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Abstract. We show the leading digits of a variety of systems satisfying certain
conditions follow Benford’s Law. For each system proving this involves two main
ingredients. One is a structure theorem of the limiting distribution, specific to the
system. The other is a general technique of applying Poisson Summation to the
limiting distribution. We show the distribution of values of L-functions near the
central line and (in some sense) the iterates of the 3x + 1 Problem are Benford.

1. Introduction

While looking through tables of logarithms in the late 1800s, Newcomb [New] noticed
a surprising fact: certain pages were significantly more worn than others. People were
referencing numbers whose logarithm started with 1 more frequently than other digits.
In 1938 Benford [Ben] observed the same digit bias in a wide variety of phenomena.

Instead of observing one-ninth (about 11%) of entries having a leading digit of 1, as
one would expect if the digits 1, 2, . . . , 9 were equally likely, over 30% of the entries had
leading digit 1 and about 70% had leading digit less than 5. Since log10 2 ≈ 0.301 and
log10 5 ≈ 0.699, one may speculate that the probability of observing a digit less than k
is log10 k, meaning that the probability of seeing a particular digit j is log10 (j + 1) −
log10 j = log10

(
1 + 1

j

)
. This logarithmic phenomenon became known as Benford’s Law

after his paper containing extensive empirical evidence of this distribution in diverse data
sets gained popularity. See [Hi1] for a description and history, [Hi2, BBH, Dia] for some
results, and page 255 of [Knu] for connections between Benford’s law and rounding errors
in computer calculations.

In [BBH] it was proved that many dynamical systems are Benford, including most
power, exponential and rational functions, linearly-dominated systems, and non-autonomous
dynamical systems. This adds to the ever-growing family of systems known or believed
to satisfy Benford’s Law, such as physical constants, stock market indices, tax returns,
sums and products of random variables, the factorial function and Fibonacci numbers,
just to name a few.

We introduce two new additions to the family, the Riemann zeta function (and other
L-functions) and the 3x + 1 Problem (and other (d, g, h)-Maps), though we prove the
theorems in sufficient generality to include other systems. Roughly, the distribution
of digits of values of L-functions near the critical line and the ratio of observed versus
predicted values of iterates of the 3x+1 Map tend to Benford’s Law. For exact statements
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of the results, see Theorem 4.4 and Corollary 4.5 for L-functions and Theorem 5.3 for
the 3x + 1 Problem. While the best error terms just miss proving Benford behavior for
L-functions on the critical line, we show that the values of the characteristic polynomials
of unitary matrices are Benford in Appendix A; as these characteristic polynomials are
believed to model the values of L-function, this and our theoretical results naturally lead
to the conjecture that values of L-functions on the critical line are Benford.

A standard method of proving Benford behavior is to show the logarithms of the val-
ues become equidistributed modulo 1; Benford behavior then follows by exponentiation.
There are two needed inputs. For both systems the main term of the distribution of
the logarithms is a Gaussian, which can be shown to be equidistributed modulo 1 by
Poisson summation. The second ingredient is to control the errors in the convergence
of the distribution of the logarithms to Gaussians. For L-functions this is accomplished
by Hejhal’s refinement of the error terms (his result follows from an analysis of high
moments of integrals of log |L(s, f)|), and for the 3x + 1 Problem it involves an analysis
of the discrepancy of the sequence k logB 2 mod 1 (which follows from logB 2 is of finite
type; see below).

The reader should be aware that the standard notations from number theory and
probability theory sometimes conflict; for example, σ is used to denote the real part of
a point in the complex plane as well as the standard deviation of a distribution. We
try and follow common custom as much as possible. We denote the Fourier transform
(or characteristic function) of f by f̂ (y) =

∫∞
−∞ f (x) e−2πixydx. Recall g(T ) = o(1)

means g(T ) → 0 as T → ∞, and g(T ) ¿ h(T ) or g(T ) = O(h(T )) means there is
some constant C such that for all T sufficiently large, |g(T )| ≤ Ch(T ). Our proof of the
Benford behavior of the 3x + 1 problem uses the (irrationality) type of logB 2 to control
the errors; a number α is of type κ if κ is the supremum of all γ with

limq→∞qγ+1 min
p

∣∣∣∣α−
p

q

∣∣∣∣ = 0. (1.1)

By Roth’s theorem, every algebraic irrational is of type 1. See for example [HS, Ro] for
more details.

2. Benford’s Law

To study leading digits we use the mantissa function, a generalization of scientific
notation. Fix a base B > 1 and for a real number x > 0 define the mantissa function,
MB (x), from the unique representation of x by

x = MB (x) ·Bk, with k ∈ Z and MB (x) ∈ [1, B) . (2.1)

We extend the domain of mantissa to all of C via

MB (x) =

{
0 if x = 0
MB(|x|) if x 6= 0.

(2.2)

We study the mantissa of many different types of processes (discrete, continuous and
mixed), and it is convenient to be able to use the same language for all. Take an ordered
total space Ω, for example N or R+, and a (weak notion of) measure µ on Ω such as
the counting measure or Lebesgue measure. For a subset A ⊂ Ω and an element T ∈ Ω,
denote by AT = {ω ∈ A : ω ≤ T} the truncated set. We define the probability of A via
density in Ω:

Definition 2.1. P (A) = lim
T→∞

µ(AT )
µ(ΩT ) , provided the limit exists.
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For A ⊂ N and µ the counting measure, P (A) = lim
T→∞

#{n∈A: n≤T}
T , while if A ⊂ R+

and µ is Lebesgue measure then P (A) = lim
T→∞

µ(0≤t≤T : t∈A)
T . In Appendix A we extend

our notion of probability to a slightly more general setting, but this will do for now.
For a sequence of real numbers indexed by Ω,

−→
X = {xω}ω∈Ω, and a fixed s ∈ [1, B),

consider the pre-image of mantissa, {ω ∈ Ω : 1 ≤ MB(xω) ≤ s}; we abbreviate this by
{1 ≤ MB(

−→
X ) ≤ s}.

Definition 2.2. A sequence
−→
X is said to be Benford (base B) if for all s ∈ [1, B),

P
{

1 ≤ MB(
−→
X ) ≤ s

}
= logB s. (2.3)

Definition 2.2 is applicable to the values of a function f , and we say f is Benford base
B if

lim
T→∞

µ (0 ≤ t ≤ T : 1 ≤ MB (f (t)) ≤ s)
T

= logB s. (2.4)

We describe an equivalent condition for Benford behavior which is based on equidis-
tribution. Recall

Definition 2.3. A set A ⊂ R is equidistributed modulo 1 if for any [a, b] ⊂ [0, 1] we have

lim
T→∞

µ ({x ∈ AT : x mod 1 ∈ [a, b]})
µ (AT )

= b− a. (2.5)

The following two statements are immediate:

Lemma 2.4. We have u ≡ v mod 1 if and only if the mantissa of Bu and Bv are the
same, base B.

Lemma 2.5. We have y mod 1 ∈ [0, logB s] if and only if By has mantissa in [1, s].

The following result is a standard way to prove Benford behavior:

Theorem 2.6. Let
−→
YB = logB |

−→
X |, so pointwise yω,B = logB |xω|, and set logB 0 = 0.

Then
−→
YB is equidistributed modulo 1 if and only if

−→
X is Benford base B.

Proof. By Lemma 2.5, the set {−→YB mod 1 ∈ [0, logB s]} is the same as the set {MB(
−→
X ) ∈

[1, s]}. Hence
−→
YB is equidistributed modulo 1 if and only if

logB s = P
{−→

YB mod 1 ∈ [0, logB s]
}

= P
{

MB(
−→
X ) ∈ [1, s]

}
(2.6)

if and only if
−→
X is Benford base B. ¤

Theorem 2.6 reduces investigations of Benford’s Law to equidistribution modulo 1,
which we analyze below.

