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Abstract

Benford’s law is the statement that in many real-world data set, the probability of having
digit d in base B, where 1 < d < B, as the first digit is logg ((d + 1)/d). We sometimes refer
to this as weak Benford behavior, and we say that a data set exhibits strong Benford behavior
in base B if the probability of having significand at most s, where s € [1, B), is logg(s). We
examine Benford behaviors in two different probabilistic model: stick and box fragmentation.
Building on the joint work of Becker et al. [I] on the single proportion stick fragmentation
model, we employ combinatorial identities on multinomial coefficients to reduce the multi-
proportion stick fragmentation model to the single proportion model. We provide a necessary
and sufficient condition for the lengths of the stick fragments to converge to strong Benford
behavior along with a quantification of the discrepancy from uniform distribution on [0, 1]
in terms of irrationality exponent. Then we answer a conjecture posed by Betti et al. [5] on
the high dimensional box fragmentation model. Using tools from order statistics, we prove
that under some conditions, faces of any arbitrary dimension of the box have total volume
converging to strong Benford’s behavior.
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1. Introduction

At the beginning of the 20'" century, astronomer and mathematician Simon Newcomb
[14] noticed an unusual pattern in the logarithmic tables he used at work. The early pages
of the books were far more worn than the later ones, suggesting that numbers starting with
smaller digits were consulted more often. From this, Newcomb inferred that people had a
tendency to encounter numbers beginning with 1 more frequently. Specifically, he found that
1 appeared as the leading digit about 30% of the time, 2 about 17%, with the frequency
decreasing for larger digits. Although he formulated a mathematical explanation for this
curious phenomenon, his discovery initially went largely overlooked.

It took another 57 years after Newcomb’s discovery for physicist Frank Benford to make
the exact same observation as Newcomb: the first pages of logarithmic tables were used far
more than others. He formulated this law as follows.

Definition 1. [/, Page 554 Data ezhibits (weak) Benford behavior base B if the fre-

quency Fy of leading digit d s
d+1
Fd = 1OgB <T> . (]‘)

Nowadays, Benford’s Law is used in detecting many different forms of fraud, and its
prevalence in the world fascinates not only mathematicians, but many other scientists as
well (to learn more about Benford’s law and its many applications, we recommend |3} 13} [15]
to name a few).

In 1986, Lemons [12] proposed using Benford’s law to analyze the partitioning of a con-
served quantity. Since then, driven by the potential application to nuclear fragmentation,
mathematicians and physicists have taken an interest in the Benford behavior of various
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fragmentation processes. Among these processes of interest is stick fragmentation. In a 1-
dimensional stick fragmentation model, one begins with a stick of length L. Draw p; from a
probability distribution on (0, 1). This fragments the stick into two sub-sticks of lengths p; L
and (1 — p;)L. For each sub-stick, draw two probabilities p, and ps from the same distri-
bution. We perform this fragmentation process for a total of N stages, where at each stage
we fragment all the sub-sticks created during the previous stage according to probabilities.
Hence, by the end of N stages, there are 2V sticks. Of particular interest is whether or not
this fragmentation process converges to Benford’s behavior.

1.1. Previous Work on Fragmentation

An important definition when studying a more precise statistical version of Benford
behavior is the notion of the significand of a real number, i.e., its leading digits in scientific
notation.

Definition 2. Given a positive real number x, we say that its significand base B > 1,
denoted Sg(x), is the unique real number Sp(x) € [1, B) such that x = Sp(x) - B*, where k
18 an integer.

As is common practice with these techniques involving proofs of Benford behavior, we
define a more general version of Benford behavior that allows for processes that do not
necessarily exhibit Benford behavior at first but converge to it in the limit.

Definition 3. We say that a sequence of random variables X™ converges to strong
Benford behavior base B if

P(Sp(X™) < 5) — logp(s) (2)
for all s € [1, B]. Notice by compactness that this implies uniform convergence of (@

An equivalent formulation to the above is the Uniform Distribution Characteriza-
tion, which is especially suited for investigation of products of random variables; see [6] for
a proof.

Proposition 1 (Uniform Distribution Characterization). [6] A sequence of random variables
X ™) converges to strong Benford behavior in base B if and only if

P (logs(X™) mod 1 < t) — ¢, (3)

for all t € [0,1). If is satisfied, then we say that logz(X™) converges to being
equidistributed mod 1.

We may now state some previous results on stick fragmentation. Becker et al. [1] proved
a theorem regarding a fixed proportion 1-dimensional stick fragmentation process (compare
with their Theorem 1.11), which provides a necessary and sufficient condition for the pro-
cess to converge to strong Benford behavior and quantifies the discrepancy from uniform
distribution mod 1 in terms of irrationality exponent. We first introduce some necessary
definitions.



Definition 4. [T1] Suppose that x is a real number. The irrationality exponent i of x
is the supremum of the set of pu such that 0 < |x — p/q| < 1/q" is satisfied by an infinite
number of coprime integer pairs (p,q) with ¢ > 0. If such a set does not exist, then we say
x has wrrationality exponent oco.

Definition 5. [{1] For a finite sequence {xz;}"_,, denote by A([a,b),n) the number of x;’s
such that x; mod 1 € [a,b) for 0 < a <b< 1. Then we call the number
A([a,b
D, := sup Alle.b).m) _ (b—a) (4)

0<a<b<1 n

the discrepancy of the sequence. It measures how far a sequence is from being uniform mod
1.

