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Abstract: A frequent problem with classic first digit applications of Benford’s law is the law’s 1

inapplicability to clustered data, which becomes especially problematic for analyzing election data. 2

This study offers a novel adaptation of Benford’s law by performing a first digit analysis after 3

converting vote counts from election data to base 3 (referred to throughout the paper as 1-BL 3), 4

spreading out the data and thus rendering the law significantly more useful. We test the efficacy of 5

our approach on synthetic election data using discrete Weibull modeling, finding that, in many cases, 6

election data often conforms to 1-BL 3. Lastly, we apply 1-BL 3 analysis to selected states from the 7

2004 US Presidential election to detect potential statistical anomalies. 8

Keywords: Benford’s Law, Election Analysis, Weibull Modeling 9

1. Introduction 10

Although Benford’s Law (see Section 2 for a review) has successfully detected fraud in 11

many settings (flagging, among others, financial records, images, and scientific data that 12

have been modified), the difficulty in determining when one should expect Benfordness 13

severely limits its applications to detect fraud or other issues. One popular argument is that 14

data sets that are spread out over several orders of magnitude are often close to Benford. 15

Though this phenomenon is frequently true (see [1,2] for results on exponential random 16

variables), it can fail; see for example Chapter 2 of [3] or [4] for issues with the ‘spread’ 17

hypothesis. 18

Clearly, not all data sets follow Benford’s law, especially in elections [5,6]. For example, 19

if the data is not spread out sufficiently, the distribution of first digits is unlikely to conform 20

to standard base 10 representations of Benford’s law (hereafter referred to as 1-BL 10), and 21

thus deviations from Benfordness do not suggest fraud or other concerns. This issue is the 22

main motivation for this work; specifically, our analysis is intended to address discussions 23

where claims of election fraud are made when observed candidate vote counts do not 24

satisfy 1-BL 10 [7]. 25

A classic example is precinct by precinct election data. Figure 1 provides such data 26

from three counties from the 2004 US Presidential Election between incumbent President 27

George W. Bush and Senator John F. Kerry. As is apparent in Figure 1, precinct level election 28

data can be clustered thus rendering 1-BL10 useless. As a result, work by Walter Mebane 29

and others [6,8–17] have looked at the second digit (hereafter referred to as 2-BL 10), or the 30

last two digits (which one expects to be the same about 10% of the time base 10). 31

In this study, we propose an additional approach for digit-based analysis of concen- 32

trated data. Namely, we write the data in terms of base 3 instead of base 10; the advantage 33

of doing so is that our numbers are now spread out over several more magnitudes with 34

two choices for the first digit instead of nine. For example, 81 is a two digit number in base 35
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Figure 1. Vote Distributions Across Precincts in US 2004 Presidential Election for Selected Counties.

10, but in base 3 it is 100003, five digits representing four orders of magnitude, and this 36

transformation thus spreads out clumped data. This idea of switching bases was originally 37

proposed by the fourth named author over a decade ago to detect falsified data that passes 38

a Benford test base 10 but might fail it in another base. Other base representations are of 39

course possible; however, higher base representations would cluster the data more than 40

base three, and base two representations would only have a single choice of a leading digit. 41

Base 3 representations in election data were recently applied by the Kossovsky and Miller 42

(2020) in [18]. 43

This paper thus contributes to the literature on Benford’s law by performing a first digit 44

analysis of precinct level election data based on base 3 representations (hereafter referred 45

to as 1-BL 3). Specifically, our work is organized as follows. First, we discuss existing forms 46

of Benford’s law used for analyzing data and various generalizations. Subsequently, we 47

fit precinct-level election data from the 2004 US Presidential Election to discrete Weibull 48

distributions and assess the goodness of fit of these distributions in modeling election data. 49

Subsequently, we draw upon this analysis by using a variety of choices of parameters based 50

on this estimation to generate synthetic election data to compare the performance of 1-BL 51

10 and 1-BL 3. We find that, in many cases, election data generally conforms to 1-BL 3, but 52

does not to 1-BL 10. Lastly, we apply 1-BL 3 analysis to selected states from the 2004 US 53

