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abstract In the literature, Benford’s Law is considered for base-b expansions where b > 1
is an integer. In this paper, we investigate the distribution of leading “digits” of a sequence
of positive integers under other expansions such as Zeckendorf expansion, and declare what
Benford’s Law should be under generalized Zeckendorf expansion.

1 Introduction

Introduced in [2, 18] is a probability distribution of the leading decimal digits of a sequence
of positive integers, known as Benford’s Law, and the exponential sequences such as {3n}
are standard examples of sequences that satisfy Benford’s Law. Given d ∈ {1,2,3, . . . ,9}, the
probability of having the leading digit d in the decimal expansion of 3n is log10

d+1
d , and this

distribution is Benford’s Law. In fact, given a block B of digits of any length, the probability
of having the leading block B in the decimal expansion of 3n is given by a similar logarithmic
formula as well, and this is known as strong Benford’s Law; see Example 1.9. It is indeed
a special property that a sequence has convergent proportions for each leading digit. For
example, the proportion of odd integers 2n−1 ≤ M with leading digit d oscillates, and does
not converge as M →∞; see Section 4.10.

In the literature, Benford’s Law is considered for base-b expansions where b > 1 is an
integer. For example, the probabilities of the binary expansions of integer powers of 3 having
the leading binary digits 1002 and 1012 are log2

22+1
22 and log2

22+2
22+1 , respectively; for later

reference, we may rewrite the values as follows:

log2
1+2−2

1
≈ 0.322, log2

1+2−1

1+2−2 ≈ 0.264. (1)

In this paper, we shall consider the distribution of leading “digits” of a sequence of positive
integers under other expansions such as Zeckendorf expansion [19]. For example, let {Fn}∞n=1
for n ≥ 1 be the shifted Fibonacci sequence, i.e., Fn+2 = Fn+1+Fn for all n ∈N and F1 = 1 and
F2 = 2, and consider two Zeckendorf expansions: 35 = F12+F5+F2 and 38 = F18+F16+F14+
F11 +F7 +F5. Similar to the way the binary expansions are denoted, we may write

35 = 100000010010F , 38 = 101010010001010000F

where 1’s are inserted at the kth place from the right if Fk is used in the expansions.

Definition 1.1. Let A = {0,1}. Given {s,n} ⊂ N, let n = ∑M
k=1 akFM−k+1 be the Zeckendorf

expansion of n (where a1 = 1). We define LBs(n) := (a1, . . . ,as) ∈ As if M ≥ s; otherwise,
LBs(n) is undefined. The tuple LBs(n) is called the leading block of n with length s under
Zeckendorf expansion.
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For example, LB3(35)= (1,0,0), LB3(38)= (1,0,1), and LB6(38)= (1,0,1,0,1,0). Since LB2(n)=
(1,0) for all integers n ≥ 2, it is only meaningful to consider the first three or more Zeckendorf
digits. We prove Theorem 1.3 in this note.

Definition 1.2. Given a conditional statement P(n) where n ∈ N, and a subset A of N, let
us define

Prob
{

n ∈ A : P(n) is true
}

:= lim
n→∞

#{k ∈ A : P(k) is true, k ≤ n}
#{k ∈ A : k ≤ n}

.

For example, if A = {n ∈N : n ≡ 2 mod 3}, then Prob
{

n ∈ A : n ≡ 1 mod 5
}= 1

5 . If A is finite,
the limit always exists.

Let φ be the Golden ratio. The following is an analogue of Benford’s Law under binary
expansion demonstrated in (1).

Theorem 1.3. Let a > 1 be an integer.

Prob
{

n ∈N : LB3(an)= (1,0,0)
} = logφ(1+φ−2)≈ .672,

Prob
{

n ∈N : LB3(an)= (1,0,1)
} = logφ

φ

1+φ−2 ≈ .328.

In particular, they exist! Although the probabilities are different from the binary cases, the
structure of the log expressions in Theorem 1.3 is quite similar to that of the binary ex-
pansions in (1), i.e., the denominators of the quotients express the leading digits in power
expansions with respect to their bases. The exponential sequences {an}∞n=1 where a > 1 is an
integer are standard sequences that satisfy Benford’s Law under base-b expansion. Moti-
vated from these standard examples, we define Benford’s Law under Zeckendorf expansion
to be the above distribution of the leading blocks (1,0,0) and (1,0,1) under Zeckendorf ex-
pansion; see Definition 3.6.

The exponential sequences {an}∞n=1 are standard sequences for so-called strong Benford’s
Law under base-b expansion as well; see Example 1.9. We introduce below the probability
of the leading Zeckendorf digits of an with arbitrary length, which is a generalization of
Theorem 1.3; this result is rewritten in Theorem 3.8 with more compact notation.

Definition 1.4. Let A = {0,1}, and let s ≥ 2 be an integer. Let b = (b1,b2, . . . ,bs) ∈ As such
that b1 = 1 and bkbk+1 = 0 for all 1 ≤ k ≤ s−1. We define b̃ to be a tuple (b̃1, . . . , b̃s) ∈ As

as follows. If 1+∑s
k=1 bkFs−k+1 < Fs+1, then b̃k for 1 ≤ k ≤ s are defined to be integers

in A such that 1+∑s
k=1 bkFs−k+1 = ∑s

k=1 b̃kFs−k+1 and b̃k b̃k+1 = 0 for all 1 ≤ k ≤ s− 1. If
1+∑s

k=1 bkFs−k+1 = Fs+1, then b̃1 := b̃2 := 1, and b̃k := 0 for all 3≤ k ≤ s.

For the case of 1+∑s
k=1 bkFs−k+1 < Fs+1, the existence of the tuple b̃ is guaranteed by Zeck-

endorf ’s Theorem.

Theorem 1.5. Let a > 1 and s ≥ 2 be integers. Let b and b̃ be tuples defined in Definition
1.4. Then,

Prob
{

n ∈N : LBs(an)=b
} = logφ

∑s
k=1 b̃kφ

−(k−1)∑s
k=1 bkφ−(k−1) .
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For example,

Prob
{

n ∈N : LB6(an)= (1,0,0,0,1,0)
} = logφ

1+φ−3

1+φ−4 ≈ 0.157

Prob
{

n ∈N : LB6(an)= (1,0,1,0,1,0)
} = logφ

1+φ−1

1+φ−2 +φ−4

= logφ
φ

1+φ−2 +φ−4 ≈ 0.119.

As in Benford’s Law under Zeckendorf expansion, we define the probability distributions
described in Theorem 3.8 to be strong Benford’s Law under Zeckendorf expansion; see Defi-
nition 3.9.

Exponential sequences are standard examples for Benford’s Laws, but some exponential
sequences do not satisfy Benford’s Law under some base-b expansion. Let us demonstrate
examples under Zeckendorf expansion. Let {Gn}∞n=1 be the sequence given by Gk = F2k +Fk

for k ∈ N. Then, given an integer s > 1, the s leading Zeckendorf digits of Gk is 100 · · ·00F

as k →∞ since the gap 2k− k = k between the indices of F2k and Fn approaches ∞. Thus,
Prob

{
n ∈N : LBs(Gn)= (1,0,0, . . . ,0)

} = 1 for all s ∈ N, and the probabilities of other digits
of length s are all (asymptotically) 0. Similar probability distributions occur for the Lucas
sequence {Kn}∞n=1 given by Kk+2 = Kk+1 +Kk for k ∈N and (K1,K2) = (2,1). Given s ∈N, the
probabilities of having leading Zeckendorf digits of length s are entirely concentrated on one
particular string of digits. For example, Prob

{
n ∈N : LB10(Kn)= (1,0,0,0,1,0,0,0,1,0)

}= 1,
and the probabilities of having other digits of length 10 is all (asymptotically) 0; see Example
5.10 for full answers.

Generalized Zeckendorf expansions are introduced in [10, 17]. In Section 6, we prove
Theorem 6.9 on the probability of the leading digits of an with arbitrary length under gen-
eralized Zeckendorf expansion, and define these probability distributions to be strong Ben-
ford’s Law under generalized Zeckendorf expansion; see Definition 6.10. As in the concept
of absolute normal numbers [12], we introduce in Definition 6.15 the notion of absolute Ben-
ford’s Law, which is the property of satisfying strong Benford’s Law under all generalized
Zeckendorf expansions. For example, the sequence given by Kn =

⌊
φp
5
(89

55 )n
⌋

for n ∈N satis-
fies strong Benford’s Law under all generalized Zeckendorf expansions; see Example 6.18.
Its first fifteen values are listed below:

(1,1,3,4,8,12,21,34,55,89,144,233,377,610,988).

They are nearly equal to the Fibonacci terms as 89
55 is the 10th convergent of the continued

fraction of φ. The differences amplify as we look at higher terms, and even under Zeckendorf
expansion, this sequence satisfies strong Benford’s Law.

It is also natural to consider sequences that have different distributions, and in this
note we investigate other distributions of leading digits under generalized Zeckendorf ex-
pansions as well. In the following paragraphs, we shall explain this approach using base-10
expansion. The results for other expansions are introduced in Section 5 and 6.
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Strong Benford’s Law for the sequence {3n}∞n=1 under decimal expansion follows from
the equidistribution of the fractional part of log10(3n) on the interval (0,1). We realized
that the function log10(x) is merely a tool for calculating the leading digits, and that other
distributions of leading digits naturally emerge as we modified the function log10(x).

We noticed that the frequency of leading digits converges when a continuation of the
sequence {10n−1}∞n=1 has convergent behavior over the intervals [n,n+1], and we phrase it
more precisely below.

Definition 1.6. Let {Hn}∞n=1 be an increasing sequence of positive integers. A continuous
function h : [1,∞) → R is called a uniform continuation of {Hn}∞n=1 if h(n) = Hn for all n ∈N,
and the following sequence of functions hn : [0,1]→ [0,1] uniformly converges to an increas-
ing (continuous) function:

hn(p)= h(n+ p)−h(n)
h(n+1)−h(n)

.

If h is a uniform continuation of {Hn}∞n=1, let h∞ : [0,1]→ [0,1] denote the increasing contin-
uous function given by h∞(p)= limn→∞ hn(p).

Theorem 1.8 below is a version specialized for decimal expansion. The proof of this theo-
rem is similar to, and much simpler than the proof of Theorem 5.6 for Zeckendorf expansion,
and we leave it to the reader.

Definition 1.7. If α ∈ R, we denote the fractional part of α by frc(α). Given a sequence
{Kn}∞n=1 of real numbers, we say, frc(Kn) is equidistributed if Prob

{
n ∈N : frc(Kn)≤β } = β

for all β ∈ [0,1].

For example, consider the sequence {frc(nπ)}∞n=1 where π≈ 3.14 is the irrational number.
Then, by Weyl’s Equidistribution Theorem, frc(nπ) is equidistributed on the interval [0,1].
The sequence {sin2(n)}∞n=1 is an example of sequences that have Prob

{
n ∈N : sin2(n)≤β }

de-
fined for each β ∈ [0,1], and the probability is 1

π
cos−1(1−2β). Thus, it is not equidistributed

on [0,1].

Theorem 1.8. Let h : [1,∞)→R be a uniform continuation of the sequence {10k−1}∞n=1. Then,
there is a sequence {Kn}∞n=1 of positive integers approaching ∞ (see Theorem 6.19 for the
description of Kn) such that frc

(
h−1(Kn)

)
is equidistributed.

Let {Kn}∞n=1 be a sequence of positive integers approaching ∞ such that frc
(
h−1(Kn)

)
is

equidistributed. Let d be a positive integer of s decimal digits. Then, the probability of the s
leading decimal digits of Kn being d is equal to

h∞−1
(
(d+1)−10s−1

9 ·10s−1

)
−h∞−1

(
d−10s−1

9 ·10s−1

)
.