Remark 2.7. The limit in Definition 2.1, often called the natural density, will exist for
the sets in which we are interested, but need not exist in general. For example, if A is the
set of positive integers with first digit 1, then #{n∈A: n≤T}

T oscillates between its lim inf
of 1

9 and its lim sup of 5
9 . One can study such sets by using instead the analytic density

Pan (A) = lim
s→1+

∑
n∈A n−s

ζ(s)
, (2.7)

where ζ(s) is the Riemann Zeta Function (see §4). A straightforward argument using
analytic density gives Benford-type probabilities. In particular, Bombieri (see [Se], page
76) has noted that the analytic density of primes with first digit 1 is log10 2, and this can
easily be generalized to Benford behavior for any first digit.
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3. Poisson Summation and Equidistribution modulo 1

We investigate systems
−→
XT converging to a system

−→
X with associated logarithmic

processes
−−→
YT,B . For example, take some function g : R→ C and let

−→
X = {g(t)}t∈R. Then−→

XT = {g(t)}0≤t≤T are truncations of
−→
X , with log-process

−−→
YT,B = {logB |g(t)|}0≤t≤T .

When there is no ambiguity we drop the dependence on B and write just
−→
YT for

−−→
YT,B .

Let f(x) be a fixed probability density with cumulative distribution function F (x) =∫ x

−∞ f (t) dt. In our applications the probability densities of
−−→
YT,B are approximately a

spread version of f such as fT (x) = 1
T f

(
x
T

)
. There is, however, an error term, and the

log-process
−−→
YT,B has a cumulative distribution function given by

FT (x) = P
{−−→

YT,B ≤ x
}

=
∫ x

−∞

1
T

f

(
t

T

)
dt + ET (x)

= F
( x

T

)
+ ET (x) , (3.1)

where ET is an error term. Our goal is to show that, under certain conditions, the error
term is negligible and fT (x) spreads to make

−−→
YT,B equidistributed modulo 1 as T →∞.

This will imply that
−→
X is Benford base B.

In our investigations we need the density f , cumulative distribution function FT and
errors ET to satisfy certain conditions in order to control the error terms.

Definition 3.1 (Benford-good). Systems
−−→
YT,B with cumulative distribution functions

FT are Benford-good if the FT satisfy (3.1), the probability density f satisfies suffi-
cient conditions for Poisson Summation (

∑
n f(n) =

∑
n f̂(n)), and there is a monotone

increasing function h(T ) with limT→∞ h(T ) = ∞ such that f and ET satisfy

Condition 1. Small tails:

FT (∞)− FT (Th(T )) = o(1), FT (−Th(T ))− FT (−∞) = o(1). (3.2)

Condition 2. Rapid decay of the characteristic function:

S (T ) =
∑
k∈Z
k 6=0

∣∣∣∣∣
f̂(Tk)

k

∣∣∣∣∣ = o(1). (3.3)

Condition 3. Small truncated translated error: for all 0 ≤ a < b ≤ 1,

ET (a, b) =
∑

|k|≤Th(T )

[ET (b + k)− ET (a + k)] = o(1). (3.4)

In all our applications f will be a Gaussian, in which case the Poisson Summation
Formula holds. See for example [Da] (pages 14 and 63).

Condition 1 asserts that essentially all of the mass lies in [−Th(T ), Th(T )]. In appli-
cations T will be the standard deviation, and this will follow from Central Limit type
convergence.

Condition 2 is quite weak and is satisfied in all cases of interest. For example, if f
is differentiable and f ′ is integrable (as is the case if f is the Gaussian density), then
|f̂(y)| ≤ 1

|y|
∫ |f ′(x)|dx = O

(
1
|y|

)
, which suffices to show S (T ) = o(1).
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Condition 3 is the most difficult to prove for a system, and to our knowledge has not
previously been analyzed in full detail. It is well known (see [Fe]) that there are some
processes (for example, Bernoulli trials) with standard deviation of size T where the best
attainable estimate is ET (x) = O

(
1
T

)
. Errors this large lead to ET (a, b) = O(1).

We now see why these conditions suffice. For [a, b] ⊂ [0, 1), let PT (a, b) denote the
probability that

−−→
YT,B mod 1 ∈ [a, b]. To prove

−−→
YT,B becomes equidistributed modulo 1,

we must show that PT [a, b] → b− a. We would like to argue as follows:

PT [a, b] = P
{−−→

YT,B mod 1 ∈ [a, b]
}

=
∑

k∈Z
P

{−−→
YT,B ∈ [a + k, b + k]

}

=
∑

k∈Z
(FT (b + k)− FT (a + k))

=
∑

k∈Z

[∫ b

a

1
T

f

(
x + k

T

)
dx + ET (b + k)− ET (a + k)

]

=
∑

k∈Z

[∫ b

a

1
T

f

(
x + k

T

)
dx

]
+

∑

k∈Z
[ET (b + k)− ET (a + k)] .

(3.5)

While the main term can be handled by a straightforward application of Poisson
Summation, the best pointwise bounds for the error term are not summable over all
k ∈ Z. This is why Condition 1 is necessary, so that we may restrict the summation.

Theorem 3.2. Assume log-processes
−−→
YT,B are Benford-good. Then

−−→
YT,B → −→

YB, where−→
YB is equidistributed modulo 1.

Proof. As the Fourier transform converts translation to multiplication, if gx(u) = f
(

u+x
T

)

then a straightforward calculation shows that ĝx(w) = e2πixwT f̂(Tw) for any fixed x. Our
assumptions on f allow us to apply Poisson Summation to g, and we find

∑

k∈Z
f

(
x + k

T

)
=

∑

k∈Z
gx(k) =

∑

k∈Z
ĝx(k) = T

∑

k∈Z
e2πixkf̂(Tk). (3.6)

Let [a, b] ⊂ [0, 1]. By Condition 1 and (3.1),

PT (a, b) =
∑

|k|≤Th(T )

(FT (b + k)− FT (a + k))

+ O (FT (∞)− FT (Th(T )))
+ O (FT (−Th(T ))− FT (−∞))

=
∑

|k|≤Th(T )

[
1
T

∫ b

a

f

(
x + k

T

)
dx + ET (b + k)− ET (a + k)

]
+ o(1)

=
∑

|k|≤Th(T )

1
T

∫ b

a

f

(
x + k

T

)
dx + ET (a, b) + o(1). (3.7)

By Condition 3, ET (a, b) = o(1); as f is integrable we may return the sum to all k ∈ Z
at a cost of o(1). The interchange of summation and integration below is justified from
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the decay properties of f . To see this, simply insert absolute values in the arguments.
Therefore using (3.6),

PT [a, b] =
1
T

∑

k∈Z

∫ b

a

f

(
x + k

T

)
dx + o(1)

=
1
T

∫ b

a

(∑

k∈Z
gx (k)

)
dx + o(1)

=
1
T

∫ b

a

(∑

k∈Z
ĝx (k)

)
dx + o(1)

=
∑

k∈Z
f̂(Tk)

∫ b

a

e2πixkdx + o(1)

= f̂ (0) (b− a) +
∑

k 6=0

f̂ (Tk)
e2πibk − e2πiak

2πik
+ o(1). (3.8)

As f is a probability density, f̂(0) = 1, and by Condition 2 the sum in (3.8) is o(1).
Therefore

PT (a, b) = b− a + o(1), (3.9)

which completes the proof. ¤

As an immediate consequence, we have:

Theorem 3.3. Let
−→
XT (the truncation of

−→
X ) have corresponding log-process

−−→
YT,B. As-

sume the
−−→
YT,B are Benford-good. Then

−→
X is Benford base B.

Proof. This follows immediately from Theorems 3.2 and 2.6. ¤

An immediate application of Theorem 3.3 is to processes where the distribution of the
logarithms is exactly a spreading Gaussian (i.e., there are no errors to sum). We describe
such a situation below.

Recall a Brownian motion (or Wiener process) is a continuous process with indepen-
dent, normally distributed increments. So if W is a Brownian motion, then Wt −Ws is
a random variable having the Gaussian distribution with mean zero and variance t − s,
and is independent of the random variable Ws −Wu provided u < s < t.

A standard realization of Brownian motion is as the scaled limit of a random walk. Let
x1, x2, x3, . . . be independent Bernoulli trials (taking the values +1 and −1 with equal
probability) and let Sn =

∑n
i=1 xi denote the partial sum. Then the normalized process

W
(n)
t =

1√
n

Snt (3.10)

(extended to a continuous process by linear interpolation) converges as n → ∞ to the
Wiener process. See [Bi] or Chapter 2.4 of [KaSh] for further details.

