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ABSTRACT. We study variants of a stochastic game inspired by backgammon where players may propose to
double the stake, with the game state dictated by a one-dimensional random walk. Our variants allow for
different numbers of proposals and different multipliers to the stake. We determine the optimal game state for
proposing and accepting, giving analytic solutions in many variants. We also introduce a 3-player generalization
of the game and prove basic results about its behavior, in addition to providing a simulation.
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1. INTRODUCTION

1.1. Background on Backgammon. Backgammon is a popular board game where two players bet on a
stake by alternately rolling dice to dictate the movement of counters. Each player is assigned a collection
of counters, with the objective being to move them all into a designated region before the opponent ac-
complishes the same. At the beginning of each turn, a player rolls 2 dice and moves the counters under
constraints that depend on the outcomes of the dice. Unlike a deterministic game such as chess, a great part
of backgammon strategy involves taking calculated risks in the face of uncertainty.

Aside from the counters and the dice, a doubling cube introduces interesting dynamics to the game and
adds a layer of strategy beyond moving the counters. At any point in time, a player may propose to double
the current stake of the game. Either player could propose the first double; after that point, a player could
only propose a double after the opponent does, i.e., the double proposals must alternate between the players.
Once proposed, the opponent has the choice to accept the double–confirming the doubling of the stake and
allowing the game to continue–or to decline the double (to “fold”), which forfeits the game and the current
stake.

An interesting question naturally arises: when should one propose a double, or accept a double proposed
by the opponent? It is clearly disadvantageous to propose a double while losing, so it might make sense
to propose double when winning by a great amount. However, if a double is proposed when victory is
imminent, the opponent may elect to fold, nullifying the advantage of the proposed double but saving the
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proponent from a small chance of loss. We thus expect the optimal moment to double to be a compromise
between the two influences.

1.2. Stochastic game as a model of Backgammon.

1.2.1. The game. The games we study are based on one introduced by Keeler and Spencer in [KS], which
is inspired by backgammon. 1

In this stochastic game, there are no pieces to move. The game state, as a function of game time, is
modeled by a Brownian motion p = p(t) with no drift that begins at 0.5 and stays in [0, 1], where reaching
0 indicates loss for Player A, and reaching 1 indicates victory. The initial stake is normalized to be 1, and
the only actions the players may take are to propose or accept/decline a double. To avoid technical issues,
we allow doubles to be offered even at the extreme states 0 and 1 (and the payoff made afterward), which
makes little practical difference from offering at 0 + ϵ and 1− ϵ for arbitrarily small ϵ. Thus, a double may
be proposed at any game state in the closed interval [0, 1].

After a double is proposed, the right to propose the next double goes to the opponent. At this point, the
opponent may choose to fold, forfeiting the current stake and the game, or to accept the double and play on
with twice the current stake. The game ends when a double is declined, or when the game state reaches 0 or
1 and neither player would double.

1.2.2. Game state and evaluation. It is convenient to denote the game state p instead by an ordered pair
(sA, sB) := (p, 1 − p), where sA is Player A’s game state, and sB Player B’s game state, collectively
referred to as subjective game states. This is to notationally simplify the analysis by eliminating the need
to refer to a specific player: the statement “Player A should double at game state p, and Player B should
double at game state 1 − p” simplifies to “a player should double at (subjective) game state p”. From this
point onward, all references to game states are subjective unless indicated otherwise.

A useful quantity to study is the game evaluation (pA, pB), where pA (resp. pB) is the probability that
the upcoming random walk reaches 1 before 0 (resp. 0 before 1). The evaluation can be thought of as the
probability of winning for each player, if the game had no doubling. We may refer to a player’s evaluation,
taken to mean the corresponding component of the evaluation tuple, i.e., Player B’s evaluation being pB .

As it turns out, the game state and evaluation under these rules are equivalent: pA = sA, and pB = sB .
This is an immediate consequence of the consistency property of one-dimensional Brownian motion: within
any interval, the probability of reaching the right endpoint before the left equals the proportion of the interval
to the left of the current location. This consistency property is proved in [Don], though a discrete version is
stated and proved in Section 4, as Lemma 4.2.

We seek to determine game states–equivalently, evaluations–where it is most advantageous to propose or
accept/decline a double, under different, more general game rules.

1.2.3. Maximization of expected payoff and a principle of indifference. We assume that all players seek to
maximize their expected payoff in the face of uncertainty. This assumption on player behavior has important
implications for doubling. Since the expected payoff for a player is an increasing function of their game
evaluation, there exists an evaluation threshold such that a player should offer a double exactly when that
threshold has been surpassed. Doubling before that threshold offers the opponent too much chance for a
comeback, and waiting to double far past that threshold wastes an opportunity to end the game immediately
and eliminate the risk of loss, since a rational opponent would prefer, under a severe disadvantage, to forfeit
the current stake by folding than to accept the double and risk losing twice the stake. In [KS] the following
is proved; a proof is also included in Appendix A.

1The actual game of backgammon is more complex than this game, but it serves as a useful model. While the strategy of moving
counters and randomness of dice rolling have been simplified greatly and replaced with Brownian motion of the game state, the
decision of when to double and to accept/fold remains.
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FIGURE 1. The first plot is of double-proposal threshold dk with k doubles remaining.
Also plotted is the limit (orange), which equals the threshold for indefinitely many doubles
remaining, studied in [KS]. The second plot is the log of the absolute error from the limit
4/5, i.e., log(|dk − 4/5|), with the orange line being log(1/5) + x log(1/4).