Example 1.9. Let h : [1,∞) → R be the function given by h(x) = 10x−1. Then, h is a uni-
form continuation of the sequence {10n−1}, and h∞(p) = 1

9 (10p −1). By Theorem 6.19, the
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sequence {Kn}∞n=1 with the equidistribution property is given by Kn = ⌊
10n+frc(nπ)⌋, but there

are simpler sequences such as {3n}∞n=1 that have the property.
By Theorem 1.8, the probability of the s leading decimal digits of Kn being d is equal to

log10
d+1
10s−1 − log10

d
10s−1 = log10

(
1+ 1

d

)
where d ∈ N has s decimal digits. This distribution is known as strong Benford’s Law un-
der base-10 expansion, and we may say that strong Benford’s Law under base-10 expansion
arises from the logarithmic continuation of {10n−1}∞n=1. For this reason, we call h(x) a Ben-
ford continuation of the base-10 sequence.

Example 1.10. Let h : [1,∞) → R be the function whose graph is the union of the line seg-
ments from (n,10n−1) to (n+1,10n) for all n ∈N. Let {Kn}∞n=1 be the sequence given by Kn =⌊
10n+log10(9frc(nπ)+1)⌋ as described in Theorem 6.19. Then, the fractional part frc

(
h−1(Kn)

)
is equidistributed. The limit function h∞ defined in Theorem 1.8 is given by h∞(p) = p
for p ∈ [0,1], and given a decimal expansion d of length s, the probability of the s leading
decimal digits of Kn being d is (uniformly) equal to 1/(9 ·10s−1) by Theorem 1.8.

The first ten values of Kn are

(22,354,4823,60973,737166,8646003,99203371,219467105, 3469004940,47433388230).

For example, if we look at many more terms of K , then the first two digits 22 of K1 will
occur as leading digits with probability 1/90 ≈ 0.011, and the probability for the digits 99
is also 1/90. As in constructing a normal number, it’s tricky to construct a sequence of
positive integers with this property, and prove that it has the property. Let us note here
that the s leading decimal digits of the sequence {n}∞n=1 has frequency close to 1/(9 ·10s−1),
but it oscillates and does not converge as more terms are considered; see Theorem 4.10 for
a version under Zeckendorf expansion. In Example 5.4, we demonstrate the “line-segment”
continuation of the Fibonacci sequence.

In Example 5.7, we use a more refined “line segment continuation”, and demonstrate a
uniform continuation that generates the distribution of leading blocks that satisfies strong
Benford’s Law up to the 4th digits, but does not satisfy the law for the leading blocks of
length > 4.

Theorem 1.8 suggests that given a uniform continuation h of the sequence {10n−1}∞n=1,
we associate certain distributions of leading digits, coming from the equidistribution prop-
erty. It’s natural to consider the converse that given a sequence {Kn}∞n=1 with “continuous
distribution of leading digits” of arbitrary length, we associate a certain uniform continu-
ation of {10n−1}∞n=1. Theorem 1.11 below is a version for base-10 expansion. In Section 5,
we introduce results on this topic for the Fibonacci sequence {Fn}∞n=1. The proof of Theorem
1.11 is similar to, and simpler than Theorem 5.18 for the Fibonacci expansion, and leave it
to the reader.
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Theorem 1.11. Let {Kn}∞n=1 be a sequence of positive integers approaching ∞. Let h∗
K :

[0,1]→ [0,1] be the function given by h∗
K (0)= 0, h∗

K (1)= 1, and

h∗
K (1

9 (β−1)) = lim
s→∞Prob

{
n ∈N : The s leading decimal digits of Kn is ≤ ⌊

10s−1β
⌋ }

(2)

where β varies over the real numbers in the interval [1,10) and we assume that the RHS of
(2) is defined for all β ∈ [1,10). If h∗

K is an increasing continuous function, then there is a
uniform continuation h of the sequence {10n−1}∞n=1 such that h∞−1 = h∗

K , and frc
(
h−1(Kn)

)
is

equidistributed.

If a sequence K of positive integers approaching ∞ satisfies (2) where h∗
K is an increas-

ing continuous function, the sequence is said to have continuous leading block distribution
under base-10 expansion; see Definition 5.16 for Zeckendorf expansion. By Theorem 1.8 and
1.11, we have

Theorem 1.12. A sequence {Kn}∞n=1 of positive integers approaching ∞ has continuous lead-
ing block distribution under base-10 expansion if and only if frc

(
h−1(Kn)

)
is equidistributed

for some uniform continuation h of {10n−1}∞n=1.

Corollary 1.13. If a sequence {Kn}∞n=1 satisfies strong Benford’s Law under base-10 expan-
sion, then frc

(
log10(Kn)

)
is equidistributed.

It is interesting that Benford’s Law under base-b expansion arises within the Zeckendorf
expansion of a positive integer, i.e., if we randomly select an integer n in [1,Fm), then the
frequency of the Fibonacci terms with leading decimal digit d among the summands of the
Zeckendorf expansion of n is nearly log10(1+ 1

d ) for almost all n ∈ [1,Fm). This is proved in
[3]. In fact, they prove a result for attributes that are far more general than leading digits,
and the result holds for all generalized Zeckendorf expansions as well.

Their result immediately applies to a general setup where a generalized Zeckendorf ex-
pansion and base-10 expansion are replaced with two arbitrary generalized Zeckendorf ex-
pansions. The full statement is found in Theorem 7.1, and below we introduce a specialized
version for the binary and Zeckendorf expansions.

Theorem 1.14. Let S = {n ∈ N : LB3(2n−1) = (1,0,1)}, and let t ∈ N. Given n ∈ [1,2t), let
n =∑

k∈An 2k be the binary expansion of n where An is a finite subset of N, and define Pt(n)=
#(An ∩S)/#An.

Then, given a real number ε> 0, the probability of n ∈ [1,2t) such that∣∣∣∣Pt(n)− logφ
φ

1+φ−2

∣∣∣∣ < ε

is equal to 1+ o(1) as a function of t.

Notice that by Theorem 1.3, Prob
{

n ∈N : n ∈ S
} = logφ

φ

1+φ−2 , and hence, we may say that
Benford’s Law under Zeckendorf expansion arises within the binary expansion of positive
integers.
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The remainder of this paper is organized as follows. In Section 2, the notations for
sequences and coefficient functions are introduced. In Section 3, the distribution of leading
blocks of exponential sequences under Zeckendorf expansion is introduced, and Benford’s
Law and strong Benford’s Law under Zeckendorf expansion are declared. Introduced in
Section 4 are the method of calculating the distribution results introduced in Section 3, and
also the distribution results for monomial sequences {na}∞n=1. In Section 5, we introduce a
general approach to the distributions of leading blocks under Zeckendorf expansion that are
different from that of Benford’s Law. The approach establishes the correspondence between
the continuations of the Fibonacci sequences and the distributions of leading blocks under
Zeckendorf expansion. In Section 6, we introduce definitions and results that generalize
the contents of Sections 3, 4, and 5 for generalized Zeckendorf expansions. The absolute
Benford’s Law mentioned earlier in this section is properly introduced in Section 6 as well.
In Section 7, the Benford behavior introduced in Theorem 1.14 is generalized for the setting
of two generalized Zeckendorf expansions.

2 Notation and definitions

Notation 2.1. Let N0 := N∪ {0}, and let Ωn := {k ∈ N : k ≤ n}. For simpler notation, let us
use a capital letter for a sequence of numbers, and use the infinite tuple notation for listing
its values, e.g., Q = (2,4,6,8, . . . ). We use the usual subscript notation for individual values,
e.g., Q3 = 6.

Definition 2.2. Tuples (c1, c2, . . . , ct) ∈ Nt
0 where t ∈ N are called coefficient functions of

length t if c1 > 0. If ε is a coefficient function of length t, we denote the kth entry by ε(k) (if
k ≤ t), and its length t by len(ε). For a coefficient function ε, let ε∗Q denote

∑t
k=1 ε(k)Qt−k+1

where t = len(ε), and let ε ·Q denote
∑t

k=1 ε(k)Qk.

If ε= (4,1,6,2) and Q is a sequence, then ε∗Q = 4Q4+Q3+6Q2+2Q1, and ε ·Q = 4Q1+Q2+
6Q3 +2Q4.

3 Benford’s Law for Zeckendorf expansions

Let a and b be two integers > 1 such that gcd(a,b) = 1. The sequence K be the sequence
given by Kn = an is a standard example of sequences that satisfy Benford’s Law under base-
b expansion. We shall declare the behavior of the leading digits of the Zeckendorf expansion
of an to be Benford’s Law under Zeckendorf expansion.

Let us begin with formulating Zeckendorf ’s Theorem in terms of coefficient functions.

Definition 3.1. Let F be the set of coefficient functions ε such that ε(k)≤ 1 for all k ≤ len(ε),
and ε(k)ε(k + 1) = 0 all k ≤ len(ε)− 1. Let F be the shifted Fibonacci sequence such that
Fn+2 = Fn+1+Fn for all n ∈N and (F1,F2)= (1,2). Let φ be the golden ratio, let ω :=φ−1, and
let F̂ = (1,ω,ω2, . . . ) be the sequence given by F̂n =ωn−1.
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Recall the product notation from Definition 2.2.

Theorem 3.2 ([19], Zeckendorf ’s Theorem). For each positive integer n, there is a unique
coefficient function ε ∈F such that n = ε∗F.

Recall the example 35 = F12 +F5 +F2. If ε = (1,0,0,0,0,0,0,1,0,0,1,0), then ε ∈ F and 35 =
ε∗F.

Definition 3.3. The expression n = ε∗F where n ∈N and ε ∈F is called the F -expansion of
n or the Zeckendorf expansion of n.

3.1 Benford’s Law

If ε ∈F and len(ε)≥ 2, then (ε(1),ε(2))= (1,0) is always the case, and hence, the probability of
having (ε(1),ε(2)) = (1,0) is 1. For the purpose of demonstration, we consider the first three
entries of ε.

To denote arbitrarily many leading blocks of coefficient functions, which are defined in
Definition 3.4 below, we shall use the boldface font and subscripts, e.g., b1 and b2, and in
particular, bk for k = 1,2 are not numbers, but tuples. The reader must not be confused with
the entries of a sequence Q, e.g., Q1 and Q2, which are numbers, and we use the regular
font for sequences.

Definition 3.4. A coefficient function of length s is also called a leading block of length s in
the context of investigating the frequency of leading blocks, and it is denoted with boldface
fonts, e.g. b= (1,0,0,1) ∈F , b(3)= 0, and b(4)= 1. Let F3 := {b1,b2} where b1 = (1,0,0), b2 =
(1,0,1) are leading blocks of length 3, and the set is called the set of leading blocks of length
3 under F -expansion. If b ∈F3 and b=b1, then define b̃ :=b2, and and if b ∈F3 and b=b2,
then define b̃ := (1,1,0).

The block b̃ = (1,1,0) is not a member of F , and hence, does not occur as the leading
block of an F -expansion, but it’s convenient to use for Theorem 3.5, where we rely on the
equality b̃ · (1,ω1,ω2) = φ; see Definitions 2.2 and 3.1. The block b̃ makes the statements of
Definition 3.6 below more aesthetic, and the principle of defining an exclusive block such as
(1,1,0) for other generalized Zeckendorf expansions will be explained in Definition 3.7 and
Section 6.

The following is a special version of Corollary 4.7, and it is Theorem 1.3 written in terms
of the dot product and blocks. Recall the notation LBs from Definition 1.1, the set F3 from
Definition 3.4, the sequence F̂ from Definition 3.1, and the dot product from Definition 2.2.

Theorem 3.5. Let K be a sequence given by Kn = an where a > 1 is an integer. Then, given
b ∈F3,

Prob
{

n ∈N : LB3(Kn)=b
} = logφ

b̃ · F̂
b · F̂ .
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Motivated from the distribution of these standard sequences, we introduce the following
definition.

