that is
less than or equal to the proportion of legal ways to choose summands in any segment
of length L that have at least A summands, regardless of the choices of summands
outside the segment.

Then C > 0.

Remark 2.3. Both (s, b)-Generacci Sequences and PLRS sequences satisfy all three conditions.
To see that (s, b)-Generacci Sequences satisfy the third condition, given A if we take L ≥ Asb
then there is at least one legal way to choose A summands from a segment of length L. Hence
p(A,L) > 0.

Proof of Theorem 2.2. Assume the claim is false and hence C = 0. We show that at least
half of the integers have decompositions with at least twice the average number of summands,
which contradicts the average number of summands.

For all n sufficiently large, as C = 0 we have µn ≤ 2d. We choose A to be much larger than
2d, say A = 1000(2d + 1). Let L be large relative to the fixed distance of the decomposition
rule (for example, 100 times). For simplicity we assume n is a multiple of L so we may split
decompositions up into n/L segments of length L, though of course this is not essential and
we could just ignore the last segment. We also assume L is large enough so that the third
condition holds, namely there is a constant p(A,L) > 0 such that in any segment of length L
the probability we choose fewer than A summands is at most 1− p(A,L) < 1.

We claim that as n → ∞, with probability 1 a decomposition has at least A summands. To
see this, we can bound the probability that it has fewer summands by noting that if that were
true, it must have fewer than A summands in each of the n/L segments of length L. Thus

Prob(m ∈ [an, an+1) has less than A summands)) ≤ (1− p(A,L))n/L . (2.2)

Thus the probability an m ∈ [an, an+1) has at least A summands tends to 1 as desired:

Prob(m ∈ [an, an+1) has at least A summands)) ≥ 1− (1− p(A,L))n/L . (2.3)

As p(A,L) > 0 is independent of n, by taking n sufficiently large at least half of the m in
the interval have at least A summands. If we assume all of these have exactly A summands
and the rest have 0 then we see that the average number of summands is at least A/2, or
500(2d + 1). As this is far greater than 2d we have a contradiction. �

2.3. The Variance. We first define additional terminology (especially another notion of legal
decompositions) that will help us state our result in great generality.

Definition 2.4. A block is a nonempty finite sequence of nonnegative integers. The size of
a block is the sum of the integers in the sequence, while the length of a block is the number of
integers in the sequence.

A block-batch, S, is a finite set of blocks with the following characteristics:

(i) If two blocks have the same size, then they have the same length,
(ii) S contains a block of size 0, whose length is minimal among all blocks in S, and
(iii) S contains at least one block of size 1.

Property (i) allows us to define a length function: l(t) is the length of all blocks with size t.

Definition 2.5. (Definition of (S,T )-legal decompositions) Consider a strictly increas-
ing sequence of positive integers {aj}∞j=1. Let S be a given block-batch and T be a given finite

set of blocks. Let LT be the maximum length of all blocks in T (LT = 0 if T is empty). A
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decomposition of a positive integer ω ∈ Z, ω =
∑m

i=1 ciam+1−i, is (S,T )-legal if the coefficient
sequence {ci}mi=1 has c1 > 0, the other ci ≥ 0, and one of the following two conditions holds:

• Condition 1: We have m ≤ LT and the sequence {ci}mi=1 is a block in T .
• Condition 2: There exists s ≥ 1 such that the sequence {ci}si=1 is in block-batch S and
{bi}m−s

i=1 (with bi = cs+i) is (S,T )-legal or empty.

We observe the following key properties.

(1) If a (S,T )-legal decomposition contains a T type block, then it must be the last block.
So any (S,T )-legal decomposition contains at most one T type block.

(2) An (S,T )-legal decomposition will stay (S,T )-legal if an S type block is added or
removed and indices are shifted accordingly. Only whole blocks can be added and
removed. Moreover added blocks cannot be inserted in the middle of existing blocks.

Remark 2.6. The usual legal decomposition rules for (s, b)-Generacci Sequences and Positive
Linear Recurrence Sequences can be viewed as (S,T )-legal decompositions. See [8, Appendix
D] for examples showing how decompositions using several well-known sequences can be viewed
as (S,T )-legal decompositions.

Let Ωn be the set of all (S,T )-legal decompositions of integers in [an, an+1). Take an
(S,T )-legal decomposition ω ∈ Ωn and define the number of summands in the decomposition:
Yn(ω) =

∑m
i=1 ci. We will define several other random variables that will assist in our study

of Yn. When n > LS + LT (with LS the length of the longest block in S), there are at least
two S type blocks in each decomposition. We define the random variable Zn by setting Zn(ω)
equal to the size of the last S type block of ω ∈ Ωn. Similarly, we define the random variable
Ln by setting Ln(ω) equal to the length of the last S type block of ω ∈ Ωn.

