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Benfordness of the Generalized Gamma Distribution
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Abstract - The generalized gamma distribution shows up in many problems related to en-
gineering, hydrology as well as survival analysis. Earlier work has been done that estimated
the deviation of the exponential and the Weibull distribution from Benford’s Law. We give
a mathematical explanation for the Benfordness of the generalized gamma distribution and
present a measure for the deviation of the generalized gamma distribution from the Benford
distribution.

Keywords : Benford’s Law; Generalized Gamma Distribution; Digit Bias; Poisson Sum-
mation
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1 Introduction and an Overview of the Theory

At the dawn of the 20th century, the astronomer and mathematician Simon Newcomb
observed that the logarithmic books at his workplace showed a lot of wear and tear at
the early pages, but the more he progressed through the book, the less usage could be
observed. Newcomb deduced that his colleagues had a ”bias” towards numbers starting
with the digit 1. In particular, the digit 1 shows up as the first digit roughly 30% of
the time, the digit 2 about 9% of the time, and so on. While he did come up with a
mathematical model for this interesting relationship, his work stayed mostly unnoticed.

It took another 57 years after Newcomb’s discovery for physicist Frank Benford to
make the exact same observation as Newcomb: the first pages of logarithmic tables were
used far more than others. He formulated this law as follows.

Definition 1.1 [2] The frequency of first digits follows closely the logarithmic relation:

Fd = log10
d + 1

d
, (1)

where d represents the leading digit, and Fd represents the frequency of the digit d.

*This work was done as part of the Benford Summer 2021 Group led by Professor Steven J. Miller. We
would like to thank everyone involved with the Polymath Jr. REU for enabling students to do meaningful
research even during a pandemic. The second author was supported by the Williams College John &
Louise Finnerty Class of 1971 Fund for Applied Mathematical Research.
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Nowadays, Benford’s Law is used in detecting many different forms of fraud, and its
prevalence in the world fascinates not only mathematicians, but many other scientists as
well (to learn more about Benford’s Law and its many applications, we recommend [3,
16, 11] to name a few).

Many mathematicians have tried to explain the prevalence of Benford’s law in the real
world. Some have shown that samples coming from certain probability distributions tend
to demonstrate Benfordness [4, 14]. We adopt the same methodology in this article and
prove that data coming from a generalized gamma distribution is likely to be close to
Benford’s law, and provide an explicit formula to bound the deviation.

Remark 1.2 It is worthwhile to make a quick comment about Benfordness. For any finite
set, it is impossible to have a perfect fit so we analyze whether or not such a data set is
close to Benford which is enough for most applications. If we let the size of the data set
tend to infinity, then there is a chance it will converge to Benford.

1.1 Benford’s Law

While the formulation of Benford’s Law, as presented in Definition 1.1, does have its
merits, we want to move away from the idea of frequency and data sets to develop a more
probabilistic formualation of the theory. We first present a more complete definition of
the Benford distribution for base B.

Definition 1.3 A set of numbers is said to satisfy Benford’s law if the leading digit
d ∈ {1, 2, ..., B − 1} occurs with frequency Fd = logB

d + 1
d

, where B ≥ 2.

Remark 1.4 Note that this is the most common way of stating Benford’s law. A more
general version of the law also describes the frequencies of different second digits, third
digits and so on. One could also give an expression for the probability of a digit occuring in
the nth spot of a number, as is described in the first chapter of [11]. This is related to the
so-called Strong Benford’s Law which states that the probability of observing a significand
of at most x in base B is equal to logB x. The distribution of just the first digit, as well
as the distribution of the entire significand, is often referred to as just Benford’s law. For
the purposes of our paper, this difference is inconsequential.

We now move on to the idea of base and scientific notation. Given a base B ≥ 2,
any nonzero real number r can be uniquely expressed in the form r = aBn, where
|a| ∈ [1, B), n ∈ Z. This is usually referred to as scientific notation, and it motivates
the definition of the significand.

Definition 1.5 Given a base B ≥ 2, we define the significand as the mapping SB : R̸=0 →
[1, B), where SB(x) is the significand of any input x = aBn written in scientific notation
with |a| ∈ [1, B) and n ∈ Z. It follows that SB(x) = |a| is the significand and n is the
exponent.