Presidential election to detect potential statistical anomalies. We emphasize that our work 54

is generalizable to other elections and thus should be a useful tool for researchers to use in 55

analyzing the integrity of elections. 56

2. Benford’s Law and Generalizations 57

In the 1880s Simon Newcomb [19] observed that the pages of tables of logarithms were 58

not equally worn; there was more wear and tear on the earlier pages (those corresponding 59

to the logarithms of numbers with a small first significant digit, such as 1, 2 or 3) than the 60

later pages (those from numbers with a large first digit (such as 7, 8 or 9). Fifty years later 61

Frank Benford [20] saw similar biases in many different data sets. Any positive number x 62

can be written base B as x = SB(x) · Bk(x), where SB(x) ∈ [1, B) is the significand and k(x) 63

is an integer. We now say a data set is Benford, or satisfies Benford’s Law, base B if 64

Prob(First digit base B is d) = logB

(
1 +

1
d

)
; (1)

thus base 10 the probabilities decrease from roughly 30% for a leading digit of 1 down to 65

about 4.6% for a 9. 66
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Sometimes, however, one uses Benford to refer to not just the first digit, but the 67

distribution of the significand (alternatively one often says the system is strongly Benford); 68

thus 69

Prob(Significand base B is at most s) = logB(s). (2)

Note that the first digit probabilities follow immediately from the significand, as 70

Prob(First digit base B is d) = Prob(Significand base B is in [d, d + 1))

= logB(d + 1)− log(d) = logB

(
1 +

1
d

)
, (3)

and we can easily determine the probabilities of the second digits: 71

Prob(Second digit base B is d) =
B−1

∑
k=1

log
(

1 +
1

Bk + d

)
. (4)

We see a set is Benford base B if and only if its logarithms base B are equidistributed 72

modulo 1; thus the digit bias disappears under a logarithmic transformation. For more on 73

the history, theory and applications of Benford’s law see the survey articles [21–24] and the 74

books [3,25,26]. 75

Table 1 provides 1-BL 10 and 2-BL 10 probabilities, namely the probability of a first or 76

second digit being d base 10. Figure 2 provides a visual distribution of the first digits. 77

d
Probability
First Digit d

Probability
Second Digit d

0 0.1197
1 0.3010 0.1139
2 0.1761 0.1088
3 0.1249 0.1043
4 0.0969 0.1003
5 0.0792 0.0967
6 0.0669 0.0934
7 0.0580 0.0904
8 0.0512 0.0876
9 0.0458 0.0850

Table 1. Benford probabilities for first and second
digit (to four decimal places).

Figure 2.
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Table 2 provides analogous probabilities for the distribution of the first and second 79

digits of 1-BL 3 and second digit base 3 (2-BL 3) probabilities, and Figure 3 provides a visual 80

representation of the distribution of the leading digits under base 3 representations. 81

d
Probability
First Digit d

Probability
Second Digit d

0 0.4022
1 0.6309 0.3247
2 0.3691 0.2732

Table 2. Benford probabilities for first digit base 3
(to four decimal places).

Figure 3.
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One of the most utilized tests to see if a set is Benford is to compute the chi-squared 83

statistic, with comparisons of the associated cumulative distribution function to statistical 84

significance levels, usually α = 0.01 or 0.05. If E(d) is the expected number that have a first 85

digit of d base B, and O(d) is the observed number, then the chi-squared statistic is 86

χ2 =
B−1

∑
d=1

(O(d)− E(d))2

E(d)
. (5)

If we work in base B = 10 then as we have 9 choices for the first digit and the 87

probabilities sum to 1, we only have 8 degrees of freedom (the probability of the last digit 88

is forced from the other 8, and zero is never a first digit). If the digit distribution is drawn 89

from Benford’s law, then 95% of the time we should have a chi-square value of 15.5 or less, 90

and 99% of the time it should be 20.1 or less. To put it another way, if the data follows 91

Benford’s law and we observe a value greater than 20.1 , there is only a 1% chance of that 92

happening given that the data is Benford; if you observe values larger than 20.1 the probability 93

falls rapidly. 94

If we work in base 3, there are only two possibilities for the leading digits. For a set 95

that is Benford we expect to observe a leading digit of 1 approximately 63.093% of the time 96

and of 2 about 36.907%, with the chi-square values (with one degree of freedom) being 3.84 97

