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ABSTRACT. According to Benford’s Law, many data sets have a bias towards lower leading digits (about 30%
are 1’s). The applications of Benford’s Law vary: from detecting tax, voter and image fraud to determining the
possibility of match-fixing in competitive sports. There are many common distributions that exhibit such bias,
i.e. they are almost Benford. These include the exponential and the Weibull distributions. Motivated by these
examples and the fact that the underlying distribution of factors in protein structure follows an inverse gamma
distribution, we determine the closeness of this distribution to a Benford distribution as its parameters change.
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1. INTRODUCTION

1.1. Motivation. For a positive integer B ≥ 2, any positive number x can be written uniquely in base B
as x = SB(x) · Bk(x) where k(x) is an integer and SB(x) ∈ [1, B) is called the significand of x base B.
Benford’s Law describes the distribution of significands in many naturally occurring data sets and states that
for any 1 ≤ s < B, the proportion of the set with significand at most s is logB(s). In this paper, we examine
the behavior of random variables, so we adopt the following definition.

Definition 1.1 (Benford’s Law). Let X be a random varialbe taking values in (0,∞) almost surely. We say
that X follows Benford’s Law in base B if, for any s ∈ [1, B),

Prob (SB(X) ≤ s) = logB(s). (1.1)

In particular,

Prob (first digit of X is d) = logB

(
d+ 1

d

)
. (1.2)
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Thus base 10 about 30% of numbers have a leading digit of 1, as compared to only about 4.6% starting
with a 9. For an introduction to the theory, as well as a detailed discussion of some of its applications
in accounting, biology, economics, engineering, game theory, finance, mathematics, physics, psychology,
statistics and voting see [Mi].

One of the most important applications of Benford’s law is in fraud detection; it has successfully flagged
voting irregularities, tax fraud, and embezzlement, to name just a few of its successes. The motivation for
this work was to see if a Benford analysis could have detected some fraud on protein structures, as well as
serve as a protection against future unscrupulous researchers.

Proteins are the workhorses in all of biology; in plant, human, animal, bacterium, and slime mold, alike.
They keep us together, digest our food, make us see, hear, taste, feel, and think, they defend us against
pathogens, and they are the target of most existing medicines. Knowledge about the three-dimensional
structure of proteins is a prerequisite for research in fields as diverse as drug design, bio-fuel engineering,
food processing, or increasing the yield in agriculture.

These three-dimensional structures can be solved with X-ray crystallography, Nuclear Magnetic Reso-
nance, or electron microscopy. Today, most structures are solved with X-ray crystallography. When struc-
tures are solved with this technique the experimentalist does not only obtain X, Y and Z coordinates for the
atoms, but also a measure of their mobility, which is called the B factor.

After it was detected that 12 of the 14 structures deposited in the PDB protein data bank [BHN] by H. K.
M. Murthy were not based on experimental data (see https://www.uab.edu/reporterarchive/
71570-uab-statement-on-protein-data-bank-issues), two of the authors asked the ques-
tion if their rather anomalous B-factor distributions could have been used to automatically detect the prob-
lems (see swift.cmbi.ru.nl/gv/Murthy/Murthy_4.html). In practice B-factor distributions
are influenced by experiment conditions and human choices. For example, B factors may fit inverse Gamma
distributions translated towards higher values [DNMS, Neg], or the inverse Gamma fit might be worse when
upper and/or lower B factor limits are enforced by the experimentalist. The reported properties of each
of the 14 structures were used to find in the PDB a legitimate protein structure of comparable experimental
quality, deposition date, size, and B factor profile. In general, inverse Gamma parameters could be estimated
well for both the Murthy structures and the legitimate structures by maximum likelihood estimation when
accounting for the translation along the x-axis. This suggests the main question of this paper: how close
is the inverse Gamma distribution, for various choices of its parameters, to Benford’s law? While unfortu-
nately a Benford analysis did not flag Murthy’s structures from legitimate ones, the question of how close
this special distribution is to Benford is still of independent interest, and we report on our findings below.
This paper is a sequel to [CLM], where a similar analysis was done for the three parameter Weibull.

1.2. Results. In practice, it is easier to use the following equivalent condition for Benford behavior (see,
for example, [Di] or [Mi]), which we reprove here.