One also studies the mantissa, which is the fractional part of the logarithm.

the pump journal of undergraduate research 0 (2017), 000–000 2
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Example 1.1 As an example, let x = 31295192. When we write this in scientific
notation using base 10, it becomes x = 3.1295192 ·107 and it follows that SB(3.1295192 ·
107) = 3.1295192 is the significand, and 7 is the exponent. Furthermore, observe that
log10 31295192 ≈ 7.495477620349604 so the mantissa is about 0.495477620349604.

We now formally introduce the notion of what it means for a random variable to have
the Benford distribution 1.

Definition 1.6 A random variable X is Benford base B if Prob (X ≤ x) = logB x,
where x ∈ [1, B), B ≥ 2.

Let X : Ω → R, be a random variable with some particular cumulative distribution
function (cdf) F . If the random variable SB ◦X is Benford (or close to Benford), then one
would expect a data set coming from a population with distribution F to satisfy Benford’s
law since

Prob (X has leading digit d) = Prob (SB ◦X ∈ [d, d+ 1)) = logB
d+ 1

d
, (2)

which is just a direct application of Definition 1.6.
We could directly find the distribution of SB ◦ X and compare it to the Benford

distribution. Alternatively, the following well-known theorem, which can be found in [5],
provides an indirect method, which in some cases is more convenient.

Theorem 1.7 Given a base B ≥ 2 and a non-negative random variable X, SB ◦ X is
Benford if and only if logB X mod 1 has a uniform [0, 1) distribution.

Proof. For any s ∈ [1, B), let u = logB s ∈ [0, 1). Let us assume that SB ◦ X is
Benford, so the following holds:

Prob (logB X mod 1 ∈ [0, u)) = Prob
(
{X ∈ [1 ·Bk, s ·Bk) : k ∈ Z}

)
= Prob (SB ◦X ∈ [1, s))

= logB s

= u. (3)

Hence it follows that logB X mod 1 has uniform [0, 1) distribution.
Let us now assume that logB X mod 1 has uniform [0, 1) distribution. Then:

Prob (SB ◦X ∈ [1, s)) = Prob
(
{X ∈ [1 ·Bk, s ·Bk) : k ∈ Z}

)
= Prob (logB X mod 1 ∈ [0, u))

= u

= logB s. (4)

1Note that, throughout this paper, we denote that a random variable X follows the Benford distribu-
tion base B by stating that X is Benford base B
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□
Theorem 1.7 forms the key foundation of our work since it reduces our problem sub-

stantially by allowing us to focus on a logarithmically rescaled random variable mod1.
We use this result to explore the relationship between the generalized gamma distribution
and Benford’s law.

It is exactly Theorem 1.7 which enables us to develop a measure for the deviation
of a random variable from the Benford distribution. This deviation, which we denote
as D, quantifies the deviation of the leading digits from their corresponding Benford
counterparts. We derive an estimate for this deviation.

AssumeX is a nonnegative random variable and that SB◦Y is Benford. We now trans-
form the random variableX via the transformation noted in Theorem 1.7 to logB X mod 1,
and denote its probability density function (pdf) as: flogB X mod 1. From here it follows
that

D =

∣∣∣∣Prob (X has leading digit d)− logB
d+ 1

d

∣∣∣∣
= |Prob (SB ◦X ∈ [d, d+ 1))− Prob (SB ◦ Y ∈ [d, d+ 1)) |
= |Prob

(
{X ∈ [d ·Bk, (d+ 1) ·Bk) : k ∈ Z}

)
−

Prob
(
{Y ∈ [d ·Bk, (d+ 1) ·Bk) : k ∈ Z}

)
|

= |Prob (logB X mod 1 ∈ [logB d, logB d+ 1))−
Prob (logB Y mod 1 ∈ [logB d, logB d+ 1)) |

=

∣∣∣∣∫ logB d+1

logB d

flogB X mod 1(u)− 1 du

∣∣∣∣
≤

∫ 1

0

∣∣flogB X mod 1(u)− 1
∣∣ du. (5)

This expression allows us to bound the deviation of any random variable from the
Benford distribution. We now present a quick theoretical overview of the generalized
gamma distribution.