(at the 95% level) and 6.63 (at the 99% level). 98

In the following section, we modeled the skewed distributions of precinct level election 99

data for the purposes of analyzing these distributions with respect to Benford’s law. 100

3. Empirical Estimates Using 2004 Election Data 101

3.1. Modeling with the Discrete Weibull 102

As is apparent in Figure 1, precinct by precinct election data can be skewed by vote 103

counts heavily occurring in a just a few precincts. The discrete Weibull distribution provides 104

a flexible family of distributions useful for modeling this type of skewed data [27]. The 105

family, as well as associated variants, have been used to model real-world phenomena 106

including soccer, respiratory capacity, fertility, and levels of microorganisms among others 107

[28–32]. In this section, we utilize this family to model precinct by precinct election data. 108

Specifically, in state i and county j consisting of k = {1, . . . , K} precincts, we can 109

model the vote count for two candidates x and y, xi,j = {xi,j,1, . . . , xi,j,K} and yi,j = 110

{yi,j,1, . . . , yi,j,K}, using a discrete Weibull representation [27] as follows: 111

P(xi,j,k; αx,i,j, βx,i,j) = exp

−( xi,j,k

αx,i,j

)βx,i,j
− exp

−( xi,j,k + 1
αx,i,j

)βx,i,j
 (6)

and: 112

P(yi,j,k; αy,i,j, βy,i,j) = exp

−( yi,j,k

αy,i,j

)βy,i,j
− exp

−(yi,j,k + 1
αy,i,j

)βy,i,j
. (7)

3.2. Data and Model Estimation 113

We estimated the discrete Weibull model on data from the 2004 Presidential Election 114

between incumbent President George W. Bush and Senator John F. Kerry available online 115

on Harvard University’s DataVerse repository [33]. The repository is a comprehensive 116

database providing precinct by precinct vote counts across counties for many states of 117

the 2004 as well as other Presidential, Senatorial, and Congressional elections. Although 118

there were a number of other candidates appearing on the ballot in the general election, we 119

focused our analysis on the two main candidates in several selected states. Specifically, to 120
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estimate the model on states with varying political inclinations, we analyzed one “red” state 121

(North Carolina), one “blue” state (Vermont), and three “battleground" states (Colorado, 122

Ohio, and Wisconsin). We verified the data correctly represents vote counts reported by 123

the United States Federal Election Commission for all five states, with the exception of 124

Wisconsin, having an error of less than 0.6% for each candidate [34]. In order to ensure a 125

reasonable sample size for our analysis, we restricted our analysis to counties consisting of 126

more than ten election day precincts. 127

For such counties, we estimated the scale and shape parameters for the distribution 128

of the precinct by precinct vote tallies for each of the two candidates x and y in state i 129

and county j - αx,i,j, βx,i,j, αy,i,j, and βy,i,j - via the method of maximum likelihood (MLE). 130

Subsequently, to assess goodness of fit, we performed a series of two sample Kolmogorov- 131

Smirnov (KS) tests assessing the null hypothesis of distributional equality, comparing the 132

distribution of xi,j, or yi,j, with a random sample of size K of the associated discrete Weibull 133

distribution using parameter estimates obtained via MLE. We averaged p-values obtained 134

from 100 simulations to obtain a pooled Monte Carlo estimate of the goodness of fit of the 135

estimated distributions. Our estimated shape and scale parameters, as well as pooled p- 136

value estimates, for the battleground states of Ohio, Colorado, and Wisconsin are presented 137

in the scatterplots in Figure 4 for counties having at least ten precincts. Scatterplots of MLE 138

estimates and KS-test results for Vermont and North Carolina are ommitted for brevity and 139

are available from the authors upon request. 140

Figure 4. Discrete Weibull parameter estimation and Kolmogorov Smirnov Goodness of Fit Test
Results for Ohio, Colorado, and Wisconsin, US 2004 Presidential Election. p-values above 0.05
indicate conformance to discrete Weibull distribution.