Theorem 2.7. Consider a strictly increasing sequence of positive integers {an}∞i=1 with
ai+1 − ai ≥ aj+1 − aj for all i ≥ j and ai+1 − ai > 1 for all i > LT + 1, block-batch S,
and set of blocks T such that all positive integers have unique (S,T )-legal decompositions. If
E[Yn] = Cn+ d+ f(n) with C > 0 and f(n) = o(1), and if Var[Yn] = C ′n+ d′ + o(1), then we
can explicitly find κ > 0, such that Var[Yn] ≥ κn for all n ≥ LT + 2. In other words, C ′ > 0.

We assume the hypotheses of this theorem hold in all lemmas and corollaries below. Note
that (s, b)-Generacci and PLRS Sequences satisfy these hypotheses.

We need additional notation. Let ZS be the maximum size of all blocks in S. For all
0 ≤ t ≤ ZS , define Bt to be the subset of blocks in S whose size is t. For b ∈ Bt, we define
Υn,b = {ω ∈ Ωn | the last S type block is b},
Lemma 2.8. Let n > LS + LT . Define φt,b(ω) to be the decomposition that results from
removing the last S type block of ω and shifting indices appropriately. Then φt,b is a bijection
between Υn,b and Ωn−l(t).

The proof follows by straightforward counting; see [8, Appendix D].

Corollary 2.9. If E[Yn] = Cn+ d+ f(n) then

E[Yn|Zn = t] = C(n− l(t)) + d+ f(n− l(t)) + t, (2.4)

E[Y 2
n |Zn = t] = E[Y 2

n−l(t)] + 2t[C(n − l(t)) + d+ f(n− l(t))] + t2, (2.5)

and when Kn := Zn(ω) + f(n− Ln(ω))− CLn(ω) the

E[Kn] = f(n) (2.6)
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The proof relies upon the bijection between Υn,b and Ωn−l(t) which allows us to conclude
E[Yn|the last S type block is b] = E[Yn−l(t) + t]. The final form of the equations are a result
of straightforward algebraic manipulation and rules of probability. The complete proof can be
found in [8, Appendix D].

Lemma 2.10. Assume that all integers in Ωn have unique (S,T )-legal decompositions with
respect to the sequence {an}. Then for n > LS + LT

P[Zn = t] = |Bt|
an−l(t)+1 − an−l(t)

an+1 − an
. (2.7)

Proof. We have

P[Zn = t] =
∑

b∈Bt

|Υn,b|
|Ωn|

=
∑

b∈Bt

|Ωn−l(t)|
|Ωn|

= |Bt|
an−l(t)+1 − an−l(t)

an+1 − an
. (2.8)

�

Corollary 2.11. Consider a strictly increasing sequence of positive integers {an} with
ai+1 − ai ≥ aj+1 − aj for all i ≥ j. Then for n > LS + LT , P[Zn = 0] ≥ 1/|S|.

The proof is a straightforward application of the lemma; see [8, Appendix D].
Finally we consider the variance by first using E[Kn] to estimate Var[Kn].

Lemma 2.12. For large n, Var[Kn] >
C2l(0)2

2|S| > 0.

Proof. For all n > LS + LT , we have

Var[Kn] = E[K2
n]− (E[Kn])

2

=
(
E[(Zn − CLn + f(n− Ln))

2]
)
− (f(n))2

=
(
E[(Zn − CLn)

2] + E[2(Zn − CLn) · f(n− Ln)] + E[f(n− Ln)
2]
)
− (f(n))2 .

(2.9)

Note 0 ≤ Ln ≤ LS and that Zn − aLn is bounded since −CLS ≤ Zn − CLn ≤ ZS . Also we
know f(n) = o(1). Thus

lim
n→∞

E[2(Zn − CLn) · f(n− Ln)] , lim
n→∞

E[f(n− Ln)
2] , lim

n→∞
(f(n))2 = 0.

Hence

lim
n→∞

(
Var[Kn]− E[(Zn − CLn)

2]
)

= 0. (2.10)

On the other hand, for all n > LS + LT we have

E[(Zn − CLn)
2] =

ZS∑

t=0

P[Zn = t] · (t− Cl(t))2

≥ P[Zn = 0] · (0− Cl(0))2 ≥ C2l(0)2

|S| , (2.11)

where the last inequality comes from Corollary 2.11.
By Equation (2.10), we know there must exist an N > LS + LT such that for all n > N ,

|Var[Kn]− E[(Zn − CLn)
2]| < C2l(0)2

2|S| , so Var[Kn]− E[(Zn − CLn)
2] > −C2l(0)2

2|S| . Then (2.11)

implies Var[Kn] >
C2l(0)2

2|S| > 0 for all n > N > LS + LT . �
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Finally, we choose κ. For N as found in Lemma 2.12, define N̂ := max{LS + LT + 2, N}.
Next let

κ = min

{
Var[YLT +2]

LT + 2
,
Var[YLT +3]

LT + 3
, . . . ,

Var[YN̂ ]

N̂
,
C2l(0)2

2|S|LS

}
. (2.12)

For all n > LT + 1, an+1 − an > 1, so there are at least two integers in [an, an+1). Since the
(S,T )-legal decomposition of an has only one summand while that of an + 1 has two or more
summands, Var[Yn] is nonzero when n > LT + 1. Hence, κ > 0.