1.2 The Generalized Gamma Distribution and Its Connection to Benford

The work done by Miller and Nigrini in [14], as well as the paper by Leemis, Schmeiser,
and Evans [10], explored the exponential distribution and how it relates to Benford’s Law,
whereas Cuff et.al in [4] explored a similar form of a relationship between the Weibull
distribution and Benford’s Law. Both of these distributions can be seen as ”children” of
one parent distribution for a particular choice of parameters.

For the purposes of this paper, we use the following definition of the generalized gamma
distribution, as presented in [20].

Definition 1.8 A random variable X follows the generalized gamma distribution with

the pump journal of undergraduate research 0 (2017), 000–000 4
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parameters a, d, and p if its cumulative distribution function (cdf) is of the form

F (x; a, d, p) =
γ
(

d
p
,
(
x
a

)p)
Γ
(

d
p

) , x > 0; a, d, p > 0, (6)

where γ is the lower incomplete gamma function, defined as

γ(s, x) :=

∫ x

0

ts−1e−tdt. (7)

The corresponding probability density function (pdf) is

f(x; a, d, p) =

(
p
ad

)
xd−1e−(x/a)p

Γ
(

d
p

) . (8)

We note that, when d = p, equation (6) is just the cdf of a Weibull distribution, and
that is further reduced to the exponential distribution for the special case of d = p = 1.
This is a very useful observation because it enables us to directly compare our results
with the work completed in [4, 14].

Having covered the relevant background material, our goal now is to show the following
key results, that we prove in Section 2.

Theorem 1.9 If X is a random variable having the generalized gamma distribution with
parameters a, d, p, then the pdf of logB X mod 1 is

flogB X mod 1(u) =
p lnB

Γ
(

d
p

) +∞∑
k=−∞

e
−
(

Bk+u

a

)p (Bk+u

a

)d

, (9)

or

flogB X mod 1(u) = 1 +
+∞∑
k=1

2

Γ
(

d
p

) Re

[
e2πui−

2πi ln a
lnB Γ

(
d

p
− 2πki

p lnB

)]
. (10)

where u ∈ (0, 1). Further, the scaling parameter a has limited effect on the pdf, for any
m ∈ Z, a and a ·Bm result in the same pdf.

Theorem 1.10 Given ϵ > 0, and the second form of the pdf of logB X mod 1, i.e. equa-
tion (10) in Theorem 1.9, we have

flogB X mod 1(u) = 1 +
+∞∑
k=1

2

Γ
(

d
p

) Re

[
e2πui−

2πi ln a
lnB Γ

(
d

p
− 2πki

p lnB

)]
.
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To approximate this function with main term 1 and first M-term partial sum of the residue

fM
logB X mod 1(u) = 1 +

M∑
k=1

2

Γ
(

d
p

) Re

[
e2πui−

2πi ln a
lnB Γ

(
d

p
− 2πki

p lnB

)]
, (11)

to make sure the approximation error at any point u ∈ (0, 1) is bounded by ϵ, M should
satisfy

M >
(d+ p)2(ln(B))2

2π2ϵ
− 1. (12)

One can gain a lot of intuition for the behavior of the distribution by analysing the
graph of the pdf for different parameters. In particular, the parameters d and p determine
the shape of the pdf, while the parameter a determines the spread of the pdf.

We also present some simulations, along with figures, that show how close the gen-
eralized gamma distribution comes to Benford’s Law. The purpose of these figures is to
show us that the deviation from Benford should be relatively low.

Figure 1 compares the first-digit frequencies of 10000 samples from a generalized
gamma distribution, using the parameters: B = 10, a = 2, d = 1, p = 1

2
, with

the frequencies predicted by Benford’s law. Observe that Benford’s law provides us with
a remarkably good fit.

Figure 1: First-digit frequencies of 10000 samples from a generalized gamma distribution(
B = 10, a = 2, d = 1, p = 1

2

)
.