Definition 3.6. A sequence K of positive integers is said to satisfy F -Benford’s Law or
satisfy Benford’s Law under F -expansion if given b ∈F3,

Prob
{

n ∈N : LB3(Kn)=b
} = logφ

b̃ · F̂
b · F̂ .

Let us demonstrate how the structure of the formulas in Definition 3.6 compares with the
one for base-10 expansion. Consider the two leading blocks c1 = (2,1,2) and c2 = (2,1,3) for
base-10 expansion. Let b = 10. Then, strong Benford’s Law for decimal expansion requires
the probability of having the leading block c1 to be log10

213
212 , which is equal to

logb
c2 · (1,b−1,b−2)
c1 · (1,b−1,b−2)

= logb
b2c2 · (1,b−1,b−2)
b2c1 · (1,b−1,b−2)

= logb
c2 · (b2,b,1)
c1 · (b2,b,1)

= log10
213
212

.

The first expression in terms of the negative powers of b is analogous to the ones in Defini-
tion 3.6.

3.2 Strong Benford’s Law

Under base-b expansion, a sequence K is said to satisfy strong Benford’s Law if the prob-
ability of the first M leading digits of Kn satisfies a certain logarithmic distribution, and
exponential sequences {an}∞n=1 where a > 1 is an integer are standard examples that satisfy
strong Benford’s Law under base-b expansion. In Corollary 4.7, we calculate the distribution
of leading blocks of arbitrary length of the Zeckendorf expansions of exponential sequence
{an}∞n=1. We declare this distribution to be strong Benford’s Law under Zeckendorf expansion.
We state the formal definition below.

Recall the convolution ∗ from Definition 2.2.

Definition 3.7. Given an integer s ≥ 2, let Fs := {b1,b2, . . . ,b`} be the finite set of the leading
blocks of length s occurring in the F -expansions of the positive integers such that 1+bk∗F =
bk+1 ∗F for all k ≤ `−1. The leading block b` is called the largest leading block of length s
under F -expansion.

If s is even, then let b`+1 := (1,0,1,0, . . . ,1,0,1,1), and if s is odd, then it is b`+1 :=
(1,0,1,0, . . . ,1,1,0). If b=bk ∈Fs, then we denote bk+1 by b̃.

Notice that the existence of b̃ defined above is guaranteed by Zeckendorf ’s Theorem. Let us
demonstrate examples of b and b̃. Let b = (1,0,0,0,1,0) ∈F6. Then, b̃ = (1,0,0,1,0,0) ∈F6,
and 1+b∗F = b̃∗F. If we list the coefficient functions in F6 with respect to the lexicograph-
ical order, then b̃ is the immediate successor of b if b 6= (1,0,1,0,1,0).

For each case of s being even or odd, the largest leading block b of length s satisfies
1+b∗F = b̃∗F. If b′ = (1,0,1,0,1,0), then b̃′ = (1,0,1,0,1,1), and below we shall demonstrate

9



that the equality b̃′ · F̂ = ∑2
k=0ω

2k +ω5 = φ makes the sum of the probabilities in Theorem
3.8 and Definition 3.9 be 1.

Let us compare this setup with the case of base-10 expansion. Let c= (4,5,6,7,8,9) be the
leading block of length 6 for base-10 expansion, and let the sequence H given by Hn = 10n−1

be the “base” sequence. Then, 1+c∗H = c̃∗H where c̃ = (4,5,6,7,9,0). If we list all the
coefficient functions of length 6, with respect to the lexicographical order, that are legal for
base-10 expansion, then c̃ is the immediate successor of c. If c′ = (9,10,9,9,9,9), then we
let c̃′ = (9,10,0,0,0,0), and

∑6
n=1 c̃′(n)10n−1 = 1+c′∗H = 106. If strong Benford’s Law under

base-10 expansion is satisfied, the probability of having the leading block c′ under base-10
expansion is

log10
c̃′∗H
c′∗H

= log10
c̃′ · Ĥ
c′ · Ĥ = 1− log10 c′ · Ĥ

where Ĥ is the sequence given by Ĥn = 10−(n−1).
Recall the sequence F̂ from Definition 3.1.

Theorem 3.8. Let K be a sequence of positive integers given by Kn = abn(1+ o(1)) where a
and b are positive real numbers such that logφ b is irrational. Then, given b ∈Fs where s ≥ 2,

Prob
{

n ∈N : LBs(Kn)=b
} = logφ

b̃ · F̂
b · F̂ .

Proof. It follows immediately from Corollary 4.7.

Let us demonstrate below that the probabilities add up to 1 for s = 6, but the argument is
sufficiently general to be extended for all cases of s. Let F6 = {b1, . . . ,b`} such that bk+1 = b̃k

for all 1≤ k ≤ `. Then, b1 = (1,0,0,0,0,0) and b` = (1,0,1,0,1,0). Then, b`+1 = (1,1,0,0,0,0),
and

∑̀
k=1

logφ
b̃k · F̂
bk · F̂

= ∑̀
k=1

logφ(bk+1 · F̂)− logφ(bk · F̂) = logφ(b`+1 · F̂)− logφ1 = 1.

Definition 3.9. Let K be a sequence of positive integers approaching ∞. Then, K is said to
satisfy strong Benford’s Law under F -expansion if given b ∈Fs where s ≥ 2,

Prob
{

n ∈N : LBs(Kn)=b
} = logφ

b̃ · F̂
b · F̂ .

Example 3.10. Let K be a sequence satisfying strong Benford’s Law under F -expansion,
e.g., {2n}∞n=1; see Theorem 3.8. Let b= (1,0,0,0,1,0), so b̃= (1,0,0,1,0,0). Then,

Prob
{

n ∈N : LB6(Kn)=b
} = logφ

1+ω3

1+ω4 ≈ 0.157.
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4 Calculations

Notice that logb(x) makes it convenient to calculate the distribution of the leading digits of
exponential sequences {an}∞n=1 under base-b expansion where b > 1 is an integer. In this
section, we introduce an analogue of logb(x) for Zeckendorf expansion in Section 4.1, and
use it for various calculations.

As mentioned in the introduction, these functions are merely a tool for calculating the
leading digits, and in Section 5, we consider other continuations, and demonstrate their
connections to different distributions of leading digits.

4.1 An analytic continuation of the Fibonacci sequence

Below we introduce an analytic continuation of the Fibonacci sequence.

Definition 4.1. Let α= φp
5
, and define F :R→R be the function given by

F(x)=α(φx +φ−x cos(πx)φ−2).

We call the function a Benford continuation of the Fibonacci sequence.

Notice that Fn = 1p
5
(φn+1 − (−1/φ)n+1) = φp

5
(φn + (−1)nφ−(n+2)). Thus, F is a real analytic

continuation of Fn, so F(n) = Fn for all n ∈ N. It is an increasing function on [1,∞). Let
F−1 denote the inverse function of F : [1,∞) → R. Comparing it with the case of base-10
expansion, we find that 10x−1 is an analytic continuation of the sequence {10n−1}∞n=1, and
its inverse is 1+ log10(x), which is the main object for the equidistribution for Benford’s
Law under base-10 expansion. The equidistribution property described in Theorem 4.5 is
associated with strong Benford’s Law under F -expansion, and the name of the function is
due to this connection.

Lemma 4.2. For real numbers x ≥ 1, we have F(x)=αφx +O(φ−x), and

F−1(x) = logφ(x)− logφ(α)+O(1/x2).

Proof. Let y =αφx +αφ−x cos(πx)φ−2 and let w =αφ−x cos(πx)φ−2 =O(φ−x). Since y =αφx +
o(1), we have w =O(1/y). Then, y=αφx +w implies

x = logφ(y−w)− logφα = logφ(y)− logφα+ logφ(1−w/y)

= logφ(y)− logφα+O(|w| /y) = logφ(y)− logφα+O(1/y2).

11



4.2 Equidistribution

Recall the set Fs of leading blocks from Definition 3.7. In this section, having a leading
block b ∈Fs is interpreted in terms of the fractional part of the values of F−1.

Definition 4.3. Given ε ∈Nt
0 and an integer s ≤ t, let ε|s := (ε(1), . . . ,ε(s)).

Recall F̂ from Definition 3.1 and the product notation from Definition 2.2.

Lemma 4.4. Let K be a sequence of positive real numbers approaching ∞, and let s be an
integer ≥ 2. Let b ∈ Fs, and let Ab := {n ∈ N : LBs(Kn) = b}. Then, there are real numbers
γn = o(1) and γ̃n = o(1) such that n ∈ Ab if and only if

logφb · F̂ +γn ≤ frc
(
F−1(Kn)

) < logφ b̃ · F̂ + γ̃n (3)

where γ̃n = 0 if b is the largest block of length s.

Proof. Suppose that n ∈N is sufficiently large, so that b′ :=LBs(Kn) exists. By Zeckendorf ’s
Theorem, there is µ ∈F such that Kn =µ∗F, so m := len(µ)≥ s, and b′ =µ|s. There are ε ∈F

of length m and a coefficient function ε̌ of length m such that ε|s =b′, ε̌|s = b̃′, ε(k)= ε̌(k)= 0
for all k > s, so ε∗F ≤ Kn < ε̌∗F. Recall α from Definition 4.1. Then,

ε∗F = α
s∑

k=1
ε(k)φm−k+1 +O(1) = αφm(1+ o(1))

s∑
k=1

ε(k)ωk−1 = αφm(1+ o(1))b′ · F̂.

By Lemma 4.2,

F−1(ε∗F) = m+ logφ(b′ · F̂)+γn, γn = o(1).

Similarly, we have F−1(ε̌∗F)= m+ logφ(b̃′ · F̂)+ γ̃n where γ̃n = o(1). If b′ is the largest block
of length s, then ε̌∗F = Fm+1, and hence, F−1(ε̌∗F)= m+1, which implies γ̃n = 0. In general,
ε̌∗F ≤ Fm+1, so F−1(ε̌∗F)≤ m+1.

Thus, if n ∈ Ab, then b′ =b, and

ε∗F ≤ Kn < ε̌∗F ⇒F−1(ε∗F)≤F−1(Kn) < F−1(ε̌∗F)

⇒ logφb · F̂ +γn ≤ frc
(
F−1(Kn)

) < logφ b̃ · F̂ + γ̃n.

There is no difficulty in reversing this argument, and we leave the proof of the converse to
the reader.

Theorem 4.5. Let K be an increasing sequence of positive integers such that frc
(
F−1(Kn)

)
is

equidistributed. Then, K satisfies strong Benford’s Law under the F -expansion.
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Proof. Notice that Prob
{

n ∈N : LBs(Kn)=b
}

where s ≥ 2 is equal to the probability of n
satisfying (3). Let t ∈N. Then, there is an integer Mt such that

∣∣γn
∣∣ and

∣∣γ̃n
∣∣ are < 1/t for all

n ≥ Mt. Thus, by Lemma 4.4,

Prob
{

k ∈Ωn : LBs(Kn)= B
}+ o(1)

≤ Prob
{
k ∈Ωn : logφb · F̂ − 1

t ≤ frc
(
F−1(Kn)

) < logφ b̃ · F̂ + 1
t

}
+ o(1)

⇒ limsup
n

Prob
{

k ∈Ωn : LBs(Kn)=b
} ≤ logφ

b̃ · F̂
b · F̂ + 2

t
.

Prob
{

k ∈Ωn : LBs(Kn)=b
}+ o(1)

≥ Prob
{

k ∈Ωn : logφb · F̂ + 1
t ≤ frc

(
F−1(Kn)

) < logφ b̃ · F̂ − 1
t

}
+ o(1)

⇒ liminf
n

Prob
{

k ∈Ωn : LBs(Kn)=b
} ≥ logφ

b̃ · F̂
b · F̂ − 2

t
.