Theorem 1.1. Let α be Player A’s optimal game state for proposing a double, and β be Player A’s game
state where Player B is indifferent between accepting and declining a double. Then α = β.

This result can be used for finding the optimal state for doubling by instead computing the point at which
the opponent is indifferent between accepting and folding; this indifference can be used to set up an equality
from which one can solve for the optimal state.

The analysis in [KS] adopts the rule that either player could propose indefinitely many doubles, and
concludes that 0.8 is the best evaluation to propose a double. We extend this analysis to variants with
different rules for modifying the stake.

1.3. Main results. In Section 2, we study variants of the stochastic game where the number of doubles
remaining is changed to some arbitrary positive integer. The analysis extends that of [KS], and culminates
in a closed-form expression for the optimal doubling point given an arbitrary number of doubles remaining.

Theorem 1.2. Suppose there is a total of k ≥ 1 potential doubles remaining in the game. The optimal game
state for doubling is given by

dk =
4

5
+

1

5

(
−1

4

)k

. (1.1)

Figure 1 plots the optimal game state, as a function of the number of doubles remaining, against its
limiting value of 0.8. Note that the thresholds for an odd number of doubles remaining stay below the
limiting threshold, while the even thresholds stay above. This indicates that having the final double is an
advantage that grows as fewer doubles remain.

In Section 3, we study variants where the stake changes by a multiplier other than 2 when the “doubling
cube” is played. We introduce the (x, y)-cube parameterized by real numbers x, y: when the cube is played,
upon acceptance the current stake is multiplied by y, and upon folding the opponent forfeits x times the
current stake. The default doubling cube is the special case (x, y) = (1, 2).

We determine the optimal doubling strategy for all (x, y) with x ∈ R, y > 0. We first treat some regions
of (x, y)-space that yield trivial decisions; for the remaining regions, we prove the following principle of
indifference, which generalizes Theorem 1.1.

3



Theorem 1.3. Let (x, y) be an arbitrary pair of real numbers with y > 0. Let α be Player A’s optimal
evaluation for proposing a double, and let β be Player A’s evaluation threshold where Player B is indifferent
between accepting and folding. If (x, y) falls in one of the regions

• R+ := {(x, y) ∈ R2 | 0 < x < y, y > 1},
• R− := {(x, y) ∈ R2 | 0 < −x < y, 0 < y < 1},

then α = β.

Both regions are illustrated in Figure 4. If (x, y) ∈ R+, we call the doubling cube a raising cube, and
in the case of R−, a reducing cube, while the term doubling cube serves as an umbrella term for both. An
offer of the doubling cube, a double, specifies to a raise and a reduction. A raising cube can be used by the
winning player to enlarge the payoff, while a reducing cube can be used by the losing player to cut the loss.
Note that the raising region R+ contains the pair (1, 2) corresponding to the standard doubling cube.

In the spirit of Theorem 1.2, we have a closed-form expression for the optimal state to double, whether
the cube is a raising cube or a reducing cube.

Theorem 1.4. Suppose (x, y) ∈ R+. The optimal game state dk to raise, given there are k ≥ 1 proposals
left to play, is

dk =
y(x+ 1)

2y + xy − x
+

x(1 + x)(y − 1)

2(2y + xy − x)

(
− y − x

y(1 + x)

)k

. (1.2)

Furthermore, raising at dk is preferable to not raising at all.

Note that the second part of the theorem is not trivially true: if x < 1, it might be preferable to not raise
when victory is imminent, in order to collect the full stake rather than the reduced stake x if the opponent
folds.

In analogy, the following results holds for the reducing cube.

Theorem 1.5. Suppose (x, y) ∈ R−. The optimal game state dk to reduce, given there are k ≥ 1 reductions
left to play, is

dk =
y + x

2y − xy + x
+

(−x)(1− x)(1− y)

2(2y − xy + x)

(
− y + x

y(1− x)

)k

. (1.3)

Furthermore, reducing at dk is preferable to not reducing at all.

Figure 2 gives a contour plot of optimal raising points dk in (1.2) over R+, for k = 1, 2, ∞. The plots
approach 1/2 along the boundary x = 0, and 1 along the boundary y = x. In parallel, Figure 3 plots the
optimal reducing points dk in (1.3). The plots approach 0 along the boundary y = −x, and 1/2 along the
boundary x = 0, with a discontinuity at (0, 0).

In Section 4 we introduce a three-player variant of the game based on a discrete random walk in a equilat-
eral triangle △ABC, where a player wins by reaching the corresponding vertex. The game state is a point
in the triangle, expressible in barycentric coordinates with the vertices being the basis. We show that at any
point P , the game evaluation for an arbitrary Player A, i.e., the probability that the random walk from P
first reaches vertex A, is given by the barycentric A-component of P . This also serves as a two-dimensional
discrete analogue to the consistency property of 1-dimensional Brownian motion.

We then extend 2-player doubling rules, and prove a principle of indifference (Theorem 4.3) analogous to
Theorem 1.1. We use it to compute the optimal doubling points and acceptance thresholds for a game with
one double allowed, observing that the thresholds may depend on the evaluation of all players, not just one’s
own. We finish by proposing alternate models for a 3-player game and presenting a computer simulation of
the triangle random walk.
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FIGURE 2. Contour plots over a portion of the raising region (x, y) ∈ R+ ∩ [0, 10]2 of dk
given in (1.2) for k = 1, k = 2, and the limiting value as k → ∞. The horizontal axis is x,
and the contours are spaced by 1/20, from 1/2 (green) to 1 (red).
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FIGURE 3. Contour plots over the reducing region (x, y) ∈ R− of dk given in (1.3) for
k = 1, k = 2, and the limiting value as k → ∞. The horizontal axis is x, and the contours
are spaced by 1/20, from 0 (purple) to 1/2 (green). Note the discontinuity at (0, 0).

