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Benford’s law is the statement that in many real-world data set, the probability of having digit d
in base B, where 1 ≤ d ≤ B, as the first digit is logB ((d+ 1)/d). We sometimes refer to this as
weak Benford behavior, and we say that a data set exhibits strong Benford behavior in base B if
the probability of having significand at most s, where s ∈ [1, B), is logB(s). We examine Benford
behaviors in stick fragmentation model. Building on the work on the 1-dimensional stick fragmen-
tation model, we employ combinatorial identities on multinomial coefficients to reduce the high
dimensional stick fragmentation model to the 1-dimensional model and provide a necessary and
sufficient condition for the lengths of the stick fragments to converge to strong Benford behavior.
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1. INTRODUCTION

In the late nineteenth century, astronomer Simon Newcomb observed that in the logarithmithic
books at his workplace, certain pages were “more worn than others” [New]. In particular, there
was more wear and tear in the earlier pages than the later pages. He deduced that there is a
“bias” towards smaller leading digits, with the digit 1 showing up roughly 30% of the time, the
digit 2 showing up roughly 18% of the time, and so on. Newcomb’s findings were practically
ignored until about fifty years later when physicist Frank Benford published his own research on
the distribution of leading digits in Reader’s Digest [Ben]. Benford displayed a table of roughly
20, 000 observations from twenty different sets of data, shown in Figure 1.

Benford called this distribution the “law of Anomalous Numbers”, but due to the popularity of
his publication, the phenomena eventually became known as “Benford’s law”; see Figure 2 for
probabilities. Benford’s law is a powerful phenomena that occurs in a variety of data, including
accounting, elections, finance, geosciences, physics, population data, street addresses, and more.
The law’s prevalence makes it useful for ensuring data integrity, including using it as a method
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FIGURE 1. From [New]: Benford’s 20, 000 observations.

FIGURE 2. The distribution of Benford’s law.

of fraud detection for tax returns, insurance claims, and expense reports [Ni, PTTV]. For more
information on the history of Benford’s law, see [BeHi, Hi1, Hi2, Mil, Rai].

In 1986, Lemons [Lem] used Benford’s law to analyze the partitioning of a conserved quan-
tity. Since then, mathematicians and physicists have examined Benfordness of various fragmen-
tation processes. Among these processes is the stick fragmentation process, the subject of this
paper. In the 1-dimensional multi-proportion stick fragmentation model, one starts with a stick of
length L and fixes an integer m ≥ 2. At Stage 1, the stick is split into m substicks of lengths
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1 ≤ k ≤ mN−1. By the end of N stages, there are mN sticks in total, and a question of par-
ticular interest to us is whether or not this fragmentation process results in stick lengths that are
distributed according to Benford’s law. In this paper, we specialize our investigation to a particular
case of the multi-proportion stick fragmentation model, by fixing beforehand the m proportions
p1, p2, . . . , pm with which we split every substick. We provide a necessary and sufficient condi-
tion for such a fixed multi-proportion stick fragmentation model to result in sticks with lengths
converging to a generalized Benford’s law.

Theorem 1.1. For any integer m > 2, choose p1, p2, . . . , pm−1 ∈ (0, 1) such that p1 + p2 + · · · +
pm−1 < 1. Set pm := 1− (p1 + p2 + · · ·+ pm−1). At each stage, we cut a given stick according to
proportions p1, p2, . . . , pm−1 to create m pieces. After N iterations, we have mN sticks in total, of
lengths

Ak1,k2,...,km := Lpk11 pk22 · · · pkmm , (1.1)

for 0 ≤ k1, k2, . . . , km ≤ N such that k1 + k2 + · · · + km = N . Let yi = log10(pi/pi+1) for
1 ≤ i ≤ m− 1. Then the stick fragmentation model results in stick lengths that converge to strong
Benford’s law if and only if yi ̸∈ Q for some 1 ≤ i ≤ m− 1.

1.1. Definitions and Theory of Benford’s Law. We begin with a definition of Benford’s law (see
for example [Dia, Mil]).

Definition 1.2 (Benford’s Law for the Leading Digit). We say a data set exhibits Benford’s law
for the leading digit if the frequency of leading digit d is log10(

d+1
d
).