Definition 1.2. We say that a random variable Y taking values in [0, 1] is equidistributed if, for any [a, b] ⊆
[0, 1],

Prob (Y ∈ [a, b]) = b− a. (1.3)

Theorem 1.3. A random variable X follows Benford’s Law in base B if and only if the random variable
Y := logBX mod 1 is equidistributed.

Proof. We only prove the reverse direction here as that is all we need to prove our main result. Full details
are given in [Di]. Suppose Y := logBX mod 1 is equidistributed. First note that

Y = logB(X) mod 1

= logB(SB(X) ·Bk(X)) mod 1

= logB(SB(X)) + logB(Bk(X)) mod 1

= logB(SB(X)). (1.4)
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Then, taking a = 0, b = logB(p) in the definition of equidistribution, we get

Prob (Y = logB(X) ∈ [0, logB(p)]) = logB(p). (1.5)

Exponentiating gives

Prob (SB(X) ∈ [1, p]) = logB(p), (1.6)

which is exactly the statement of Benford’s Law. �

In this paper, we examine the behavior of a random variable drawn from the inverse gamma distribution.
For fixed parameters α, β > 0, this distribution has density defined by

f(x;α, β) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
(1.7)

and cumulative distribution function

F (x;α, β) =
Γ
(
α, βx

)
Γ(α)

(1.8)

where Γ(·, ·) is the upper incomplete gamma function. Let Xα,β be a random variable distributed according
to (1.7) and let FB be the cumulative distribution function of logB(Xα,β) mod 1. By Theorem 1.3, the
assertion that Xα,β follows Benford’s Law is equivalent to saying that FB(z) = z for all z ∈ [0, 1]. In this
paper, we investigate when the deviations of FB(z) from z are small, i.e., whenXα,β approximately follows
Benford’s Law. We do this by deriving a series expansion for F ′B(z) of the form 1 + (error term), where
the error term can be computed to great accuracy, and then integrating in order to return to the cumulative
distribution function, FB(z).

In Section 2, we derive our series representation for F ′B(z). In Section 3, we give bounds for the tail of
the series, showing that the series can be computed to great accuracy by computing only the first few terms.
This result is built upon in Appendix A. In Section 4, we use this result to generate some plots illustrating
the Benfordness of the inverse gamma distribution as a function of α and β.

2. SERIES REPRESENTATION FOR F ′B(z)

Before beginning the analysis, we first note a useful invariant property of the Benfordness of this distri-
bution.

Lemma 2.1. For any α, β > 0 and z ∈ [0, 1],

Prob (logB SB(Xα,β) ≤ z) = Prob (logB SB(Xα,B·β) ≤ z) . (2.1)

In other words, the deviation from Benford’s law of the inverse Gamma distribution doesn’t change if we
scale β by a multiple of B.

Proof. Scaling β by a multiple of B yields

Prob (logB SB(Xα,B·β) ≤ z) =
∞∑

k=−∞
Prob (logBXα,B·β ∈ [k, z + k])

=

∞∑
k=−∞

Prob
(
Xα,B·β ∈ [Bk, Bz+k]

)
, (2.2)
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which, by (1.8), is

=
∞∑

k=−∞

∫∞B·β
Bz+k

tα−1e−tdt−
∫∞
B·β
Bk

tα−1e−tdt∫∞
0 e−t tα−1dt


=

1

Γ(α)

∞∑
k=−∞

∫ B·β
Bk

B·β
Bz+k

tα−1e−tdt

=
1

Γ(α)

∞∑
k=−∞

∫ β

Bk−1

β

Bz+k−1

tα−1e−tdt

= Prob (SB(Xα,β) ≤ z) . (2.3)

Thus, scaling β by a power of B only results in shifting k. Since we take an infinite sum over k, this shift
does not change the final value of the probability. As a consequence of this, it is clear that scaling β by any
power of B will yield the same result, shifting k by that power. �

Thus it suffices to study 1 ≤ β < B.
To show that the deviations of FB(z) from z are small, it is easier in practice to show that F ′B(z) is close

to 1, and then integrate. We derive a series representation for F ′B(z), but first, we state a useful property of
Fourier transforms (see, for example, [SS]).