2. TWO-PLAYER GAMES WITH VARYING NUMBER OF DOUBLES

2.1. One double allowed in total. When only one double is allowed, let p be a player’s optimal game state
for doubling. By Theorem 1.1, this occurs when the expected payoff is the same whether the double is
accepted or not.

Normalizing the initial stake to be 1, the expected payoff in the case of an accepted double is 2p−2(1−p),
while the expected payoff in the case of a declined double is 1. Setting 2p− 2(1− p) = 1 yields p = 3/4.

2.2. Up to n alternating doubles remaining. Here we treat a more general set of rules, and suppose that
there are a total of n doubles allowed in a game. We allow the game to possibly end before all n doubles are
played.

Let ak denote the evaluation threshold for a player to accept/reject the kth-to-last double, and dk the
evaluation threshold for a player to propose the kth-to-last double. We wish to determine ak, dk.

Proof of Theorem 1.2. At evaluation ak, a player is indifferent between accepting and declining a potential
kth double proposed by the opponent; either decision results in the same expected payoff. Declining results
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in a payoff of −1, i.e., losing the initial stake. Upon accepting the double, one of two items may happen:
losing (with payoff −2) without being able to double again, or recovering to some critical level dk−1 where
the player can propose the (k−1)st-to-last double (as long as k ≥ 2, and the opponent is indifferent between
accepting and folding. By indifference, the payoff is 2 in this case.

Given the current evaluation is ak, the probability of reaching dk−1 before 0 is (ak−0)/(dk−1−0) by the
consistency property of Brownian motion, i.e., the probability of reaching the right endpoint of an interval
before the left endpoint is the proportion of the interval traveled from the left endpoint. Correspondingly,
the probability of reaching 0 first is (dk−1−ak)/dk−1. The expected payoff for accepting the double is thus
(−2)((dk−1 − ak)/dk−1) + 2(ak/dk−1). Setting this equal to the expected payoff for folding, we have

−1 = (−2)
dk−1 − ak

dk−1
+ 2

ak
dk−1

, (2.1)

In the case k = 1, a player could not later double back after recovery; the evaluation must go to 1 in order
to win, since they could not double at a lower evaluation to force the opponent to fold. We may encode this
necessity by setting d0 = 1.

Now we consider the threshold for proposing a double. By Theorem 1.1, the threshold for proposing a
double corresponds to the opponent’s threshold for accepting, i.e., dk = 1− ak. Substituting this into (2.1)
gives

−1 = −2

(
dk−1 − (1− dk)

dk−1

)
+ 2

(
1− dk
dk−1

)
, (2.2)

which simplifies to

dk = 1− dk−1

4
. (2.3)

The initial condition d0 = 1 thus allows the explicit determination of dk and ak for all k.
Observe that this recurrence stabilizes if one were to take 4/5 instead as the initial condition, which makes

one suspect that 4/5 might be the limiting value. Notice that 4/5 is the established threshold for doubling
if the number of doubles are unlimited. We could try to keep track of the error term ϵk := dk − 4/5, and
substitute the recurrence (2.3) to obtain

ϵk = 1− dk−1

4
− 4

5

=
1

5
− dk−1 − 4/5 + 4/5

4

=
1

5
− ϵk−1

4
− 1

5

= −ϵk−1

4
, (2.4)

and we see that the error term satisfies ϵk = (−1/4)kϵ0, undergoing a simple exponential decay. Setting
ϵ0 = 1− 4/5 = 1/5 thus gives

dk =
4

5
+ ϵk

=
4

5
+

1

5

(
−1

4

)k

. (2.5)

□
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3. TWO-PLAYER GAMES WITH VARYING STAKES

We now explore more general game rules that allow for the stakes to vary. There are two parameters at
hand: the multiplier y to the stake upon accepting a double, and the multiplier x to the forfeited stake upon
folding. The results of this section mirror those of Section 2.

3.1. Trivial regions. We first consider values of (x, y) that result in trivial decisions.

Theorem 3.1. Let x ∈ R be the multiplier to the forfeited stake upon declining a double, and y ∈ R+ be
the multiplier to the stake upon accepting a double. For certain regions in the (x, y)-space, the following
optimal doubling strategy holds.

(1) If x ≥ y ≥ 0 and y > 1, one should double at evaluation p = 1.
(2) If x ≥ 0 and y ≤ 1, one should double at evaluation p = 0.
(3) If x < 0, and −x > 1 or y > 1, then one should never double.
(4) If −1 ≤ x ≤ 0 and y ≤ −x, one should double at evaluation p = 0.

Figure 4 illustrates the corresponding regions and summarizes the results for the optimal time to double.

Proof of Theorem 3.1. Suppose that x ≥ y ≥ 0. If offered a double, a player always fares better to accept
scaling the stake by y than to fold, which forfeits at least as much with certainty. If y > 1, then the double
should be offered at 1. At p = 1 − ϵ, the evaluation could eventually go to 1 or 0: in the former case one
could have waited till p = 1 to double; in the latter case, one has introduced unnecessary risk, since the
opponent would prefer to accept and stay in the game. Thus, waiting till p = 1 is strictly better. If y ≤ 1,
a similar argument shows that the double should be offered at 0, in order to not forfeit a chance of coming
back. It is easy to check that in both cases, offering a double at an extreme point is better than not offering,
which gives up an opportunity to scale the payoff favorably.