The Benfordness of samples coming from the generalized gamma distribtion can also
be observed in a different way. We already stated in Theorem 1.7 that a random variable
X is Benford if and only if logB X mod 1 is uniform [0, 1). Since our claim is that X
is close to Benford if it follows the generalized gamma distribution, then logB X mod 1
should have to be close to the uniform [0, 1) distribution. We explore this further using a
Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov test is used to examine whether or not a sample comes
from a population with a specific distribution. The smaller the test statistic is, the

the pump journal of undergraduate research 0 (2017), 000–000 6
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more likely the sample came from the target distribution. We generated samples from
the generalized gamma distribution with different values of parameters d and p, and
performed a Kolmogorov-Smirnov test to compare the transformed data (logB X mod 1)
with the uniform [0, 1) distribution. The result is shown in Figure 2. Observe that the test
statistic is pretty small, indicating the (transformed) data came from a population with
an approximately uniform [0, 1) distribution, and hence the original distribution is close
to Benford. The match is better when d and p are small, which is reasonable considering
that we know how close the exponential and Weibull distributions come to the Benford
distribution.

Figure 2: Kolmogorov-Smirnov test results under different values of d and p.

2 Main Results and Key Observations

In this section, we prove the results of Theorem 1.9 and Theorem 1.10, and justify the
observations shown in Figures 1 and 2.
Proof. [Proof of Theorem 1.9] Given u ∈ [0, 1), we have

Prob(logB X mod 1 ∈ [0, u]) =
∞∑

k=−∞

Prob(logB X ∈ [k, k + u])

=
∞∑

k=−∞

Prob(X ∈ [Bk, Bk+u])

=
1

Γ
(

d
p

) ∞∑
k=−∞

∫ (
Bk+u

a

)p

(
Bk

a

)p
t
d
p
−1e−tdt. (13)

By using some results from analysis, the following can be verified.

1. The resulting function (13) converges for all u ∈ [0, 1).

the pump journal of undergraduate research 0 (2017), 000–000 7
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2. The resulting function (13) is differentiable for all u ∈ (0, 1), and we can differentiate
it term by term.

Appendix A provides the interested reader with more details of the proof as well as the
mathematical machinery used in the paper.

We now work with the integral from (13) to get the probability density function. Using
the Fundamental Theorem of Calculus we find

d

du

∫ (
Bk+u

a

)p

(
Bk

a

)p
t
d
p
−1e−tdt = e

−
(

Bk+u

a

)p ((Bk+u

a

)p) d
p
−1

p

(
Bk+u

a

)p−1
Bk+u lnB

a

= e
−
(

Bk+u

a

)p (Bk+u

a

)d

p lnB, (14)

and then plugging (14) back into (13), we get that the pdf of logB X mod 1 is

flogB X mod 1(u) =
p lnB

Γ
(

d
p

) +∞∑
k=−∞

e
−
(

Bk+u

a

)p (Bk+u

a

)d

. (15)

Next we apply Poisson summation to (9) to get the equivalent form (10), which is
better since it is divided into a main term, 1, which is what we want, and a residue term
given by an infinite series. See Appendix A or [4] for details about Poisson summation.

For any u ∈ (0, 1), let z = Bu, t = k. We claim that

g(t) = p lnBe
−
(

Btz
a

)p
(
Btz

a

)
(16)

satisfies the conditions for applying Poisson summation. The details of why this is true can
be found in Appendix A, but the important insight is that we have the Fourier transform
of this function:

ĝ(f) =

∫ +∞

−∞
p lnBe

−
(

Btz
a

)p
(
Btz

a

)d

e−2πitfdt

=

∫ ∞

0

e−ωω
d
p
−1

(
aω

1
p

z

)− 2πif
lnB

dω , where ω =

(
Btz

a

)p

=
(z
a

) 2πif
lnB

Γ

(
d

p
− 2πif

p lnB

)
. (17)

Now we use the above result to apply Poisson summation to equation (9), which gives
us equation (10).

the pump journal of undergraduate research 0 (2017), 000–000 8
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flogB X mod 1(u) =
1

Γ
(

d
p

) ∞∑
k=−∞

g(k)

=
1

Γ
(

d
p

) ∞∑
k=−∞

ĝ(k)

=
1

Γ
(

d
p

) ∞∑
k=−∞

(z
a

) 2πik
lnB

Γ

(
d

p
− 2πik

p lnB

)

= 1 +
∞∑
k=1

[(z
a

) 2πik
lnB

Γ

(
d

p
− 2πik

p lnB

)
+
(z
a

)− 2πik
lnB

Γ

(
d

p
+

2πik

p lnB

)]

