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NOTE: This hasn’t been updated since
2010; if anyone is actually reading this
and finds it helpful let me know!

While my primary love and research interests are number theory and random ma-
trix theory, I have worked on numerous applied projects in accounting, computer sci-
ence, economics, marketing, sabermetrics (baseball mathematics) and statistics, as well
as several projects in computational number theory. Below is an annotated bibliog-
raphy, where I have divided my work into the different fields and summarized each
paper. Papers and talks are available online athttp://www.williams.edu/
Mathematics/sjmiller/public_html/index.htm

I am always looking for new projects and new colleagues to work with, in all fields.
I find working on a variety of applied projects satisfying on anumber of fronts. First,
there is frequently little overlap in skill sets, and each ofus is bringing a good but dif-
ferent perspective. I find we often ask different questions and have different techniques,
and the ensuing discussions lead to questions and solutionsthat would have been hard
to arrive at individually. For example, some of my best theoretical work on Benford’s
law is due to questions asked by an accountant colleague in his search for tests to detect
tax fraud. Finally, these projects become wonderful additions in the classroom, and
frequently excite students about the possibilities of mathematics in their careers.
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1. NUMBER THEORY AND RANDOM MATRIX THEORY

My main research is in the distribution of zeros ofL-functions near the central point.
The Katz-Sarnak philosophy says that to each family ofL-functions we can associate a
classical compact group such that, as the conductors tend toinfinity and the size of the
matrices in the classical compact group tends to infinity, then the scaling limit of the
statistics in the number theory family and the classical compact ensemble agree.

In my thesis (1) I overcame numerous technical difficulties to uniquely show that only
one classical compact group can describe the zeros of elliptic curveL-functions, and it
is the expected one. To do so required studying the 2-level density, which involved many
technicalities due to the variation in the conductors. The key ingredients were bounded
variation arguments and deriving explicit formulas for theconductors in certain large
sub-families.

Recently theL-function Ratios Conjecture has gained enormous popularity as it is
able to quickly and easily predict numerous quantities (n-level correlations and densi-
ties, moments, ...) for families ofL-functions. The conjecture predicts answers down
to essentially square-root cancellation, a remarkably brave thing to do. I have verified
the predictions in many cases: (5), (7), (9), (11), (13). My favorite of these papers is
(11). The Ratios Conjecture has five steps, three of which areprovably false (i.e., they
involve adding or subtracting terms of the same size as the terms kept; the miracle is
that all of these errors seem to cancel). For the family studied in (11), one of the terms
discarded is known to contribute for tests functions with large support; amazingly, an-
other term in the Ratios’ prediction surfaces for this largesupport and gives exactly the
missing contribution.

Papers (2), (3), (4), (6), (8), (9), (12) involve studying the zeros near the central point
in many families. Paper (3) disproves a folklore conjecturethat this theory is essentially
one of the sign of functional equations. In (8) my co-author and I return to the subject,
and show that the symmetry of the convolution of two familiesof L-functions is the
product of the symmetry constants associated to each constituent family. In this and
other papers such as (6), the key ingredient is an analysis ofthe Satake parameters. Our
theory can be recast in a similar manner to the central limit theorem, where the first
two moments are essentially normalization and the higher moments control the rate of
convergence.

One of the banes of the subject is the difficulty of the ensuingcombinatorics. In (4)
we get then-level densities up to1/(n − 1) by deriving a more tractable formula than
the determinant expansions of Katz-Sarnak, cleverly changing the multi-dimensional
Bessel-Kloosterman integrals to the 1-dimensional integral they evaluated. The cost
of this is that the ensuing combinatorics look quite different than the answer one finds
in random matrix theory, but it is a worthwhile exchange to avoid then-dimensional
Bessel-Kloosterman integrals.

Finally paper (14) is a continuation of previous work from other sections, where we
have developed a theory for zeros near the central point in families of elliptic curves
with finite conductor. The key ingredients are effective matrix size and discretizing the
resulting Jacobi ensembles.

(1) 1- and2-level densities for families of elliptic curves: evidencefor the underly-
ing group symmetries, Compositio Mathematica140 (2004), 952–992.
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(2) Variation in the number of points on elliptic curves and applications to excess
rank, C. R. Math. Rep. Acad. Sci. Canada27 (2005), no. 4, 111–120.