Throughout the course of this paper, we define the Fourier transform as follows.

Definition 2.2 (Fourier Transform). Let f ∈ L1(R). Define the Fourier transform f̂ of f by

f̂(ξ) :=

∫ ∞
−∞

f(x)e−2πixξdx. (2.4)

Furthermore, we will occasionally use the notation

F(f(x))(ξ) := f̂(ξ). (2.5)

Our main tool is the Poisson summation formula, which we state here in a weak form (see Theorem 3.1
of [CLM] for a more detailed explanation).

Theorem 2.3 (Poisson Summation). Let f be a function such that f , f ′, and f ′′ are all O(x−(1+η)) as
x→∞ for some η > 0. Then

∞∑
k=−∞

f(k) =
∞∑

k=−∞
f̂(k). (2.6)

Theorem 2.4. Let α, β > 0 be fixed and letB ≥ 2 be an integer. LetXα,β be a random variable distributed
according to equation (1.7). For z ∈ [0, 1], let FB(z) be the cumulative distribution function of logB(Xα,β)
mod 1. Then F ′B(z) is given by

F ′B(z) = 1 +
2

Γ(α)

∞∑
k=1

Re

(
e2πik(logB β−z)Γ

(
α− 2πik

logB

))
. (2.7)

Proof. By the argument leading to (1.3),

FB(z) =
1

Γ(α)

∞∑
k=−∞

∫ β

Bk

β

Bz+k

tα−1e−tdt. (2.8)

Taking the derivative yields

F ′B(z) =
1

Γ(α)

∞∑
k=−∞

(
β

Bz+k

)α
exp

(
−β
Bz+k

)
logB. (2.9)
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Applying Poisson summation to (2.9) gives

F ′B(z) =
1

Γ(α)

∞∑
k=−∞

∫ ∞
−∞

(
β

Bz+t

)α
exp

(
−β
Bz+t

)
logB exp(−2πitk) dt. (2.10)

We now let x = β
Bz+t

and dx = −β
Bz+t

logB dt so that we have

F ′B(z) =
∞∑

k=−∞

∫ ∞
0

xα−1 exp

(
−2πik

(
log β

Bzx

logB

))
dx

=
1

Γ(α)

∞∑
k=−∞

∫ ∞
0

xα−1
(

β

Bzx

)−2πik
logB

dx

=
1

Γ(α)

∞∑
k=−∞

(
β

Bz

)−2πik
logB

∫ ∞
0

x
α−1+ 2πik

logB e−xdx

=
1

Γ(α)

∞∑
k=−∞

(
β

Bz

)−2πik
logB

Γ

(
α+

2πik

logB

)
. (2.11)

Note that
(
β
Bz

)2πiθ
= exp

(
2πiθ log β

Bz

)
, so our sum becomes

F ′B(z) =
1

Γ(α)

∞∑
k=−∞

exp

(
−2πik log β

Bz

logB

)
Γ

(
α+

2πik

logB

)
. (2.12)

This form of our sum will become useful in a later proof, but for the purposes of this theorem, we further
simplify our derivative and point out that the k = 0 term in (2.12)is equal to 1. Thus our equation becomes

F ′B(z) = 1 +
1

Γ(α)

[ ∞∑
k=1

exp

(
2πik log β

Bz

logB

)
Γ

(
α− 2πik

logB

)

+
∞∑
k=1

exp

(
−2πik log β

Bz

logB

)
Γ

(
α+

2πik

logB

)]

= 1 +
1

Γ(α)

[ ∞∑
k=1

exp (2πik(logB β − z)) Γ

(
α− 2πik

logB

)

+ exp (−2πik(logB β − z)) Γ

(
α+

2πik

logB

)]
. (2.13)

Finally, using the identity that Γ(a+ ib) = Γ(a− ib) for real numbers a and b, we have

F ′B(z) = 1 +
2

Γ(α)

∞∑
k=1

Re

(
e2πik(logB β−z)Γ

(
α− 2πik

logB

))
. (2.14)

�

3. BOUNDING THE TRUNCATION ERROR

A key tool for the analysis in [CLM] is the identity

|Γ(1 + ix)|2 =
πx

sinh(πx)
(3.1)
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for real x. Examining (2.14), it is clear that when α = 1, our analysis of the truncation error is similar to
that of [CLM]. Since the bound resulting from such analysis in the case of α = 1 is tighter than the bound
for an arbitrary α, we have included the proof in the appendix. However, when α 6= 1, the identity (3.1) is
no longer applicable, so a new approach is needed to bound the tails of the series expansion. We have the
following bound on the truncation error.