Since liminf and limsup are independent of t, we prove that Prob
{

n ∈N : LBs(Kn)=b
} =

logφ
b̃·F̂
b·F̂ .

The converse of Theorem 4.5 is true as well, i.e., if K satisfies strong Benford’s Law under
F -expansion, then frc

(
F−1(Kn)

)
is equidistributed. We shall prove it in Section 5.

The following lemma is useful, and it is probably known.

Lemma 4.6. Let h : N→ R be a function such that frc(h(n)) is equidistributed, and let E :
N→R be a function such that E(n)→ 0 as n →∞. Then, frc(h(n)+E(n)) is equidistributed.

Corollary 4.7. Let K be a sequence of positive integers given by Kn = abn(1+ o(1)) where a
and b are positive real numbers such that logφ b is irrational. Then, frc

(
F−1(Kn)

)
is equidis-

tributed, and hence, given b ∈Fs where s ≥ 2,

Prob
{

n ∈N : LBs(Kn)=b
} = logφ

b̃ · F̂
b · F̂ .

Proof. By Lemma 4.2,

F−1(Kn) = n logφ b− logφ(a/α)+ logφ(1+ o(1))+ o(1).

Since logφ b is irrational, by Weyl’s Equidistribution Theorem, frc
(
n logφ b

)
is equidistributed,

and by the lemma, frc
(
n logφ b+ o(1)

)
is equidistributed. Shifting it by a constant − logφ(a/α)

does not change the equidistribution property, and this concludes the proof.

For example, if K is a sequence given by Kn = ∑N
k=1 akbn

k where ak,bk ∈ Z, a1 > 0, and
b1 > |bk| for all k ≥ 2, then Kn = a1bn

1 (1+ o(1)), and frc
(
F−1(Kn)

)
is equidistributed. Many

increasing sequences K of positive integers given by a linear recurrence with constant pos-
itive integer coefficients satisfy Kn = abn(1+ o(1)) where logφ(b) is irrational, and hence,
frc

(
F−1(Kn)

)
is equidistributed.
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4.3 The leading blocks of integer powers

Let a be a positive integer, and let K be the sequence given by Kn = na. Then, K does not
satisfy Benford’s Law under the base-10 expansion, but it has a close relationship with Ben-
ford’s Law [14]. In this section, we show that both statements are true under F -expansion
as well. Recall Ωn from Notation 2.1 and F3 from Definition 3.4, and let b1 := (1,0,0) ∈F3.
We also introduce the oscillating behavior of Prob

{
k ∈Ωn : LB3(Kk)=b1

}
as n → ∞, and

hence, Prob
{

n ∈N : LB3(Kn)=b1
}

does not exist.

Example 4.8. Let K be the sequence given by Kn = n, and let t > 0 be a large integer. Given
a sufficiently large positive random integer n < Ft+1, let n = µ∗F be the F -expansion, and
M := len(µ). Notice that LB3(n) = b1 if and only if n = FM +m where 0 ≤ m < FM−2. Thus,
there are FM−2 integers n in [1,Ft+1) such that FM ≤ n < FM+1 and LB3(n)=b1. Thus,

Prob
{

n ∈ΩFt+1 : LB3(n)=b1
} =

(
1

Ft+1

t∑
M=3

FM−2

)
+ o(1)=

(
1

Ft+1

t∑
M=3

αφM−2 + o(1)

)
+ o(1)

= 1
αφt+1 + o(1)

αφt−1

φ−1
+ o(1) = 1

φ2(φ−1)
+ o(1) = φ−1+ o(1)

as function of t. However, by Theorem 4.10, we have

limsup
n

Prob
{

k ∈Ωn : LB3(k)=b1
} = φ+1

φ+2
≈ .724,

liminf
n

Prob
{

k ∈Ωn : LB3(k)=b1
} = φ−1≈ .618.

Thus, Prob
{

n ∈N : LB3(n)=b1
}

does not exist.

Recall F from Definition 4.1, and its inverse F−1. We use the function F to more generally
handle the distribution of the leading blocks of {na}∞n=1 with any length. Given a positive
integer m, let Am = {n ∈N : n < F1/a

m }.

Lemma 4.9. If β ∈ [0,1], then

Prob
{

n ∈ Am : frc
(
F−1(na)

)≤β } = φβ/a −1
φ1/a −1

+O(mφ−m/a).

Proof. Let m ∈N, and let n ∈ A′
m+1 := Am+1− Am, so that Fm ≤ na < Fm+1 and m ≤F−1(na)<

m+1. Thus, given a real number β ∈ [0,1],{
n ∈ A′

m+1 : frc
(
F−1(na)

)≤β} = {
n ∈ A′

m+1 : m ≤F−1(na)≤ m+β}
=

{
n ∈ A′

m+1 :F(m)1/a ≤ n ≤F(m+β)1/a
}

⇒ #
{

n ∈ A′
m+1 : frc

(
F−1(na)

)≤β} = F(m+β)1/a −F(m)1/a +O(1)

= α1/aφ(m+β)/a −α1/aφm/a +O(1)

⇒ #
{

n ∈ Am+1 : frc
(
F−1(na)

)≤β} =
m∑

k=1
α1/aφ(k+β)/a −α1/aφk/a +O(1)

= α1/aφ(m+β)/aγ−α1/aφm/aγ+O(m), γ= φ1/a

φ1/a −1
.
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This proves that

Prob
{

n ∈ Am+1 : frc
(
F−1(na)

)≤β } = α1/aφ(m+β)/aγ−α1/aφm/aγ+O(m)
F1/a

m+1 +O(1)

= φβ/aγ−γ+O(mφ−m/a)
φ1/a +O(φ−m/a)

= φβ/a −1
φ1/a −1

+O(mφ−m/a).

Recall from Lemma 4.4 that

Prob
{

n ∈ Am : LB3(na)=b1
}=Prob

{
n ∈ Am : frc

(
F−1(na)

)≤ δ1 + o(1)
}

where δ1 := logφ
b̃1·F̂
b1·F̂ . Thus, as m →∞, by Lemma 4.9,

Prob
{

n ∈ Am : LB3(na)=b1
} → φδ1/a −1

φ1/a −1
= (1+ω2)1/a −1

φ1/a −1

where ω=φ−1. Let us show that

Prob
{

n ∈ Am : LB3(na)=b1
} 6→ δ1

as m →∞. We claim that the ratio (1+ω2)1/a−1
φ1/a−1 is not equal to δ1 = logφ(1+ω2). Since a ∈N,

the ratio is an algebraic number over Q. However, by the Gelfand-Schneider Theorem,
logφ(1+ω2) is a transcendental number. Thus, K does not satisfy Benford’s Law under the
F -expansion.

However, as noted in [14] for base-b expansions, we have

lim
a→∞ lim

m→∞Prob
{

n ∈ Am : LB3(na)=b1
} = lim

a→∞
φδ1/a −1
φ1/a −1

= δ1 = logφ(1+ω2).

Even though the leading blocks of Kn do not satisfy Benford’s Law under F -expansion, the
limiting behavior of high power sequences for special values of n resembles Benford’s Law.

RecallΩn from Definition 2.1. Let us use Lemma 4.9 to prove that Prob
{

k ∈Ωn : frc
(
F−1(Kk)

)≤β }
oscillates, and does not converge.

Theorem 4.10. Let β be a real number in [0,1], and let r := (φβ/a −1)/(φ1/a −1). Given an
integer n > 1, let F−1(na)= m+ p where p = frc

(
F−1(na)

)
and m ∈N. Then,

Pn :=Prob
{

k ∈Ωn : frc
(
F−1(Kk)

)≤β } =


r+φp/a−1
φp/a +O(mφ−m/a) if 0≤ p ≤β

r+φβ/a−1
φp/a +O(mφ−m/a) if β< p < 1

.

In particular,

limsupPn = rφ1/a−β/a =β+O(1/a), and liminfPn = r =β+O(1/a).
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Proof. Let m be a sufficiently large positive integer, and let n ∈ Am+1 − Am. Let n = F(m+
p)1/a for p ∈ [0,1). If p ≤ β, then, frc

(
F−1(na)

)= frc
(
F−1F(m+ p)

)= frc(m+ p) = p ≤ β, and if
p >β, then, frc

(
F−1(na)

)= p >β. Thus,{
n ∈ Am+1 − Am : frc

(
F−1(na)

)≤β} =
{

n ∈ Am+1 − Am : n ≤F(m+β)1/a
}

.

If n ≤F(m+β)1/a, i.e., p ≤β, then by Lemma 4.9

Pn = 1
n

(
Prob

{
k ∈ Am : frc

(
F−1(ka)

)≤β }
#Am +n−F(m)1/a +O(1)

)
= rF(m)1/a +O(m)+F(m+ p)1/a −F(m)1/a

F(m+ p)1/a +O(1)

= r+O(mφ−m/a)+φp/a −1
φp/a +O(φ−m/a)

= r+φp/a −1
φp/a +O(mφ−m/a)

If n >F(m+β)1/a, i.e., p >β, then

Pn = r+φβ/a −1
φp/a +O(mφ−m/a) = rφ1/a

φp/a +O(mφ−m/a).

Thus, limsupPn = r+φβ/a −1
φβ/a = rφ1/a

φβ/a , liminfPn = rφ1/a

φ1/a = r.

Thus, Prob
{

n ∈N : frc
(
F−1(Kn)

)≤β }
does not converge, but frc

(
F−1(Kn)

)
is almost equidis-

tributed for large values of a.

Example 4.11. Let b and b̃ be the blocks defined in Example 3.10, and let K be the sequence
given by Kn = n2. By Lemma 4.4, if D := {n ∈N : LB6(Kn)=b}, then for n ∈ D,

logφ(1+ω4)+ o(1) < frc
(
F−1(Kn)

) < logφ(1+ω3)+ o(1)

where the upper and lower bounds are functions of n ∈ D. Let β = logφ(1+ω4) and β̃ =
logφ(1+ω3). Recall Ωn from Definition 2.1. Then,

Prob
{

k ∈Ωn : LB6(Kk)=b
}=

Prob
{

k ∈Ωn : frc
(
F−1(Kn)

)< β̃ } − Prob
{

k ∈Ωn : frc
(
F−1(Kn)

)<β } + o(1).
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Let r = (φβ/2 − 1)/(φ1/2 − 1) and r̃ = (φβ̃/2 − 1)/(φ1/2 − 1), and let n = F(m+ p)1/a where p =
frc

(
F−1(na)

) ∈ [0,1). Then, by Theorem 4.10, we have

Prob
{

k ∈Ωn : LB6(Kk)=b
} =


r̃+φp/2−1
φp/2 − r+φp/2−1

φp/2 + o(1) if p ≤β ,
r̃+φp/2−1
φp/2 − r+φβ/2−1

φp/2 + o(1) if β< p ≤ β̃
r̃+φβ̃/2−1
φp/2 − r+φβ/2−1

φp/2 + o(1) if p > β̃ .

⇒ limsup
n

Prob
{

k ∈Ωn : LB6(Kk)=b
} = r̃+φβ̃/2 −1

φβ̃/2
− r+φβ/2 −1

φβ̃/2
≈ 0.1737

liminf
n

Prob
{

k ∈Ωn : LB6(Kk)=b
} = r̃+φβ/2 −1

φβ/2 − r+φβ/2 −1
φβ/2 ≈ 0.1419.

5 Other continuations

Reflecting upon Lemma 4.4 and Theorem 4.5, we realized that we could consider different
continuations of the Fibonacci sequence F, and ask which sequence satisfies the equidistri-
bution property, and which distributions its leading blocks follow. Let us demonstrate the
idea in Example 5.4. The claims in this example can be proved using Theorem 5.6. Recall
the Benford continuation F from Definition 4.1.