(3) The low lying zeros of a GL(4) and a GL(6) family ofL-functions(with Eduardo
Dueñez), Compositio Mathematica142 (2006), no. 6, 1403–1425.

(4) Low lying zeros ofL–functions with orthogonal symmetry(with Christopher
Hughes), Duke Mathematical Journal136 (2007), no. 1, 115–172.

(5) A symplectic test of theL-Functions Ratios Conjecture, Int Math Res Notices
(2008) Vol. 2008, article ID rnm146, 36 pages, doi:10.1093/imrn/rnm146.

(6) Lower order terms in the 1-level density for families of holomorphic cuspidal
newforms, Acta Arithmetica137 (2009), 51–98.

(7) An orthogonal test of theL-Functions Ratios Conjecture, Proceedings of the
London Mathematical Society 2009, doi:10.1112/plms/pdp009.

(8) The effect of convolving families ofL-functions on the underlying group symme-
tries (with Eduardo Dueñez), Proceedings of the London Mathematical Society,
2009; doi: 10.1112/plms/pdp018.

(9) A unitary test of theL-functions Ratios Conjecture(with John Goes, Steven
Jackson, David Montague, Kesinee Ninsuwan, Ryan Peckner and Thuy Pham),
Journal of Number Theory130 (2010), no. 10, 2238–2258.

(10) Towards an ‘average’ version of the Birch and Swinnerton-Dyer Conjecture
(with John Goes), Journal of Number Theory130 (2010), no. 10, 2341–2358.

(11) An Orthogonal Test of theL-functions Ratios Conjecture, II(with David Mon-
tague), Acta Arith.146 (2011), 53–90.

(12) Low-lying zeros of number fieldL-functions(with Ryan Peckner), submitted
September 2010 to Compositio Mathematica.

(13) An elliptic curve family test of the Ratios Conjecture(with Duc Khiem Huynh
and Ralph Morrison), submitted November 2010 to the Journalof Number The-
ory.

(14) Models for zeros at the central point in families of ellipticcurves(with Eduardo
Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), preprint.

2. CLASSICAL RANDOM MATRIX THEORY

I have worked on numerous projects in classical random matrix theory, studying
highly structured matrices. While not immediately applicable for number theory, it
is useful to see how the structure effects the distribution of the eigenvalues. All of these
results are joint with undergraduates. The proofs require combinatorics, Diophantine
equations and algebraic topology.

Paper (1) highlights the danger of numerical exploration. Both we and another
research group conjectured that the density of the normalized eigenvalues of these
Toeplitz ensembles was a Gaussian after preliminary simulations in Mathematica; how-
ever, theoretical investigations then showed that the normalized fourth moment was
2 2/3rds and not 3 (one may interpret this in terms of obstructions to solving certain
Diophantine equations). We were able to prove many results about this distribution
(moments grow significantly slower than the Gaussian moments, but fast enough to en-
sure unbounded support). We conjectured that if we were to impose additional structure
by making the first row a palindrome then these obstructions would vanish; we proved
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this in (2). We continued to explore the effect of increasingthe structure, specifically
by increasing the number of palindromes, in (3).

In paper (4) we weaken the structure a bit. We make each diagonal periodic with
periodm, and are able to derive a closed form expression for the density of eigenvalues
by using techniques from complex analysis and algebraic geometry; it is quite unusual
in the subject to be able to get a closed form solution.

(1) Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices
(with Christopher Hammond), Journal of Theoretical Probability 18 (2005), no.
3, 537–566.

(2) Distribution of eigenvalues of real symmetric palindromicToeplitz matrices and
circulant matrices(with Adam Massey and John Sinsheimer), Journal of Theo-
retical Probability20 (2007), no. 3, 637–662.

(3) Distribution of eigenvalues for highly palindromic real symmetric Toeplitz ma-
trices(with Steven Jackson and Thuy Pham), to appear in the Journalof Theo-
retical Probability.

(4) The Limiting Eigenvalue Density for the Ensemble of Symmetric Period m–
Circulant Matrices(with Murat Kolǒglu and Gene S. Kopp), submitted October
2010 to the Annals of Probability.