As Figure 4 illustrates, for all three battleground states, the discrete Weibull distribu- 141

tions fit quite well. Altogether there are three counties in Ohio that have pooled p-values 142

less than 0.05, one county in Wisconsin, and none in Colorado for Bush. For Kerry, there 143

were eight such counties in Ohio, one county in Wisconsin, and none in Colorado. After 144

performing the standard, albeit conservative, Bonferroni corrections there was only one 145

county - Cuyahaga County, Ohio - for Bush, that was statistically significant (p < 4x10−5). 146

These results demonstrate the efficacy of using discrete Weibull distribution to model 147

precinct level data across counties. 148
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α̂Bush,i,j β̂Bush,i,j p-value Number of
Precincts

Milwaukee County, WI 351.457 1.410 0.321 560
Stark County, OH 287.717 2.289 0.472 364
Grand County, CO 205.389 2.706 0.726 12

Table 3. Maximum Likelihood Estimates and Goodness of Fit Test Results for Vote Counts for Selected
Counties in 2004 US Presidential Election - President George W. Bush. p-values above 0.05 indicate
conformance to discrete Weibull distribution.

α̂Kerry,i,j β̂Kerry,i,j p-value Number of
Precincts

Milwaukee County, WI 598.1 2.2 0.223 560
Stark County, OH 289.057 4.085 0.304 364
Grand County, CO 167.35 3.188 0.614 12

Table 4. Maximum Likelihood Estimates and Goodness of Fit Test Results for Vote Counts for
Selected Counties in 2004 US Presidential Election - Senator John F. Kerry. p-values above 0.05
indicate conformance to discrete Weibull distribution.

Furthermore, as Figure 4 also illustrates, our estimated parameters vary notably, 149

depending on the county. Tables 3 and 4 provide MLE parameter estimates and p-values 150

the KS tests, and precinct sizes for the selected counties presented in Figure 1. 151

Tables 3 and 4 illustrate the robustness of the discrete Weibull distribution in its ability 152

to model different types of counties across the country. Namely, Milwaukee county, WI has 153

larger scale and smaller shape parameters than the less densely populated Stark County, 154

OH, and Grand County, CO. Regardless, the p-values for all three counties are well above 155

0.05, demonstrating the robustness of the choice of the discrete Weibull distribution across 156

different counties. 157

This analysis in the section illustrates the efficacy of using the discrete Weibull dis- 158

tribution at fitting precinct level election data. Furthermore, as is evident in Figure 3, the 159

estimates of the scale and shape parameters approximately vary between [100, 600] and 160

[1, 6] respectively. In the following section, we utilize these facts to examine the usefulness 161

of 1-BL 3 and 1-BL 10 in analyzing election data. 162

4. Comparisons of 1-BL 3 and 1-BL 10 to Potential Vote Distributions 163

In the previous section, we demonstrated the usefulness of the discrete Weibull dis- 164

tribution in modeling precinct level election data. In this section, we examine a variety of 165

choices of discrete Weibull parmaeterizations and assess their adherence to 1-BL 3 and 1-BL 166

10 via Monte Carlo analysis. Specifically, based on the results presented in Figure 4, we 167

simulated county level data with the number of simulated precincts varying between 50 168

and 300. We varied the scale parameter αx,i,j between 100 and 600 in increments of 25 and 169

varied the shape parameter βx,i,j between 1 and 6 in increments of 1. After compiling the 170

expected and observed number of first digits under both base 10 and base 3 representations, 171

we performed chi-squared tests for both 1-BL 10 and 1-BL 3 (assuming under the null 172

hypothesis of distributional equality, chi-squared distributions having eight and one degree 173

of freedom respectively as discussed in Section 2) and subsequently computed associated 174

p-values. We averaged these p-values over the course of 25 Monte Carlo simulations. Our 175

results are presented in Figures 5 and 6. 176

As is apparent Figure 5, assuming a statistical significance level of α=0.05 the simulated 177

precinct data rarely conforms to 1-BL 10 except for choices of scale parameter αx,i,j between 178

100 and 200. Upon conversion to base 3, adherence to Benford’s law is considerably more 179

robust, as is illustrated in Figure 6. Even under base 3 representations, however, Benford’s 180

law is not always observed. For example, if the scale parameter αx,ij exceeds 500 or the 181
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Figure 5. First Digit Base 10 Monte Carlo Analysis of Simulated Discrete Weibull Distributions with
Various Choices of Parameterizations and Precinct Sizes. p-values above 0.05 indicate conformance
to 1-BL 10.