Definition 5.1. Given n ∈N, let Fn : [0,1]→ [0,1] be the increasing function given by

Fn(p) := F(n+ p)−F(n)
F(n+1)−F(n)

= F(n+ p)−F(n)
Fn−1

= φ(φp −1)+ o(1)

where F0 := 1. Let F∞ : [0,1]→ [0,1] be the increasing function given by F∞(p)=φ(φp −1).

Recall uniform continuations of sequences from Definition 1.6.

Lemma 5.2. The function F is a uniform continuation of F.

Proof. Notice that Fn(p)=φ(φp −1)+γ(n, p) where
∣∣γ(n, p)

∣∣< C/φn where C is independent
of p and n. Thus, it uniformly converges to φ(φp −1).

Lemma 5.3. Let p ∈ [0,1] be a real number. Then, F(n+Fn
−1(p))= Fn + (Fn+1 −Fn)p.

Proof. Let p′ = Fn
−1(p). Then, Fn(p′) = p, and hence, F(n+p′)−F(n)

Fn+1−Fn
= p. The assertion follows

from the last equality.

Example 5.4. Let f : [1,∞) → R be the increasing continuous function whose graph is the
union of the line segments from (n,Fn) to (n+1,Fn+1) for n ∈ N. Then, f∞(p) = p for all
p ∈ [0,1]. Let K be the sequence given by Kn = ⌊

F(n+Fn
−1(frc(nπ)))

⌋
. Then, by Lemma 5.3,

f −1 (
F(n+Fn

−1(frc(nπ))
)= n+ frc(nπ) ⇒ frc

(
f −1(Kn)

)= frc(nπ)+ o(1),

17



which is equidistributed.
Recall Fs from Definition 3.7 where s ≥ 2, and let b ∈ Fs. Recall F̂ from Definition 3.1

and the product notation from Definition 2.2. Then, by Theorem 5.6,

Prob
{

n ∈N : LBs(Kn)=b
} = φ(b̃ · F̂ −b · F̂) = φ−s+2(b̃∗F −b∗F)

where F is the sequence given by Fn =φn−1. If b(s)= 0, then ωs−2(b̃∗F −b∗F)=ωs−2, and
if b(s)= 1, then ωs−2(b̃∗F −b∗F)=ωs−1. For example, if s = 6, then

Prob
{

n ∈N : LB6(Kn) = (1,0,0,1,0,1)
} = ω5

Prob
{

n ∈N : LB6(Kn) = (1,0,1,0,1,0)
} = ω4.

It’s nearly a uniform distribution.
Let us show that the probabilities add up to 1. Notice that #Fs = Fs−1, #{b ∈ Fs : b(s) =

0}= Fs−2, and and #{b ∈Fs : b(s)= 1}= Fs−3. Then, by Binet’s Formula, the following sum is
equal to 1:

∑
b∈Fs

ωs−2(b̃∗F −b∗F) = Fs−2

φs−2 + Fs−3

φs−1 = 1.

By Lemma 5.3, we have Kn = bFn + (Fn+1 −Fn) frc(nπ)c for n ∈ N, and the following are
the first ten values of Kn:

(1,2,3,6,11,19,33,36,64,111).

Let us introduce and prove the main results on continuations.

Lemma 5.5. Let f be a uniform continuation of F, and let K be a sequence of positive real
numbers approaching ∞. Then, frc

(
f −1(bKnc)

)= frc
(
f −1(Kn)

)+ o(1).

Proof. Let n ∈N. Then, Fm ≤ bKnc ≤ Kn < Fm+1 for m ∈N depending on n. Let Kn = f (m+ p)
and bKnc = f (m+ p′) where p, p′ ∈ [0,1] are real numbers, which depend on n. Then, Fm +
fm(p′)(Fm+1 −Fm)+O(1)= Fm + fm(p)(Fm+1 −Fm), and hence, fm(p′)+ o(1)= fm(p). Thus,

f −1(Kn) = m+ p = m+ fm
−1 (

fm(p′)+ o(1)
) = m+ fm

−1 (
f∞(p′)+ o(1)

)
.

By the uniform convergence,

= m+ f∞−1 (
f∞(p′)+ o(1)

)+ o(1) = m+ f∞−1 (
f∞(p′)

)+ o(1) = m+ p′+ o(1).

Therefore, frc
(
f −1(Kn)

)= frc
(
f −1(bKnc)

)+ o(1).

Theorem 5.6. Let f : [1,∞)→R be a uniform continuation of F. Then there is a sequence K of
positive integers approaching ∞, e.g., Kn = ⌊

F
(
n+Fn

−1 ◦ fn(frc(nπ)
)⌋

, such that frc
(
f −1(Kn)

)
is equidistributed.
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Let K be a sequence of of positive integers approaching ∞ such that frc
(
f −1(Kn)

)
is

equidistributed. Let b ∈Fs where s ≥ 2. Then,

Prob
{

n ∈N : LBs(Kn)=b
} = f∞−1 ◦F∞(logφ b̃ · F̂)− f∞−1 ◦F∞(logφb · F̂)

= f∞−1 (
φ(b̃ · F̂ −1)

)− f∞−1 (
φ(b · F̂ −1)

)
. (4)

Proof. Let x ≥ 1 be a real number, and let Fn ≤ x < Fn+1 for n ∈ N. Since F and f are
increasing continuations of F, there are two unique real numbers p and p′ in [0,1] such
that x =F(n+ p)= f (n+ p′). We claim that

f −1(x)= n+ fn
−1(Fn(p)), (5)

and F−1(x)= n+Fn
−1( fn(p′)). To prove the claim, note

F(n+ p)= f (n+ p′) ⇒ Fn +Fn(p)(Fn+1 −Fn) = Fn + fn(p′)(Fn+1 −Fn)

⇒ p′ = fn
−1(Fn(p)), p =Fn

−1( fn(p′)).

Then f (n+ p′)= x and F(n+ p)= x imply the claim.
Let K and K be the sequences given by Kn = F

(
n+Fn

−1 ◦ fn(frc(nπ))
)

and Kn =
⌊
Kn

⌋
.

Given n ∈N, let pn =Fn
−1 ◦ fn(frc(nπ)). Then,

f −1(Kn) = n+ fn
−1(Fn(pn)

) = n+ frc(nπ) .

Thus, frc
(
f −1(Kn)

)
is equidistributed. If we further assume that f is a uniform continuation,

then, by Lemmas 4.6 and 5.5, frc
(
f −1(

⌊
Kn

⌋
)
)
= frc

(
f −1(Kn)

)
is equidistributed as well.

Let K be a sequence of of positive integers approaching ∞ such that frc
(
f −1(Kn)

)
is

equidistributed. Let b ∈ Fs, and let Ab := {n ∈N : LBs(Kn) = b}. Let n ∈ Ab, and Fm ≤ Kn <
Fm+1 for m ∈ N depending on n. Let Kn = F(m+ p) = f (m+ p′) where p and p′ are real
numbers in [0,1] depending on n.

Then, by Lemma 4.4,

logφb · F̂ + o(1) < frc
(
F−1(Kn)

) < logφ b̃ · F̂ + o(1)

⇒ logφb · F̂ + o(1) < frc
(
m+Fn

−1( fn(p′))
) < logφ b̃ · F̂ + o(1)

⇒ logφb · F̂ + o(1) < Fn
−1( fn(p′)) < logφ b̃ · F̂ + o(1)

⇒ fn
−1 ◦Fn(logφb · F̂ + o(1)) < p′ < fn

−1 ◦Fn(logφ b̃ · F̂ + o(1))

⇒ f∞−1 ◦F∞(logφb · F̂)+ o(1) < frc
(
f −1(Kn)

) < f∞−1 ◦F∞(logφ b̃ · F̂)+ o(1).

Since frc
(
f −1(Kn)

)
is equidistributed, the above inequalities imply the assertion (4).

Let us demonstrate a continuation, for which the distribution of leading blocks of length
4 coincides with that of strong Benford’s Law, but the distribution does not coincide for
higher length blocks.
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Example 5.7. Consider F4 = {b1,b2,b3}, i.e.,

b1 = (1,0,0,0), b2 = (1,0,0,1), b3 = (1,0,1,0).

Let pk = logφ(bk · F̂) < 1 for k = 1,2,3, and let p0 = 0 and p4 = 1. For each n ∈N, define fn :
[0,1]→ [0,1] to be the function whose graph is the union of line segments from (pk,F∞(pk))
to (pk+1,F∞(pk+1)) for k = 0,1,2,3. Notice that fn is defined independently of n, and that it
defines a uniform continuation f : [1,∞) → [1,∞) such that f∞ = fn for all n ∈N as follows:
Given x ∈ [1,∞), find n ∈N such that n ≤ x < n+1, and define f (x)= Fn+ fn(x−n)(Fn+1−Fn).

Note that f∞(pk) = F∞(pk), i.e., f∞−1(F∞(pk)) = pk for k = 0,1,2,3. By Theorem 5.6, if
frc

(
f −1(Kn)

)
is equidistributed, we have

Prob
{

n ∈N : LB4(Kn)=bk
} = pk+1 − pk = logφ

b̃k · F̂
bk · F̂

where b̃3 = (1,0,1,1) as defined Definition 3.7. However, the leading blocks of length > 4 do
not satisfy Benford’s Law under F -expansion.

The following is an example where f∞ is analytic.

Example 5.8. Let f : [1,∞)→R be the function given by f (n+ p)= Fn+(Fn+1−Fn)p2 where
n ∈N and p ∈ [0,1). Then, f∞(p)= p2.

Let K be the sequence given by Kn = ⌊
F(n+Fn

−1(p2))
⌋
, and let b ∈ Fs. Then, Theorem

5.6,

Prob
{

n ∈N : LBs(Kn)=b
}=√

φ(b̃ · F̂ −1)−
√
φ(b · F̂ −1).

Converse

Let’s consider the converse of Theorem 5.6, i.e., given a sequence K of positive integers
approaching ∞, let us construct a uniform continuation f , if possible, such that frc

(
f −1(Kn)

)
is equidistributed. Recall the set Fs from Definition 3.7.

Definition 5.9. A sequence K of positive integers approaching ∞ is said to have strong
leading block distribution under F -expansion if Prob

{
n ∈N : LBs(Kn)=b

}
exists for each

integer s ≥ 2 and each b ∈Fs.

Example 5.10. Let K be the Lucas sequence, i.e., K = (2,1,3,4, . . . ) and Kn+2 = Kn+1 +Kn.
Recall that Fn = 1

10 (5+p
5)φn(1+ o(1)) and Kn = 1

2 (
p

5−1)φn(1+ o(1)), and let α= 1
10 (5+p

5)
and a = 1

2 (
p

5−1). Then, by Lemma 4.2,

frc
(
F−1(Kn)

)=− logφ(a/α)+ o(1)≈ .328+ o(1).

By Lemma 4.4, the leading block of Kn being b1 = (1,0,0) is determined by whether 0 ≤
frc

(
F−1(Kn)

)< logφ(1+ω2)≈ .67. Thus, Prob
{

n ∈N : LB3(Kn)=b1
}= 1, and Prob

{
n ∈N : LB3(Kn)=b2

}=
0.
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In fact, the sequence K has strong leading block distribution. Recall F̂ from Definition
3.1, and let us claim that b · F̂ 6= α

a = 1
10 (5+3

p
5) for all s ∈N and b ∈Fs. Notice that

α

a
−1=

∞∑
k=1

ω4k. (6)

The equality (6) is called the Zeckendorf expansion of a real number in (0,1) since it is a
power series expansion in ω where no consecutive powers are used; a formal definition is
given in Definition 5.11 below. By the uniqueness of Zeckendorf expansions of the real
numbers in (0,1), the above infinite sum in (6) is not equal to any finite sum b · F̂ −1 where
b ∈Fs; see Theorem 5.13.