= 1 +
+∞∑
k=1

2

Γ
(

d
p

) Re

[(z
a

)− 2πik
lnB

Γ

(
d

p
− 2πki

p lnB

)]

= 1 +
+∞∑
k=1

2

Γ
(

d
p

) Re

[
e2πui−

2πi ln a
lnB Γ

(
d

p
− 2πki

p lnB

)]
, (18)

where for the second last equality, we used the property Γ (z) = Γ (z).
Finally, observe that e2πix = e2πi(x+1) for all x ∈ R, which verifies the scaling

invariance of a. □

Remark 2.1 It is worth noting that, when we reduce the results from equation (9) and
equation (10) to the Weibull case, we retrieve the same results that were shown in the
article by Cuff et.al [4].

The following result, expressed as Theorem 1.10, enables us to estimate the value of
the pdf numerically.
Proof. [Proof of Theorem 1.10] For any M ≥ 1, the approximation error is

|η| =

∣∣∣∣∣∣
+∞∑

k=M+1

2

Γ
(

d
p

) Re

[
e2πui−

2πi ln a
lnB Γ

(
d

p
− 2πki

p lnB

)]∣∣∣∣∣∣
≤

+∞∑
k=M+1

2

Γ
(

d
p

) ∣∣∣∣Γ(d

p
− 2πki

p lnB

)∣∣∣∣ , (19)

where u ∈ (0, 1).
The gamma function has the property that

|Γ(a+ bi)|2 = |Γ(a)|2
∞∏
k=0

1

1 + b2

(a+k)2

, (20)

the pump journal of undergraduate research 0 (2017), 000–000 9
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and applying this to (19), we get∣∣∣∣Γ(d

p
− 2πki

p lnB

)
)

∣∣∣∣2 =

[
Γ

(
d

p

)]2 ∞∏
l=0

1

1 +
( 2πk
p lnB )

2

( d
p
+l)

2

≤
[
Γ

(
d

p

)]2 1∏
l=0

1

1 +
( 2πk
p lnB )

2

( d
p
+l)

2

≤
[
Γ

(
d

p

)]2
[(d+ p) lnB]4

(2πk)4
, (21)

where the first inequality is because all terms in the product are positive numbers less
than or equal to 1. Finally we have

|η| ≤
+∞∑

k=M+1

[(d+ p) lnB]2

2π2k2

≤
∫ ∞

M+1

[(d+ p) lnB]2

2π2x2
dx

=
[(d+ p) lnB]2

2π2(M + 1)
. (22)

Letting |η| < ϵ, and using the result from (22), we get the lower bound for M as
in (12). □

With the help of (5) and Theorem 1.10, for a random variable following the generalized
gamma distribution with parameters (a, d, p), we have the following for its deviation:

D =

∣∣∣∣P (X has leading digit d)− logB
d+ 1

d

∣∣∣∣
≤

∫ 1

0

|f(u)− 1|du

≤
∫ 1

0

|f(u)− fM(u)|du+

∫ 1

0

|fM(u)− 1|du

≤ ϵ+ sup
u∈(0,1)

|fM(u)− 1|, (23)

where f and fM are exact and approximate pdfs of logB X mod 1. Since we can con-
trol ϵ (which then determines M), and supu∈(0,1) |fM(u) − 1| can be evaluated (at least)
numerically, we can get an upper bound for the difference of SB ◦ X from the Benford
distribution for any given parameters a, d and p.

Figure 3 shows the graphs of some approximate pdfs (with approximation error < 0.01)
of logB X mod 1 with different parameters, which are pretty close to the constant function
1. The term 1 in (10) plays a major role in the function.
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Figure 3: Approximation of pdfs of logB X mod 1 with different parameters.

Figure 4 shows the upper bound of D with respect to d and p according to (23). We
see X is very close to Benford when the parameters d and p are small, which is consistent
with the Kolmogorov-Smirnov test we showed in Figure 2.

3 Conclusion and Future Work

We have shown that the generalized gamma distribution for the right choice of parameters,
meaning a relatively small p and d, conforms well to Benford’s Law for the leading digit.
It would be interesting to see where we can find an application of this result, considering
how common the generalized gamma distribution is in nature.

A possible research avenue would be to perform a similar analysis for other families of
distributions.