Figure 6. First Digit Base 3 Monte Carlo Analysis of Simulated Discrete Weibull Distributions with
Various Choices of Parameterizations and Precinct Sizes. p-values above 0.05 indicate conformance
to 1-BL 3
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State George W. Bush (R) John F. Kerry (D) Number of Counties
North Carolina 56.02% (1,961,166) 43.58% (1,525,849) 100
Vermont 38.80% ( 121,180) 58.94% ( 184,067) 16
Wisconsin 49.32% (1,478,120) 49.70% (1,489,504) 72
Ohio 50.81% (2,859,768) 48.71% (2,741,167) 88
Colorado 51.69% (1,101,255) 47.02% (1,001,732) 64

Table 5. States from 2004 US Presidential Election used for Analysis.

shape parameter βx,i,j exceeds 4, the associated p-values are below 0.05 and thus Benford’s 182

behavior is not observed.1 183

Our analysis of this synthetic election data using the wide choices of parameters 184

motivated by our MLE estimation in Section 3 illustrates that 1-BL 3 is considerably more 185

effective than 1-BL 10 in fitting election data. Thus, base 3 representations of precinct by 186

precinct data are considerably much more likely to adhere to Benford’s law than standard 187

base 10 representations for most of the choices of parameterizations presented in Figures 5 188

and 6. These results thus provide theoretical justification for applying 1-BL 3 to election 189

data, which we perform in the following section. 190

5. Applications of 1-BL 3 to the 2004 US Presidential Election 191

As a result of our analysis in Section 4, we now have a theoretical justification for 192

applying 1-BL 3 to election data. In this section, we do so by utilizing the data from the 193

2004 US Presidential Election discussed in Section 3. Specifically, we analyzed counties 194

amongst the states of Colorado, North Carolina, Ohio, Vermont, and Wisconsin to assess 195

adherence to 1-BL 3 on a county by county basis. The electoral outcomes of these states is 196

summarized in Table 5. 197

As we did in Section 3, we restricted our analysis to counties voting on election day 198

that consisted of at least ten election day precincts. We assumed a statistical significance 199

level α = 0.05 and performed comparisons of observed and expected values. Specifically, 200

as discussed in section 2, we did so by utilizing a chi-squared distribution with one degree 201

of freedom to test the null hypothesis of distributional equality between these observed 202

and expected counts. Afterwards, we computed adjusted p-values using the Benjamni- 203

Hochberg procedure to control for the false discovery rate [35] as has been done in other 204

election related work using Benford’s law (see for example [9,36,37]). Our results are 205

presented in Table 6. 206

As Table 6 illustrates, all counties amongst the non-competitive states of North Car- 207

olina and Vermont as well as the battleground state of Wisconsin conform to 1-BL3. On 208

the other hand, there are four distributions amongst counties/candidates in Colorado and 209

fifteen distributions in Ohio that are statistically anomalous. 210

However, as Figure 6 from Section 4 demonstrates, depending on the distribution 211

of votes for either candidate, certain counties may not necessarily conform to 1-BL 3 to 212

begin with. As a result, we performed another series of Monte Carlo simulations for the 213

anomalous counties in Table 6 to assess whether the estimated vote distribution for each 214

county/candidate indeed conforms to Benford’s law. To do so, we again ran 25 Monte 215

Carlo simulations drawing from discrete Weibull distributions using the county’s estimated 216

parameters (presented as part of Figure 4) and reported precinct sizes for the anomalous 217

counties in Table 6 to assess whether these distributions indeed conform to 1-BL 3. We 218

averaged p-values across the 25 simulations and compared these values to those in Table 6. 219

We flagged counties where the estimated distribution conforms to Benford’s law (p-value > 220