Let s be an integer ≥ 2, and let Fs = {b1, . . . ,b`}. Then, there is k ∈N such that bk · F̂ <
α
a < bk+1 · F̂. This implies that

logφ(bk · F̂) < logφ(αa ) < logφ(bk+1 · F̂).

Since frc
(
F−1(Kn)

)= logφ(α/a)+o(1) for all n ∈N, by Lemma 4.4, we have Prob
{

n ∈N : LBs(Kn)=bk
}=

1. For example, consider the case of s = 9, and notice that ω4 +ω8 < α
a −1 < ω4 +ω7 by (6).

Then, we have b · F̂ < α
a < b̃ · F̂ where

b= (1,0,0,0,1,0,0,0,1) and b̃= (1,0,0,0,1,0,0,1,0),

and the probability of having the leading block b in the values of the Lucas sequence is 1.

Recall uniform continuations from Definition 1.6. Since the distribution of the leading blocks
of the Lucas sequence K is concentrated on one particular block in Fs for each s, there does
not exist a uniform continuation f , described in Theorem 5.6, whose equidistribution is
associated with the leading block distributions of the Lucas sequence K . For a uniform
continuation to exist, the values of the leading block distributions must be put together into
a continuous function, and below we formulate the requirement more precisely.

Definition 5.11. Let I denote the interval (0,1) of real numbers. An infinite tuple µ ∈∏∞
k=1N0 is called a Zeckendorf expression for I if µ(k) ≤ 1, µ(k)µ(k+1) = 0, and for all j ∈N0,

the sequence {µ( j+n)}∞n=1 is not equal to the sequence {1+ (−1)n+1)/2}∞n=1 = (1,0,1,0, . . . ). Let
F∗ be the set of Zeckendorf expressions for I.

Given s ∈N and µ ∈F∗, let µ|s := (µ(1), . . . ,µ(s)). Given s ∈N and {µ,τ} ⊂F∗, we declare
µ|s < τ|s if µ|s · F̂ < τ|s · F̂, which coincides with the lexicographical order on F .

Notation 5.12. Given a sequence Q of real numbers, and µ ∈ ∏∞
k=1N0, we define µ ·Q :=∑∞

k=1µ(k)Qk, which may or may not be a convergent series.

Theorem 5.13 ([10], Zeckendorf Theorem for I). Given a real number β ∈ I, there is a unique
µ ∈F∗ such that β=∑∞

k=1µ(k)ωk = (µ · F̂)ω.
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For the uniqueness of µ in the theorem, we require the infinite tuples such as (0,1,0,1,0, . . . )
to be not a member of F∗ since

∑∞
k=1ω

2k =ω, which is analogous to 0.0999 . . .= 0.1 in decimal
expansion.

Proposition 5.14 ([10]). Let {µ,τ} ⊂ F∗. Then, µ · F̂ < τ · F̂ if and only if µ|s < τ|s for some
s ∈N.

Given a sequence with strong leading block distribution, we shall construct a function
on I in Definition 5.16 below, and it is well-defined by Lemma 5.15.

Lemma 5.15. Given a real number β ∈ I, there is a unique µ ∈ F∗ such that µ(1) = 1 and
φ(µ · F̂ −1)=β.

Proof. Let F̂∗ be the sequence defined by F̂∗
n = ωn. Given a real number β ∈ I, we have

0 < ω+βω2 < 1. By Theorem 5.13, there are is µ ∈ F∗ such that (µ · F̂)ω = µ · F̂∗ = ω+βω2,
which implies φ(µ · F̂ −1) = β. We claim that µ(1) = 1. If µ(1) = 0, then by Proposition 5.14,
ω+βω2 = µ · F̂∗ = (0, . . . ) · F̂∗ < ω = (1,0,0, . . . ) · F̂∗, which implies a false statement βω2 < 0.
Thus, µ(1)= 1.

Recall from Definition 5.11 the definition of inequalities on tuples.

Definition 5.16. Let K be a sequence of positive integers with strong leading block distri-
bution under F -expansion such that given µ ∈ F∗ and an integer s ≥ 2 such that µ(1) = 1,
the following limit exists:

lim
s→∞Prob

{
n ∈N : LBs(Kn)≤µ|s }

(7)

where µ|s is identified in Fs.
Let f ∗K : [0,1] → [0,1] be the function given by f ∗K (0) = 0, f ∗K (1) = 1, and f ∗K (φ(µ · F̂ −1))

is equal to the value in (7). If f ∗K is continuous and increasing, then K is said to have
continuous leading block distribution under F -expansion.

Lemma 5.17. Let K be a sequence with continuous leading block distribution under F -
expansion, and let f ∗K be the function defined in Definition 5.16. Let µ ∈ F∗ such that
there is t ∈ N such that µ(1) = 1 and µ(k) = 0 for all k > t. Then, f ∗K (φ(µ|t · F̂ − 1)) ≤
Prob

{
n ∈N : LBt(Kn)≤µ|t }

.

Proof. Notice that if s > t, then

{n ∈N : LBs(Kn)≤µ|s}⊂ {n ∈N : LBt(Kn)≤µ|t}
⇒ Prob

{
n ∈N : LBs(Kn)≤µ|s } ≤ Prob

{
n ∈N : LBt(Kn)≤µ|t }

lim
s→∞Prob

{
n ∈N : LBs(Kn)≤µ|s }= f ∗K (φ(µ · F̂ −1)) ≤ Prob

{
n ∈N : LBt(Kn)≤µ|t }

Since µ|t · F̂ =µ · F̂,

⇒ f ∗K (φ(µ|t · F̂ −1)) ≤ Prob
{

n ∈N : LBt(Kn)≤µ|t }
.
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Recall uniform continuations from Definition 1.6.

Theorem 5.18. Let K be a sequence with continuous leading block distribution under F -
expansion. Let f ∗K be the function defined in Definition 5.16. Then, there is a uniform contin-
uation f of F such that f∞−1 = f ∗K and frc

(
f −1(Kn)

)
is equidistributed.

Proof. Let f : [1,∞) → R be the function given by f (x) = Fn + (Fn+1 − Fn)( f ∗K )−1(p) where
x = n+ p and p = frc(x). Then, f is a uniform continuation of Fn since ( f ∗K )−1 is independent
of n. Then, f∞ = ( f ∗K )−1, i.e., f∞−1 = f ∗K .

Let β ∈ (0,1) be a real number, and below we show that Prob
{

n ∈N : frc
(
f −1(Kn)

)≤β }
exists, and it is equal to β. Recall F from Definition 4.1 and Fn from Definition 5.1. Let
n ∈ N, and let m ∈ N such that Fm ≤ Kn < Fm+1. Then, Kn = f (m+ p′

n) = F(m+ pn) where
pn, p′

n ∈ [0,1], i.e., f∞(p′
n) = Fm(pn). By Theorem 5.13 and Lemma 5.15, there is a unique

µ ∈F∗ such that f∞(β)=φ(µ · F̂−1) and µ(1)= 1. Recall F∞ from Definition 5.1. Notice that

frc
(
f −1(Kn)

) = p′
n ≤ β⇒ f∞−1(Fm(pn)) ≤ β ⇒ pn ≤Fm

−1( f∞(β))

⇒ frc
(
F−1(Kn))

) ≤ Fm
−1( f∞(β)) = F∞−1( f∞(β))+ o(1) = logφ(µ · F̂)+ o(1).

Fix an integer t ≥ 2. By Proposition 5.14, we have µ · F̂ =µ|t · F̂ +γt < µ̃|t · F̂ where γt ≥ 0 and
µ̃|t ∈Ft is as defined Definition 3.7. Since logφ(µ̃|t · F̂)− logφ(µ · F̂) > 0, there is Mt ∈N such
that for all n ≥ Mt,

⇒ frc
(
F−1(Kn))

) ≤ logφ(µ · F̂)+ o(1) < logφ(µ̃|t · F̂).

By Lemma 4.4, this implies LBt(Kn)≤µ|t. Recall Ωn = {k ∈N : k ≤ n};

Prob
{

k ∈Ωn : frc
(
f −1(Kk)

)≤β }+ o(1) ≤ Prob
{

k ∈Ωn : LBt(Kk)≤µ|t }+ o(1)

⇒ limsup
n

Prob
{

k ∈Ωn : frc
(
f −1(Kk)

)≤β } ≤ Prob
{

n ∈N : LBt(Kn)≤µ|t }
.

Let us work on the liminf of the probability. Since β 6= 0, there is t0 > 1 such that µ(t0)> 0.
Thus, if t > t0 is sufficiently large, then there are at least two entries 1 in µ|t, and µ|t has
more entries after the second entry of 1 from the left. Recall the product ∗ from Definition
2.2. This choice of t allows us to have the unique coefficient functions µ̌ and µ̂ in Ft such
that 1+ µ̌∗F = µ̂∗F and 1+ µ̂∗F =µ|t∗F. Then, by Lemma 4.4,

LBt(Kn)≤ µ̌ ⇒ frc
(
F−1(Kn)

) < logφ(µ̂ · F̂)+ o(1)

⇒ pn < Fm
−1(φ(µ̂ · F̂ −1))+ o(1)

⇒ Fm(pn) = f∞(p′
n) < φ(µ̂ · F̂ −1)+ o(1)

⇒ p′
n = frc

(
f −1(Kn)

) < f∞−1(φ(µ̂ · F̂ −1))+ o(1)

< f∞−1(φ(µ|t · F̂ −1)) by Proposition 5.14,

≤ f∞−1(φ(µ · F̂ −1)) = β

⇒ Prob
{

k ∈Ωn : LBt(Kk)≤ µ̌ }+ o(1) ≤ Prob
{

k ∈Ωn : frc
(
f −1(Kk)

)≤β }+ o(1)

⇒ Prob
{

n ∈N : LBt(Kn)≤ µ̌ } ≤ liminf
n

Prob
{

k ∈Ωn : frc
(
f −1(Kk)

)≤β }
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By Lemma 5.17,

f∞−1(φ(µ̌ · F̂ −1)) ≤ liminf
n

Prob
{

k ∈Ωn : frc
(
f −1(Kk)

)≤β }
.

It is given that Prob
{

n ∈N : LBt(Kn)≤µ|t } → f∞−1(φ(µ · F̂ −1)) as t →∞. Let us calculate
the other bound;

2+ µ̌∗F = µ|t∗F ⇒ 2+
t∑

k=1
µ̌(k)Ft−k+1 =

t∑
k=1

µ(k)Ft−k+1

⇒ 2+
t∑

k=1
µ̌(k)

(
αφt−k+1 +O(φ−t+k−1)

)
=

t∑
k=1

µ(k)
(
αφt−k+1 +O(φ−t+k−1)

)
⇒ O(1)+α

t∑
k=1

µ̌(k)φt−k+1 = α
t∑

k=1
µ(k)φt−k+1

⇒ O(φ−t)+
t∑

k=1
µ̌(k)ωk−1 =

t∑
k=1

µ(k)ωk−1

⇒ o(1)+ µ̌ · F̂ = µ|t · F̂ ⇒ µ̌ · F̂ →µ · F̂
⇒ f∞−1(φ(µ̌ · F̂ −1))→ f∞−1(φ(µ · F̂ −1)) = β.

It is clear that if f is a uniform continuation of F, and K is a sequence of positive inte-
gers approaching ∞ such that frc

(
f −1(Kn)

)
is equidistributed, then, by Lemma 4.4, K has

continuous leading block distribution under F -expansion. Therefore, we have the following.

Theorem 5.19. Let K be a sequence of positive integers approaching ∞. Then, K has con-
tinuous leading block distribution under F -expansion if and only if there is a uniform con-
tinuation f of F such that frc

(
f −1(Kn)

)
is equidistributed.