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. We proceed by strong induction.
Basis step: For n = LT + 2,LT + 3, . . . , N̂ , Var[Yn] > κn by definition of κ.
Induction step: Assume Var[Yr] ≥ κr for LT + 2 ≤ r < n. We only need to consider the

cases when n > N̂ ≥ LS + LT + 2. So for all 0 ≤ t ≤ ZS , n > n− l(t) ≥ n− LS ≥ LT + 2.
By (2.5) we have

E[Y 2
n ] =

ZS∑

t=0

P[Zn = t] · E[Y 2
n |Zn = t]

=

ZS∑

t=0

P[Zn = t] ·
(
E[Y 2

n−l(t)] + 2t[C(n− l(t)) + d+ f(n− l(t))] + t2
)
, (2.13)

and from the inductive hypothesis we have

E[Y 2
n−l(t)] = Var[Yn−l(t)] +

(
E[Yn−l(t)]

)2

≥ κ(n− l(t)) + (C(n− l(t)) + d+ f(n− l(t)))2 . (2.14)

Combining (2.13) and (2.14) results in an equation with two parts. One is independent of
t, while the other is of the form of Zn + f(n− Ln)− CLn, which is exactly Kn. We find

E[Y 2
n ] ≥

ZS∑

t=0

P[Zn = t]

[
κ(n − l(t)) + (C(n− l(t)) + d+ f(n− l(t)))2

+ 2t[C(n− l(t)) + d+ f(n− l(t))] + t2

]

= (Cn+ d)2 + κn+

ZS∑

t=0

P[Zn = t] · (t+ f(n− l(t))− Cl(t))2

+ 2(Cn+ d)

ZS∑

t=0

P[Zn = t] · (t+ f(n− l(t))− Cl(t))− κ

ZS∑

t=0

P[Zn = t] · l(t)

= (Cn+ d)2 + κn+ E[(Zn + f(n− Ln)− CLn)
2] + 2(Cn+ d)f(n)− κE[Ln], (2.15)

with the last equality coming from (2.6).
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Finally, (2.15), the definition of κ, and Lemma 2.12 imply

Var[Yn]− κn = E[Y 2
n ]− (E[Yn])

2 − κn

≥ E[(Zn + f(n− Ln)− CLn)
2]− κE[Ln]− (f(n))2

= E[K2
n]− κE[Ln]− (E[Kn])

2

= Var[Kn]− κE[Ln]

≥ Var[Kn]− κLS

≥ C2l(0)2

2|S| − C2l(0)2

2|S|LS
LS = 0, (2.16)

and therefore Var[Yn] ≥ κn. �

2.4. Generating Function for (s, b)-Generacci Legal Decompositions. Let pn,k (with
n, k ≥ 0) denote the number of m ∈ [a(n−1)b+1, anb+1) whose (s, b)-Generacci legal decompo-

sition contains exactly k summands, where anb+1 is the first entry in the (n+ 1)st bin of size
b.

Proposition 2.13. Let n, k ≥ 0. Then

pn,k =





1 if n = k = 0

b if 1 ≤ n ≤ s and k = 1

b · qn−(s+1),k−1 if n ≥ s+ 1 and 1 ≤ k ≤ n+s
s+1

0 otherwise,

(2.17)

where qn,k (with n, k ≥ 0) is the number of m ∈ [0, anb+1) whose (s, b)-Generacci legal decom-

position contains exactly k summands. Set F (x, y) =
∑∞

n=0

∑n∗

k=0 pn,kx
nyk with n∗ = ⌈n+s

s+1 ⌉.
Then

F (x, y) = 1 +
byx

1− x− byxs+1
. (2.18)

We omit the proof here as the details follow from standard bookkeeping and algebraic
manipulation. The proof of this proposition is found in [8, Appendix A].

To complete the proof of Theorem 1.12 we make use the following result from [11].

Theorem 2.14. [11, Theorem 1.8] Let κ be a fixed positive integer. For each n, let a discrete
random variable Yn in In = {1, 2, . . . , n} have

Prob(Yn = j) =

{
pj,n/

∑n
j=1 pj,n if j ∈ In

0 otherwise
(2.19)

for some positive real numbers p1,n, p2,n, . . . , pn,n. Let gn(y) :=
∑

j pj,ny
j.