Now we are ready to state the theorem from [IJ.

Theorem 1. [1/ Choose any p € (0,1). In Stage 1, cut a given stick at proportion p to
create two pieces of length p and 1 — p. In Stage 2, cut each resulting piece into two pieces
at the same proportion p. Perform this process for a total of N stages, generating 2V sticks
with N + 1 distinct lengths (assuming p # 1/2) given by

T, = LpN
Tog = LPN_I(l_p)
zy = Lp" (1 —p)?

zy = Lp(1—p)N!
TN+1 = L(l—P)N> (5)

where the frequency of x, 1s (17\;) /2N Choose y so that BY = (1 — p)/p, which is the ratio
of adjacent lengths (i.e., x;11/x;). The decomposition process results in stick lengths that
converge to strong Benford’s behavior base B if and only if y € Q. If y has finite irrationality
exponent, the discrepancy of the sequence {logg(z;)}X, can be quantified in terms of that
exponent, and there is a power savings.

Theorem [1| suggests the possibility of examining another fixed proportion 1-dimensional
stick fragmentation model, where we cut a piece into an arbitrary m > 2 number of pieces
according m —1 fixed proportions at each stage. Using new techniques involving multinomial
coefficients to reduce the problem into the original fixed proportion 1-dimensional stick
fragmentation model in [I], this paper establishes the following result (see Section [2)).

Theorem 2. For any integer m > 2, choose p1,pa, ..., pm—1 € (0,1) such that p1 +pe+---+
Pm-1 < 1. Set pp, - =1—(p1+p2+ -+ +pm_1). At each stage, we cut all sticks according to

proportions pi,Pa, ..., Pm—1 to create m pieces. After stage N, we have m” sticks in total,
of lengths
(N) ki k ko
Ak17/€27---7km = p11pQ2 P (6)



for 0 < ky,ko,....ky < N such that ky + ko + -+ + k,, = N. Let y; = logg(pi/pis1) for

1 <i<m—1. Then the decomposition process results in stick lengths that converge to strong

Benford’s behavior base B if and only if y; & Q for some 1 < i < m — 1. Let ko be the least

irrationality exponent among all the irrational y;’s. Then the discrepancy of the sequence

{1OgB(A1(g]1V}<;2,.._,km) 0Lk b <N 18 O(N‘S(_l/("‘o_l)JrE/)) for some § > 0 and for every € > 0.
kitkot-+km=N

Another possibility is to consider fragmentation processes in higher dimensions. This was
considered by Durmi¢ and Miller in [§] and Benford behavior was established in the case of
volume of an arbitrary m-dimensional box under mild assumptions. This was generalized
by Betti et al. in [5] to any d-dimensional volume of d-dimensional faces of an arbitrary
m-~dimensional box, where d < m. To state their results, we start with some definitions.

Definition 6. We say that a set B C R™ is an m-dimensional box if it is a set of the
form [ay,by] X -+ X [am, by] C R™, where a; < b; are finite numbers.

Definition 7. A linear-fragmentation process is a sequence of random variables Bg,B1,Bo, . ..

such that the following holds.

1. The random variables B; are m-dimensional boxes.

2. The random variables B; form a descending chain By D B1 DBy D ...

3. The distribution B, 1 conditioned on B, is some fized distribution of independent
proportion cuts Py, ..., P,, along each Cartesian axis. These P; are fixed over alln > 0.

4. The proportion cuts P; are continuous random variables with finite mean, variance,
and third moment.

5. Ellogg P] = pp € R and Var[logg P;] = 0% > 0 for all 1 <i < m.

Definition 8. Given an m-dimensional box B and a positive integer d < m, we say the
d-volume of B = [[,[a;, b;] is the sum of the d-dimensional volumes of the d-dimensional
faces of B:

Voly(B) = 2" " T — a), (7)

\T|=d i€l
where we are summing over all subsets I C {1,...,m} with cardinality d.

[5] established a sufficient condition for strong Benford behavior to emerge (see their
Theorem 1.9), which involves the maximum d-dimensional volume of a d-dimensional face.

Theorem 3 (Maximum Criterion). [J] Let B := B, be a fired m-dimensional box and
By D By D --- be a linear-fragmentation process whose proportion cuts P; have probability
density functions f; : (0,1) — (0,00). Let

VM= Voly(By) (8)

be the sequence of volumes obtained from this process and m((iN) denote the maximum product
of d sides of By. If mﬁlN) converges to strong Benford behavior base B as N — 0o, then so
too does Vd(N) converge to strong Benford behavior base B as N — oc.
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In the same paper, the Maximum Criterion was verified for d = m for any linear frag-
mentation process, and for d = 1 in a special case.

Theorem 4. Let Pi(j) be i.i.d. log-uniform distributions, i.e., logg Pi(j) s have uniform dis-
tributions. In the case of d =1, i.e., perimeter, the mazimum side length of each box

m™ = maxicic, P - PV (9)

converges to strong Benford behavior base B as N — oc.

Hence, it was conjectured in the same paper (see Conjecture 4.1) that for any linear

fragmentation process, méN) converges to strong Benford behavior.

Conjecture 1. [5] Every linear fragmentation process satisfies the Mazimum Criterion in
all dimensions 1 < d <m.