6 Benford’s Law under generalized Zeckendorf expan-
sion

The contents in Sections 3, 4, and 5 are for Zeckendorf expansion, but the arguments of the
proofs apply to the setup for generalized Zeckendorf expansion without difficulties. In this
section, we introduce definitions and results for generalized Zeckendorf expansion without
proofs, but only refer to the corresponding theorems for Zeckendorf expansion proved in the
earlier sections.

6.1 Generalized Zeckendorf expansion

Let us review the generalized Zeckendorf expansion. Recall N0 from Definition 2.1
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Definition 6.1. Given a tuple L = (a1,a2, . . . ,aN) ∈NN
0 where N ≥ 2 and a1 > 0, let Θ be the

following infinite tuple in
∏∞

k=1N0:

(a1,a2, . . . ,aN−1,aN ,a1,a2, . . . ,aN−1,aN , . . . )

where the finite tuple (a1,a2, . . . ,aN−1,aN) repeats. Let Θ(k) denote the kth entry of Θ, and
let Θ|s = (Θ(1), . . . ,Θ(s)) for s ∈N.

Recall len from Definition 2.2. Let H ◦ be the recursively-defined set of tuples ε with
arbitrary finite length such that ε ∈ H ◦ if and only if there is smallest s ∈ N0 such that
ε|s =Θ|s, ε(s+1) <Θ(s+1), and (ε(s+2), . . . ,ε(n)) ∈ H ◦ where n = len(ε) and s is allowed to
be len(ε). Let H := {ε ∈ H ◦ : ε(1) > 0}. The set H is called a periodic Zeckendorf collection
of coefficient functions for positive integers, and L is called a principal maximal block of the
periodic Zeckendorf collection H .

Notice that if L = (1,0,1,0) is a principal maximal block of the periodic Zeckendorf collection
H , then L′ = (1,0) is a principal maximal block of H as well. For this reason, the indefinite
article was used in the statement of the definition of principal maximal blocks.

Example 6.2. Let H be the (periodic) Zeckendorf collection determined by the principal
maximal block L = (3,2,1). Then, Θ = (3,2,1,3,2,1, . . . ), and (0) and (3,2,1) are members of
H ◦. For (0) ∈H ◦, we set s = 0 in Definition 6.1, and for (3,2,1) ∈H ◦, we set s = 3.

Let ε = (3,2,0) and µ = (3,1,3,2,0). For ε, if s = 2, by the definition, we have ε ∈ H . For
µ, if s = 1, then µ|1 = Θ|1, µ(2) < Θ(2), and (µ(3), . . . ,µ(5)) = ε ∈ H ◦. Listed below are more
examples of members of H :

(3,2,1,3,2,1), (3,0,0,3), (1,2,3,1,0,3), (1,2,3,1,1,0).

Recall the product notation from Definition 2.2

Definition 6.3. Let H be a set of coefficient functions, and let H be an increasing sequence
of positive integers. If given n ∈ N, there is a unique ε ∈ H such that ε∗H = n, then H is
called a fundamental sequence of H , and the expression ε∗H is called an H -expansion.

If H is a periodic Zeckendorf collection for positive integers, then, by Theorem 6.4 below,
there is a unique fundamental sequence of H .

Theorem 6.4 ([10, 17]). Let H be a periodic Zeckendorf collection, and let L = (a1, . . . ,aN)
be its principal maximal block. Then, there is a unique fundamental sequence H of H , and
it is given by the following recursion:

Hn+N = a1Hn+N−1 +·· ·+aN−1Hn+1 + (1+aN)Hn for all n ∈N, and (8)

Hn = 1+
n−1∑
k=1

akHn−k for all 1≤ n ≤ N +1.
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If L = (1,0), then its periodic Zeckendorf collection is F defined in Definition 3.1, and its fun-
damental sequence is the Fibonacci sequence. If L = (9,9), then the fundamental sequence
H is given by Hn = 10n−1, and ε∗H for ε ∈H are base-10 expansions.

Definition 6.5. Let L = (a1, . . . ,aN) be the list defined in Definition 6.1. Let ψ =ψH =ψL

be the dominant real zero of the polynomial g = gH = gL(x) := xN −∑N−1
k=1 akxN−k − (1+aN),

and θ :=ψ−1. Let Ĥ be the sequence given by Ĥn = θn−1.

By (8), the sequence Ĥ in Definition 6.5 satisfies

Ĥn = a1Ĥn+1 +·· ·+aN−1Ĥn+N−1 + (1+aN)Ĥn+N for all n ∈N. (9)

The following proposition is proved in [10, Lemma 43] and [16, Lemma 2.1].

Proposition 6.6. Let L = (a1, . . . ,aN) be the list defined in Definition 6.1, and let g = xN −∑N−1
k=1 akxN−k − (1+aN) be the polynomial. Then, g has one and only one positive real zero ψ,

it is a simple zero, and there are no other complex zeros z such that |z| ≥ψ.

Theorem 6.7. Let H be a periodic Zeckendorf collection with a principal maximal block
L = (a1, . . . ,aN), and let H be the fundamental sequence of H . Then Hn = δψn +O(ψrn) for
n ∈N where δ and r are positive (real) constants, r < 1, and ψ is the dominant zero defined
in Definition 6.5.

Proof. Let g be the characteristic polynomial of degree N defined in Definition 6.5, and let
{λ1, . . . ,λm} be the set of m distinct (complex) zeros of g where m ≤ N and λ1 =ψ. Then, by
Proposition 6.6, we have |λk| <ψ for 2 ≤ k ≤ m. Since ψ is a simple zero, by the generalized
Binet’s formula [15], there are polynomials hk for 2 ≤ k ≤ m and a constant δ such that
Hn = δψn +∑m

k=2 hk(n)λn
k for n ∈ N. Thus, there is a positive real number r < 1 such that

Hn = δψn +O(ψrn) for n ∈N.
Notice that limn→∞ Hn/ψn = δ, and let us show that δ is a positive real number, and in

particular, it is non-zero. By [11, Theorem 5.1],

δ = lim
n→∞

Hn

ψn = 1
ψg′(ψ)

N∑
k=1

Hk

(k−1)!

[
dk−1

dxk−1
g(x)
x−ψ

]
x=0

. (10)

By the product rule, we have[
dk−1

dxk−1
g(x)
x−ψ

]
x=0

=
[

k−1∑
j=0

(
k−1

j

)
g( j)(x) (x−ψ)−1− j

j∏
t=1

(−t)

]
x=0

.

Notice that if 1 ≤ j ≤ N − 1, then g( j)(0) = −aN− j j! ≤ 0, and if g(0) = −(1+ aN) < 0. The
inequality (−ψ)−1− j ∏ j

t=1(−t) < 0 for all 0 ≤ j ≤ k−1 follows immediately from considering
the cases of j being even or odd. Thus, the summands in (10) are non-negative, and some
are positive. This concludes the proof of δ being a positive real number.

For the remainder of the paper, let H , H, and ψ be as defined in Definition 6.1.
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6.2 Strong Benford’s Law

Let us begin with definitions related to leading blocks under H -expansion.

Definition 6.8. Let n = ε∗ H for n ∈ N and ε ∈ H . If s ≤ len(ε), then (ε(1), . . . ,ε(s)) ∈ H

is called the leading block of n with length s under H -expansion. Recall that N = len(L).
If N ≤ s ≤ len(ε), let LBH

s (n), or simply LBs(n) if the context is clear, denote the leading
block of length s, and if s ≤ len(ε) and s < N, then let LBH

s (n) or simply LBs(n) denote
(ε(1), . . . ,ε(s),0, . . . ,0) ∈NN

0 . If s > len(ε), LBs(n) is declared to be undefined.
Recall the product ∗ from Definition 2.2. Given an integer s ≥ N, let Hs := {b1,b2, . . . ,b`}

be the finite set of the leading blocks of length s occurring in the H -expansions of N such
that 1+bk ∗H = bk+1 ∗H for all k ≤ `−1. Recall the truncation notation from Definition
4.3. If 1≤ s < N, then let Hs := {b1,b2, . . . ,b`} be the finite set of the leading blocks of length
N occurring in the H -expansions of N such that bk( j) = 0 for all 1 ≤ k ≤ ` and j > s and
1+bk|s∗H = bk+1|s∗H for all k ≤ `−1. The leading block b` is called the largest leading
block in Hs.

The exclusive block b`+1 is a coefficient function of length s defined as follows. If s ≥ N,
s ≡ p (mod N), and 0≤ p < N, then

b`+1 := (a1, . . . ,aN−1,aN , . . . ,a1, . . . ,aN−1,1+aN , c1, . . . , cp)

where ck = 0 for all k. If 1 ≤ s < N, then b`+1 := (a1, . . . ,aN−1,1+aN). If b is a leading block
bk ∈Hs, then we denote bk+1 by b̃.

If s < N, then the leading blocks b in Hs has lengths N with N − s last entries of 0, and
this case is treated as above in order to make b and b̃ in the statement and proof of Lemma
4.4 fit into the case of periodic Zeckendorf collections; see Lemma 6.13.

By [10, Definition 2 & Lemma 3] and Theorem 6.4, the subscript numbering of bk ∈Hs

for 1 ≤ k ≤ ` coincides with the lexicographical order on the coefficient functions. If b is the
largest leading block in Hs where s ≥ N, then

b= (. . . ,a1, . . . ,aN ,a1, . . . ,ap) if s ≡ p (mod N) and 0≤ p < N,

and 1+b∗H = b̃∗H = (. . . ,a1, . . . ,1+aN ,0, . . . ,0)∗H = Hs+1 where the last p entries of b̃ are
zeros. If s ≡ 0 (mod N) and b is the largest leading block in Hs, then

b̃= (a1, . . . ,aN−1,aN , . . . ,a1, . . . ,aN−1,1+aN).

If s < N and b is the largest leading block in Hs, then b̃ = (a1, . . . ,aN−1,1+ aN). Recall Ĥ
from Definition 6.5. For all cases, if b is the largest leading block in Fs, then b̃ · Ĥ =ψ.

The proof of Theorem 6.9 below follows immediately from Lemma 6.12 and Theorem
6.14.

Theorem 6.9. Let K be a sequence of positive integers such that Kn = abn(1+ o(1)) where a
and b are positive real numbers such that logψ b is irrational. Then, given b ∈Hs,

Prob
{

n ∈N : LBs(Kn)=b
} = logψ

b̃ · Ĥ
b · Ĥ .
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Motivated from the leading block distributions of the exponential sequences considered
in Theorem 6.9, we declare strong Benford’s Law under H -expansion as follows.

Definition 6.10. A sequence K of positive integers is said to satisfy strong Benford’s Law
under H -expansion if given b ∈Hs,

Prob
{

n ∈N : LBs(Kn)=b
} = logψ

b̃ · Ĥ
b · Ĥ .

6.3 Benford continuation of H

We used a real analytic continuation of the Fibonacci sequence for Zeckendorf expansion,
but as demonstrated in the earlier sections, the leading block distributions are determined
by its limit F∞. Thus, rather than using a real analytic continuation of H, we may use the
limit version directly, which is far more convenient. By Theorem 6.7, Hn = δψn +O(ψrn) =
δψn(1+ o(1)) where δ and r < 1 are positive real constants, and we define the following:

Definition 6.11. Let H : [1,∞)→R be the function given by

H(x)= Hn + (Hn+1 −Hn)
ψp −1
ψ−1

where x = n+ p and p = frc(x), and it is called a Benford continuation of H.

Recall Definition 1.6. Then, H is a uniform continuation of H, and H∞(p) = ψp−1
ψ−1 for all

p ∈ [0,1]. We leave the proof of the following to the reader.

Lemma 6.12. For real numbers x ∈ [1,∞), we have H(x)= δψx(1+o(1)), and H−1(x)= logψ(x)−
logψδ+ o(1).