If gn has the form gn(y) =
∑κ

i=1 qi(y)α
n
i (y) where

(i) for each i ∈ {1, . . . , κ}, qi, αi : R → R are three times differentiable functions which do
not depend on n;

(ii) there exists some small positive ǫ and some positive constant λ < 1 such that for all

y ∈ Iǫ = [1− ǫ, 1 + ǫ], |α1(y)| > 1 and | αi(y)
α1(y)

| < λ < 1 for all i = 2, . . . , κ;

then
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(1) the mean µn and variance σ2
n of Yn both grow linearly with n. Specifically,

µn = Cn+ d+ o(1), σ2
n = C ′n+ d′ + o(1) (2.20)

where

C =
α′
1(1)

α1(1)
, d =

q′1(1)

q1(1)

C ′ =
d

dy

(
yα′

1(y)

α1(y)

)∣∣∣∣
y=1

=
α1(1)[α

′
1(1) + α′′

1(1)] − α′
1(1)

2

α1(1)2

d′ =
d

dy

(
yq′1(y)

q1(y)

)∣∣∣∣
y=1

=
q1(1)[q

′
1(1) + q′′1 (1)]− q′1(1)

2

q1(1)2
. (2.21)

Moreover, if

(iii) α′
1(1) 6= 0 and d

dy

[
yα′

1(y)
α1(y)

]
|y=1 6= 0, i.e., C,C ′ > 0,

then

(2) as n → ∞, Yn converges in distribution to a normal distribution.

To apply Theorem 2.14 we still need some auxiliary results about the function gn(y) which
gives the coefficient of xn in the expansion of the generating function F (x, y). In fact we need
results regarding the partial fraction decomposition of 1/(1− x− byxs+1).

Lemma 2.15. Let s, b ≥ 1 and y > 0. Let f(x) = 1− x− byxs+1. Then

(1) f(x) has no repeated roots,
(2) f(x) has a positive root λ1(y) whose modulus is smaller than the modulus of any other

root of f(x). Moreover, λ1(y) < 1.

Proof. (1) Let h(x) = xs+1 + ax − a, where a = 1/by, and suppose that h(x) has a repeated
root, say r (note r 6= 0). Then h(r) and h′(r) equal 0 yields a contradiction. (2) To find the
roots of f(x) = 1− x− byxs+1 we use the change of variable w = 1/x and note that the roots
of

g(w) = ws+1 − ws − by (2.22)

are the eigenvalues of the companion matrix of the polynomial g(w). This matrix is a non-
negative irreducible matrix so by the Perron-Frobenius Theorem, g(w) has a unique positive
dominant root µ(y). Hence λ1(y) := 1

µ(y) is the unique positive root of f(x) with smallest

modulus. Now by applying the Intermediate Value Theorem we note that one of the pos-
itive roots lies in the interval [0, 1]. Since λ1(y) is the smallest positive root, then clearly
0 < λ1(y) < 1. �

Proposition 2.16. Let gn(y) =
∑∞

k=0 pn,ky
k, which is the coefficient of xn in the generating

function of the pn,k’s. Then for sufficiently large n

gn(y) =

s+1∑

i=1

qi(y)α
n
i (y), (2.23)

where for 1 ≤ i ≤ s + 1, αi(y) =
1

λi(y)
with λi(y) the distinct roots of the polynomial f(x) =

1− x− byxs+1 and qi(y) are algebraic functions of y which depend on these roots.
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Proof. Let λ1(y), λ2(y), . . . , λs+1(y) be the distinct roots of f(x) = 1 − x − byxs+1. Using a
partial fraction decomposition of 1/f(x),

1

f(x)
=

s+1∑

i=1

pi(y)

x− λi(y)
, (2.24)

where pi(y) are algebraic functions of y depending on λi(y). By rewriting the terms and using
the geometric sum formula we have that

1

f(x)
=

s+1∑

i=1

p̂i(y)
1

1− x
λi(y)

=

s+1∑

i=1

∞∑

n=0

p̂i(y) (αi(y)x)
n =

∞∑

n=0

[
s+1∑

i=1

p̂i(y)α
n
i (y)

]
xn, (2.25)

where p̂i(y) = − pi(y)
λi(y)

and αi(y) =
1

λi(y)
. So

F (x, y) =
1 + x(by − 1)− byxs+1

f(x)
=
(
1 + x(by − 1)− byxs+1

) ∞∑

n=0

[
s+1∑

i=1

p̂i(y)α
n
i (y)

]
xn.

(2.26)

Thus for sufficiently large n,

gn(y) =
s+1∑

i=1

αn
i (y)

[
p̂i + (by − 1)p̂iα

−1
i (y)− byp̂iα

−s−1
i (y)

]
=

s+1∑

i=1

qi(y)α
n
i (y). (2.27)

�

Proof of Theorem 1.12. To prove Gaussianity we need only show that gn(y) satisfies conditions
(i)–(iii) in Theorem 2.14.

• Condition (i): For each i ∈ {1, . . . , s + 1}, qi(y) and αi(y) are three times differen-
tiable functions as roots of polynomials are differentiable functions of the polynomial
coefficients, see [25].

• Condition (ii): Follows from Lemma 2.15.
• Condition (iii): Follows from Theorems 2.2 and 2.7.