We prove the conjecture for any m > 2 and d < m under some mild conditions on the
linear fragmentation process (see Section [3).

Theorem 5. Suppose that By O By D By D --- is a linear fragmentation process on an
m-dimensional box for an arbitrary m > 2, such that the proportion cut P; at every stage
satisfies the following.

1. We have E[logg(P;)] = 0 and Var[logg(P;)] = 1.
2. We have logg(P;) is supported on [—C,C|, where C > 0 is a constant.

3. Suppose that Pi(k) 1s a sequence of i.i.d. random variables ~ P;. Define the random
variable

log(P"--- ™)

]

VN

Then ZZ-(N) has probability density function f,w (z) = ¢(2) + A(zi) and cumulative
density function F,w)(2) = ®(z) + B(z), where o(x) and ®(x) are the probabil-

ity density function and cumulative density function of the standard normal N(0,1),
A(x) = O(NY?79) and B(z) = O(N™?) for some § > 0.

ZN = (10)

Then this linear fragmentation process satisfies the condition of the Mazximum Criterion for
any d < m, i.e., mdN converges to strong Benford behavior base B as N — oo for any
d < m, thus by Theorem @ Vd(N) converges to strong Benford behavior base B as N — o0
for any d < m.

2. Proof of Theorem

2.1. Preliminary

In [I0], Fang, Irons, Lippelman and Miller proved that if y; € Q for all 1 <i < m — 1,
then the distribution of the stick lengths does not follow Benford behavior as N — oo. To
be exact, they were able to show that the distribution of the logarithms of the stick lengths
converges to a discrete distribution, contrary to a uniform distribution on [0, 1] which is an
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equivalent condition for convergence to strong Benford behavior by Uniform Distribution
Characterization [I Hence, having y; ¢ Q for some 1 < i < m — 1 is a necessary condition
for the distribution of the stick lengths to follow Benford hehavior.

For the remainder of this section, we show that having y; ¢ Q for some 1 <i <m —1is
also a sufficient condition for the distribution of the stick lengths to converge to Benford’s
behavior. Since we can always reorder the pf“s in the stick length A,(fl\%mkm = plflpé€2 oo phm
and thus the order of y;’s in the factorization, then it suffices to show that the first exponent
y1 ¢ Q is a sufficient condition for the distribution of the stick lengths to converge to
Benford’s behavior.

-----

ki+ ko4 -+ kp, N
= ) 11
( klak27"'7km ) (klak27"'7km) ( )

From the proof of Theorem , we know that the stick length Ag\[?@ ..k, has the factorization

k1 k1+k2 Sk
N k1 k - p1 P2 Pm—1\""
hn =i = () () (52) 7 e

multinomial coefficient

which motivates us to define the exponents y; = logz(p;/piv1) for 1 <i < m — 1. Now, fix
an interval (a,b) C (0,1). Let

X(ap)(T) = ]l(logB(:v) mod 1 € (a,b)) (13)

be the indicator function for loggz(xz) mod 1 € (a,b). Then after stage N, the probability
that a stick length mod 1 is in (a, b) equals

1 N T
Fv(ad) = -5 ), (kl,kz,...,km)”“’” (m) "

0<k1,k2....km <N
kitko+-+km=N

Our goal is to prove that as N — oo,
F(a,b) = lim Fy(a,b) = b—a, (15)
N—o0
which is a sufficient condition for Benford behavior.

2.2. Combinatorial identities

The key steps to our proof are two combinatorial identities related to multinomial coef-
ficients, which we present and prove below. We first review the multinomial coefficients.

Definition 9. Suppose that n, ki, ks, ..., ky, >0 and ki + --- + k,, = n, then we define the
multinomial coefficients by

|
( n ) S (16)
[ JeVegl - - Koy
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The following identity on the factorization of multinomial coefficients allows us to express
multinomial coefficients in terms of product of binomial coefficients. As we shall see, this
forms the key ingredient that reduces our multi-proportion problem into the original single-
proportion problem in [I].

Lemma 1. [16] For m > 1,

ki4+ ko4 -+ kp, - - ki4+ -+ k;
< kika, ...y kim )‘11( k; ) (a7)

The proof for the identity above is a straightforward induction through the expansion of
the multinomial and binomial coefficients. Below is another identity that is especially useful
later for evaluating sums of multinomial coefficients.

Lemma 2. [16] For N € Z>o and m € Z~,

N N
= = 2k . (18
" Z (klak27-'-7km> Z (khk%'” 7km1) ( )

ngl:k27~--uk7nSN Ofklw--,kmflSN
kl+k2+“'+km:N k1+k2+"'+km—1:N

The most straightforward proof of the identity above relies on two different ways of
representing and expanding m®": one as (1 + ---+ 1)V and the other as (2+ 1+ ---+ 1)V.
——— ———

N N=-2
See [16] for more.