A geometric Brownian motion is simply a process Y such that the process log Y is
a Brownian motion. It was known to Benford that stock market indices empirically
demonstrated this digit bias, and for almost as long these indices have been modelled by
geometric Brownian motion. Thus Theorem 3.3 implies the well-known observation that

Corollary 3.4. A geometric Brownian motion is Benford.
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4. Values of L-Functions

Consider the Riemann Zeta function

ζ (s) =
∞∑

n=1

1
ns

=
∏

p prime

(
1− 1

ps

)−1

. (4.1)

Initially defined for Re(s) > 1, ζ(s) has a meromorphic continuation to all of C. More
generally, one can study an L-function

L (s, f) =
∞∑

n=1

af (n)
ns

=
∏

p prime

d∏

j=1

(
1− αf,d(p)

ps

)−1

, (4.2)

where the coefficients af (n) have arithmetic significance. Common examples include
Dirichlet L-functions (where af (n) = χ(n) for a Dirichlet character χ) and elliptic curve
L-functions (where af (p) is related to the number of points on the elliptic curve modulo
p).

All the L-functions we study satisfy (after suitable renormalization) a functional equa-
tion relating their value at s to their value at 1 − s. The region 0 ≤ Re(s) ≤ 1 is called
the critical strip, and Re(s) = 1

2 the critical line. The behavior of L-functions in the
critical strip, especially on the critical line, is of great interest in number theory. The
Generalized Riemann Hypothesis (GRH) asserts that the zeros of any “nice” L-function
are on the critical line. The location of the zeros of ζ(s) is intimately connected with
the error estimates in the Prime Number Theorem. The Riemann Zeta function can
be expressed as the moment of the maximum of a Brownian Excursion, and the distri-
bution of the zeros (respectively, values) of L-functions is believed to be connected to
that of eigenvalues (respectively, values of characteristic polynomials) of random matrix
ensembles. See [BPY, Con, KaSa, KeSn] for excellent surveys.

We investigate the leading digits of L-functions near the critical line, and show that
the distribution of the digits of their absolute values is Benford (see Theorem 4.4 for the
precise statement). The starting point of our investigations of values of the Riemann zeta
function along the critical line s = 1

2 + it is the log-normal law (see [Lau, Sel1]):

lim
T→∞

µ
({

0 ≤ t ≤ T : log |ζ (
1
2 + it

) | ≤ y
√

1
2 log log T

})

T

=
1√
2π

∫ y

−∞
e−u2/2du. (4.3)

Thus the density of values of log
∣∣ζ (

1
2 + it

)∣∣ for t ∈ [0, T ] are well approximated by a
Gaussian with mean zero and standard deviation

ψT =
√

1
2 log log T + O(log log log T ). (4.4)

Such results are often used to investigate small values of |ζ (
1
2 + it

) | and gaps between
zeros. As such, the known error terms are too crude for our purposes. In particular, one
has (trivially modifying (4.21) of [Hej] or (8) of [Iv]) that

µ
({

t ∈ [T, 2T ] : a ≤ log
∣∣ζ (

1
2 + it

)∣∣ ≤ b
})

T

=
1√

2πψ2
T

∫ b

a

e−u2/2ψ2
T du + O

(
log2 ψT

ψT

)
. (4.5)
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The main term is Gaussian with increasing variance, precisely what we require for equidis-
tribution modulo 1. The error term, however, is too large for pointwise evaluation (as we
have of the order ψT log ψT intervals [a + n, b + n]).

Better pointwise error estimates are obtained for many L-functions in [Hej]. These
estimates are good enough for us to see Benford behavior as T → ∞ near the line
Re(s) = 1

2 . Explicitly, consider an L-function (or a linear combination of L-functions,
though for simplicity of exposition we confine ourselves to the case of one L-function)
satisfying

Definition 4.1 (Good L-Function). We say an L-function is good if it satisfies the
following properties:

(1) Euler product:

L(s, f) =
∞∑

n=1

af (n)
ns

=
∏

p prime

d∏

j=1

(
1− αf,j(p)p−s

)−1
. (4.6)

(2) L(s, f) has a meromorphic continuation to C, is of finite order, and has at most
finitely many poles (all on the line Re(s) = 1).

(3) Functional equation:

eiωG(s)L(s, f) = e−iωG(1− s)L(1− s), (4.7)

where ω ∈ R and

G(s) = Qs
h∏

i=1

Γ(λis + µi) (4.8)

with Q,λi > 0 and Re(µi) ≥ 0.
(4) For some ℵ > 0, c ∈ C, x ≥ 2 we have

∑

p≤x

|af (p)|2
p

= ℵ log log x + c + O

(
1

log x

)
. (4.9)

(5) The αf,j(p) are (Ramanujan-Petersson) tempered: |αf,j(p)| ≤ 1.
(6) If N(σ, T ) is the number of zeros ρ of L(s) with Re(ρ) ≥ σ and Im(ρ) ∈ [0, T ],

then for some β > 0 we have

N(σ, T ) = O

(
T

1−β
�

σ− 1
2

�
log T

)
. (4.10)

Remark 4.2. There are many families of L-functions which satisfy the above six condi-
tions. The last two are the most difficult conditions to verify, as in all cases where these
are known the first four conditions can be shown to be satisfied. The last two conditions
are established for many L-functions (for example, see [Sel1] for ζ(s) and [Luo] for holo-
morphic Hecke cuspidal forms of full level and even weight k > 0; see Chapter 10 [IK]
for more on the subject), and is an immediate consequence of GRH.

We quote a version of the log-normal law with better error terms (see (4.20) from
[Hej] with a trivial change of variables in the Gaussian integral); for the convenience of
the reader we list where the various parameters in Hejhal’s result are defined. The error
terms will be pointwise summable, and allow us to prove Benford behavior.

Theorem 4.3 (Hejhal). Let L(s, f) be a good L-function as in Definition 4.1, and
• fix δ ∈ (0, 1) ([Hej], Lemmas 2 and 3, page 556), g ∈ (0, 1] ([Hej], Lemma 3, page

556) and κ ∈ (1, 3] ([Hej], page 560 and (4.18) on page 562);
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• choose σ ≥ 1
2 + g

log y ([Hej], page 563) and 1
2 ≤ σ ≤ 1

2 + 1
logδ T

([Hej], page 562);
• the variance ψ(σ, T ) (see [Hej], Lemma 1, page 566) satisfies

ψ(σ, T ) = ℵ log
[
min

(
log T,

1
σ − 1

2

)]
+ O(1); (4.11)

• choose N = bψ(σ, T )κc and y = T 1/2N ([Hej], (4.18), page 565).

Then we have

µ ({t ∈ [T, 2T ] : a ≤ log |L (σ + it, f)| ≤ b})
T

=
1√

ψ(σ, T )

∫ b

a

e−πu2/ψ(σ,T )du

+ O

(
1

ψ(σ, T )
min

(
1,

|b− a|√
ψ(σ, T )

)
+ ψ(σ, T )−κ/2 + y(1/3)(1−2σ)

)
, (4.12)

the implied constant depends only on β (Condition (6) of Definition 4.1), f , δ, g and κ.

For our purposes, a satisfactory choice is to take σ = 1
2 + 1

logδ T
and κ > 2. Then

ψ(σ, T ) = ℵ log log T + O(1) and

y(1/3)(1−2σ) = T
1

logδ T

−1
3(ℵ log log T+O(1))κ = exp

(
− log1−δ T

3(ℵ log log T + O(1))κ

)

¿ (log log T )κ

log1−δ T
. (4.13)

We now show, in a certain sense, the values of |L(s, f)| are Benford. While any modest
cancellation would yield the following result on the critical line, due to our error terms
for each interval [T, 2T ] we must stay slightly to the right of Re(s) = 1

2 .