Therefore, by satisfying the conditions of Theorem 2.14, we have completed our proof. �

3. Gap Measures for the (s, b)-Generacci Sequences

3.1. Average Bin Gap Measure.

Proof of Theorem 1.15. Let m ∈ In := [a(n−1)b+1, anb+1) have legal decomposition

m = aℓ1 + aℓ2 + · · ·+ aℓk with ℓ1 > ℓ2 > · · · > ℓk and aℓi ∈ B⌈

ℓi
b

⌉ for all 1 ≤ i ≤ k. (3.1)

Recall that Pn(g) is the fraction of bin gaps that are of length g (i.e., the probability of
a bin gap of length g among (s, b)-Generacci legal decompositions of m ∈ [a(n−1)b+1, anb+1)).
Clearly Pn(g) = 0 whenever g < s + 1 since we must skip s bins between summands. For
g ≥ s+ 1, define Xi,g as the number of m ∈ In whose decompositions contribute a bin gap of
length g starting at bin Bi. Then

Pn(g) =

∑n
i=1 Xi,g

(µn − 1)([anb+1]− [a(n−1)b+1])
. (3.2)

To compute Xi,g note we have a summand from bin Bi and one from Bi+g, and no summands
from Bi+1,Bi+2, . . . ,Bi+g−1. Moreover since m ∈ In = [a(n−1)b+1, anb+1), m must contain a
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summand from Bn. Hence there is freedom to choose summands from B1,B2, . . . ,Bi−s−1 and
then again we are free to choose summands from bins Bi+g+s+1, Bi+g+s+2, . . . ,Bn−s−1.

The number of ways to choose legally from B1,B2, . . . ,Bi−s−1 is a(i−s−1)b+1 − 1. Similarly,
the number of ways to choose legally from Bi+g+s+1,Bi+g+s+2, . . . ,Bn−s−1 is the number of
integers in [0, a(n−2s−g−i−1)b+1 − 1). As we selected summands from Bi,Bi+g and Bn,

Xi,g = b3[a(i−s−1)b+1 − 1][a(n−2s−g−i−1)b+1 − 1]. (3.3)

By Equation (1.1) of Theorem 1.3,

an = c1λ
n
1 (1 +O(εn)), (3.4)

where ε = |λ2/λ1|, for some constants c1, λ1, and λ2, where λ1 > 1, c1 > 0 and |λ2| < λ1.
Thus

Xi,g = b3c21λ
(n−3s−2)b+2
1 (λb

1)
−g(1 +O(ε(i−s−1)b+1))(1 +O(ε(n−i−2s−g−1)b+1)). (3.5)

We break the sum into three ranges: i ≤ 8 log n, 8 log n < i < n− 8 log n, and n− 8 log n ≤
i ≤ n. Note that for 8 log n < i < n− 8 log n,

ε(i−s−1)b+1, ε(n−i−2s−g−1)b+1 ≤ ε4 logn, (3.6)

which implies that all lower order terms are negligibly small relative to the main term. On
the other hand

∑

1≤i<8 logn

Xi,g = b3c21λ
(n−3s−2)b+2
1 (λb

1)
−gO(log n)

∑

n−8 logn≤i≤n

Xi,g = b3c21λ
(n−3s−2)b+2
1 (λb

1)
−gO(log n). (3.7)

Hence

Pn(g) =

∑

1≤i<8 logn

Xi,g +
∑

8 logn≤i<n−8 logn

Xi,g +
∑

n−8 logn≤i≤n

Xi,g

(µn − 1)([anb+1]− [a(n−1)b+1])

=
b3c21λ

(n−3s−2)b+2
1 (λb

1)
−g
[
O(log n) + (n− 16 log n)

(
1 +O(ε4 logn)

)]

Cn(c1λ
nb+1
1 − c1λ

(n−1)b+1
1 )

=
b3c21λ

(n−3s−2)b+2
1

Cnc1λ
(n−1)b+1
1 (λb

1 − 1)
(λb

1)
−g [n+O(log n)] .

(3.8)

Taking the limit as n → ∞ yields

P (g) =
b3c1

C(λb
1 − 1)λ

(3s+1)b−1
1

(λb
1)

−g. (3.9)

As P (g) defines a probability distribution and P (g) = 0 for g < s + 1,
∑∞

g=s+1 P (g) = 1.

Evaluating the geometric series and using λ1 is a root of x(s+1)b − xsb − b = 0 yields

b3c1

C(λb
1 − 1)λ

(3s+1)b−1
1

= b. (3.10)

Thus P (g) = b(λb
1)

−g. �
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3.2. Spacing Bin Gap Measure. We prove Theorem 1.16 by checking that the conditions of
[12, Theorem 1.1] are satisfied by the spacing bin gap measure of the (s, b)-Generacci sequence;
note we are working with gaps between bins and not summands, but by collapsing a bin we
find the arguments are identical. We restate [12, Theorem 1.1] below for ease of reference.