3. ADDITIVE AND GENERAL NUMBER THEORY

I have written numerous papers in various parts of number theory, as well as the
well-received textbook (12) which gives students a somewhat connected view of parts
of modern analytic number theory, including being the first undergraduate book to cover
random matrix theory. Of the papers below, the following area representative sample
of my work.

In (1), working with two graduate students to expand an idea in my thesis, we derive
ways to construct one-parameter families of elliptic curves overQ(T ) with moderate
rank. Unlike other methods, ours does not require us to compute the associated height
matrix and show that the resulting determinant is non-zero,bypassing this by applying
results from Rosen and Silverman to show that the determination of certain Legendre
sums specifies the rank.

In (3), (4), (5) I study how oftenA + A has greater cardinality thanA − A for
finite sets of integersA chosen with a given probability. As addition is commutative
and subtraction is not, Nathanson conjectured that in the limit 100% of the time|A −
A| > |A + A|; however, Martin and O’Bryant proved this is not the case. In(3) we
salvaged the conjecture by showing that, while the claim fails if the probability of ak in
{1, . . . , n} equalsp with p independent ofn, it is correct if instead we havep(n) which
decays to 0. For somep(n) the results follow by Chebyshev, though in some ranges we
need recent strong concentration theorems. There is a nice phase transition in behavior
of the cardinalities as a function ofp(n). In (4) and (5) we discuss constructions of sets
with |A + A| > |A − A|, A chosen uniformly from{1, . . . , n}. The previous records
had densities of such examples on the order ofp(n)/2n/2 with p a polynomial; we’re
able to get densities of the size1/n4, a significant improvement.

In (9), (10) we study an interesting generalization of results of Zeckendorf and Lekkerk-
erker that surprisingly seems to have not been asked before.Zeckendorf showed every
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integer can be written as a sum of non-adjacent Fibonacci numbers; Lekkerkerker then
proved that on average numbers between thenth and(n + 1)st Fibonacci numbers re-
quires approximatelyn/(ϕ2 + 1) (with ϕ the golden mean). We prove that not just for
the Fibonacci numbers, but for many recurrence relations, the distribution of the num-
ber of summands is a Gaussian asn grows. Interestingly, the proof involves forgetting
about the number theory (previous approaches used continued fractions, for example),
and recasting as a combinatorial problem.

(1) Constructing one-parameter families of elliptic curves over Q(T ) with moder-
ate rank(with Scott Arms and Álvaro Lozano-Robledo), Journal of Number
Theory123 (2007), no. 2, 388–402.

(2) An identity for sums of polylogarithm functions, Integers: Electronic Journal Of
Combinatorial Number Theory8 (2008), #A15.

(3) When almost all sets are difference dominated(with Peter Hegarty), Random
Structures and Algorithms35 (2009), no. 1, 118–136.

(4) Explicit constructions of infinite families of MSTD sets(with Brooke Orosz and
Dan Scheinerman), Journal of Number Theory130 (2010) 1221–1233.

(5) Explicit constructions of infinite families of MSTD sets(with Dan Scheiner-
man), Additive Number Theory: Festschrift In Honor of the Sixtieth Birthday
of Melvyn B. Nathanson (David Chudnovsky and Gregory Chudnovsky, edi-
tors), Springer-Verlag, 2010.

(6) Effective equidistribution and the Sato-Tate law for families of elliptic curves
(with M. Ram Murty), Journal of Number Theory131 (2011), no. 1, 25–44.

(7) A combinatorial identity for studying Sato-Tate type problems(with M. Ram
Murty and Frederick Strauch), to appear in Rendiconti del Seminario Matem-
atico.

(8) Moments of the rank of elliptic curves(with Siman Wong), to appear in the
Canadian Journal of Mathematics.

(9) On the number of summands in Zeckendorf decompositions(with Murat Kolǒglu,
Gene S. Kopp and Yinghui Wang), submitted September 2010 to the Fibonacci
Quarterly.

(10) From Fibonacci numbers to Central Limit Type Theorems(with Yinghui Wang),
submitted October 2010 to Transactions of the AMS.

(11) Quadratic fields with cyclic2-class groups(with Carlos Dominguez and Siman
Wong), submitted November 2010 to Acta Arithmetica.

(12) An Invitation to Modern Number Theory(with Ramin Takloo-Bighash), Prince-
ton University Press, Princeton, NJ, 2006, 503 pages.