Appendix A Details of Proofs in Section 2

In the proof of Theorem 1.9, we claimed the following.

1. The cdf of logB X mod 1 (13) converges pointwise for all u ∈ [0, 1), it is differentiable
for all u ∈ (0, 1), and we can differentiate it term by term.

2. Poisson summation can be applied to the pdf of logB X mod 1 as stated in (15).
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Figure 4: Left: Bound of probability difference (23) with respect to d (a = 1, p = 0.5);
Right: Bound of probability difference (23) with respect to p (a = 1, d = 0.5).

We use the following results to prove these facts. Many of these proofs are standard
and the arguments below are provided in order to give the reader a quick overview of the
key ideas.

Theorem A.1 (Weierstrass M-test) Let {fn}∞n=1 be a sequence of real valued functions
on a set X, suppose each |fn| is bounded by Mn ≥ 0, then if

∑∞
n=1 Mn converges,

∑∞
n=1 fn

converges uniformly.

Theorem A.2 If {fn}∞n=1 is a sequence of C1 functions on (a, b), if both
∑∞

n=1 fn and∑∞
n=1 f

′
n converge uniformly, then

∑∞
n=1 fn is differentiable and (

∑∞
n=1 fn)

′ =
∑∞

n=1 f
′
n.

Theorem A.3 (Poisson Summation) Let f , f ′ and f ′′ be continuous functions which
eventually decay at least as fast as x−(1+η) for some η > 0, then

+∞∑
n=−∞

f(n) =
+∞∑

n=−∞

f̂(n), (24)

where f̂(y) =
∫ +∞
−∞ f(x)e−2πxyidx is the Fourier transformation of f .

Our second claim above is a direct result of Theorem A.3. For the first claim to be
true, we need to check (13) satisfies the conditions in Theorem A.2.

1. The term in the sum of (13), ∫ (
Bk+u

a

)p

(
Bk

a

)p
t
d
p
−1e−tdt (25)
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is C1 in (0, 1).

2. FlogB X mod 1 in (13) converges uniformly in (0, 1).

3. flogB X mod 1 in (15) converges uniformly in (0, 1).

1) is easy to check. The main reason for the uniform convergence of FlogB X mod 1 and
flogB X mod 1 is the fast-decay e−u like term in both of them. Next we give a sketch for
part of the proof for this. We will show that if d ≥ p, FlogB X mod 1 converges uniformly in
(0, 1). All other cases could be checked similarly.
Proof. (Sketch) For any u ∈ (0, 1), if d ≥ p, it’s easy to check

t
d
p
−1e−t ≤

(
Bk+1

a

)d−p

e
−
(

Bk

a

)p

,

for all t ∈
[(

Bk

a

)p
,
(

Bk+u

a

)p]
, so we have

∫ (
Bk+u

a

)p

(
Bk

a

)p
t
d
p
−1e−tdt ≤

(
Bk+1

a

)d−p

e
−
(

Bk

a

)p (Bk+1

a

)d

≤
(
Bk+1

a

)d

e
−
(

Bk

a

)p

.

Apply this result to the sum in (13), we get

Γ

(
d

p

)
FlogB X mod 1 =

∞∑
k=−∞

∫ (
Bk+u

a

)p

(
Bk

a

)p
t
d
p
−1e−tdt

≤
∞∑

k=−∞

(
Bk+1

a

)d

e
−
(

Bk

a

)p

≤
∞∑
k=0

(
Bk+1

a

)d

e
−
(

Bk

a

)p

+
∞∑
k=1

(
B

aBk

)d

e−(
1

aBk )
p

. (26)

The two sums in (26) are convergent by the integration test, then by Weierstrass
M-test, i.e. Theorem A.1, we know the original sum in (13) converges uniformly. □

Appendix B Simulation Code

R script: Sample from a Generalized Gamma Distribution and compare the
first-digit frequencies of the data with values predicted by Benford’s law

N=10000

a = 2

d = 1/2

p = 1/2

B <- 10 # B should be an integer greater than 1
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sample <- as.vector(qgamma(runif(N), shape=d/p, scale=a^p)^(1/p))

for (i in 1:N) {

while (sample[i] < 1 | sample[i] >= B) {

if (sample[i] < 1) {

sample[i] <- sample[i] * B

} else {

sample[i] <- sample[i] / B

}

}

sample[i] <- trunc(sample[i])