Suppose that x ≥ 0 and y ≤ 1. If offered a double, accepting results in reducing the stake, and folding
forfeits some nonnegative payoff. At game state p > 1/2, a player should not double since the opponent
may choose to accept and reduce the stake. If a player doubles at game state p ≤ 1/2, the opponent would
always accept to avoid forfeiture. If p > 0, there is a nonzero probability that the doubler might make a
comeback and regret doubling and reducing the stake; in the case of not making a comeback, the player
could double at p = 0 to reduce the stake. Thus, p = 0 is the optimal time to double.

Suppose that −x ≥ y ≥ 0. If a double is offered, folding immediately pays more than the post-acceptance
stake, so it is always advantageous to fold. If x ≤ −1, then folding pays at least as much as the current
stake, so a double should never be offered. If x > −1, then a double should be proposed only if p = 0, since
doubling at any other time forfeits a nonzero probability of making a comeback. Conversely, at p = 0 it is
advantageous to double and reduce the amount forfeited when the opponent folds.

Suppose that −x ≥ 0 and y ≥ 1. If offered a double, accepting it enlarges the current stake, and folding
wins some nonnegative payoff. At game state p ≥ 1/2, a player should not offer a double, since the opponent
may simply fold and receive a nonnegative payoff, rather than the negative expected payoff pre-doubling.
At evaluation p < 1/2, one should not double either since the opponent may choose to accept and enlarge
the stake, which is worse than not doubling since the doubler has a disadvantageous game state. Thus, a
player should never double in this case regardless of game state. □

3.2. Nontrivial regions. For the remaining nontrivial values of (x, y)–that is, those in one of the regions
• R+ := {(x, y) ∈ R2 | 0 < x < y, y > 1},
• R− := {(x, y) ∈ R2 | 0 < −x < y, 0 < y < 1},

Theorem 1.3, a principle of indifference generalizing Theorem 1.1, is proven below.
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Proof of Theorem 1.3. Let p be Player A’s game state, and suppose that Player A proposes a double. Let
EB(p) be the expected payoff for Player B upon accepting the double. By our game rules EB(p) is a de-
creasing function of p with EB(0) = y and EB(1) = −y, which corresponds to winning/losing the updated
stake. To decide whether to accept the double, Player B checks EB(p) against the rejection payoff −x; since
|x| < y in both regions R+, R−, there exists a threshold β where EB(β) = −x, and Player B is indifferent
between acceptance and rejection.

Case 1: (x, y) ∈ R+. At any point p, if Player B prefers folding to accepting (i.e., p > β), then p is not
the optimal time to double. If x ≥ 1, then Player A could have doubled at an earlier time when Player B
would fold, which is the best outcome for Player A since Player B can guarantee losing x or less. If x < 1,
then Player A should wait, since there is a nonzero probability that p reaches 1 before β, which results in
the full payoff of 1 instead of x.

Neither is any p < β the optimal time to double, since waiting till p ≥ β eliminates Player B’s chance of
coming back after accepting. Thus α = β.

Case 2: (x, y) ∈ R−. At any point p, if Player B prefers to fold and receive −x > 0, i.e., EB(p) < −x,
then Player A would have fared better to accept and keep playing for a chance of comeback. If Player B
prefers to accept and continue the game, i.e., EB(p) > −x, then it would have been better for Player A to
double earlier and cut the losses to −x. Thus the optimal point of doubling coincides with the opponent’s
point of indifference between accepting and folding, and α = β. □

(1, 2)

R+

R−

Never
p = 1

p = 0

p = 0

p = 0

Never

x

y

FIGURE 4. Regions in (x, y)-space labeled with the optimal time to double in the trivial
cases. The thick lines are x, y-axes; the diagonal lines are y = ±x, and the thin horizontal
line is y = 1. The nontrivial regions R+, R− are as in Theorem 1.3. The point (1, 2)
corresponds to the regular doubling cube.

3.2.1. Raising cube. We compute the optimal doubling points for (x, y) ∈ R+.
For a base case, we determine the optimal doubling point for only one double, which includes both raising

and reducing.
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Lemma 3.2. Suppose (x, y) ∈ R+ ∪ R−. Suppose that if one doubles at game state p, the opponent is
indifferent between accepting and folding. Then

p =
1

2
+

x

2y
. (3.1)

Proof. Let p be the the point of indifference as described. In the case of acceptance, the doubler’s expected
payoff, assuming unit initial stake, is yp− y(1− p) = y(2p− 1). Setting y(2p− 1) = x, the payoff in the
case of folding, yields

p =
1

2
+

x

2y
(3.2)

as claimed. □

Note that substituting y = 2 and x = 1 gives p = 3/4, which matches the result for one single offer of
the doubling cube.

With the k = 1 case prepared, we can now prove Theorem 1.4.

Proof of Theorem 1.4. The analysis will be similar to, but slightly more nuanced than that of Theorem 1.2.
The complication comes from the possibility that for some values of (x, y) and k doubles remaining, it could
be better to never double than to double at the optimal point. We will rule out this possibility at the end of
the proof.

For simplicity, we first determine the doubling points for a pair of opponents who do not perform the
comparison against never doubling, and always double at the optimal point.

Lemma 3.3. Consider a (x, y)-cube game with (x, y) ∈ R+ with k doubles remaining. Suppose that players
always double at evaluation dk where the opponent is indifferent between accepting and folding. Then

dk =
y(x+ 1)

2y + xy − x
+

x(x+ 1)(y − 1)

2(2y + xy − x)

(
− y − x

y(x+ 1)

)k

. (3.3)

.