Theorem 4.4. Let L(s, f) be a good L-function as in Definition 4.1; for example we
may take ζ(s). If the GRH and Ramanujan conjectures hold we may take any cuspidal
automorphic L-function; see also Remark 4.2. Fix a δ ∈ (0, 1). For each T , let σT =
1
2 + 1

logδ T
. Then

lim
T→∞

µ {t ∈ [T, 2T ] : 1 ≤ MB (|L(σT + it, f)|) ≤ τ}
T

= logB τ. (4.14)

Thus the values of the L-function satisfy Benford’s Law in the limit (with the limit taken
as described above) for any base B.

Proof. We first prove the claim for base e, and then comment on the changes needed for
a general base B. Unfortunately the notation from number theory slightly conflicts with
the standard notation from probability theory of §3. By Theorem 2.6, it suffices to show
that

lim
T→∞

µ {t ∈ [T, 2T ] : a ≤ log |L(σT + it, f)| ≤ b}
T

= b− a. (4.15)

Let ψT = ψ(σT , T ) be the variance of the Gaussian in (4.12), which tends to infinity
with T . The standard deviation is thus

√
ψT , and corresponds to what we called T in

§3. Let η(x) be the standard normal (mean zero, variance one; η plays the role of f from
§3 – as it is standard to denote L-functions by L(s, f), we use η here and in §5), and set
η√ψT

(x) = 1√
ψT

η
(

x√
ψT

)
. Note η√ψT

(x) is the density of a normal with mean zero and
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variance ψT . By (4.12) we have

FT (x) =
∫ x

−∞
η√ψT

(x)dx + ET (x), (4.16)

where ET (x) = O(ψ−1
T ). We must show the logarithms of the absolute values of the L-

function are Benford-good. As η is a Gaussian it satisfies the conditions for the Poisson
Summation Formula, and the log-process

−→
YT = log |L(σT + it, f)| satisfies (3.1). Thus

to apply Theorem 3.3 it suffices to show η, FT and ET satisfy Conditions 1 through
3 for some monotone increasing function h(ψT ) with limT→∞ h(ψT ) = ∞. We take
h(ψT ) =

√
log ψT .

Condition 1 is immediately verified. To show F√ψT
(∞) − F√ψT

(
√

ψT h(ψT )) = o(1)
we use (4.12) to conclude the contribution from the error is o(1), and then note that the
integral of the Gaussian with standard deviation

√
ψT past

√
ψT log ψT is small (as η is

the density of the standard normal, this integral is dominated by

1√
2π

∫

|x|≥√log ψT

η(x)dx, (4.17)

which is o(1)). Identical arguments show F√ψT
(−√ψT h(ψT )) − F√ψT

(−∞) = o(1). As
we are integrating a sizable distance past the standard deviation, it is easy to see that the
contribution from the Gaussian is small. We do not need the full strength of the bounds
in (4.12); the bounds from (4.5) suffice to control the errors.

Condition 2 follows from the trivial fact that η′ is integrable. We now show Condition
3 holds. Here the bounds from (4.5) just fail. Using those bounds and summing over
|k| ≤ √

ψT h(ψT ) would yield an error of size O
(√

ψT h(ψT ) · log2√ψT√
ψT

)
= O

(
log2.5 ψT

)
.

We instead use (4.12), and find for [a, b] ⊂ [0, 1] that

ET (a, b) =
∑

|k|≤√ψT h(ψT )

[ET (b + k)− ET (a + k)]

=
∑

|k|≤√ψT log ψT

O

(
1

ψT
min

(
1,
|b− a|√

ψT

)
+ ψ

−κ/2
T + y(1/3)(1−2σ)

)

= O

(√
log ψT√

ψT

+ ψ
1
2−κ

2
T

√
log ψT +

√
ψT log ψT

(log log T )κ

log1−δ T

)

= o(1) (4.18)

because κ > 1, δ < 1 and ψT ¿ log log T .
As all the conditions of Theorem 3.2 are satisfied, we can conclude that

P√ψT
(a, b) = b− a + o(1). (4.19)

We have shown that tending to infinity in this manner, the distribution corresponding
to log |L(σT + it, f)| converges to being equidistributed modulo 1, which by Theorem 3.3
implies the values of |L(σT + it, f)| are Benford base e (as always, along the specified
path converging to the critical line).

For a general base B, note logB x = log x
log B . The effect of changing base is that

logB |L(σT +it, f)| converges to a Gaussian with mean zero and variance 1
log B ·

√
ψ(σT , T )

(instead of mean zero and variance
√

ψ(σT , T )). The argument now proceeds as be-
fore. ¤
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Corollary 4.5. Theorem 4.4 is valid if instead of intervals [T, 2T ] we consider intervals
[0, T ].

Proof. Let α(T ) = (log log log T )log 2. We consider the intervals I0 = [0, T/α(T )] and

Ii =
[
2i−1T/α(T ), 2iT/α(T )

]
, i ∈ {1, 2, . . . , log log log log T}. (4.20)

We may ignore I0 as it has length o(T ). For each interval Ii, i ≥ 1, we use (4.12) and
argue as before. We may keep the same values of β, δ, g, κ, σT as before. T and y change,
which implies ψT = ψ(σT , T ) changes; however, the leading term of ψT is still ℵ log log T ,
and y(1/3)(1−2σ) again leads to negligible contributions. As there are only log log log log T
intervals, we may safely add all the errors. ¤

Remark 4.6. If we stay a fixed distance off the critical line, we do not expect Benford
behavior. This is because for a fixed σ > 1

2 , for ζ(s) we have a distribution function Gσ

such that

lim
T→∞

µ{t ∈ [0, T ] : log |ζ(σ + it)| ∈ [a, b]}
T

=
∫ b

a

Gσ(u)du. (4.21)

Unlike the log-normal law (4.5), where the variance increases with T , note here there
is no increasing variance for fixed σ (though of course the variance depends on σ); see
[BJ, JW] for proofs. Thus to see Benford behavior it is essential that as T increases our
distance to the critical line decreases.

For investigations on the critical line, one can easily show Benford’s Law holds for a
truncation of the series expansion of log |L(1

2 + it, f)|, where the truncation depends on
the height T . See (4.12) of [Hej] for the relevant version of the log-normal law (which has
a significantly better error term than (4.12)). Similarly, one can prove statements along
these lines for the real and imaginary parts of L-functions.

Numerical investigations also support the conjectured Benford behavior. In Figure 1
we plot the percent of first digits of

∣∣ζ (
1
2 + it

)∣∣ versus the Benford probabilities for t = k
4 ,

k ∈ {0, 1, . . . , 65535}, and note the Benford behavior quickly sets in. Of course, we believe
that this is strong evidence for Benford behavior exactly on the critical line, but as they
stand, our error terms are too big and our cancellation too small to demonstrate this
statement.

It is believed that values of characteristic polynomials of random matrix ensembles
model values of L-functions on the critical line. In Theorem A.2 of Appendix A we show
that the digit distribution of the values of these characteristic polynomials converge to the
Benford probabilities (as the size of the matrices tend to infinity), providing additional
support for the conjecture that L-functions are Benford on the critical line.

5. The 3x + 1 Problem

People working on the Syracuse-Kakutani-Hasse-Ulam-Hailstorm-Collatz-(3x + 1)-Problem
(there have been a few) often refer to two striking anecdotes. One is Erdös’ comment
that “Mathematics is not yet ready for such problems.” The other is Kakutani’s commu-
nication to Lagarias: “For about a month everybody at Yale worked on it, with no result.
A similar phenomenon happened when I mentioned it at the University of Chicago. A
joke was made that this problem was part of a conspiracy to slow down mathematical
research in the U.S.” Coxeter has offered $50 for its solution, Erdös $500, and Thwaites,
£1000. The problem has been connected to holomorphic solutions to functional equa-
tions, a Fatou set having no wandering domain, Diophantine approximation of log2 3,
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Figure 1. Distribution of Digits of |ζ(s)| versus Benford Probabilities

the distribution mod 1 of
{(

3
2

)k
}∞

k=1
, ergodic theory on Z2, undecidable algorithms,

and geometric Brownian motion, to name a few (see [Lag1, Lag2]). We now relate the
(3x + 1)-Problem to Benford’s Law.