Theorem 3.1. Let F ′B(z) be as in (2.12). Let EM (z) denote the two-sided tail of the series expansion, i.e.,

EM (z) :=
∑
|k|≥M

exp

(
−2πik log β

Bz

logB

)
Γ

(
α+

2πik

logB

)
. (3.2)

(1) We have

|EM (z)| ≤
e
β
Bz

(
β
Bz

)α
Γ(α)

(
1

α
B−Mα +

∫ ∞
BM

e−xxα−1dx

)
. (3.3)

(2) This is bounded uniformly on z ∈ [0, 1] by the constant

|EM (z)| ≤ C(α, β,B)

Γ(α)

(
1

α
B−Mα +

∫ ∞
BM

e−xxα−1dx

)
(3.4)

where C(α, β,B) = max
(
eββα, eααα, e

β
B

(
β
B

)α)
.

(3) Furthermore, for any ε > 0, in order to have |EM (z)| < ε in (3.4) it suffices to take

M > max

(
α+ 1, − logB

(
ε · Γ(α)

2C(α, β,B)

))
(3.5)

where C(α, β,B) is as above.

Proof of part (1): locally bounding the truncation error. We begin with (2.12).
Let φ(z) = log β

Bz . We have

E(z) := F ′B(z)− 1 =
1

Γ(α)

∑
|k|≥1

exp

(
−2π

ikφ(z)

logB

)
Γ

(
α+ 2π

ik

logB

)
. (3.6)

Furthermore, given Γ(a + 2πib) =
∫∞
0 e−xxa+2πib−1dx, we may perform a change of variables and let

x = e−k so that we get

Γ(a+ 2πbi) =

∫ ∞
−∞

e−e
−k
e−ake−2πibkdk = F

(
e−e

−k
e−2ak

)
(b) (3.7)

where F(·) denotes the Fourier transform, as stated in (2.5). This transforms our sum into the sum of the
following Fourier transform.

exp

(
−2πikφ(z)

logB

)
Γ

(
α+ 2π

it

logB

)
= exp

(
−2πikφ(z)

logB

)[
F
(
e−e

−k
e−αk

)( t

logB

)]
. (3.8)

Using the scaling and frequency shifting properties of Fourier transforms and the result of Theorem 4.2.8
in [Pi], we have the following equivalence for P > 0:∑

n∈Z
s(t+ nP ) =

∑
n∈Z
F(s)

(
k

P

)
e2πi

k
P
t 1

P
. (3.9)
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Therefore, letting s = e−e
−u
e−αu, P = logB, and t = −φ(z), we have

E(z) =
logB

Γ(α)

∑
|k|≥1

e−e
−(−φ(z)+k logB)

e−α(−φ(z)+k logB)

=
logB

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

∑
|k|≥1

e−e
−k logB

e−αk logB. (3.10)

We now concentrate on the truncation error EM (z). We bound our sums by integrals and perform a change
of variables, letting x = e−k logB:

EM (z) =
logB

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

∑
|k|≥M

e−e
−k logB

e−αk logB. (3.11)

This may then be extended to give

|EM (z)| ≤

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

(∫ ∞
BM

e−xxα−1dx+

∫ B−M

0
e−xxα−1dx

)

≤

(
e−e

φ(z)
eαφ(z)

)
Γ(α)

(∫ ∞
BM

e−xxα−1dx+

∫ B−M

0
xα−1dx

)

≤
e−β/B

z
(
β
Bz

)α
Γ(α)

(∫ ∞
BM

e−xxα−1dx+
1

α
B−Mα

)
, (3.12)

which is (3.3), thus proving (1).