There are many methods of proving that a data set follows Benford’s law. A common one is to
use the Uniform Characterization Theorem. An important definition for this characterization is the
notion of the significand of a real number.

Definition 1.3 (The Significand). For any positive x, we can express it as

x = S10(x) · 10k10(x) (1.2)

for unique S10(x) ∈ [1, 10) and integer k10(x). We call S10(x) the significand of x.

There is a more generalized version of Benford’s law for the entire significand, not just for the
first digit.

Definition 1.4. We say that a sequence of random variables {X(N)}∞N=1, converges to strong
Benford’s law if

lim
N→∞

P(S10(X
(N)) ≤ s) = log10(s) (1.3)

for all s ∈ [1, 10]. Note that the increasing indices usually correspond to the growing size of the
data set, so convergence to strong Benford’s law is really an asymptotic statement.
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Definition 1.5 (Uniform Distribution Modulo 1). A sequence of random variables {X(N)}∞N=1

converges to being equidistributed mod 1 if

lim
N→∞

P(X(N) mod 1 ≤ s) = s (1.4)

for all s ∈ [0, 1].

Now, we are ready to state the Uniform Characterization Theorem [Mil].

Theorem 1.6 (Uniform Characterization Theorem). A sequence of random variables converges to
strong Benford’s law base 10 if and only if the sequence of the base 10 logarithms of the random
variables converges to being equidistributed mod 1.

Thus, convergence to strong Benford’s law and convergence to uniform distribution modulo 1
are in fact equivalent conditions. Thus, to prove (or disprove) convergence to strong Benford’s law,
it suffices to prove (or disprove) convergence to uniform distribution modulo 1.

1.2. Fixed Proportion Stick Fragmentation Model and the Multinomial Distribution. Now
that we have a proper foundation for Benford’s law, it is time to describe in detail the model for
this paper. The model can be thought of as an extension of a model from Becker et. al called the
fixed single proportion stick fragmentation model [Be]. Suppose we start with a stick of length L.
We are going to split the stick at one fixed proportion 0 < p < 1. After the first break, we have
two sticks, namely of lengths Lp and L(1−p). Now we split the two sticks again at the same fixed
proportion p, resulting in four sticks of lengths Lp2, Lp(1 − p), L(1 − p)p, and L(1 − p)2. We
continue this process for N iterations. The fragmentation process follows a binomial distribution,
with the 2N sticks of N + 1 distinct lengths that follow a binomial distribution.

Becker et. al were interested in whether or not the leading digits of the significands of the stick
lengths converge to strong Benford’s law. They discovered a necessary and sufficient condition for
the convergence to strong Benford’s law and proved its necessity and sufficiency in [Be].

Theorem 1.7 (Fixed Single Proportion Stick Fragmentation Theorem, [Be]). Consider the fixed
single proportion stick fragmentation model. Choose y so that 10y = (1−p)/p. The fragmentation
model results in stick lengths that converge to strong Benford’s law if and only if y /∈ Q.

For the non-Benford case, Becker et. al proved by noticing the cyclic behavior in the significands
and by the multisection formula [C]. By contrast, the Benford case was much harder to establish.
They adopted methods from [Dia], [KN], and [MT-B] to use truncation to show roughly equal
probability between intervals, and to finally show equidistribution modulo 1. They were essentially
able to prove that these stick lengths that followed a binomial distribution would converge to strong
Benford’s law if the ratio is equal to 10 to an irrational power, and would not converge to Benford’s
law if the ratio is equal 10 to a rational power.

We extend their fixed single proportion stick fragmentation model to fixed multi-proportion
stick fragmentation model. Becker et. al only explored the case when the stick L is cut at one fixed
proportion p in every iteration. We push this case further, and see what happens when we cut the
stick at multiple distinct fixed proportions p1, p2, . . . , pm−1 in every iteration. Our stick model is
as follows.