2.8. Truncation

We prove that for any € € (0, 1), the contribution to Fx(a,b) of multinomial coefficients
with ki + ko < N°€ is negligible. This allows us to only consider k; + ko that are sufficiently
large for these stick lengths Ay, &, . k.-

Proposition 2. For any € € (0,1),

N .
< — NN NNH2Z, 19
> (/ﬁ/@kﬂ) < (m=-2) (19)

0<kyi,k2....km <N
kl+k2+"'+k"m:N
k1+ko<N€

Proof. We know that if &y + ko +--- + k,, = N, then

( N ) N(N—=1)---(N = (k1 + k) +1) (N = (k1 + kp))!
s Km

ki, ko, . .. Ey ko) Eslky! - k)
N — (k1 + ko)

< Nhitkz, . 20

- (k3k4km) (20)



Hence,

N
2. (klekm)

0<k1 ko, oo <N
kitka+ 4k =N

k1+ko<N€
= ) Nhek 3 N — (ki + k2)
k37k4>"'7km
0<k1,ka<N€ 0§k3,k4,...,k’m§N7(k’1+k’2)
ki+ka<N° k34ka+-Akm=N—(k1+k2)
S (m o 2)N Z Nk:l+k2
0<k1,ka<N¢€
k1+ko<N€
< (m—=2)N(NENY < (m —2)N NV (21)

We know the probability that a stick length 19]1“10’2€2 - pkmosatisfies ky + ko < N€ is

1 N
— : 22
mV Z (k’l,k’g,...,kﬁm) ( )

0<k1,k2....,km <N
ki1tko+:+km=N
k1+ka<N€

According to Proposition [2, we have that is bounded above by ((m — 2)/m)N NN*+2,
Hence, the logarithm of the probability is bounded above by

log <(m—_2>NNN€+2> = Nlog (mT_Q) + (N +2)log(N). (23)

m

It is clear that goes to —oo as N — oo. Thus the probability goes to 0 as N —
co. So it suffices to consider the case where k; + ky > N¢ Now, fix £(N) > N€¢ and
let O S k’l,kfg S k}(N) with k‘l —|—k’2 = k?(N) and 0 S k‘g,k‘4,...,km S N — k‘(N) with
ks + ks+ -+ kyp = N —Ek(N). By [I], we know that the frequency k; of stick length

Agg 77777 k. = Dyps? ... plm follows a binomial distribution with mean k(IN)/2 and standard

deviation \/k(N)/2. Pick some 6 € (0,€/10). We see that it suffices to consider cases where
k1 — k(N)/2| < ([N°]\/k(N))/2, because the probability that k; is outside this range is
asymptotically small by Chebyshev’s inequality:

P(‘kl_w‘ > % Vk(N)) < 1 (24)

2 — H\M]Q'

2.4. Near uniform probability within small intervals
We keep the same notation and definition and fix €, 6, k(N) := ky + ko, k3, ka, ..., ky, as

-----

over small intervals of k. Since [N°] = o([N°][/k(N)/2]), we can evenly divide the range



of ky between k(N)/2 & [N°][+/k(N)/2] into intervals of [N°] values of ki, where the ¢*!
interval starts with &y, = ki and ranges over k; 4, for 0 <i < [N°] —1, as defined below:

= fﬁ (@) +€[N6—|7
kiei == fo (@>+€H\m+i, 0<i< N —1, (25)

where fy(-) := [-] when ¢ > 0 and fy(-) := [-] when ¢ < 0. We see that ¢ ranges from
—[/k(N)/2] to [\/k(N)/2]. Note that we are using the floor and the ceiling functions to
ensure that f;,,;’s have integer values. For convenience, we will make a slight abuse of nota-
tion from now on to drop the floor and the ceiling signs, as they have negligible effect on our

calculation. We want to show that the difference ’(k(N)) — (k(N)_)

kl,l,z kl,l,]
than (’“N)) uniformly for all 0 < i < j < N° — 1, which would imply that the stick length is

roughly unlformly distributed over small intervals of k;. Since the binomial distribution is
symmetric around its mean, it suffices to look at £ > 0. Moreover, the probability density
function is monotonically decreasing to the right of the mean, the difference is uniformly
bounded within each interval and

k(N k(N k(N k(N
G) - Gl = 1C) - Gl &
K0, LIWR, Ki1.e k1,041
We follow Section (5.52) of [I] to obtain a bound for the difference.

Proposition 3. For ¢ < \/k(N)/2,

N N N ¢
() - (o)l = o () %) e
W E1041 LW,
Since the proof follows similar argument to Section (5.52) of [1], we leave the proof details

to [Appendix A}

is asymptotically smaller

2.5. Equidistribution within small intervals
In this subsection, we want to show that for fixed k(N), ks, ..., ky,, logarithm base B of

the stick length logB(A(N) ). ) for 0 <@ < [N°] —1 converges to being equidistributed
mod 1, in the sense that logamthm of the stick length is thought of as a random variable
that takes value in logp(A; ') 4, 4 ) for 0 <i < [N 97 — 1 with equal probabilities. We first

state the following theorem Wthh pr0v1des an easy criterion for checking equidistribution
mod 1.

Lemma 3 (Weyl’s Criterion). [I7] A sequence {a,}>2 is equidistributed mod 1 if and only
if for all nonzero integers ¢,

: 1 - 2mila
nh_)rgo - Zl e (28)
j:
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Now, notice for fixed k(N) and ¢, 1ogB(A,g]1Vzi’k2 77777 k) forms an arithmetic progression

over the ' interval of k; with common difference loggz(p;/p2) € Q. Then equidistribution
mod 1 is a direct consequence of the following corollary of Lemma [3]

Corollary 1. [I1] For any a € R, the arithmetic progression {a + nd}$°, is equidistributed
mod 1 if and only if d & Q.