Proof of part (2): uniformly bounding the truncation error for z ∈ [0, 1].To get (3.4), we simply maximize
(3.3) with respect to z. Set

g(z) = e−β/B
z

(
β

Bz

)α
, (3.13)

set the derivative equal to 0 to get

g′(z) = e−β/B
z
(β/Bz)α logB

(
β

Bz
− α

)
= 0, (3.14)

and solve to get z = logB

(
β
α

)
. Also note that g′(z) is monotonically decreasing, so g(z) has exactly

one maximum at z = logB

(
β
α

)
. Recalling that we only consider |EM (z)| on z ∈ [0, 1], we conclude

that if logB

(
β
α

)
≤ 0, |EM (z)| is maximized at z = 0, if logB

(
β
α

)
∈ (0, 1), |EM (z)| is maximized at

z = logB

(
β
α

)
, and if logB

(
β
α

)
≥ 1, then |EM (z)| is maximized at z = 1. Calculating the value of (3.3)

at these three points and letting C(α, β,B) be their maximum yields (3.4), so part (2) is proven.

Proof of part (3). Fix an ε > 0 and suppose

M > max

(
α+ 1, − logB

(
ε · Γ(α)

2C(α, β,B)

))
. (3.15)
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In particular, this implies that BM > eα+1, so for all x ≥ BM , x/ log x > α+ 1, which implies that

e−xxα−1 ≤ 1/x2. (3.16)

Equation (3.15) also implies that

1

α
B−Mα +B−M < 2B−M <

ε · Γ(α)

C(α, β,B)
. (3.17)

Combining (3.16) and (3.17) with (3.4), we have the bound

|EM (z)| < C(α, β,B)

Γ(α)

(
1

α
B−Mα +

∫ ∞
BM

1

x2
dx

)
<

C(α, β,B)

Γ(α)

(
1

α
B−Mα +B−M

)
<

C(α, β,B)

Γ(α)

ε · Γ(α)

C(α, β,B)
= ε. (3.18)

�

4. PLOTS AND ANALYSIS

Using Theorem 3.1 allows us to easily compare FB(z), the CDF of logXα,β , with z, the Benford CDF.
We simply integrate (2.14) from 0 to z, yielding

FB(z) = z +
1

Γ(α)

∑
|k|≥1

Γ

(
α+

2πik

logB

)
1

2πik
e−2πik logB(β)

(
e2πikz − 1

)
. (4.1)

We now use Theorem 3.1 in the following way. Fix an ε > 0. Then part (3) of Theorem 3.1 allows us to
quickly compute the value of |F ′B(z)− 1| to within ε of the true value. Thus, after integrating, since we are
only working on z ∈ [0, 1], the mean value theorem guarantees that we now know |FB(z) − z| to within ε
of the true value. In short, Theorem 3.1 allows us to obtain very good estimates for |FB(z) − z| by taking
only the first few terms, which makes calculating the deviation more computationally feasible. To measure
the closeness to Benford of the distribution, we use the quantity

max
z∈[0,1]

|FB(z)− z|. (4.2)

In Figure 1, we illustrate this quantity as a function of α and β with B = 10 fixed.

APPENDIX A. BOUNDING THE TRUNCATION ERROR IN THE SPECIAL CASE α = 1

As mentioned above, when α = 1 it is possible for us to achieve better bounds on the truncation error
using methods similar to those in [CLM].

Theorem A.1. Let F ′B(z) be as in Theorem 2.4 with α = 1.

(1) For M ≥ log 2 logB
4π2 , the contribution to F ′B(z) from the tail of the expansion (from the terms with

k ≥M in (2.14)) is at most

4(π2 + logB)

π
√

logB
M exp

(
−π2M
logB

)
. (A.1)

(2) For an error of at most ε from ignoring the terms with k ≥M in (2.14), it suffices to take

M =
h+ log h+ 1/2

a
(A.2)

where a = π2

logB , h = max
(
6,− log aε

C

)
, and C = 4(π2+logB)

π logB .
8
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FIGURE 1. Contour plots of the quantity maxz∈[0,1] |FB(z) − z| (see (4.1)) as a function
of α and β with B = 10 fixed. Using part (3) of Theorem 3.1, we have made the displayed
values accurate to within ε = 0.001. Notice that the error is large for large α, meaning
that the inverse gamma distribution only approximates Benford behavior for small α. Also
notice that β has less of an effect on the error.