The proof, being a more tedious version of the proof for Theorem 1.2, is left to Appendix A.
Now we determine when it is better to double at the optimal point than to never double. At state p,

not doubling results in an expected payoff of 2p − 1; in order for doubling to be preferable, this must be
no greater than the payoff x of doubling at the optimal point. Solving 2p − 1 ≤ x yields p ≤ (1 + x)/2;
whenever dk is less than (1+x)/2, doubling is preferable to doubling. We need to check that dk < (1+x)/2
holds for all values of (x, y) ∈ R+ and k ≥ 1.

In (3.3), observe that the constant term and the coefficient of the exponential term are both positive, since
n > 1. Furthermore, the exponential term has magnitude less than 1 and alternates in sign, which implies
that dk, as a function of k, is maximized when k = 2. It thus suffices to show that d2 < (1 + x)/2.
Fortunately, it holds that

1 + x

2
− d2

=
1 + x

2
− y(x+ 1)

2y + x(y − 1)
− x(x+ 1)(y − 1)

2(2y + x(y − 1))

(
− y − x

y(x+ 1)

)2

=
x2(y2 − 1)

2y2(x+ 1)
, (3.4)

which is positive since y > 1, completing the proof. □
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3.2.2. Reducing cube. We compute the optimal reducing strategy for (x, y) ∈ R−. With the k = 1 case
prepared, we can now prove Theorem 1.5.

Proof of Theorem 1.5. As in the proof of Theorem 1.4, we compute the optimal reducing states assuming
that each player would reduce whenever the opponent is indifferent, and then show that doing so is always
preferable to not reducing.

Lemma 3.4. Consider a (x, y)-cube game with (x, y) ∈ R− with k reductions remaining. Suppose that
players always reduce at state dk where the opponent is indifferent between accepting and folding. Then

dk =
y + x

2y − yx+ x
+

(−x)(1− x)(1− y)

2(2y − yx+ x)

(
− y + x

y(1− x)

)k

. (3.5)

The proof is similar to the proof of Lemma 3.3 and left to Appendix A.
Now we show that it is better to reduce at the optimal point than to never reduce. At state p, not doubling

results in an expected payoff of 2p − 1; in order for doubling to be preferable, this must be no greater than
the payoff x of doubling at the optimal point. Solving 2p − 1 ≤ x yields p ≤ (1 + x)/2; whenever dk is
less than (1 + x)/2, doubling is preferable to doubling. We need to check that dk < (1 + x)/2 holds for all
values of (x, y) ∈ R− and k ≥ 1.

In (3.5), observe that the coefficient of the exponential term is positive, since each factor in the numerator
is positive, and the denominator agrees in sign with 2y−yx+x = y(1−x)+(y+x), where both summands
are positive since y > |x|. Furthermore, the exponential term has magnitude less than 1 and alternates in
sign, which implies that dk, as a function of k, is maximized when k = 2. It thus suffices to show that
d2 < (1 + x)/2. Fortunately, it holds that

1 + x

2
− d2

=
1 + x

2
− y + x

2y − yx+ x
− (−x)(1− x)(1− y)

2(2y − yx+ x)

(
− y + x

y(1− x)

)2

=
x2(1− y2)

2y2(1− x)
, (3.6)

which is positive since y < 1 and x < 0, completing the proof. □

4. THREE-PLAYER VARIANTS

It is natural to generalize the existing game to a variant involving 3 players. In the 2-player game, we
used a line segment [0, 1] to model the space of game evaluations; in a 3-player setup, it would be natural to
choose a two-dimensional region. There are many choices one can make about the boundary shape of the
region and the number of directions a single turn can traverse. In this section we mainly explore a random
walk in a triangle that leads to neat properties, give results on doubling thresholds, and present a computer
simulation, along with a sketch of other random walk models.

4.1. Random walk in a Triangle. One natural choice is to use an equilateral triangle and its interior to
represent the space of game states, where the vertices A,B,C correspond to the three players. Each point
in the triangle can be written in barycentric coordinates as xA + yB + zC, or (x, y, z) in short, where
x, y, z ∈ [0, 1], and x+ y+ z = 1. Each coordinate has a geometric interpretation: if the triangle ABC has
area 1, each coordinate of P = (x, y, z) is the area of the triangle subtended by the point P , and the vertices
associated with the remaining coordinates; see Figure 5.

Once a vertex is reached, the corresponding player is declared victorious; this corresponds to a coordinate
where one entry equals 1, and the other coordinates are 0, which would be a win in the 2-player game.
Additionally, it is also natural to stipulate additionally that once an edge is reached, the player corresponding
to the non-incident vertex is ejected from the game, and the game devolves into a two-player game between
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the incident vertices. This corresponds to a player’s coordinate reaching 0, which would be a loss in the
2-player game.

For simplicity we study a discretized game, with the triangle’s interior filled in by an equilateral triangle
tiling. The game state is modeled by a vertex of the tiling. A point in the interior of the triangle is allowed to
move to one of the six adjacent vertices per turn, with equal probability; a point on the boundary is allowed
to move only in 2 directions along the boundary, with equal probability, corresponding to the ejection of the
remaining player.

x

y

z

C

B

A
FIGURE 5. A unit-area equilateral triangle with an underlying tiling whose vertices cor-
respond to discretized game evaluations. The coordinates (x, y, z) of an arbitrary point
xA + yB + zC correspond to the areas shown. The six arrows correspond to the 6 direc-
tions of movement available to an interior point.