5.1. The Structure Theorem. If x is a positive odd integer then 3x + 1 is even, so we
can find an integer k ≥ 1 such that 2k ‖ (3x + 1), i.e. so that

y =
3x + 1

2k
(5.1)

is also odd. In this way, we get the (3x + 1)-Map

M : x 7−→ y. (5.2)

We call the value of k that arises in the definition of y the k-value of x. Notice that y
is odd and relatively prime to 3, so the natural domain for iterating M is the set Π of
positive integers prime to 2 and 3. Write Π = 6N + E, where E = {1, 5} is the set of
possible congruence classes modulo 6. The total space is Ω = Π, not N or R, and the
measure is the appropriate counting measure.

For every integer x ∈ Π with 0 < x < 260, computers have verified that enough
iterations of the (3x + 1)-Map eventually send x to the unique fixed point, 1. The natural
conjecture asks if the same statement holds for all x ∈ Π:

Conjecture 5.1 ((3x+1)-Conjecture). For every x ∈ Π, there is an integer n such that
Mn (x) = 1.

Suppose we apply M a total of m times, calling x0 = x and xi = M i (x), i ∈
{1, 2, . . . ,m}. For each xi−1 there is a k-value, say ki, such that

xi = M (xi−1) =
3xi−1 + 1

2ki
, i ∈ {1, 2, . . . , m}. (5.3)

We store this information in an ordered m-tuple (k1, k2, . . . , km), called the m-path of
x. Let γm denote the map sending x to its m-path,

γm : x 7→ (k1, k2, . . . , km) . (5.4)
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The natural question is whether given an m-tuple of positive integers (k1, k2, . . . , km),
there is an integer x whose m-path is precisely this m-tuple. If so, we would like to
classify the set of all such x. In other words, we want to study the inverse map γ−1

m .
The answer is given by the Structure Theorem, proved in [KonSi]: for each m-tuple

(k1, k2, . . . , km), not only does there exist an x having this m-path, but this path is
enjoyed by two full arithmetic progressions, x ∈ {a1n + b1, a2n + b2}∞n=0, and we can solve
explicitly for ai and bi. In fact, a1 = a2 = 6·2k1+k2+···+km , and bi < ai (so the progressions
are full; we do not miss any terms at the beginning). Moreover, the two progressions fall
into the two possible equivalence classes modulo 6; i.e., {b1 mod 6, b2 mod 6} = {1, 5}.
The structure theorem is the key ingredient in analyzing the limiting distributions. These
will satisfy the conditions of our main theorem (Theorem 3.3), and yield Benford’s Law.

Recall (Definition 2.1) that we define the probability of a subset A ⊂ Π by

P (A) = lim
T→∞

|AT |
|ΠT | , (5.5)

provided the limit exists. We say a random variable ξ has geometric distribution with
parameter 1

2 (for brevity, geometrically distributed) if P(ξ = n) = 1
2n for n = 1, 2, . . . .

A consequence of the structure theorem is that

P (x : γm(x) = (k1, . . . , km)) =
1

2k1+···+km
=

m∏

i=1

1
2ki

. (5.6)

Both the expectation and variance of a geometrically distributed random variable is 2.
For a seed x0 let xm = Mm(x0) be the mth iterate. A natural quantity to investigate is

xm

( 3
4 )

m
x0

, where
(

3
4

)m
x0 is the expected value of xm.

Theorem 5.2 ([KonSi]). The k-values are independent geometrically distributed random
variables. Further, for any a ∈ R

P




log2

[
xm

( 3
4 )

m
x0

]

√
2m

≤ a


 = P

(
Sm − 2m√

2m
≤ a

)
, (5.7)

where Sm is the sum of m geometrically distributed (with parameter 1
2) i.i.d.r.v. By the

Central Limit Theorem, the right hand side converges to a Gaussian integral as m →
∞. The paths are also independent, and so the (3x + 1)-Paths are those of a geometric
Brownian motion with drift log 3

4 .

We remind the reader that a Brownian motion (and hence a geometric Brownian
motion) can be realized as the limit of a random walk; the same phenomenon occurs
here. The drift corresponds to the fact that the expected value is

(
3
4

)m
x0, rather than

just x0.
It is worth remarking that a consequence of the drift being log 3

4 (which is negative) is
that it is natural to expect that typical trajectories return to the origin. This statement
extends completely to (d, g, h)-Maps discussed in Appendix B. Theorem 5.2 is immedi-
ately applicable to investigations in base two (which is uninteresting as all first digits
are 1). To study the 3x + 1 Problem in base B, one simply multiplies by 1

log2 B , as
log2 x
log2 B = log2 B. This replaces Sm − 2m with Sm−2m

log2 B or (Sm − 2m) logB 2.
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5.2. A Tale of Two Limits. The (3x + 1)-system,
−→
XT = {xi}0≤i≤T , is probably not

Benford for any starting seed x0 as we expect all of the terms to eventually be 1. If we
stop the sequence after hitting 1 and consider the proportion of terms having a given
leading digit j, this is a rational number, whereas log10 j is not. Of course, this rational
number should be close to log10 j, although it is easy to find arbitrarily large numbers
decaying to 1 after even one iteration of the (3x + 1)-map.

One sense in which Benford behavior can be proved is the same as the sense in which
(3x + 1)-paths are those of a geometric Brownian motion. We use the structure theorem
to prove

Theorem 5.3. Let B be any real number such that logB 2 is irrational of type κ < ∞;
for example, one may take any integer B which is not a perfect power of 2 (see (1.1)
for a definition of type κ and Theorem B.1 for a proof of the irrationality type of such
integers). Then for any [a, b] ⊂ [0, 1],

lim
m→∞

P

(
logB

[
xm(

3
4

)m
x0

]
mod 1 ∈ [a, b]

)
= b− a. (5.8)

As
(

3
4

)m
x0 is the expected value of xm, this implies the distribution of the ratio of the

actual versus predicted value after m iterates obeys Benford’s Law (base B). If B = 2n for

some integer n, in the limit logB

[
xm

( 3
4 )

m
x0

]
mod 1 takes on the values 0, 1

n , 2
n , . . . , n−1

n

with equal probability, leading to a non-Benford digit bias depending only on n.

Notice that since probability is defined through density, this is really two highly non-
interchangeable limits:

lim
m→∞

P

(
logB

[
xm(

3
4

)m
x0

]
mod 1 ∈ [a, b]

)

= lim
m→∞

lim
T→∞

#
{

x0 ∈ ΠT : logB

[
xm

( 3
4 )

m
x0

]
mod 1 ∈ [a, b]

}

#ΠT
. (5.9)

Though this is completely natural, it is worth remarking for the sake of precision. Of
course, a good starting seed (one with a long life-span) should give a close approximation
of Benford behavior, just as it will also be a generic Brownian sample path; this is
supported by numerical investigations (see §5.4).

Let ξ1, ξ2, . . . be independent geometrically distributed random variables with P (ξi = n) =
1
2n , n = 1, 2, . . . , and E (ξi) = 2, Var (ξi) = 2. Let Sm =

∑m
i=1 ξi. Let ζi = ξi − 2,

Sm =
∑m

i=1 ζi = Sm − 2m. We know the distribution of logB

[
xm

( 3
4 )

m
x0

]
is the same as

that of (Sm − 2m) logB 2 = Sm logB 2. The proof is complicated by the fact that the
sum of m geometrically distributed random variables itself has a binomial distribution,
supported on the integers. This gives a lattice distribution for which we cannot obtain
sufficient bounds on the error, even by performing an Edgeworth expansion and estimat-
ing the rate of convergence in the Central Limit Theorem. The problem is that the error
in missing a lattice point is of size 1√

m
, and we need to sum

√
mh(m) terms (for some

h(m) → ∞). We are able to surmount this obstacle by an error analysis of the rate of
convergence to equidistribution of k logB 2 mod 1.
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5.3. Proof of Theorem 5.3. To prove Theorem 5.3 we first collect some needed results.
The proof is similar in spirit to Theorem 3.3, with the needed results playing a similar
role as the three conditions; however, the discreteness of the 3x+1 problem leads to some
interesting technical complications, and it is easier to give a similar but independent proof
than to adjust notation and show Conditions 1 through 3 are satisfied.