Proof.

(1) As stated, we estimate the contribution to F ′B(z) from the tail when α = 1. Let

EM (z) :=
2

Γ(1)

∞∑
k=M

Re

(
e2πik(logB β−z)Γ

(
1 +
−2πik

logB

))
(A.3)

where Γ(1 + iu) =
∫∞
0 e−xxiudx with u = −2πik

logB in our case. We note that as u increases, there is
more oscillation, which means the integral would achieve a smaller value when u increases. Since
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|eiθ| = 1, when we take the absolute values inside the sum we get |e2πik(logB β−z)| = 1. Thus it is
safe to ignore this term in computing the upper bound.

Using the fact that |Γ(1 + ix)|2 = πx
sinh(πx) , we have from (A.3):

|EM (z)| ≤ 2

Γ(1)

∞∑
k=M

∣∣∣e2πik(logB β−z)∣∣∣ ∣∣∣∣Γ(1 +
−2πik

logB

)∣∣∣∣
≤ 2

√
2π√

logB

∞∑
k=M

√√√√ k

sinh
(

2π2k
logB

)
=

2
√

2π√
logB

∞∑
k=M

√√√√ 2k2

exp
(

2π2k
logB

)
− exp

(
−2π2k
logB

)
≤ 4π√

logB

∞∑
k=M

√
k2/ exp

(
2π2k

logB

)
. (A.4)

Here we have overestimated the error by disregarding the difference in the denominator, which is
very small when k is big. Let u = exp

(
2π2k
logB

)
. For 1

u−1/u < 2
u , we must get u ≥

√
2, which

means exp
(

2π2k
logB

)
≥
√

2. Solving this gives us k ≥ log 2 logB
4π2 , which will help us simplify the

denominator as we can assumeM exceeds this value and k ≥M . We can now substitute this bound
into (A.4) to simplify further:

|EM (z)| ≤ 4π√
logB

∞∑
k=M

√
2k

exp
(
π2k
logB

)
≤ 4π√

logB

∫ ∞
M

m exp

(
−π2m
logB

)
dm. (A.5)

We let a = π2

logB and apply integration by parts to get

|EM (z)| ≤ 4π√
logB

1

a2
(
aMe−aM + e−aM

)
≤ 4π√

logB

a+ 1

a
Me−aM

=
4π(a+ 1)

a
√

logB
Me−aM , (A.6)

which simplifies to

|EM (z)| ≤ 4(π2 + logB)

π
√

logB
M exp

(
−π2M
logB

)
, (A.7)

proving part (1).

(2) Let C = 4(π2+logB)
π logB and a = π2

logB as before. We want

CMe−aM ≤ ε. (A.8)
10



We will do this by iteratively expanding to improve the bounds. Let v = aM , then
C

a
ve−v ≤ ε⇐⇒ ve−v ≤ aε

C
. (A.9)

We carry out a change of variables one more time, letting h = − log aε
C and expanding v as v =

h+ x. This leads to

ve−v ≤ e−h

←→ h+ x

ex
≤ 1. (A.10)

Now we note that by expanding v in this way, solving for x is equivalent to solving for v , which is
equivalent to solving for M . We guess x = log h+ 1

2 then the left-hand-side of A.10 becomes:

h+ log h+ 1/2

he1/2
≤ 1↔ h+ log h+ 1/2 ≤ he1/2. (A.11)

Now what we want to do is to determine the value of h so that log h ≤ h/2 since this ensures the
inequality above would hold. The aforementioned inequality gives h ≤ eh/2 or h2 ≤ eh. Since for
h positive, eh ≥ h3

3! , it is sufficient to choose h such that h2 ≤ h3/6 or h ≥ 6. For h ≥ 6,

h+ log h+
1

2
≤ h+

h

12
+
h

2
=

19h

12
≈ 1.5883h. (A.12)

As he1/2 ≈ 1.64872h, a sufficient cutoff for M in terms of h for an error of at most ε is

M =
h+ log h+ 1/2

a
(A.13)

with a = π2

logB , h = max
(
6,− log aε

C

)
.

�
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