4. BENFORD’ S LAW (ACCOUNTING, PROBABILITY, NUMBER THEORY, ...)

In many mathematical, man-made and natural data sets, not all digits 1 through 9 are
equally likely to occur as leading digits. Now known as Benford’s law, for many sets of
data the probability of having a first digit ofd is logB

(

1 + 1

d

)

; thus we see a first digit
of 1 approximately 30% of the time, significantly more than 11% (or 1/9th).

This phenomenon is not just of theoretical interest, but haspowerful applications in
data fraud. For example, the IRS uses it to detect tax fraud, and current work indicates
it may also detect whether or not an image file has been doctored.
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I am one of the experts in the field. I have written and refereednumerous papers in the
subject, as well as co-organized the first conference in the field and am currently the se-
nior editor of the first book on Benford’s law (under contractwith Princeton University
Press). My work is both theoretical as well as applied. I havebeen extremely success-
ful in getting undergraduates and graduate students involved, writing papers with six
undergraduates and one graduate student.

Papers (1), (3), (4), (5), (7) advance the theory of the subject, deriving various sets
of conditions that ensure Benford’s law holds. The main techniques in (1) are Fourier
analysis and quantified rates of equidistribution ofnα mod 1 for irrationalα, which
involves the irrationality exponent and Baker’s theory of linear forms of logarithms. The
difficulty in showing the Benfordness of the3x+ 1 problem is that the key input is the
structure theorem, which leads to a lattice supported distribution, and the discreteness
causes numerous technical issues. Paper (3) provides sufficient conditions for when
a product converges to Benford behavior, and when it does not. This is an extremely
important case, as many observations can be regarded as the product of independent
measurements. The main ingredient here is Fourier analysis.

Paper (2) involves the largest natural data set analyzed to date, hydrology data (almost
half a million records spanning a century of measurements).The size of the data set
introduces interesting complications in the analysis. Other data sets are studied in (8).

Paper (6) involves a new test to detect data fraud (or simply errors in data filing),
building on the theory developed in (4). I also have a paper with a new test to detect tax
fraud. This is currently being reviewed by the IRS (I have corresponded with several
of their agents for years now, and have given a talk at the Boston headquarters). I am
also working on a method to detect image fraud, which will be achapter in the Benford
book (9).

(1) Benford’s Law, values ofL-functions and the3x + 1 problem(with Alex Kon-
torovich), Acta Arithmetica120 (2005), no. 3, 269–297.

(2) Benford’s Law applied to hydrology data - results and relevance to other geo-
physical data(with Mark Nigrini), Mathematical Geology39 (2007), no. 5,
469–490.

(3) The Modulo1 Central Limit Theorem and Benford’s Law for Products(with
Mark Nigrini), International Journal of Algebra2 (2008), no. 3, 119–130.

(4) Order statistics and Benford’s law(with Mark Nigrini), International Journal
of Mathematics and Mathematical Sciences, Volume 2008 (2008), Article ID
382948, 19 pages. doi:10.1155/2008/382948

(5) Chains of distributions, hierarchical Bayesian models andBenford’s Law(with
D. Jang, J. U. Kang, A. Kruckman and J. Kudo), Journal of Algebra, Number
Theory: Advances and Applications, volume 1, number 1 (March 2009), 37–60.

(6) Data diagnostics using second order tests of Benford’s Law(with Mark Ni-
grini), Auditing: A Journal of Practice and Theory28 (2009), no. 2, 305–324.
doi: 10.2308/aud.2009.28.2.305

(7) The Weibull distribution and Benford’s law(with Victoria Cuff and Allie Lewis),
preprint.

(8) Climate, hydrology and election data and Benford’s law(with Victoria Cuff and
Allie Lewis), preprint.



ANNOTATED PUBLICATION LIST 7

(9) Theory and Applications of Benford’s Law(senior editor; co-editors Arno Berger
and Ted Hill), Princeton University Press, under contract.

5. ECONOMICS AND MARKETING

I have worked on many problems in economics and marketing. Mywife was a grad-
uate student at Wharton, and through her I met and began collaborations with several
faculty members there.