Suppose we have a stick of length L. We cut the stick simultaneously at fixed proportions
p1, p2, . . . , pm−1 ∈ (0, 1), where p1 + · · · + pm−1 < 1. Let pm := 1 − (p1 + · · · + pm−1). Thus,
after Stage 1, we are left with sticks of lengths Lp1, Lp2, . . . , Lpm. At Stage 2, we cut each stick
we gained from the previous iteration at the same fixed proportions p1, p2, . . . , pm−1. Therefore,
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FIGURE 3. A trinomial stick fragmentation with m = 3 and N = 2.

the sticks lengths that result from stage 2 are Lp21, Lp1p2, . . . Lp1pm, Lp2p1, Lp22, . . . Lp2pm, and
so on. After Stage N , we are left with mN total sticks with

(
m+N−1

N

)
distinct lengths (see Figure

3 for example when m = 3 and N = 2). We have this many distinct lengths as the problem can
be thought as unordered sampling with replacement. Moreover, the stick lengths are distributed
according to a generalized version of binomial distribution called the multinomial distribution,
defined in terms of multinomial coefficient, which is a generalization of binomial coefficient. We
introduce the following definition and result, which may be found in [Ka].

Definition 1.8 (Multinomial Coefficient). For any non-negative integer N and positive integer m,
the multinomial coefficient is (

N

k1, k2, . . . , km

)
=

N !

k1!k2! · · · km!
(1.5)

for k1 + k2 + · · · + km = N . A random vector (X) = (X1, X2, . . . , Xm) follows a multinomial
distribution with parameters N and (p) := (p1, p2, . . . , pm) if

P((X) = (k)) =

(
N

k1, k2, · · · , km

)
pk11 pk22 · · · pkmm (1.6)

for all (k) := (k1, k2, . . . , km) with k1 + k2 + · · ·+ km = N .

Remark 1.9. Formula (1.5) represents the number of ways to choose N objects with exactly kj
objects of type j when order does not matter.

Theorem 1.10 (Multinomial Theorem). Let N be any non-negative integer and p1, p2, . . . , pm be
real numbers. Then

(p1 + p2 + · · ·+ pm)
N =

∑
k1+k2+···+km≥0

(
N

k1, k2, . . . , km

)
pk11 pk22 · · · pkmm , (1.7)

where the kj’s are non-negative integers summing to N .
5



2. FIXED MULTI-PROPORTION STICK FRAGMENTATION MODEL

Recall that we are interested in studying whether or not a stick fragmentation process results
in stick lengths that converge to strong Benford’s law. For Becker et. al, they were able to prove
that if the ratio (1− p)/p is equal to 10 to an irrational power, the stick lengths will follow strong
Benford’s law, but if the ratio is equal to 10 to a rational power then the distribution of stick lengths
will not follow strong Benford’s law.

In what follows, we generalize the results of Becker el. al to the fixed multi-proportion stick
fragmentation model we introduced in Section 1.2. In particular, we present Theorem 1.1 again
along with the proof for the necessity of the condition.

Theorem 1.1. For any integer m > 2, choose p1, p2, . . . , pm−1 ∈ (0, 1) such that p1 + p2 + · · · +
pm−1 < 1. Set pm := 1− (p1 + p2 + · · ·+ pm−1). At each stage, we cut a given stick according to
proportions p1, p2, . . . , pm−1 to create m pieces. After N iterations, we have mN sticks in total, of
lengths

Ak1,k2,...,km := Lpk11 pk22 · · · pkmm , (2.1)

for 0 ≤ k1, k2, . . . , km ≤ N such that k1 + k2 + · · · + km = N . Let yi = log10(pi/pi+1) for
1 ≤ i ≤ m− 1. Then the stick fragmentation model results in stick lengths that converge to strong
Benford’s law if and only if yi ̸∈ Q for some 1 ≤ i ≤ m− 1.

We prove the necessity of the condition, i.e., if yi ∈ Q for all 1 ≤ i ≤ m − 1, then the stick
fragmentation model results in stick lengths that do not follow strong Benford’s law. The proof of
the sufficiency of the condition is long and technical, see [FM] for the details. Before presenting
the proof, we point the reader to some numerical simulation results in support of the theorem, as
shown in the appendix (see Figures 4, 5, 6, 7 for rational case and Figures 8, 9, 10, 11 for irrational
case).