In the statements below, [a, b] is an arbitrary sub-interval of [0, 1]. By the Central Limit
Theorem, the distribution of Sm (although it only takes integer values) is approximately
a Gaussian with standard deviation of size

√
m. Let c ∈ (

0, 1
2

)
and set M = mc. Let

I` = {`M, `M + 1, . . . , (` + 1)M − 1} (5.10)

and C = logB 2 be an irrational number of type κ (see (1.1)). Soundararajan informed
us that one does not need logB 2 to be of finite type for our applications. For integer B,
if Bp− 2q > 0 then it is at least 1, and one obtains o(M) instead of O(M δ) in (5.15); the
advantage of using finite type is we obtain sharper estimates on the rate of convergence,
as well as being able to handle non-integral bases B.

Let η(x) denote the density of the standard normal:

η(x) =
1√
2π

e−x2/2. (5.11)

We collect some results needed for the proof of Theorem 5.3:
• By the Central Limit Theorem (see [Fe], Chapter XV), for any k ∈ Z we have

Prob(C · Sm = C · k) = Prob
(

Sm√
m

=
k√
m

)

=
1√
m

η

(
k√
m

)
+ o

(
1√
m

)
. (5.12)

We may write o
(

1√
m

)
as O

(
1√

mg(m)

)
for some monotone increasing g(m) which

tends to infinity. We use this to approximate the probability of Sm = k. For
future use, choose any monotone h(m) tending to infinity such that h(m) =
o (g(m)), h(m) = o

(
m1/2005

)
and h(m)M√

m
= o

(
m−1/2005

)
. As M = mc with

c < 1
2 , if c is sufficiently small then such an h exists.

• Let k1, k2 ∈ I`. Then∣∣∣∣
1√
m

η

(
k1√
m

)
− 1√

m
η

(
k2√
m

)∣∣∣∣

≤ 1√
m

e−`2M2/2m ·
(

1− exp
(
−2`M2 + M2

2m

))
. (5.13)

In practice this implies that for the ` we must study, there is negligible variation
in the Gaussian for k ∈ I`.

• By Poisson Summation (see page 63 of [Da]),

1
σ

∞∑
n=−∞

e−n2π/σ2
=

∞∑
n=−∞

e−n2πσ2
, σ > 0. (5.14)

We often take σ2 = 2m
πM2 , and use this to calculate the main term (as σ → ∞,

both sides of (5.14) tend to 1).
• For any ε > 0, letting δ = 1 + ε− 1

κ < 1 we have

#{k ∈ I` : kC mod 1 ∈ [a, b]} = M(b− a) + O(M δ). (5.15)
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The quantification of the equidistribution of kC mod 1 is the key ingredient in
proving Benford behavior base B (with C = logB 2). The rate of equidistribution,
given the finiteness of the irrationality type of C, follows from the Erdös-Turan
Theorem. As this is the key argument in our analysis, we provide a sketch of the
proof in Appendix B; see Theorem 3.3 on page 124 of [KN] for complete details
(while the proof given only applies for I0, a trivial translation yields the claim
for any I`).

Proof of Theorem 5.3. We must show that as m →∞, for any [a, b] ⊂ [0, 1],

Pm(a, b) = Prob(CSm mod 1 ∈ [a, b]) (5.16)

tends to b− a. We have

Pm(a, b) =
∑

|`|≤
√

mh(m)
M

Prob(Sm = k ∈ I` : kC mod 1 ∈ [a, b])

+
∑

|`|>
√

mh(m)
M

Prob(Sm = k ∈ I` : kC mod 1 ∈ [a, b]).

(5.17)

The second sum in (5.17) is bounded by

Prob
(

Sm = k : |k| ≥
√

mh(m)
M

)
. (5.18)

By the Central Limit Theorem, (5.18) is o(1). Alternatively, using the techniques below
(with [a, b] = [0, 1]), one can show Prob

(
|Sm| ≤

√
mh(m)

M

)
= 1 + o(1), which implies

(5.18) is o(1). As we are not summing (5.18), it is okay to have an error here of size
1√
m

(and errors of approximately this size arise if we add or subtract a lattice point).
Therefore

Pm(a, b) =
∑

|`|≤
√

mh(m)
M

Prob(Sm = k ∈ I` : kC mod 1 ∈ [a, b]) + o(1)

=
∑

|`|≤
√

mh(m)
M

Pm,`(a, b) + o(1). (5.19)

The proof is completed by showing the above is b− a + o(1). Consider an interval I`.
By (5.15), the number of k ∈ I` such that kC mod 1 ∈ [a, b] is (b− a)M + O(Mδ), δ < 1.
By (5.12), the probability of each such k is 1√

m
η

(
k√
m

)
+ O

(
1√

mg(m)

)
. We now use

(5.13) to bound the error from evaluating all the η
(

k√
m

)
at k = `M and find

Pm,`(a, b) =
(b− a)M√

m

[
η

(
`M√

m

)
+ O

(
e−`2M2/2m

)
·
(

1− exp
(
−2`M2 + M2

2m

))]

+ O

(
M · 1√

mg(m)

)
+ O

(
M δ · 1√

m
η

(
`M√

m

))
; (5.20)

summing over all |`| ≤
√

mh(m)
M gives Pm(a, b) + o(1). This gives four sums, which we

must show are b− a + o(1).
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The sums over |`| ≤
√

mh(m)
M of the first and fourth pieces of (5.20) are handled by

Poisson Summation. We have for the first piece that
∑

|`|≤
√

mh(m)
M

(b− a)M√
m

η

(
`M√

m

)

=
∞∑

`=−∞

(b− a)M√
m

η

(
`M√

m

)
−

∑

|`|>
√

mh(m)
M

(b− a)M√
m

η

(
`M√

m

)
. (5.21)

As h(m) →∞, the second sum in (5.21) is bounded by
∫

|x|≥
√

mh(m)
M

1√
2πm/M2

e−x2/2(m/M2)dx =
1√
2π

∫

|u|≥h(m)

e−u2/2du = o(1). (5.22)

Using (5.14) with σ2 = 2m
πM2 gives

∑

|`|≤
√

mh(m)
M

(b− a)M√
m

η

(
`M√

m

)
= (b− a)

∞∑

`=−∞

1√
2πm/M2

e−`2/2(m/M2) + o(1)

= (b− a)
∞∑

`=−∞
e−`2·2π2m/M2

+ o(1)

= b− a + O

(
e−2π2m/M2

1− e−2π2m/M2

)
+ o(1) (5.23)

as the final sum over ` 6= 0 is bounded by a geometric series and M = mc with c < 1
2 .

Thus the first piece from (5.20) gives b− a + o(1).
As the Gaussian is a monotone function (for x ≥ 0 or x ≤ 0), a similar argument shows

the sum over |`| ≤
√

mh(m)
M of the fourth piece of (5.20) contributes O(M δ−1) + o(1). It

is here that we use CSm is a very special equidistributed sequence modulo 1, namely it
is of the form kC mod 1. This allows us to control the discrepancy (how many k ∈ I`

give kC mod 1 ∈ [a, b]).
We must now sum over |`| ≤

√
mh(m)

M the second and third pieces of (5.20). For the
second piece, we have

∑

|`|≤
√

mh(m)
M

M√
m

e−`2M2/2m

[
1− exp

(
−2`M2 + M2

2m

)]
. (5.24)

As |`| ≤
√

mh(m)
M and M = mc with c < 1

2 , we have

2`M2 + M2

2m
¿ h(m)M√

m
. (5.25)

Recall we chose h(m) and c such that h(m)M√
m

= o
(
m−1/2005

)
. Therefore

1− exp
(
−2`M2 + M2

2m

)
¿ m−1/2005. (5.26)

As we chose h(m) such that h(m) = o
(
m1/2005

)
, the sum in (5.24) is

¿
√

mh(m)
M

· M√
m

1
m1/2005

=
h(m)

m1/2005
= o(1), (5.27)
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proving the second piece in (5.20) is negligible.
We are left with the sum over |`| ≤

√
mh(m)

M of the third piece in (5.20). Its contribution
is

O

(√
mh(m)
M

· M√
mg(m)

)
= O

(
h(m)
g(m)

)
= o(1). (5.28)

Collecting the evaluations of the sums of the four pieces in (5.20), we see that

Pm(a, b) = b− a + o(1), (5.29)

which completes the proof of Theorem 5.3 if B 6= 2n (and thus proves Benford behavior
base 10 because, by Theorem B.1, log10 2 has finite irrationality type).