The first paper involves mathematics very similar to what I have used in my stud-
ies in random matrix theory and combinatorics. The goal was to derive closed form
expressions for Bayesian inferences, as it is highly desirable to be able to see the pa-
rameter dependence in the solutions theoretically and not have to resort to numerical
simulations. In addition to theoretical considerations, this project required computa-
tional expertise as well to demonstrate the efficacy of our series expansions.

The second paper applies linear programming to help a movie theater optimize its
revenue subject to hard constraints (such as two movies cannot simultaneously play on
the same screen) and soft constraints (such as the manager’spreference that there is
never a 20 minute window when no movie starts playing). Our algorithm has been im-
plemented by the Pathe theater in the Netherlands, leading to a significant improvement
in their revenue. We only have two hours from when we receive the list of candidate
movies to when we must inform the newspapers of the schedule;this forces us to be
extremely efficient in setting up the linear program. Our paper won the award for best
paper in the International Journal of Research in Marketingin 2009, leading to the short
follow-up note (3).

The last paper (4) deals with various models of social learning.

(1) Closed-form Bayesian inference for the logit model via polynomial expansions
(with Eric T. Bradlow and Kevin Dayaratna), Quantitative Marketing and Eco-
nomics4 (2006), no. 2, 173–206.

(2) Silver Scheduler: a demand-driven modeling approach for the construction of
micro-schedules of movies in a multiplex(with Jehoshua Eliashberg, Quintus
Hegie, Jason Ho, Dennis Huisman, Sanjeev Swami, Charles B. Weinberg and
Berend Wierenga), Intern. J. of Research in Marketing (2009),
doi:10.1016/j.ijresmar.2008.09.004.
Award for best paper in IJRM, 2009.

(3) Demand-driven scheduling of movies in a multiplex(with Jehoshua Eliashberg
and Charles B. Weinberg), newsletter of the European Marketing Academy, Oc-
tober 2010 (requested summary of Silver-Scheduler paper inhonor of it receiv-
ing the IJRM Best Paper Award for 2009).

(4) Social Learning, Opinion Leaders and Herding(with Daniel Stone), submitted
October 2010 to Economica.

6. COMPUTATIONAL PAPERS

Many of my number theory projects require extensive programming, frequently re-
quiring integration of special environments such as PARI with C.
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Paper (1) is mostly theoretical, and involves solving some special cases of a conjec-
ture in computer science that certain very efficient circuits cannot be built by reducing
this to a problem in counting the number of solutions in certain sub-varieties.

Paper (2) studies the distribution of zeros of elliptic curveL-functions near the central
point. Many authors (including myself in my thesis) have studied these zeros. While
we know their behavior as the conductors tend to infinity, thedata in the case of finite
conductors is quite mysterious and very different from whatwe know is true in the limit.
In the course of studying the data, I noticed interesting patterns that led us to what we
believe is the correct conjecture to describe this behavior.

Paper (3) looks at the distribution of the second largest eigenvalue in many families
of d-regular graphs. These graphs are extremely important in modern communication
theory, as they led to cheap graphs to build that are very wellconnected. In studying
the observed growth rates, we were led to certain conjectures as to the probability that
certain graphs are Ramanujan.

Paper (4) is a continuation of (2). Using SAGE and Matlab, we solve a Painlevé VI
equation. This is needed to numerically compute eigenvalues from our Jacobi random
matrix ensembles.

Paper (5) is a work in progress on virus propagation in certain graph networks. One
of the most important applications is in understanding the spread of viruses (such as the
avian bird flu).

(1) Incomplete quadratic exponential sums in several variables(with Eduardo Dueñez,
Amitabha Roy and Howard Straubing), Journal of Number Theory 116 (2006),
no. 1, 168–199.

(2) Investigations of zeros near the central point of elliptic curveL-functions, Ex-
perimental Mathematics15 (2006), no. 3, 257–279.

(3) The distribution of the second largest eigenvalue in families of random regular
graphs(with Tim Novikoff and Anthony Sabelli), Experimental Mathematics
17 (2008), no. 2, 231–244.

(4) The lowest eigenvalue of Jacobi Random Matrix Ensembles andPainlevé VI,
(with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith), Jour-
nal of Physics A: Mathematical and Theoretical43 (2010) 405204 (27pp).

(5) Virus propagation in certain types of networks(with Leo Kontorovich and Amitabha
Roy), in preparation.