Theorem 3.1. [12, Theorem 1.1] For z ∈ In := [ac1n+d1 , ac2n+d2), the individual gap measures
νz,n(x) converge almost surely in distribution to the average gap measure ν(x) if the following
hold.

(1) The number of summands for decompositions of z ∈ In converges to a Gaussian
with mean µn = cmeann + O(1) and variance σ2

n = cvariancen + O(1), for constants
cmean, cvariance > 0, and k(z) ≪ n for all z ∈ In.

(2) We have the following, with limn→∞
∑

g1,g2
error(n, g1, g2) = 0:

2

|In|µ2
n

∑

j1<j2

Xj1,j1+g1,j2,j2+g2(n) = P (g1)P (g2) + error(n, g1, g2). (3.11)

(3) The limits in Equation (1.19) exist.

In [12], the authors used the following definition: for g1, g2 ≥ 0

Xj1,j1+g1,j2,j2+g2(n) := #
{
z ∈ In :

bj1 , bj1+g1
, bj2 , bj2+g2

in z’s decomposition,
but not bj1+q, bj2+p for 0<q<g1, 0<p<g2

}
. (3.12)

Since we are concerned with the gaps between bins we will compute Xj1,j1+g1,j2,j2+g2(n) by
counting z ∈ In whose decomposition has a summand from bins Bj1 and Bj1+g1 (with no bins
used in between) and again from bins Bj2 and Bj2+g2 (with no bins used in between).

Proposition 3.2. We have

2

|In|µ2
n

∑

j1<j2

Xj1,j1+g1,j2,j2+g2(n) = P (g1)P (g2) + error(g1, g2, n) (3.13)

where the error as n → ∞ summed over all pairs (g1, g2) goes to zero.

Proof. Assume j1 < j2. We compute Xj1,j1+g1,j2,j2+g2(n): We take a summand each from bins
Bj1 and Bj1+g1 and again from bins Bj2 and Bj2+g2 , and finally since z ∈ In = [a(n−1)b+1, anb+1),
z must contain a summand from bin Bn. Additionally, we have freedom in selecting summands
from bins B1,B2, . . . ,Bj1−(s+1), then from bins Bj1+g1+(s+1),Bj1+g1+(s+2), . . . ,Bj2−(s+1), and
lastly from bins Bj2+g2+(s+1),Bj2+g2+(s+2), . . . ,Bn−(s+1).

The number of ways to choose summands legally from B1, B2, . . . , Bj1−(s+1) is
a(j1−s−1)b+1−1; the number of ways to choose summands legally from Bj1+g1+(s+1), Bj1+g1+(s+2),
. . . ,Bj2−(s+1) is a(j2−j1−g1−2s−1)b+1 − 1; the number of ways to choose summands legally from
Bj2+g2+(s+1), Bj2+g2+(s+2), . . . ,Bn−(s+1) is given by a(n−j2−g2−2s−1)b+1 − 1. Hence

Xj1,j1+g1,j2,j2+g2(n) = b5[a(j1−s−1)b+1 − 1][a(j2−j1−g1−2s−1)b+1 − 1][a(n−j2−g2−2s−1)b+1 − 1].

(3.14)

Using the explicit form for the terms of the (s, b)-Generacci sequence given in Equation (3.4),
Equation (3.14) yields

Xj1,j1+g1,j2,j2+g2(n)

= b5c31λ
(n−5s−3)b+3
1

(
λb
1

)−(g1+g2)
(1 +O(εj1b))(1 +O(ε(j2−j1)b))(1 +O(ε(n−j2)b)),

(3.15)
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where it is important to recall that ε < 1.

Let Sn = {(j1, j2) : 1 ≤ j1 < j2 ≤ n}, and
Tn = {(j1, j2) ∈ Sn : 8 log n ≤ j1 < j2 < n− 8 log n, j2 − j1 > 8 log n}.

Then for (j1, j2) ∈ Tn, εj1b ≤ ε8 logn, ε(j2−j1)b ≤ ε8 logn, ε(n−j2)b ≤ ε8 logn, which implies that
all lower order terms are negligibly small relative to the main term. Also, note that the sum
of 1 over all (j1, j2) ∈ Sn \ Tn is of order n log n. Thus

2
∑

(j1,j2)∈Sn

Xj1,j1+g1,j2,j2+g2(n)

|In|µ2
n

=

2




∑

(j1,j2)∈Tn

Xj1,j1+g1,j2,j2+g2(n) +
∑

(j1,j2)∈Sn\Tn

Xj1,j1+g1,j2,j2+g2(n)




|In|µ2
n

=
b6c21

C2λ
(6s+2)b−2
1 (λb

1 − 1)2
(λb

1)
−g1(λb

1)
−g2 λ

sb
1 (λb

1 − 1)

b
[1 +O(log n/n)]

= P (g1)P (g2) [1 +O(log n/n)] , (3.16)

the last equality follows immediately from (3.9) and the fact that λ1 is the largest root of
the characteristic equation x(s+1)b − xsb − b = 0, the defining relation of our sequence {an}.
As P (g1)P (g2) sums to 1, the sum of the error term over all pairs (g1, g2) goes to zero as
required. �

Proof of Theorem 1.16. We simply need to check that Conditions (1)–(3) of Theorem 3.1 hold.
First we note that letting c1 = b, d1 = 1 − b and c2 = b and d2 = 1, implies that the interval
of interest is In = [ab(n−1)+1, abn+1). Then Theorem 1.12 shows the first part Condition (1) is
satisfied. Now note that there are n − 1 allowable bins from which to select summands and

any z ∈ In will have at most
⌈
n−1
s+1

⌉
summands as there must be s bins between each summand

selected. Hence for any z ∈ In, k(z) ≤
⌈
n−1
s+1

⌉
< n which completes the proof that Condition

(1) is satisfied. Condition (3) follows from Theorem 1.15. Finally, Condition (2) follows from
Proposition 3.2. �

4. Gaussianity and Gap Measures for Fibonacci Quilt

The (4, 1)-Generacci sequence yields Gaussian and Gap Measure results for Greedy-6 de-
compositions. The Greedy-6 decomposition is almost the same as the legal decomposition
from the (4, 1)-Generacci sequence as the gap between almost all summands in a Greedy-6
decomposition is at least 5. The only difference is that for the Greedy-6 decomposition the
last two summands can have indices differing by 2 (if that happens the subsequent index is at
least 6 larger). This possible gap of length 2 does not matter in the limit.

Proof of Theorem 1.14. As the two decompositions are so similar, the Gaussianity result for
the Greedy-6 decomposition follows from that for the (4, 1)-Generacci sequence. We partition
our integers m into two distinct sets where the Greedy-6 decomposition G(m) starts with qn
and either:

• ends with q4 + q2 and the third smallest summand is at least q10; or
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• all indices differ by at least 5.

Both of these cases have Gaussian behavior by Theorem 1.12 specified to the (4, 1)-Generacci
Sequence.

In the first case, Greedy-6 decompositions must have the summand qn as well as q4 and q2.
Thus we do not have q1, q3, q5, q6, q7, q8 or q9, but q10 is possible. Define

Qn,α := {m ∈ [qn, qn+1) | q2 and q4 are summands in the Greedy-6 decomposition of m}.
Consider the (4, 1)-Generacci sequence {an}. Define the set of integers

Jn,α := {ω ∈ [an, an+1) | a1, a2, . . . , a9 are not in the decomposition of ω}.
As the integers in Jn,α decompose with an as the largest summand and any legal set of
summands from {an−5, an−6, . . . , a10}, we have |Jn,α| = an−14 − 1. Moreover, the bijection
between the sets Jn,α and [1, an−14) preserves the number of summands in a decomposition.
As the number of summands in the (4, 1)-Generacci legal decomposition of an integer from
[1, an−14) is Gaussian, the number of summands in the (4, 1)-Generacci legal decomposition
of an integer from Jn,α is Gaussian. There is a bijection between the sets Jn,α and Qn,α

that exactly increases the number of summands in a decomposition by 2, hence the number
of summands in the Greedy-6 legal decomposition of an integer chosen uniformly at random
from Qn,α is Gaussian. The mean and variance of each of this Gaussian will differ from the
mean and variance of the (4, 1)-Generacci sequence in the constant term, but as the mean and
the variance are of the form An+ B + o(1) and Cn+D + o(1), this shift does not matter in
the limit.

All m in the second case are in a bijection with all ω ∈ [an, an+1) that precisely preserves
the indices in the decompositions of m and ω. Hence the number of summands of such an m
is Gaussian.

Combining these two Gaussians distributions results in an overall Gaussian. �

Proof of Theorem 1.17. We first note that the proportion of gaps of length 2 is negligibly small
as n → ∞. The number of gaps of a typical element is strongly concentrated on the order
of n, so one extra gap of length 2 is proportionally only on the order of 1/n, and thus in the
limit will have zero probability.

For the remaining gap sizes, we break this problem into two cases as we did in the proof
of Theorem 1.14. We then argue identically as in the (4, 1)-Generacci case, and note that
our proofs were entirely combinatorial; all that mattered was the number of ways to choose
summands satisfying the legal rule. �

Remark 4.1. Note the utility of this perspective suggests some natural future questions: as
the Fibonacci Quilt’s Greedy-6 decomposition is just the (4, 1)-Generacci with a tweak in the
beginning, do other tweaks lead to geometrically interesting sequences?

5. Range of Number of Summands for Fibonacci Quilt Decompositions

We introduce the notion of gap strings to clean up manipulations by eliminating the need
for cluttering the paper with sums and subscripts.