Under these game rules, the game evaluation at any point P can be written as (PA, PB, PC), where PA

denotes the probability of the point P reaching vertex A before any other vertex. Clearly PA+PB+PC = 1,
which reminds one of a barycentric coordinate. We now state and prove a remarkable expression for the
game evaluation.

Theorem 4.1. Given a game state P = xA+yB+zC, the game evaluation at P is given by (PA, PB, PC) =
(x, y, z).

Before proving the theorem, we first state and prove a discrete analogue to the consistency property of
Brownian motion, which is useful toward treating the edges of the triangle.

Lemma 4.2. Let n be a positive integer, and 0 ≤ k ≤ n be an integer. Consider the random walk constructed
by adding +1 or −1 to k independently and with equal probability at each step. Then, the probability that
n is reached before 0 is k/n.

Proof. Let pk (0 ≤ k ≤ n) denote the probability that starting at k, n will be reached before 0. We
immediately have p0 = 0 and pn = 1.

11



For 1 ≤ k ≤ n − 1, there is an equal chance that k becomes k − 1 or k + 1 after the next addition, so
pk = (pk−1 + pk+1)/2. Rearranging gives

2pk = pk−1 + pk+1

pk − pk−1 = pk+1 − pk, (4.1)

which implies the pk’s form an arithmetic sequence due to the common difference. Knowing p0 = 0 and
pn = 1 suffices to conclude that pk = k/n. □

Noting that k/n is the barycentric n-coordinate of the point k in the basis {0, n}, we may now prove
Theorem 4.1.

Proof of Theorem 4.1. We proceed to verify the claim along the boundary of the triangle and then in the
interior.

Consider first the vertices A,B,C, which correspond to the barycentric coordinates (1, 0, 0), (0, 1, 0),
(0, 0, 1), which trivially gives the evaluations of the players since they each represent a game termination
state.

Now consider a point P = (x, y, z) in the triangle that is not one of the vertices; we split into two cases
depending on the location of P . If P is on a boundary, then by the game rules P undergoes a symmetric
one-dimensional random walk along an edge, say AB, i.e., z = 0. By Lemma 4.2, the probability PA of
reaching A before B is the barycentric coordinate x. Similarly, PB = y, PC = z by symmetry.

If P is in the interior, then its evaluation (PA, PB, PC) is the average of the evaluations of the 6 incident
vertices in the triangle tiling. Observe that this recurrence relation among the triangle vertices is also satisfied
by the barycentric coordinates (x, y, z). Since the equality (PA, PB, PC) = (x, y, z) holds on the boundary
of the triangle, the recurrence forces the equality to hold everywhere. □

4.2. The Stake and Doubling Dice. The introduction of an additional player poses the question of the most
natural extensions to the 2-player game rules.

In the 2-player game, a player stands to win or lose by the same amount, which is termed the stake. In the
3-player game, we stipulate that the payment to the winner is split evenly among the remaining opponents.
Here we define the stake to be the payment made by each opponent; thus, the winner receives twice the
stake.

In the three-player game, a doubling offer, if accepted, doubles the stake of every player. A sufficient
condition for the double to be accepted is up to choice; the game can have the double effective only if both
opponents accept, or have one acceptance be sufficient and effective. One might argue that it is natural to
have one acceptance suffice, since otherwise a losing player may exert undue influence on another player by
refusing a double and immediately ending the game.

After the doubling cube is played, the right to the cube rests with the remaining two players. It is not
required for both opponents to double before a player could double again.

We prove a principle of indifference for the 3-player game analogous to Theorem 1.1.

Theorem 4.3. A player’s optimal time to double occurs when both opponents are first willing to fold.

Proof. Consider the perspective of Player A. Suppose that both opponents are willing to fold if Player A
doubles. Since Players B, C are rational, they would not each surrender more than their current stake;
thus Player A achieves the optimal outcome (collecting twice the current stake) by doubling. Thus the
optimal time for Player A to double occurs when both opponents are first willing to fold, or before; it is not
advantageous to wait past this point.

For the other direction, suppose that Player B is willing to accept a double. If Player A doubles at this
point, they would experience one of the two possible outcomes: reaching a point when Players B, C would
both fold, or losing the game. Player A would have fared better to wait until both opponents would fold to
propose the double, which eliminates the risk of losing the game. Thus the optimal time to double agrees
with the time when both opponents are first willing to fold. □
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4.3. Decision thresholds with one double. We determine the decision thresholds for a game that allows
for only one double to be played.

Theorem 4.4. In the three-player game with one double allowed, a player should fold if their evaluation is
less than 1/6, and a player should double if both opponents have an evaluation no more than 1/6.

Proof. Without loss of generality we consider the perspective of Player B, who is indifferent between ac-
cepting and folding at evaluation (x, y, z). By folding, if the folding is effective, Player B’s payoff is −1.

If Player B accepts the double, they may lose via the evaluation reaching 0, which occurs with probability
1− y with payoff −2, or win. Since there are no doubles left, the only way to win is to have the evaluation
reach 1, which happens with probability y and payoff 4. Thus the overall expected payoff is 4y − 2(1− y).
Setting this equal to −1 yields y = 1/6, which is Player B’s accept/reject threshold. The claimed doubling
threshold follows from Theorem 4.3. □

Remark 4.5. The game with only one double, as it turns out, is exceptionally easy to study. When more dou-
bles are available, Player B from the proof, after accepting a double, may win without having the evaluation
reach 1–it suffices to reach the threshold for proposing a double. As we see in Theorem 4.4, the threshold
might not be expressible as Player B’s evaluation alone, instead depending on the evaluations of both oppo-
nents, forming a curve inside the evaluation triangle. This introduces the implicit problem of determining,
for a particle undergoing a random walk, the probability of reaching an arbitrary region before reaching an
edge of the triangle.