7. SABERMETRICS AND STATISTICS

As a mathematician and a lifelong Red Sox fan (who also roots for the Phillies after
going to graduate school in Princeton and moving to Philadelphia during my postdoc
there), I’ve always been fascinated by the power of mathematics in baseball. I have be-
come active in the sabermetrics (studying baseball throughmathematics and statistics)
community. In addition to writing papers, I have taught several independent studies in
the subject, which are wonderful ways to channel student enthusiasm into mathematics.

I have been corresponding with the San Diego Padres for several years, and have had
students work on some projects for them during this time (which I am not at liberty
to discuss further). My main result in the field is the first paper, where I show Bill
James’ Pythagorean Won-Loss statistic (which he was led to from looking at years
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of results) can be derived from some (mostly) reasonable assumptions about how a
baseball game is played. Given a sports league, if the observed average number of runs
a team scores and allows areRSobs andRAobs, then the Pythagorean Formula predicts
the team’s won-loss percentage should beRSobs

γ

RSobs
γ+RAobs

γ for someγ which is constant
for the league. Initially in baseball the exponentγ was taken to be2 (which led to the
name), though fittingγ to the observed records from many seasons lead to the bestγ
being about1.82. This statistic is widely used, and is shown in the standingson sites
such as ESPN and MLB. I was led to model the runs scored and allowed by Weibulls
due to my physics experience; these distributions do a much better job than others that
had been tried before in the literature.

The second paper is a short note on a distribution where the Cramér-Rao inequality
provides no information. The key input here is the dominatedconvergence theorem and
the modification of a density closely associated to Benford problems.

(1) A derivation of the Pythagorean Won-Loss Formula in baseball, Chance Maga-
zine20 (2007), no. 1, 40–48 (an abridged version appeared in The Newsletter
of the SABR Statistical Analysis Committee16 (February 2006), no. 1, 17–22).

(2) When the Cramér-Rao Inequality provides no information, Communications in
Information and Systems7 (2007), no. 3, 265–272.

8. EXPOSITORY AND GENERAL MATHEMATICS

I have written numerous expository articles. My favorite is(2), the only history of the
connections between number theory and random matrix theory. This paper was writ-
ten jointly with my physics mentor from my undergraduate days, who was one of the
key experimenters in gathering the nuclear physics data leading to the birth of random
matrix theory in physics. In (3) we generalize Tennenbaum’sbeautiful geometric proof
of the irrationality of

√
2 to handle several other integers, and describe the obstructions

that prevent it from handling
√
n for a larger class of square-free integers. In (5) (re-

cently posted on the arxiv, and to be submitted after a few more days wait for additional
comments) we explore yet another difference between real and complex analysis.

Additionally, I am working on two book projects. The first (6)(under contract with
Princeton University Press) is a general probability book designed to supplement any
course to both help struggling students as well as encouragestudents wishing to know
more. This book is being jointly written with one of my undergraduates. The second
(7) is a cryptography book. We have a very extensive draft, which my colleagues have
used successfully at Rutgers and I at Williams.

(1) A probabilistic proof of Wallis’ formula forπ, Amer. Math. Monthly115
(2008), no. 8, 740–745.

(2) Nuclei, Primes and the Random Matrix Connection(with Frank W. K. Firk),
invited submission to Symmetry1 (2009), 64–105; doi:10.3390/sym1010064.

(3) Rational irrationality proofs(with David Montague), to appear in Mathematics
Magazine.

(4) Isoperimetric Sets of Integers (with Frank Morgan, Edward Newkirk, Lori Ped-
ersen and Deividas Seferis), to appear in Mathematics Magazine.
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(5) The real analogue of the Schwarz lemma(with David Thompson), to appear in
the American Mathematical Monthly.http://arxiv.org/abs/1012.
0585

(6) If a prime divides a product...(with Cesar Silva).
(7) The Probability Lifesaver(with David Thompson), Princeton University Press,

under contract.
(8) The Mathematics of Encryption(with Midge Cozzens and Wesley Pegden), gen-

eral cryptography textbook.

E-mail address: Steven.J.Miller@williams.edu

DEPARTMENT OFMATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN , MA
01267

http://arxiv.org/abs/1012.0585
http://arxiv.org/abs/1012.0585
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