}

freqs <- as.numeric(table(sample))

error <- 0.0

freqs_t <- vector("list", B - 1)

freqs_t <- unlist(freqs_t)

for (i in 1:(B-1)) {

freqs_t[i] <- logb((i + 1) / i, base=B)

error <- error + (freqs[i] / N - freqs_t[i])^2

}

freqs <- freqs / N

d <- 1:(B-1)

plot(d, freqs, las=1, xlab="Digit", ylab="Freq", col="red", xaxt="n")

axis(1, at=1:(B-1), labels=1:(B-1))

points(d, freqs_t, col="green")

legend(B - 3, max(c(freqs, freqs_t)) * 0.95,

legend=c("theory", "experiment"),

col=c("green", "red"), pch=c(21, 21))

Maple code: Plot pdfs and calculate probability deviation bound

restart;

with(plots):

g_k:=2/GAMMA(d/p)*GAMMA(d/p-2*Pi*I*k/p/ln(B))

*exp(2*Pi*I*u- 2*Pi*I*ln(a)/ln(B));

f_M := 1 + sum(Re(g_k), k=1..M);

the pump journal of undergraduate research 0 (2017), 000–000 14



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

M := ceil(((d + p)*ln(B))^2/2/Pi/Pi/e - 1);

# set pointwise error bound

e := 0.01;

# set parameters and plot

B:=10; a:=1; d:=1/2; p:=1/2;

p1 := plot(f_M, u=0..1, color="red",

labels=[u, f], legend="a = 1, d = p = 1/2"):

B:=10; a:=1; d:=1; p:=1/2;

p2 := plot(f_M, u=0..1, color="green",

labels=[u, f], legend="a = d = 1, p = 1/2"):

B:=10; a:=1; d:=1/2; p:=1;

p3 := plot(f_M, u=0..1, color="yellow",

labels=[u, f], legend="a = p = 1, d = 1/2"):

B:=10; a:=10; d:=1/2; p:=1/2;

p4 := plot(f_M, u=0..1, color="blue",

labels=[u, f], legend="a = 10, d = p = 1/2"):

display(p1, p2, p3, p4, legendstyle = [font=["HELVETICA", 12]

, location=bottom]);

# calculate bounds for probability difference under different parameters

# d = p = 0.5, a changes from 1 to 10

# unassign(’a’); d := 0.5; p := 0.5;

# points:={seq([a, Optimization[Maximize]

(abs(f_M - 1),u = 0..1)[1] + e], a=1..10)};

# pointplot(points, symbol=solidcircle, symbolsize = 15,

color =orange, labels=["a", "Bound for Probability Difference"],

labeldirections=[ "horizontal", "vertical"]);

# a = 1, p = 0.5, d changes from 0.1 to 2

unassign(’d’); a := 1; p := 0.5;

ds := seq(n/10, n=1..20);

points:={seq([d, Optimization[Maximize]

(abs(f_M - 1),u = 0..1)[1] + e], d=ds)};

pointplot(points, symbol=solidcircle, symbolsize = 15,

color =blue, labels=[d, "Bound for Probability Difference"],

label directions=[ "horizontal", "vertical"]);
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# a = 1, d = 0.5, p changes from 0.1 to 2

unassign(’p’); a := 1; d := 0.5;

ps := seq(n/10, n=1..20);

points:={seq([p, Optimization[Maximize]

(abs(f_M - 1),u = 0..1)[1] + e], p=ps)};

pointplot(points, symbol=solidcircle, symbolsize = 15,

color =red, labels=[p, "Bound for Probability Difference"],

label directions=[ "horizontal", "vertical"]);

Mathematica code for the Kolmogorov-Smirnov test

Clear[Diff]

Diff[a_, d_, p_, B_] := KolmogorovSmirnovTest[Mod[Log[B,

Random Variate[GammaDistribution[d, a, p, 0], 10^4]], 1],

Uniform Distribution[], "TestStatistic"]

ContourPlot[Diff[1, d, p, 10], {d, 0.2, 2}, {p, 0.2, 2},

Frame Label -> Automatic, PlotLegends -> Automatic]
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