Figure 6 illustrates the decision regions obtained in Theorem 4.4.

C

B

A
FIGURE 6. The decision regions if one double is allowed, per Theorem 4.4. A player
corresponding to a colored vertex should propose a double at the boundary of the filled
region, and be willing to fold at the faraway line of the same color.

In the arXiv version of this paper, we give a computer simulation of the random walk described in this
section. We created several functions which allowed us to (i) simulate a round of the 3-player game, (ii)
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simulate several rounds to find the probability of each player winning from a certain point, (iii) create a
function to test different bounds for doubling and explore different winners and winning stakes, and (iv)
compare the probability of each player winning at a certain point compared to the area of their triangle.

4.4. Alternative 3-player models. Aside from the random walk in a triangle, other models of a 3-player
game may be of interest.

Another random-walk model can be constructed using the regular hexagon as the space of game states,
with three non-adjacent edges each representing a zone of victory for the three players.

The random walk starts from the geometric center of the hexagon and allows moves in three directions
with probability 1/3 during each discrete time step. These three directions are orthogonally toward the
victory zone of each player, see Figure 7. When reaching a non-winning edge, the game designer may
choose to eject the antipodal player, or to assign a probability of 1/2 to each direction toward the interior.

FIGURE 7. A hexagon as the space of game states, with arrows representing the directions
available for the random walk.

This hexagon model is created to address a potential issue of the triangle model: as the random walk
approaches a vertex, the probability of being ejected (hitting an edge) swings wildly between the two losing
players, which may be undesirable. The hexagon model, if ejection is implemented, allows for the ejection
zones to be separated by a nonzero distance, avoiding this issue.

Another way to model the three-player game can be represented as a complete ternary tree with some
depth d, corresponding to the fineness of the time steps. Each leaf vertex is assigned Red, Green, or Blue
(corresponding to the players), in such a way that nodes sharing the same parent must have different colors,
see Figure 8.

The game proceeds by tree traversal: starting at the root, a particle moves a level down the tree during each
time step, reaching each child with probability 1/3. During each step, a lucky player is chosen uniformly at
random, and some subset of the descendant leaves are converted to the color corresponding to that player.
The game ends when a leaf is reached, with the color of the leaf corresponding to the winner.

5. CONCLUDING REMARKS; LIMITATIONS AND FUTURE WORK

Furthering the work of [KS] and [BM] on a stochastic game inspired by backgammon, we determined
decision thresholds for more general variants of game where the number of doubles and stake multipliers
may vary. We also introduced a three-player generalization of the game and proved basic results about game
behavior. We saw that in general a double (or its generalization) should be proposed when the opponent(s) is
indifferent between accepting and rejecting the proposal; this principle of indifference allowed the explicit
computation of decision thresholds.

Our results are limited in their applicability to an actual game of backgammon.
14



FIGURE 8. Initial state of the ternary tree model.

• Our random walk models assume that the walk is continuous or discretized in a way such that only
a small distance may be traversed in the span of a few turns. The game evaluation of an actual game
of backgammon may change much more erratically: one move, especially in the endgame, could
result in a wild swing in the evaluation.

• We assume that players (i) have the sole objective of maximizing expected payoff and (ii) play
perfectly toward that objective, which might not be the case in an actual game. A player close to
winning a tournament may choose to play conservatively to maintain their ranking (an objective not
considered by our models), while someone who fared more poorly may be more open to risks for
the possibility of placing in the tournament. Furthermore, against a less skilled opponent, it may
be sensible to continue the game instead of forfeiting when the threshold is reached, in hopes of a
future blunder by the opponent.

• The expected payoff, in practice, is relevant only over the span of many games, enough so that the
law of large numbers is effective. If only a small number of games is played, a player may fare
better with a lower-risk, lower-reward strategy.

• As there are no pieces to move in our model, there is no notion of “going first”; the initial game state
of 0.5 reflects the assumption that the game starts off balanced, and neither player has an advantage
over the other. In an actual game of backgammon, however, the first mover has a slight advantage. In
comparison, having the first move in Chess, although unproven, is hypothesized to be advantageous
due to the initiative, and having the first move in Giveaway Chess has been shown to be winning.

• Our thresholds are computed using the game evaluation, which in our model is universal and visible
to every player. In an actual game of backgammon, player do not have access to this information
and must make an educated guess based on the game state; depending on personal factors such
as playing style and skill level, different players may arrive at different evaluations of the same
position.

Our analysis points naturally to some directions of further work.

• Our current random walk models do not account for the wild swings in probability that may occur
in an actual backgammon game. One could introduce a more sophisticated model where, at each
time step, both the direction and magnitude of the step taken are randomized.
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• In the three-player variant based on random walk in a triangle, we were only able to determine the
decision regions for one double only. The difficulty, as pointed out in Remark 4.5, was determining
the probability of a 2-dimensional random walk hitting one region before another. If further progress
can be made toward this sub-problem, it would be feasible to determine the decision regions for more
complex doubling rules. It would be interesting to see if the decision regions have a limiting shape
in the case of infinitely many doubles.

Furthermore, it would be interesting to replace the 6-directional discrete random walk with a
continuous random walk, such as Brownian motion.

• It would be interesting to consider variants with more than three players. The 3-player doubling
rules in Section 4 generalize immediately to more players, but it is unclear what polytope to choose
for modeling the game state. A higher-order two-dimensional polygon runs into a problem that the
evaluations of players in close proximity are correlated, so perhaps a higher-dimensional simplex
would be the most natural choice.