Definition 5.1. Let qℓ1 + qℓ2 + · · · + qℓt be any decomposition of m with qℓi ≥ qℓi+1
for

i = 1, 2, . . . , t− 1. The gap string of the decomposition is the (t− 1)-tuple

(ℓ1 − ℓ2, ℓ2 − ℓ3, . . . , ℓt−1 − ℓt). (5.1)
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From Theorem 1.11 we know the number of summands in the Greedy-6 decomposition of
any m is minimal and the corresponding gap string (x1, x2, . . . , xkmin(m)−1) has xi ≥ 5 for all
i except possibly xkmin(m)−1 = 2 (i.e., the Greedy-6 decomposition used q4 + q2).

Proof of Theorem 1.19. From Theorem 1.11 the Greedy-6 decomposition is a minimal de-
composition (i.e., no other legal Fibonacci Quilt decomposition uses fewer summands). We
investigate how many m ∈ [qn, qn+1) have kmax(m)−kmin(m) ≥ g(n) for a fixed function g(n),
and then see how large we may take it while ensuring the inequality holds for almost all m in
the interval. The argument below was chosen as it gives the optimal growth rate of g(n) but
not the optimal constant; with a little more work the value of CFQ could be slightly increased,
but a growth rate of essentially log(n) is the natural boundary of this approach.

Let G = (5, 5, 10, 5, 5, 10, . . . , 5, 5, 10) be a fixed gap pattern among 3g(n)+1 addends. Note
that the number of summands in a decomposition of m ∈ In can be increased by g(n) if
the decomposition has a gap string that contains the substring G beginning at qA+20g(n) with
10 + 20g(n) ≤ A+ 20g(n) ≤ n. Using recurrence relations (qn + qn−2 = qn+1 + qn−5 and qn +
qn−4 = qn+1 proved in [7]) we get a new FQ-legal decomposition of m where the only difference
is that substring G is replaced with the substring G′ = (6, 2, 7, 5, 6, 2, 7, 5, . . . , 6, 2, 7, 5).2 The
starting and ending summands remain the same but there are now 4g(n) + 1 summands
indicated by the gap substring. Hence for such m, kmax(m)− kmin(m) ≥ g(n).

We break the set of Fibonacci Quilt summands {qn, . . . , q1} into adjacent and non-overlapping
blocks of length 20g(n) + 1; the number of such complete blocks is ⌊ n

20g(n)+1⌋. There are

220g(n)+1 ways to choose which summands in a given block we take, and at least one of them
is the desired gap pattern G. Thus the probability that a given decomposition has pattern G
is at least 1/220g(n)+1, so the probability that we do not have G is at most 1 − 1/220g(n)+1.
Therefore the probability that the pattern occurs at least once is

Pr(gap substring G occurs in the gap string of m) ≥ 1−
(
1− 1/220g(n)+1

)⌊ n
20g(n)+1

⌋
. (5.2)

To show this tends to 1 we just need to show the subtracted quantity tends to zero, or
equivalently that its logarithm tends to −∞; for large n this is

⌊
n

20g + 1

⌋
log
(
1− 1/220g(n)+1

)
≤ − n

21g(n)

1/2

220g(n)
= − 2

21

n

g(n)e20g(n) log(2)
. (5.3)

If we take g(n) = CFQ log(n) then
⌊

n

20g + 1

⌋
log
(
1− 1/220g(n)+1

)
≤ − 2

21CFQ

n

n20CFQ log 2 log(n)
, (5.4)

which tends to −∞ so long as CFQ < 1/20 log 2, completing the proof. �

Remark 5.2. We could increase the constant CFQ slightly if we replace 220g(n)+1 by the number
of legal decompositions there are involving the 20g(n) + 1 summands. This is on the order of
q20g(n)+1; while this is an exponentially growing sequence, it has a smaller base. If we wish
to increase the constant by replacing the inequality with an equality we would then have to
worry about the logarithm in the denominator. While this could be done at the cost of a more
complicated expression, as it is essentially the same size we do not pursue that here.

2For example, replacing string (5, 5, 10) with (6, 2, 7, 5) can be seen as q30+ℓ + q25+ℓ + q20+ℓ + q10+ℓ =
q30+ℓ + q24+ℓ + q22+ℓ + q15+ℓ + q10+ℓ.
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6. Future Research

We end with a list of additional problems to study for the Fibonacci Quilt; this is a partic-
ularly appealing sequence to investigate as it is similar to a PLRS, but is not and has already
been shown to have the same behavior for some problems but very different in others. Recall
d(m) denotes the number of legal decompositions of m by the Fibonacci quilt.

• Can we solve d(m) = ℓ for fixed ℓ? What about d(m) ≤ w(m) for some fixed increasing
function w?

• How rapidly does maxm≤N d(m) go to infinity?
• For m ≤ N , what does the distribution of d(m) look like?
• Let Kmin(m) be the fewest number of summands needed in a Fibonacci quilt legal
decomposition of m (and similarly define Kmax, Kave). What can we say about Kmin

and Kmax?
• Find all m such that Kmin(m) = Kmax(m).
• How does Kave(m) compare to Kmin and Kmax? Is is closer to one or the other for all
m?
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