Proof. To prove that the decomposition process results in stick lengths that do not converge to
strong Benford’s law, by the Uniform Characterization Theorem 1.6, it suffices to show that

log10(Ak1,k2,...,km) = L log10
(
pk11 pk22 . . . pkmm

)
(2.2)

are not equidistributed mod 1. First, note that since Benford’s law is scale invariant [Hi1], we can
assume without loss of generality that L = 1. We also notice that each stick length Ak1,k2,...,km has
the factorization

Ak1,k2,...,km = pk11 pk22 · · · pkmm =

(
p1
p2

)k1 (p2
p3

)k1+k2

· · ·
(
pm−1

pm

)∑m−1
j=1 kj

(pm)
N . (2.3)

Since yi ∈ Q for all 1 ≤ i ≤ m − 1, we can write yi = ai/bi for some ai ∈ Z and bi ∈ Z>0 and
gcd(ai, bi) = 1, for all 1 ≤ i ≤ m− 1. Thus

Ak1,k2,...,km =
(
10

a1
b1

)k1 (
10

a2
b2

)k1+k2
· · ·
(
10

am−1
bm−1

)∑m−1
j=1 kj

(pm)
N . (2.4)

Taking the logarithm of both sides yields

log10(Ak1,k2,...,km) = k1

(
a1
b1

)
+ (k1 + k2)

(
a2
b2

)
+ · · ·+

(
m−1∑
j=1

kj

)(
am−1

bm−1

)
+N log10(pm).

(2.5)
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Note that the first term k1(a1/b1) on the RHS above has at most b1 distinct values mod 1, since
its values mod 1 are periodic with period at most b1. More generally, for any 1 ≤ i ≤ m − 1,
the term (

∑i
j=1 kj)(ai/bi) has at most bi distinct values mod 1. Since N log10(pm) is constant for

all Ak1,k2,...,km , then log10(Ak1,k2,...,km) has at most
∏m−1

i=1 bi distinct values. Moreover, this number
does not depend on N and is finite for fixed m, b1, . . . , bm−1. Since a uniform distribution is
continuous and can take any values in [0, 1], which is uncountable, then log10(Ak1,k2,...,km) is not
equidistribted mod 1. Thus, the decomposition process results in stick lengths that do not converge
in distribution to strong Benford’s law. □

3. FUTURE WORK

While our proof for the necessity of the condition of Theorem 1.1 shows that log10(Ak1,k2,...,km)

has at most
∏m−1

i=1 bi distinct values and thus does not converge to being equidistributed mod 1,
it does not explicitly determine the distribution of log10(Ak1,k2,...,km). It would be an interesting
question to see if the distribution converges to discrete uniform and if not, to characterize the
distribution under various general assumptions.
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4. NUMERICAL EVIDENCE FOR THEOREM 1.1

4.1. Evidence for Non-Benford Behavior. The following figures provide numerical evidence for
non-Benford behavior when the exponents are all rational.

FIGURE 4. y1 = −1/3, y2 = −1/2,
and N = 1000.

FIGURE 5. y1 = −1/4, y2 = −1/6,
and N = 1000.

FIGURE 6. y1 = −1/2, y2 = −1/3,
y3 = −1/4, and N = 100.

FIGURE 7. y1 = −1/4, y2 = −1/2,
y3 = −1/6, and N = 100.

4.2. Evidence for Benford Behavior. The following figures provide numerical evidence for Ben-
ford behavior when at least one exponent is irrational.

FIGURE 8. y1 = −1/2, y2 = −
√
2,

and N = 1000.
FIGURE 9. y1 = −1/3, y2 = −

√
3,

and N = 1000.
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FIGURE 10. y1 = −
√
2, y2 = −1/3,

y3 = −1/4, and N = 100.
FIGURE 11. y1 = −

√
3, y2 =

−1/10, y3 = −1/8, and N = 100.
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