Corollarysufﬁces to establish convergence to equidistribution mod 1 of logB(A,(flVZi Koo i)
However, it does not provide any quantitative measure of the discrepancy from uniform distri-
bution on [0, 1]. It turns out that the key ingredient behind this quantification is irrationality

exponent. We restate the definition here.

Definition 10. [11l/ Suppose that = is a real number. The trrationality exponent n of x
is the supremum of the set of u such that 0 < |x — p/q| < 1/q" is satisfied by an infinite
number of coprime integer pairs (p,q) with ¢ > 0. If such a set does not ezist, then we say
x has irrationality exponent oo.

Since Q is dense in R, then every real number can be approximated by rational numbers.
However, what differentiates them is how well they can be approximated. Irrationality
exponent measures exactly how well a real number can be approximated by rational numbers.
The bigger the irrationality exponent, the finer the rational approximation can be. The
following are some well-known facts about irrationality exponent, which comes handy later
in this section.

Proposition 4. [T1] The irrationality exponent of any rational number is 1. As a conse-
quence of Dirichlet’s approximation theorem, which states that for any irrational number
x)

r—=| < = (29)
q ¢

for infinitely (p,q) where p and q are coprime, the irrationality exponent of any irrational

number is at least 2. Further more, any algebraic irrational (irrational numbers that are

zeros of polynomials over Q) has irrationality exponent exactly 2.

p ‘ 1

We now state a theorem that quantifies discrepancy of the logarithm of the stick length
in terms of irrationality exponent.

Theorem 6. [I1, Theorem 3.2] Let k be the irrationality exponent of logg(p1/p2) and
Jo(a,b) C {0,1,...,N° — 1} be the set of indices i such that logB(A,(flVg“k%“’km) mod 1 is
n (a,b). If kK < oo, then

Ju(a,b)] = (b—a)Nuo(Né(l-ﬁ“’)), (30)

for every € > 0 and there is a power saving with the error term. The error term is optimal
in the sense that

Jg a,b 1y
Ew ) _h—a) = Q(N‘“ = ) (31)
for every € > 0. If k = 0o, then
|Jy(a,b)] = (b—a)N° + o(N?). (32)
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Note that [I1] has a different convention for irrationality exponent and if the irrationality
exponent of x is p in our definition, then it is g — 1 in their definition. This is the reason for
the change made to the presentation of Theorem [I1], where there is a —1/(x — 1) instead
of a 1/k in the exponent.

2.6. Evaluation of sums within and across intervals

We first proceed to our calculation with the case where loggz(p1/p2) has a finite irra-
tionality exponent x < oco. For fixed k(N) := ky + ko, k3, ka, ...k, and € < \/k(N)/2, we

first count the number of lengths Al(siVZkzkm such that logB(A]EiVZi,kz,...,km) mod 1 is in (a,b)
within the /" interval. By definition, this is given by

> (k (N )). (33)

ko,
icdy(ab) N Bb

By Proposition [3] and Section we have

3000 = 2 G () )

- {(kliN)) > 1}+0 <k]ifi))zv‘°’o Yoo

LE/ ieqi(ap) ieJo(ab)

= - an (") w0 (1) wet-). (34)

We justify the error term in the last line of . Since k is the irrationality exponent of an
irrational number, then x > 1 (see [2]). Also, ¢ >0, so —1/2 < —1/(k — 1) + €. Moreover,
for some proper choice of ¢/, we have —1/(k — 1) + ¢ < 0. Combining these with the fact
that 6 € (0,¢/10) gives the dominant error term in the last line of (34).

(N) sk, SUCh that 10%3(14;(4;]1\2 ) RO

1 is in (a,b) over all the 1ntervals By the truncatlon in Section [2.3] the main term comes
from the sum over ¢ from —y/k(N)/2 to y/k(N)/2. The number is given by

k(N)/(2N%) \VE(N)/2

2 ) U RS SED DI Vi FIND SEND Ol Gl
= /(2N3) i€Jy(a,b) (=—\/k(N)/2 i€ e(ad) - [0]>/ k() /2 1€ e (a:b)

Now, we count the number of stick lengths A,

(35)
Using ([24)), we can provide an upper bound on the second sum on the RHS of (35):
N NO/E(N N
> X () cp (-t 2 R (MY
1 NX) 2 2 kl
€]>+/k(N) /2 1€Je(asb) 0<ki<N
k(N) N°\/k(N) N ok(N)
=P _ s VYT L gk(N) _
< == = 2 O\ =
(36)
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On the other hand, we apply to the first sum on the RHS of (33)):

VEN) /2 VEN) /2
3 3 ( )) S b-aN? (k(N))
ki ie
—\JR(N) 2 1€ e (ab) = A2
VEN) /2
ol X (k]iN ))N‘;(l—ﬁ—ﬁﬁ/) . @37
TSV I
By and (5.17) and (5.18) of [I], by choosing ¢ = N, we have
VEN) /2

S () - emosofmtar)
(=—\/K(N) /2 1€ e(a.D) ‘

Substituting and into yields

Z 3 ( 5 ) (b—a)2k<N>+0(2k<N>N5<—ﬁ+f’)). (39)

l=—k(N)/(2N?) i€Js(ab)

Finally, we sum over all k(N), k3, k4, ..., k., which gives us the total number of lengths
Agﬂz 77777 »,. such that logB(A,(flV%€2 ..... k) mod 1isin (a,b). We break the sum based on whether

k(N) > N¢ or not. For k(N) > N¢, we apply (39):

E(N)/(2N?)