Consider now the case when B = 2n. As Sm takes on integer values, the possible
values modulo 1 for (Sm − 2m) logB 2 are {0, 1

n , . . . , n−1
n }. An identical argument shows

each of these values is equally likely; by determining which intervals [logB d, logB(d + 1))
they lie in, one can determine the (non-Benford) digit bias in this case. See also §5.4. ¤

In Appendix C a generalization of the 3x + 1 map is discussed; for such systems, one
can easily prove the analogue of Theorem 5.3.

5.4. Numerical Investigations. Theorem 5.3 implies that the first digit of xm

( 3
4 )

m
x0

will

not be Benford in a base B = 2n. As Sm takes on integer values, (Sm − 2m) logB 2 is
equally likely to be any of 0, 1

n , . . . , n−1
n . We considered 100, 000 seeds congruent to 1

modulo 6, starting at 419, 753, 999, 998, 525. We can rapidly analyze the behavior of such
large numbers by representing each number as an array and then performing the required
operations (multiplication by 3, addition by 1 and division by 2) digit by digit. Taking
m = 10, we analyzed the first digits for B = 4, 8 and 16. We have (theoretical predictions
in parentheses)

First
Digit 1 2 3 4 5, 6, 7
Base 4 50.2% (50.0%) 49.8% (50.0%) 0% 0% N/A
Base 8 33.1% (33.3%) 33.6% (33.3%) 0% 33.3% (33.3%) all 0%

In base 16 we only observe digits 1, 2, 4 and 8; all should occur 25% of the time; we
observe them with frequencies 25.0%, 25.0%, 25.3% and 24.8%. In base 10, we observe

First Digit 1 2 3 4 5 6 7 8 9
Observed 29.8% 17.9% 12.1% 10.0% 8.5% 9.8% 2.4% 8.7% 0.9%
Benford 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%

The difficulty in performing these experiments is that our theory is that of two limits,
T → ∞ and then m → ∞. We want to choose large seeds x0 (at least large enough so
that after m applications of the 3x + 1 map we haven’t hit 1); however, that requires us
to examine (at least on a log scale) a large number of x0. Taking larger starting values
(say of the order 10100) makes it impractical to study enough consecutive seeds. In these
cases, to approximate the limit as T → ∞ it is best to choose 100, 000 seeds from a
variety of starting values and average.

While we cannot yet prove that the iterates of a generic fixed seed are Benford, we
expect this to be so. The table below records the percent of first digits equal to j base
10 for a 100,000 random digit number under the 3x + 1 map (as the 3x + 1 map involves
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simple digit operations, we may represent numbers as arrays, and the computations are
quite fast). We performed two experiments: in the first we removed the highest power of
2 in each iteration (799, 992 iterates), while in the second we had M(x) = 3x+1 for x odd
and x

2 for x even (2, 402, 282 iterates). In both, the observed probabilities are extremely
close to the Benford predictions (for each digit, the corresponding z-statistics range from
about −2 to 2).

First Benford
Digit Probability Removing 2 z-statistic Not Removing 2 z-statistic
1 0.3010 0.3021 2.00 0.3012 0.63
2 0.1761 0.1752 -2.10 0.1763 0.98
3 0.1249 0.1242 -1.97 0.1248 -0.69
4 0.0969 0.0967 -0.50 0.0967 -1.14
5 0.0792 0.0792 0.03 0.0792 -0.06
6 0.0670 0.0671 0.56 0.0667 -1.32
7 0.0580 0.0582 0.68 0.0581 0.89
8 0.0512 0.0513 0.79 0.0510 -0.77
9 0.0458 0.0460 0.99 0.0459 1.02

We calculated the χ2 values for both experiments: it is 12.38 in the first (M(x) = 3x+1
2k )

and 6.60 in the second (M(x) = 3x + 1 for x odd and x
2 otherwise). As for 8 degrees of

freedom, α = .05 corresponds to a χ2 value of 15.51, and α = .01 corresponds to 20.09,
we do not reject the null hypothesis and our experiments support the claim that the
iterates of both maps obey Benford’s law.

6. Conclusion and Future Work

The idea of using Poisson Summation to show certain systems are Benford is not new
(see for example [Pin] or page 63 of [Fe]); the difficulty is in bounding the error terms. Our
purpose here is to codify a certain natural set of conditions where the Poisson Summation
can be executed, and show that interesting systems do satisfy these conditions; a natural
future project is to determine additional systems that can be so analyzed. One of the
original goals of the project was to prove that the first digits of the terms xm in the
3x+1 Problem are Benford. While the techniques of this paper are close to handling this,
the structure theorem at our disposal makes xm

( 3
4 )

m
x0

the natural quantity to investigate

(although numerical investigations strongly support the claim that for any generic seed,
the iterates of the 3x + 1 map are Benford); however, we have not fully exploited the
structure theorem and the geometric Brownian motion, and hope to return to analyzing
the first digit of xm at a later time. Since the submission of this paper Lagarias and
Soundarajan [LS] have shown (with the 3x + 1 map defined by T (x) = 3x + 1 if x is odd
and x

2 if x is even)

Theorem 6.1 (Lagarias-Soundararajan). Let B ≥ 2 be a fixed integer base. For each
N ≥ 1 and each X ≥ 2N , for all but at most c(B)N−1/36X initial seeds (where c(B) is
a positive constant depending only on B) the distribution of the first N iterates of the
3x + 1 map are within 2N−1/36 of the Benford probabilities.

Similarly, additional analysis of the error terms in the expansions and integrations
of L-functions may lead to proving Benford behavior on the critical line, and not just
near it, although our results on values of L-functions near the critical line as well as the
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digits of values of characteristic polynomials of random matrix ensembles support the
conjectured Benford behavior.
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Appendix A. Values of Characteristic Polynomials

Consider the random matrix ensemble of N ×N unitary matrices U (with eigenvalues
eiθn) with respect to Haar measure; the probability density of U is

pN (U) =
1

(2π)NN !

∏

1≤j<m≤N

∣∣eiθj − eiθm
∣∣ . (A.1)

Let

Z(U, θ) = det(I − Ue−iθ) =
N∏

n=1

(
1− ei(θn−θ)

)
(A.2)

be the characteristic polynomial of U . The values of characteristic polynomials have
been shown to be a good model for the values of L-functions. Of interest to us are the
results in [KeSn], where an analogue of the log-normal law of L-functions (Theorem 4.3)
is shown for random matrix ensembles: as N → ∞ the average of the absolute value of
the characteristic polynomials of unitary matrices is Gaussian. Specifically, let ρN (x) be
the probability density for log |Z(U, θ)| averaged with respect to Haar measure (Equation
(36) of [KeSn]), and set

ρ̃N (x) =
√

Q2(N) ρN (
√

Q2(N) x). (A.3)

Here Q2(N) is the variance, and by Equation (11) of [KeSn] satisfies

Q2(N) =
log N

2
+

γ + 1
2

+
1

24N2
+ O(N−4). (A.4)

Equation (53) of [KeSn] (and the comment immediately after it) yield

Theorem A.1 (Keating-Snaith). With ρ̃N as above,

ρ̃N (x)dx =
1√
2π

e−x2/2dx + O
(
(log N)−3/2dx

)
. (A.5)

In terms of ρN , from (A.3) we immediately deduce that

ρN (x)dx =
1√

2πQ2(N)
e−x2/2Q2(N)dx + O

(
Q2(N)−2dx

)
; (A.6)

note the pointwise errors are of size one over the square of the variance. It is easy to
show the conditions of Theorem 3.2 are satisfied. These errors are significantly smaller
than the number theory analogues, in part due to the additional averaging (the formulas
here are for averages with respect to Haar measure, whereas in number theory we studied
one specific L-function). We thus have
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Theorem A.2. As N → ∞, the distribution of digits of the absolute values of the
characteristic polynomials of N × N unitary matrices (with respect to Haar measure)
converges to the Benford probabilities.