1 This behavior persists even after altering α = 0.05 for multiple comparisons via Bonferroni corrections to
α = 1.67x10−4.
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State County Candidate χ2 Stat p-value Number of
Precincts

adjusted
p-value

Colorado Arapahoe John F. Kerry 21.152 <0.001 364 0.001
El Paso John F. Kerry 20.513 <0.001 378 0.001
Jefferson George W. Bush 38.050 <0.001 324 <0.001
Jefferson John F. Kerry 108.747 <0.001 324 <0.001

North Carolina No Anomalies Detected
Wisconsin No Anomalies Detected
Ohio Ashtabula John F. Kerry 39.385 <0.001 127 <0.001

Butler John F. Kerry 14.594 0.001 289 0.013
Geauga George W. Bush 15.196 <0.001 96 0.013
Geauga John F. Kerry 20.812 <0.001 96 0.001
Greene George W. Bush 13.860 0.001 142 0.016
Greene John F. Kerry 36.189 <0.001 142 <0.001
Lorain John F. Kerry 43.509 <0.001 239 <0.001
Miami John F. Kerry 14.669 0.001 82 0.013
Muskingum John F. Kerry 13.971 0.001 85 0.016
Portage John F. Kerry 27.249 <0.001 129 <0.001
Summit John F. Kerry 68.917 <0.001 475 <0.001

Vermont No Anomalies Detected

Table 6. First Digit Base 3 Benford’s Analysis on Selected Battleground and Non-Battleground States
in the US 2004 Presidential Election.

County Candidate αx,i,t βx,i,t
Number of
Precincts

p-value
(KS -test)

Should conform
to BL but fails?

Arapahoe John F. Kerry 326.634 2.973 364 0.003
El Paso John F. Kerry 231.420 2.499 378 0.507 *
Jefferson George W. Bush 400.330 3.650 324 0.001
Jefferson John F. Kerry 352.800 4.717 324 <0.001
Ashtabula John F. Kerry 208.527 4.538 127 <0.001
Butler John F. Kerry 218.783 2.869 289 0.037
Geauga George W. Bush 348.690 4.200 96 0.003
Geauga John F. Kerry 228.818 3.869 96 0.099 *
Greene George W. Bush 383.344 2.628 142 0.395 *
Greene John F. Kerry 244.027 2.272 142 0.494 *
Lorain John F. Kerry 367.292 2.964 239 0.074 *
Miami John F. Kerry 235.479 4.963 82 0.010
Muskingum John F. Kerry 215.593 3.613 85 0.054 *
Portage John F. Kerry 347.487 4.109 129 <0.001
Summit John F. Kerry 365.481 3.712 475 <0.001

Table 7. Analysis of Whether Anomalous Counties from Table 6 Deviate from Benford’s Law.

0.05) while the actual data does not (adjusted p-value <0.05).2 Our results are presented in 221

Table 7. 222

As Table 7 shows, the vote distribution for Senator John F. Kerry in El Paso county, 223

Colorado should theoretically adhere to 1-BL 3 but does not. There were four additional 224

counties in Ohio for Kerry that should also have conformed to 1-BL 3 that failed (Geuga, 225

Greene, Lorain, an, Muskingum Counties). There was one such county for President George 226

W. Bush - Greene County, Ohio. Furthermore, as Table 7 also illustrates, although several 227

other distributions for both candidates were deemed statistically anomalous in Table 6, 228

their estimated distributions do not either, and thus their non-adherenece to 1-BL 3 may 229

not be unnatural. 230

6. Discussion 231

The results in Table 7 flag several counties for Senator Kerry and one for President 232

Bush as statistically anomalous in terms of 1-BL 3. Interestingly, Ohio was one of the most 233

contentious states in the 2004 election [38]. Although our model flags approximately five 234