SN (FRVIORITE BED I 3 ()

0<k(N) k3 ka,... ke < (=—k(N)/(2N%) i€ Jy(ab)
k(N)+ks+kat+km=N
k(N)>N¢

= (b—a) > 26 (k(N), /<;37]Z4, o km)

0<Kk(N),k3,ka,....km <N
k(N)+ks+ka+-+hkm=N
k(N)>N¢

1 / N
a—— oHN) (40
+0 > (N, ks, k-, o (40)

0<K(N),k3 ka,....km <N
k(N)+kz+ka+-+km=N
k(N)>N¢

13



Note that by Lemma

Z ok (N) N
k(N), ks, kgy. .. km

0<Ek(N),k3,ka,....km <N
k(N)+ks+kat-+hkm=N
k(N)>N¢

k1+k2
:mN_ Z Z(lak27"'7m)

0<k1,k2,....km <N k1=
k1+k2+ +km N
k1+ko<IN€

— m" 4 O((m — 2V NV, (41)
where in the last line, we apply Proposition |2, Substituting into gives

k(N)/(2N°)

> ) 2 2 ()

ng(N),kg,k’zl,..., m< k:(N 2N5) ZEJ[ a b
k(N)+k3+k4+"'+k?m:N
k(N)>N¢

= (b — a)mN + O <(m _ 2)NNN6+2 + mNNé(—ﬁ-FE/) + (m _ 2)NNNE+2N5<_i+EI)>
= (b — a)mN +0 (mNN(s(_ﬁ""el)) . (42)

For k(N) < N¢, by Lemma |17/ and Proposition [2| we have

k(N)/(2N?)

> lrton) T ()

0Sk(N),k3,k4,..., < /(2N6) i€Jy(a, b)
k(N )-+hs+hgt-t k=N
k(N)<N¢

N
< 3 < )
k. <N k(N)7k37k4,...,l{}m

k(N)
0<k(N),k3,k4,....km <
k(N)+k3+kat-tkm=N

> ()
k(N)<Nc¢

= (i 1) = Ol w2, (43)

0<k1,k2,....km <
k1+k2+"'+k3m:N
ki+ka<N€

Combining and , we have

N E(N)/(2N%)
0<k(N),k3,kd,....km <N (k(N)a k'Sa kf4> ey km) — N)/(2N¥) i€ Jo(ab) ( 1 A, )

k(N)+kz+kat-+km=N

= (b—am™ +0 (N(S(_ﬁ“,)m]v + NY 2 (m — 2)N>

= b—am™ +0 (N CF)m), (44)

14



After dividing by m®, the total number of sticks after stage N, we arrive at
Fu(a,b) = b—a+0 (N‘S(*ﬁ“/)) . (45)

We have shown that if log 5 (p1/p2) has a finite irrationality exponent x, then the logarithm
of the stick lengths is equidistributed mod 1, and thus the stick lengths converge to the
Benford distribution. Moreover, the discrepancy between the distribution of the logarithm
of the stick length and uniform distribution mod 1 is quantified in terms of the irrationality
exponent of logz(p1/p2). Equation tells us that the smaller the irrationality exponent,
the smaller the discrepancy is (thanks to the guarantee that the error term is optimal), and
the closer the distribution of the stick length is to the Benford distribution. If log(p;/p2)
has infinite irrationality exponent, the calculation is exactly the same, except that we start

with the error term o(NN?) instead of O(N‘S(l*ﬁ“l)) in Section and so we end up with
the Fiy(a,b) = b—a+o(1).

Thus, this establishes the strong Benford behavior of fixed multi-proportion 1-dimensional
stick fragmentation process when y; € Q for some 1 <7 < m — 1. On a final note, recall
from Section our choices of the order of py, po, . .., p,, and thus factorization are arbitrary.
Hence, to obtain an optimal error term, we simply need to choose an order of py,p2, ..., pm
such that logg(p1/p2) is irrational and its irrationality exponent is minimized. Let ko be the
irrationality exponent of logz(p1/p2). Then we have

Fy(a,b) = b—a+0 (Na(ﬁoll“/)) . (46)
O

3. Proof of Theorem [5l

3.1. Preliminary

In this section, we prove Theorem 3} i.e., resolve Conjecture 4.1 of [5] that we mentioned
in Section [I] under some mild conditions. Let us first recall the conjecture.

Conjecture 2. FEvery linear fragmentation process satisfies the maximum criterion in all
dimensions 1 < d < m.

[5] has verified the conjecture in the case of d = 1 and arbitrary m for i.i.d. log-uniform
distributions, i.e., the proportion at which each dimension is cut is P;, where log P, ~
Uniform(a,b) and a < b < 0. They decide to normalize P, to Uniform(—+/3,/3) with
mean 0 and variance 1, which simplifies the calculation later on and does not affect the
nature or the solution to the problem. After stage N, the side length of the i*" dimension of
the box, after taking logarithm and normalizing, is

oo Jogg(PY PO - Npp togg(PY - PY) )
L VNor N
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By the CLT, ZZ(N) converges to N(0,1). Moreover, Lemma 3.1 states that if f ) (2) is the
probability density function of Zi(N) and ¢(z) is the probability density function of N(0,1),
then for all z € [-v/3N,v/3N] and any € > 0, we have

fpm(z) = @(z) + O(NTH), (48)

2

where

N 1 —x2/2
o(x) - \/%e . (49)
Due to the presence of the error term, to establish the strong Benford behavior of the process,
they need to rely on the fact that the distributions for the cuts are finitely supported with
uniformly bounded supports. They also need to rely on the fact that the exponent of the
error term is less than —1/2 for sufficiently small € > 0, which allows the error term from
integrating f, v (z) over the support to be asymptotically 0.