• In the discrete random walk in △ABC where the equilateral triangle tiling has edges subdivided by
n, each vertex of the tiling (and thus each game state and evaluation) can be written as (a/n)A +
(b/n)B+(c/n)C, where a+ b+ c = n are integers. The triple (a/n, b/n, c/n) can also be thought
of as the type (empirical distribution) of a string with length n over the alphabet {A,B,C}. This
connection may be worth further investigation, to give a combinatorial interpretation to the random
walk, in addition to a geometric one. Furthermore, such a perspective may make information-
theoretic tools applicable.

APPENDIX A. PROOFS OF AUXILIARY RESULTS

Proof of Theorem 1.1. Since Player B plays perfectly, Player A’s expected payoff is never greater than the
current stake of the game. Thus, whenever Player B is willing to fold, Player A should double, since doing
so results in receiving the current stake of the game, which is the greatest amount of payoff possible. Thus
the optimal point to double should be at least as early as any point when Player B is willing to fold, so
α ≤ β.

Suppose that Player A doubles at some point p strictly less than β, in which case Player B would accept.
Let q be such that p < q < β; after the doubling and acceptance, Player A’s state may reach q, or it may
not. If Player A’s state does reach q, Player A could have waited till q to propose the double, since the result
would have been the same. If Player A’s state does not reach q, then Player A loses, and loses double the
stake. Thus, doubling at p is inferior to doubling at q, which implies the optimal time to double cannot be
less than β. Thus α ≥ β, which together with α ≤ β implies α = β. □

Proof of Lemma 3.3. Suppose Player B raises. Player A, at evaluation ak (k ≥ 2), is indifferent between
accepting and folding. If Player A folds, then their expected payoff is −x. If Player A accepts, either they
lose and receive −y, or their evaluation rises to dk−1 and they offer the (k − 1)st raise, at which point the
expected payoff is yx. The probability of reaching 0 before dk−1 is (dk−1−ak)/dk−1, while the probability
of reaching dk−1 before 0 is ak/dk−1. Therefore, the expected payoff for Player A, upon acceptance, is

−y

(
dk−1 − ak

dk−1

)
+ yx

(
ak
dk−1

)
. (A.1)

By Theorem 1.3, the threshold occurs when Player A’s expected payoff is the same whether the “double”
is accepted or not. Setting (A.1) equal to −x, and noting that ak = 1− dk, yields

dk = 1− dk−1

(
y − x

y(x+ 1)

)
. (A.2)

To find the limiting threshold as the number of raises becomes large, it suffices to solve for the value
where the recurrence stabilizes:
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p = 1− p

(
y − x

y + yx

)
=⇒ p =

1

1 + y−x
y+yx

=
y + yx

2y + yx− x
. (A.3)

To find a closed-form for the threshold given arbitrarily many offers remaining, one can try to track the
error term ϵk := dk − p, and obtain

ϵk = 1− dk−1

(
y − x

y + yx

)
− y + yx

2y + yx− x

=
y − x

2y + yx− x
− y − x

y + yx

(
dk−1 −

y + yx

2y + yx− x
+

y + yx

2y + yx− x

)
=

y − x

2y + yx− x
− y − x

2y + yx− x
−
(

y − x

y + yx

)
ϵk−1

=

(
− y − x

y + yx

)
ϵk−1. (A.4)

Therefore the error terms satisfies ϵk = c
(
− y−x

y+yx

)k
for some constant c. From the initial condition

ϵ1 + p = d1 = 1/2 + x/(2y), given in Lemma 3.2, we can determine c and obtain that

dk =
y(x+ 1)

2y + x(y − 1)
+

x(x+ 1)(y − 1)

2(2y + xy − x)

(
− y − x

y(x+ 1)

)k

. (A.5)

□

Proof of Lemma 3.4. Suppose Player B reduces. Player A, at evaluation ak (k ≥ 2), is indifferent between
accepting and folding. If Player A folds, then their expected payoff is −x. If Player A accepts, either they
win and receive y, or their evaluation drops to dk−1 and they offer the (k − 1)st reduction, at which point
the expected payoff is yx. The probability of reaching 1 before dk−1 is (ak − dk−1)/(1− dk−1), while the
probability of reaching dk−1 before 1 is (1 − ak)/(1 − dk−1). Therefore, Player A’s expected payoff upon
acceptance is

y

(
ak − dk−1

1− dk−1

)
+ yx

(
1− ak
1− dk−1

)
. (A.6)

By Theorem 1.3, the threshold occurs when Player A’s expected payoff is the same whether the reduction
is accepted or not. Setting (A.6) equal to −x, and noting that ak = 1− dk, yields

dk =
y + x

y(1− x)
(1− dk−1). (A.7)

To find the limiting threshold as the number of reductions becomes large, it suffices to solve for the value
where the recurrence stabilizes:

p = (1− p)

(
y + x

y(1− x)

)
=⇒ p =

y + x

2y − yx+ x
. (A.8)
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To find a closed-form for the threshold given arbitrarily many offers remaining, one can perform a error
analysis on ϵk := dk − p, similarly to the proof of Lemma 3.3, and obtain

ϵk =

(
− y + x

y(1− x)

)
ϵk−1. (A.9)

The constant coefficient can be determined from the k = 1 case given by Lemma 3.2, and from there it
follows that

dk =
y + x

2y − yx+ x
+

(−x)(1− x)(1− y)

2(2y − yx+ x)

(
− y + x

y(1− x)

)k

. (A.10)

□
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