2 The p-values presented in Table 7 are estimates before correcting for multiple comparisons; therefore, our
approach can be considered conservative as it provides a lower bound on the number of statistically anomalous
counties, and thus likely understates the number of anomalous counties.
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percent of Ohio’s 88 counties, these statistical anomalies are still detected after corrections 235

due to multiple comparisons. These results, however, neither offer any indication as 236

the cause of potential malfeasance, if present, nor do they shed light on which side was 237

responsible. One goal of Benford tests is to detect fraud; however, certain types cannot be 238

observed by these methods. For example, if a fixed percentage of votes were switched from 239

one candidate to another while keeping the number of voters fixed, the net effect is to just 240

change the percentage of support for each candidate. Similarly, if a fixed number of ballots 241

are added in each precinct, the effect would be to both increase the number of voters and 242

adjust the candidates’ support. It is important to remember tests such as these cannot prove 243

fraud; the main utility is to highlight situations that are worth additional investigation; for 244

example, in cases where 1-BL 3 fails it might be valuable to check current precinct voting 245

against previous years when 1-BL 3 held. 246

Again, although malfeasance could constitute one explanation of non-conformance 247

to Benford’s law, associated anomalies do not necessarily prove malfeasance as other 248

explanations are be possible. For example, Mebane (2010, 2012, 2013) has discussed how 249

deviations from 2-BL 10 could be due not only to fraud but also may be manifestations 250

of mobilization efforts, last minute changes to voting preference, as well as effects of 251

gerrymandering among others [11,13,14]. The effect of these factors on conformance 1-BL3 252

has not been studied thus far and is a worthy topic of future research. If 1-BL3 can indeed 253

manifest these effects, it would be useful for future research to differentiate between these 254

effects and malfeasance, to render these techniques more useful for auditing or potential 255

litigation. 256

7. Conclusions and Future Research 257

Our study illustrates the usefulness of 1-BL 3 in analyzing elections, flagging a number 258

of counties in the 2004 US Presidential Election. Our analysis in Section 4, suggests that 259

1-BL 10 analysis would almost surely unnecessarily flag many other counties that may not 260

truly be anomalous. As discussed in Section 6, however, although potential malfeasance 261

could constitute one explanation of 1-BL 3 based anomalies, there may be other potential 262

explanations as well. Future research should look into refining these number theoretical 263

models to differentiate amongst potential explanations. Regardless, if there are concerns 264

about potential malfeasance, 1-BL 3 could indeed be a useful tool to detect for anomalies as 265

a basis for potential auditing. 266

Although we have analyzed several states from the 2004 US Presidential Election, we 267

hope our work encourages future research to apply our method to other elections of all 268

levels, both American and foreign. However, as noted by Mebane (2011), the appropriate 269

unit of analysis for Benford’s law is precinct level data across counties, as we have utilized 270

in this study [6]. As a result, Benford’s law is not useful for detecting potential malfeasance 271

with absentee ballots such as in the 2018 Congressional election in North Carolina’s ninth 272

district, but there are other statistical techniques have been demonstrated to be useful for 273

such absentee ballot analysis [39]. The number of statistical tools to analyze the integrity 274

of elections is growing [36,40–43], and the techniques presented in this paper thus should 275

be viewed as yet another tool in the statistician’s arsenal to analyze election data. Future 276

research should thus include our tool as part of a suite of such tools to comprehensively 277

analyze all aspects of election data. 278

One potential limitation of this approach is that the data may become so heavily spread 279

out via base three representations that some instances of malfeasance may be rendered 280

undetectable. Other base representations may potentially ameliorate this problem at the 281

expense of clustering the data. Future research should weigh such tradeoffs between 282

different bases. 283

Moreover, until now, 2-BL 10 was the primary technique used for applying Benford’s 284

law to election data. Future research should compare the efficacy of 1-BL 3 to 2-BL 10. It 285

would be useful to simulate election data as we have done in the study, externally impose 286

fraud in the model, and assess what forms of fraud are detectable by these techniques. 287
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Finally, there is of course no a priori reason to apply these techniques solely to elections, 288

and we hope that this research encourages the use of 1-BL 3 in other applied settings 289

of clustered data where 1-BL 10 is not applicable. Batting averages in baseball, serving 290

speeds in tennis, government-reported statistics, and stock market data are indeed worthy 291

examples of future investigation. 292

It is always useful to have tools to identify potential anomalies in election data. We 293

hope the techniques presented here provide a useful addition to the applied mathemati- 294

cian/statistician’s toolbox for doing so. 295

Data Availability Statement: The data used in this study is publicly available on Harvard University’s 296

DataVerse repository [33]. 297
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