For the rest of this paper, we prove Conjecture 4.1 of [5] for any m > 2 and d < m.
Physically, this means that we consider any arbitrary dimensional volume of faces of that
dimension of the m-dimensional box. We assume that the log(F;) are i.i.d., have mean 0
and variance 1, are finitely supported with support [—C, C], and that the probability density

function (PDF) of Z™ is ,0(2) = @(zi) + A(z), where A(z) = O(N~'/?7%) for some

d > 0. We also assume that the cumulative density function (CDF) of ZZ-(N) is given by

F,(z) = ®(z) + B(z), where @ is the CDF of N(0,1) and B(z;) = O(N~°) (for an

example of a distribution satisfying these condition, see [5]). We prove that the maximum
d-dimensional volume mElN) of a d-dimensional face of the m-dimensional box converges to
strong Benford behavior. Once we prove this statement, then by the maximum criterion
established in [5], we have that the d-dimensional volume Vd(N) of the d-dimensional faces of
the m-dimensional box also converges to strong Benford behavior.

The key idea behind our proof is the use of the Mean Value Theorem and a recursive
method of change of variables and consistent cancellation that provide upper bounds on the
error terms in terms of Gaussian densities. We shall explore this more in Section

To begin, we use knowledge from order statistics to find the PDF of méN).

Definition 11. Suppose that Xy, X, ..., Xy are random variables, and [|; returns the i
largest number among a list (aq,as,...,ax) of real numbers. For each outcome w in the

sample space (), we define

Xpp—irny(w) = [(X1(w), Xo(w), ..., Xp(w))]p—it1- (50)
We say that the random variable X;_i41) is the it order statistics, or the i largest
random variable among X1, Xo, ..., Xy. Hence, as random variables, Xy < Xy < --- <

Let Si(N) be the side length of the i*® dimension of the m-dimensional box after stage N.
Then the maximum volume of a d-dimensional face is the product of the longest d sides of
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the box, i.e., m&N) = H;jzl S((n]\jﬂ - We define
(N) d
1 logp (S, 0
y) ._ 98B md Z B ( +1- Z Z(m+1 ) (51)

=1

To find the PDF of Y™, we need the joint PDF of Z((n]ﬁl_i) for all 1 <47 <d. This is a
standard question in order statistics.

Proposition 5. [7] For i.i.d. random variables X1, ..., Xy with PDF f(z) and CDF F(x),
the joint PDF of X, ..., X where 1 <1 < k is given by

fX(i) ~~~~~ X(k) (fL’i, SR 7xk> = Clch(xz) e f(xk)(F(xz»Z_l? (52)
where C} :=k!/(i — 1)!.

Thus, in our case, the joint PDF of Z((gil_i) forall 1 <i<dis

fZ(mJFl,d) ..... Z(m> (Zm+lfd7 s Zm)
d

= C(:nﬂ_l_d ((I)(Zm-‘rl d)+B Zm41— d H Zm-H d +A(zm+z d)) (53)

By binomial expansion,

@i + Bl = 3 (") @) Bl (650)

=~/

Note that B(zp.1-4) = O(N7%) and 0 < ®(z) < 1, which we shall constantly use without
reference for the remainder of the paper. Then any term where 7 > 1 is at most of the same
magnitude as B(zp41-4). We have

(®(zm1-a) + BGmr-a)" ™" = (®(zmr1-a)" " + O(B(zm+1-4))- (55)

We make a slight abuse of notation here to write the error term above as B(z;,+1-4), which
does not change the order of magnitude of the error term. Hence,

fZ(m+1—d) ..... Z(m) (Zm+1*d7 s 7Zm>

d
= O;?—"_l_d ((I)(Zm+1—d)m_d Zm+1 d H Zm-i—z d +A(Zm+z d)) (56)

3.2. PDF of Y(N)

In this section, we find the PDF of YY) as defined in (53). The CDF Fy)(y) of
Y™ is given by mtegratmg over the appropriate region in R, that is, over all the values
(Zma1—ds - -y 2m) Of (Z (mt1—d) - .,Z((N))) that sums to y. We know that Z +1 0y’ Z(N

are not independent, i.e., they have to satisfy Z )+1 g S S Z((m)) . In general, we know
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that any 1 < j < d, 2,4 —q can take value from 2,4 (j—1)—a to (y — 3;11 Zmvioa)/(d—j+1).
The only exception is 2,114, whose upper bound is already correctly stated but the lower
bound is —Cv/ N. Hence, we have

Fyoo (y)