Recall Hs from Definition 6.8 and Ĥ from Definition 6.5.

Lemma 6.13. Let K be a sequence of positive real numbers approaching ∞. Let b ∈Hs, and
let Ab := {n ∈N : LBs(Kn)=b}. Then, there are real numbers γn = o(1) and γ̃n = o(1) such that
n ∈ Ab if and only if

logψb · Ĥ+γn ≤ frc
(
H−1(Kn)

) < logψ b̃ · Ĥ+ γ̃n, (11)

where γ̃n = 0 when b is the largest leading block of length s.

There is no difficulty in applying the arguments of the proof of Lemma 4.4 to Lemma 6.13,
and we leave the proof to the reader.

Recall Definition 6.10.

Theorem 6.14. Let K be an increasing sequence of positive integers such that frc
(
H−1(Kn)

)
is equidistributed. Then, K satisfies strong Benford’s Law under the H -expansion.

There is no difficulty in applying the arguments of the proof of Theorem 4.5 to Theorem
6.14, and we leave the proof to the reader.
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6.4 Absolute Benford’s Law

Introduced in [10] is a full generalization of Zeckendorf expressions, which is based on the
very principle of how Zeckendorf expressions are constructed in terms of lexicographical
order. In this most general sense, the collection H in Definition 6.1 is called a periodic
Zeckendorf collection of coefficient functions. We believe that a property concerning all peri-
odic Zeckendorf collections may be noteworthy, and as in the notion of normal numbers, we
introduce the following definition.

Definition 6.15. A sequence K of positive integers is said to satisfy absolute Benford’s Law
if K satisfies strong H -Benford’s Law for each periodic Zeckendorf collection H .

Recall the Lucas sequence K = (2,1,3,4, . . . ) from Example 5.10. It satisfies strong Ben-
ford’s Law under all base-b expansions, but it does not satisfy strong Benford’s Law under
Zeckendorf expansion. Thus, the Lucas sequence does not satisfy absolute Benford’s Law.

Theorem 6.16. Let γ be a positive real number such that γ is not equal to ψr for any r ∈Q
and any dominant real zero ψ of gH where H is as defined in Definition 6.5. Let K be the
sequence given by Kn = ⌊

γn⌋
. Then, K satisfies absolute Benford’s Law.

Proof. Let H and ψ be as defined in Definitions 6.3 and 6.5, and let H be the Benford con-
tinuation defined in Definition 6.11. Note that ψ is algebraic. Notice that

⌊
γn⌋= γn+o(1), and

logψ(γ) is irrational. Thus, by Lemma 6.12,

H−1(Kn) = (n+ o(1)) logψ(γ)− logψ(δ)+ o(1) = n logψ(γ)− logψ(δ)+ o(1).

By Weyl’s Equidistribution Theorem,

⇒ Prob
{

n ∈N : frc
(
H−1(Kn)

)≤β } = Prob
{

n ∈N : frc
(
n logψ(γ)

)
≤β

}
= β.

By Theorem 6.14, K satisfies Benford’s Law under H -expansion.

Corollary 6.17. Let γ > 1 be a real number that is not an algebraic integer. Then, the
sequence K given by Kn = ⌊

γn⌋
satisfies absolute Benford’s Law.

Proof. The dominant real zero ψ defined in Definition 6.5 is an algebraic integer, and so is
ψr for all r ∈Q. Thus, if γ ∈ R is not an algebraic integer, then by Theorem 6.16, K satisfies
absolute Benford’s Law.

Example 6.18. Let K be the sequence given by Kn =
⌊
φp
5
(89

55 )n
⌋
, which is considered in the

introduction. Since 89
55 is not an algebraic integer, by Corollary 6.17, the sequence K satisfies

absolute Benford’s Law.
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6.5 Other Continuations

Recall Definition 1.6, and that H is the fundamental sequence of H defined in Definition
6.3. As in Section 5, we relate other continuations of H to the distributions of leading blocks
under H -expansion.

Recall the Benford continuation H from Definition 6.11, uniform continuations h and h∞
from Definition 1.6, and the definition of b̃ from Definition 6.8.

Theorem 6.19. Let h : [1,∞) → R be a uniform continuation of H. Then, there is a se-
quence K of positive integers approaching ∞, e.g., Kn = ⌊

H(n+Hn
−1 ◦hn

(
frc(nπ)

)⌋
, such that

frc
(
h−1(Kn)

)
is equidistributed.

Let K be a sequence of of positive integers approaching ∞ such that frc
(
h−1(Kn)

)
is

equidistributed. Let b ∈Hs. Then,

Prob
{

n ∈N : LBs(Kn)=b
} = h∞−1 ◦H∞(logψ b̃ · Ĥ)−h∞−1 ◦H∞(logψb · Ĥ)

= h∞−1

(
b̃ · Ĥ−1
ψ−1

)
−h∞−1

(
b · Ĥ−1
ψ−1

)
.

There is no difficulty in applying the arguments of the proof of Theorem 5.6 to Theorem
6.19, and we leave the proof to the reader.

Recall that I = (0,1). As in Definition 5.11, we introduce expressions for I that are asso-
ciated with H . Recall also the infinite tuple Θ, θ, and Ĥ, from Definitions 6.1 and 6.5.

Definition 6.20. An infinite tuple µ ∈ ∏∞
k=1N0 is called an H -expression for I if there is

a smallest i ∈ N such that µ(i) > 0, (µ(i), . . . ,µ(k)) ∈ H for all k ≥ i, and for all j ∈ N0, the
sequence {µ( j + n)}∞n=1 is not equal to the sequence {Θ(n)}∞n=1. Let H ∗ be the set of H -
expressions for I.

Given s ∈N and {µ,τ} ⊂H ∗, we declare µ|s < τ|s if µ|s · Ĥ < τ|s · Ĥ, which coincides with
the lexicographical order on Ns

0. We define µ · Ĥ := ∑∞
k=1µ(k)θk−1, which is a convergent

series.

Theorem 6.21 and Proposition 6.22 below are proved in [10].

Theorem 6.21 (Zeckendorf Theorem for I). Given a real number β ∈ I, there is a unique
µ ∈H ∗ such that β=∑∞

k=1µ(k)θk = (µ · Ĥ)θ.

Proposition 6.22. Let {µ,τ}⊂H ∗. Then, µ · Ĥ < τ · Ĥ if and only if µ|s < τ|s for some s ∈N.

By Theorem 6.21, Proposition 6.22 and (9), the function from {µ ∈ F∗ : µ(1) = 1} to [0,1)
given by the following is bijective:

µ 7→ µ · Ĥ−1
ψ−1

,

and hence, h∗
K defined in Definition 6.23 is well-defined.
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Definition 6.23. Let K be a sequence of positive integers approaching ∞ such that given
µ ∈H ∗ such that µ(1)= 1, the following limit exists:

lim
s→∞Prob

{
n ∈N : LBs(Kn)≤µ|s }

. (12)

Let h∗
K : [0,1] → [0,1] be the function given by h∗

K (0) = 0, h∗
K (1) = 1, and h∗

K

(
µ·Ĥ−1
ψ−1

)
is

equal to the value in (12). If h∗
K is continuous and increasing, then K is said to have contin-

uous leading block distribution under H -expansion.

Theorem 6.24. Let K be a sequence with continuous leading block distribution under H -
expansion. Let h∗

K be the function defined in Definition 6.23. Then, there is a uniform con-
tinuation h of Hn such that h∞−1 = h∗

K and frc
(
h−1(Kn)

)
is equidistributed.

There is no difficulty in applying the arguments of the proof of Theorem 5.18 to Theorem
6.24, and we leave the proof to the reader.

7 Benford behavior within expansions

As mentioned in the introduction, Benford’s Law under base-b expansion arises with Zeck-
endorf expansion, and let us review this result, which is available in [4].

Let K be a periodic Zeckendorf collection defined in Definition 6.1, and let K be the
fundamental sequence of K , defined in Definition 6.3. Let S be an infinite subset of {Kn :
n ∈ N} such that q(S) := Prob

{
n ∈N : Kn ∈ S

}
exists. Recall the product ∗ from Definition

2.2. For a randomly selected integer n ∈ [1,K t+1), let µ∗K be the K -expansion of n, let
M = len(µ), and define

Pt(n) :=
∑M

k=1µ(k)χS(Kk)∑M
k=1µ(k)

(13)

where χS is the characteristic function on {Kk : k ∈N}, i.e., χS(Kk)= 1 if Kk ∈ S and χS(Kk)=
0, otherwise. Proved in [3] is that given a real number ε> 0, the probability of n ∈ [1,K t+1)
such that |Pt(n)− q(S)| < ε is equal to 1+o(1) as a function of t. For Benford behavior, we let
S be the set of Kn that have leading (fixed) leading decimal digit d. Then, q(S)= log10(1+ 1

d ),
and the probability of having a summand Kn with leading digit d within the K -expansion
is nearly q(S) most of the times.

This result immediately applies to our setup. Let H and H be as defined in Definition
6.1 different from K and K . For example, let H be the base-b expressions, and let K be
the Zeckendorf expressions. Then, H is the sequence given by Hn = bn−1 and K = F is the
Fibonacci sequence. Recall from Definition 6.8 that Hs is a set of leading blocks under H -
expansion, and that LBH

s (n) denotes the leading block of n in Hs under H -expansion. By
Corollary 4.7, the sequence K satisfies (strong) Benford’s Law under H -expansion, i.e.,

Prob
{

n ∈N : LBH
s (Kn)=b

}
= logψ

b̃ · Ĥ
b · Ĥ
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where b ∈ Hs and ψ = b, and this is Benford’s Law under base-b expansion. The case
considered in the introduction is that H is the Zeckendorf expansion and K is the binary
expansion. The following is a corollary of [4, Theorem 1.1]. Recall Definition 6.5.

Theorem 7.1. Let H and H be as defined in Definition 6.1, and Let K be the fundamental
sequence of a periodic Zeckendorf collection K such that ψr

H
6=ψK for all r ∈Q where ψH

and ψK are the dominant real zeros of gH and gK , respectively. Given b ∈ Hs, let Sb :=
{Kn : LBH

s (Kn) = b, n ∈ N}. For a randomly selected integer n ∈ [1,K t+1), let Pt(n) be the
proportion defined in (13) with respect to S = Sb. Then, given a real number ε > 0, the
probability of n ∈ [1,K t+1) such that∣∣∣∣∣Pt(n)− logψH

b̃ · Ĥ
b · Ĥ

∣∣∣∣∣ < ε

is equal to 1+ o(1) as a function of t.

8 Future work

Instead of the leading digit, one can look at the distribution of the digit in the second, third,
or generally any location. For a sequence that is strong Benford, the further to the right we
move in location, the more uniform is the distribution of digits. A natural question is to ask
whether or not a similar phenomenon happens with Zeckendorf decompositions, especially
as there is a natural furthest to the right one can move.

We can also look at signed Zeckendorf decompositions. Alpert [1] proved that every in-
teger can be written uniquely as a sum of Fibonacci numbers and their additive inverses
where two if two consecutive summands have the same sign then their indices differ by
at least 4 and if they are of opposite sign then their indices differ by at least 3. We now
have more possibilities for the leading block, and one can ask about the various proba-
bilities. More generally, one can consider the f -decompositions introduced in [13], or the
non-periodic Zeckendorf collections introduced in [10].

Additionally, one can explore sequences where there is no longer a unique decomposition,
see for example [5, 6, 7, 8, 9], and ask what is the distribution of possible leading blocks.
There are many ways we can formulate this question. We could look at all legal decomposi-
tions, we could look at what happens for specific numbers, we could look at what happens
for specific types of decompositions, such as those arising from the greedy algorithm or those
that use the fewest or most summands.
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