Proof. As the main term is given by a Gaussian, the only difficulty is in verifying
Conditions 1 and 3. In our current setting,

√
Q2(N) is playing the role of T . Let

h(N) = log Q2(N). As
∫ √

Q2(N)h(N)

−
√

Q2(N)h(N)

1√
2πQ2(N)

e−x2/2Q2(N)dx = 1 + o(1), (A.7)

Condition 1 is satisfied. For Condition 3, note ET (b+k)−Et(a+k) becomes O
(
Q2(N)−2

)
,

and thus ∑

|k|≤
√

Q2(N)h(N)

[EN (b + k)− EN (a + k)] ¿
√

Q2(N)h(N)Q2(N)−2

¿ log Q2(N)
Q2(N)3/2

. (A.8)

¤

Remark A.3. While we believe the distribution of digits of L-functions on the critical
line is Benford, our results (Theorem 4.4 and Corollary 4.5) apply to values just off the
critical line. Theorem A.2 may thus be interpreted as providing additional support to the
conjectured Benford behavior of L-functions on the critical line.

Remark A.4. In our earlier investigations of Benford behavior, we used either the count-
ing measure (first N terms of a sequence) or Lebesgue measure (values of the function
at arguments t ∈ [0, N ]), with N → ∞. We have an extra averaging here. We are not
looking at the characteristic polynomials of a sequence of unitary matrices UN (where UN

is N ×N). Instead for each N we use Haar measure on N ×N unitary matrices to av-
erage the values of the characteristic polynomials, and then send N →∞. The averaged
characteristic polynomials play an analogous role to our L-functions from before.

Appendix B. Irrationality type of logB 2 and Equidistribution

Theorem B.1. Let B be a positive integer not of the form 2n for an integer n. Then
logB 2 is of finite type.

Proof. By (1.1), we must show for some finite κ > 0 that
∣∣∣∣logB 2− p

q

∣∣∣∣ À
1
qκ

. (B.1)

As ∣∣∣∣
log 2
log B

− p

q

∣∣∣∣ =
|q log 2− p log B|

|q| log B
, (B.2)

it suffices to show |q log 2−p log B| À q−κ′ . This follows immediately from Theorem 2 of
[Ba], which implies that if αj and βj are algebraic integers of heights at most Aj(≥ 4) and
B(≥ 4), then if Λ = β1 log α1+· · ·+βn log αn 6= 0, |Λ| > B−CΩ log Ω′ , where d is the degree
of the extension of Q generated by the αj and βj , C = (16nd)200n, Ω = log α1 · · · log αn

and Ω′ = Ω/ log αn. We take B to be maximum of β1 = q and β2 = −p. (As stated we
need α1, α2 ≥ 4; we replace q log 2−p log B with 1

2 (q log 4−p log B2)). In our case d = 1,
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n = 2, α1 = 4, α2 = B2. As B is not a power of 2, q log 4− p log B2 6= 0 unless p, q = 0.
In particular, ∣∣∣∣logB 2− p

q

∣∣∣∣ À
1

q1+CΩ log Ω′ . (B.3)

For B = 10 we may take κ = 2.3942×10602 (though almost surely a lower number would
suffice). ¤

We show the connection between the irrationality type of α and equidistribution of
nα mod 1; see Theorem 3.3 on page 124 of [KN] for complete details. Define the discrep-
ancy of a sequence xn (n ≤ N) by

DN =
1
N

sup
[a,b]⊂[0,1]

|N(b− a)−#{n ≤ N : xn mod 1 ∈ [a, b]}| . (B.4)

The Erdös-Turan Theorem (see [KN], page 112) states that there exists a C such that
for all m,

DN ≤ C

(
1
m

+
m∑

h=1

1
h

∣∣∣∣∣
1
N

N∑
n=1

e2πihxn

∣∣∣∣∣

)
. (B.5)

If xn = nα, then the sum on n above is bounded by min
(
N, 1

| sin πhα|
)
≤ min

(
N, 1

2||hα||
)
,

where ||x|| is the distance from x to the nearest integer. If α is of finite type, this leads to∑m
h=1

1
h||hα|| . For α of type κ, this sum is of size mκ−1+ε, and the claimed equidistribution

rate follows from taking m = bN1/κc.

Appendix C. (d, g, h)-Maps

The Benford behavior of 3x + 1 also occurs in (d, g, h)-Maps, defined as follows. Con-
sider positive coprime integers d and g, with g > d ≥ 2, and a periodic function h (x)
satisfying:

(1) h (x + d) = h (x),
(2) x + h (x) ≡ 0 mod d,
(3) 0 < |h (x)| < g.

The map M is defined by the formula

M (x) =
gx + h (gx)

dk
, (C.1)

where k is uniquely chosen so that the result is not divisible by d. Property (2) of h
guarantees k ≥ 1. The natural domain of this map is the set Π of positive integers
not divisible by d and g. Let E be the set of integers between 1 and dg that divide
neither d nor g, so we can write Π = dgZ+ + E. The size of E can easily be calculated:
|E| = (d− 1) (g − 1). In the same way as before, we have m-paths, which are the values
of k that appear in iterations of M , and we again denote them by γm (x).

The 3x + 1 Problem corresponds to g = 3, d = 2, and h (1) = 1, the 3x − 1 Problem
corresponds to g = 3, d = 2, and h (1) = −1, the 5x + 1 Problem corresponds to g = 5,
d = 2, and h (1) = 1, and so on. Similar to Theorem 5.2, one can show

Theorem C.1 ([KonSi]). The (d, g, h)-Paths are those of a geometric Brownian motion
with drift log g − d

d−1 log d.
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We expect paths to decay for negative drift and escape to infinity for positive drift. All
results on Benford’s Law for the (3x + 1)-Problem, in particular Theorem 5.3, generalize
trivially to all (d, g, h)-Maps, with the (irrationality) type of logB d the generalization of
the (irrationality) type of logB 2; note Theorem B.1 is easily modified to analyze logB d.

References

[BPY] P. Baine, J. Pitman and M. Yor, Probability Laws Related to the Jacobi Theta and Riemann
Zeta Functions, and Brownian Excursions, Bulletin of the AMS, Vol 38, Number 4, June 2001,
435-465.

[Ba] A. Baker, The Theory of Linear Forms in Logarithms, Transcendence Theory: Advances and
Applications (editors A. Baker and D. W. Masser), Academic Press, 1977.

[Ben] F. Benford, The law of anomalous numbers, Proceedings of the American Philosophical Society
78 (1938), 551-572.

[BBH] A. Berger, Leonid A. Bunimovich and T. Hill, One-dimensional dynamical systems and Ben-
ford’s Law, Trans. Amer. Math. Soc. 357 (2005), no. 1, 197-219.

[Bi] P. Billingsley, Prime numbers and Brownian motion, Amer. Math. Monthly 80 (1973), 1099-
1115.

[BJ] H. Bohr and B. Jessen, On the distribution of the values of the Riemann zeta-function, Amer.
J. Math. 58 (1936), 35-44.

[Con] J. B. Conrey, The Riemann Hypothesis, Notices of the AMS, March 2003, 341-353.
[Da] H. Davenport, Multiplicative Number Theory, 2nd edition, Graduate Texts in Mathematics 74,

Springer-Verlag, New York, 1980, revised by H. Montgomery.
[Dia] P. Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probab. 5

(1979), 72-81.
[Fe] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, second edition,

John Wiley & Sons, Inc., 1971.
[Hej] D. Hejhal, On a result of Selberg concerning zeros of linear combinations of L-functions, Inter-

national Math. Res. Notices 11 (2000), 551-557.
[Hi1] T. Hill, The first-digit phenomenon, American Scientists 86 (1996), 358-363.
[Hi2] T. Hill, A statistical derivation of the significant-digit law, Statistical Science 10 (1996), 354-363.
[HS] M. Hindry and J. Silverman, Diophantine geometry: An introduction, Graduate Texts in Math-

ematics 201, Springer, New York, 2000.
[IK] H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS, Providence, RI, 2004.
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