Jj—1
d Y=Xi—1 *mti—d

% d—j+1
- H fZ(m+l—d) ..... Z('m) (Zm+1—d7 st 7Zm>dzm e dZm+1—d7 (57)
~OVN i

Em+(j—1)—d

where we use the product of integrals to denote

d  ry; Yk Y Ya
H/ ;:/ / / . (58)
_]Zk‘ Zj Zk Zj Zd

We separate out the main term C7=4d (2, 11 )™ [, ©(2myi_a) of the joint PDF
and denote it by

d

My ) (Zmti—ds - -+ Zm) = CnTH_d‘I)(ZmH—d)m_dHQO(Zm+i_d). (59)
i=1

We also denote the error term of the joint PDF by ey ) (Zmat-ds - -+, 2m). Let Myw) (y)
and £y v (y) be the main term and the error term of Fy v (y). Then

Fyrao(y) = My (y) + Eyan(y)
d v=0 " tmica

4 d—j11
My (y) = / / My 0 sty o) -+ 4

CVN j—2/Zm+(j-1)-d
d 9*25;11 Zmti—d

g d—j+1
Eymn(y) = / H/ ey (Zmi1-ds -+ Zm)d2m - dZmy1-a- (60)
~CVN ;29 Y 2mi(j-1)-d

We are now ready to find the PDF fyv of Y™, We know that

d

d d
fyran(y) = @wa)(y) = d—yMyw)(y)er—ygy(m(y)‘ (61)

To differentiate My v (y) and Eyv) (y), we apply the Leibniz integral rule for differentiate
under the integral sign.

Lemma 4. [9] Suppose that f(x,t) is a function such that both f(x,t) and df (x,t)/dz are
continuous in t and x in the xt-plane, and a(x) and b(z) are also continuously differentiable.
Then

4 [ ] ] o
Iz /a(x) fla,t)dt = f(z,b(x)) - %b(x) — f(x,a(x)) - %a(x) + /a(x) 8—xf(x,t)dt. (62)
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For the rest of this paper, one can easily check the regularity conditions on f(z,t), a(z),
and b(x) each time we apply the Leibniz integral rule, so there will not be explicit mention
of the regularity conditions again. We first make some observations on the effect of d/dy on

j—1
y d Y=225—1 *m+ti—d

d d—j+1
/ H/ g(szrlfd; R Zm)dzm e dzm+1fd (63)

CVN 525 ) 2ns(j-1)-a

for any Riemann integrable function g(z,11_4,- -, 2m). One can check that each application
of the Leibniz integral rule to gives two integrals, one of which has the lower bound of
the integration coinciding with the upper bound of the integration and thus equals to 0. As
a result, we are always left with one integral that interchanges the order of the differentiation
and the integration signs. Eventually, becomes

y de1l V=) fmyioa _yd1 '
d d—j+1 0 Y i—1 Zm+i—d
H ey 9(Zmi1—ds - - Zm) A2 | dzm_1 - - dZmi1—d
-CVN =2V Zm+(j-1)—d Y Zm—1

v de1 Y] tmeid d—1
d d—j11
= / H/ g\ Zm+i-ds---s”m—-1,Y — E Em+i—d dszl o dZerlfd-
~CVN i3

Z'm+(j71)7d =1
(64)

Applying (64) to dMyw(y)/dy and dEy v (y)/dy, where My v (y) and Eyv(y) are as
defined in , we have

y d—1 v=S021 tmticd d—1
d d—j+1
@MY(N) (y) = JF H My | Bm41-ds -5 2m—1,Y — Zmetied | dZm—1
—C+V/N z : -
7j=2 m+(j—1)—d i=1
o dzmg1—q
v de1 YTii fmeiod d—1
d d d—j+1
d—ygyw) (y) = . H Cy) | Zm+1—d> -+ -5 2m-1,Y — E Zmti-d | dZm-1
—CvVN z ; .
Jj=2 m+(j—1)—d i=1
o dZmy1-d (65)

3.3. Outline of problem
(V)

We are ready to formulate our problem. We want to show that m; ' converges to
strong Benford behavior, which is equivalent to showing that logB(mgN)) converges to be-

ing equidistributed mod 1. Hence, in terms of the probability density function fy-v)(y) of
YV = log(m{")/v/N, we can formulate our problem as to showing

dC-N—1 btn

Aad) = Y [T iy = o-a (60

a+n

n=—dC-N “ /N
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for all (a,b) C (0,1) for sufficiently large N. Let the main term and the error term of Fy(a,b)
be defined respectively as

N d
My(a,b) = > e Myen(y)dy; (67)

n=—do-n’ %% WY

AON-1 bm
Enla,b) = ) T Eyon (y)dy. (68)

n=—dc.n 2R Y

Our goal is to show

Mpy(a,b) = b—a, En(a,b) =~ 0. (69)

3.4. Upper bound on error term En(a,b)

We want to show that the error term Ey(a,b) is negligible. We start by giving some
bounds on d€y v (y)/dy from . Recall that ey (2mt1-d, - - -, 2m) is the error term of the
joint density function (56). Let [¢] be short hand for {1,...,¢}. Then

1
COm+1-d Ey (™) (Zm—i-l—d, e Zm)
m

::]g

= O(zpt1-a)" ( ©(zmyi-a) + A(Zmyi-a)) — H‘P(Zm—i-i—d))

i=1

d
+ B(2m+1-a) H(90(2m+z'—d) + A(zmti-a)
= ((I)(zm—l—l—d)m_d + B(an-l—d)) Z (H‘P Rmti— d)) H A(Zmyi-a)
Scld \ies icld)\S
+ B(2my1-a) H ©(2mri-d)
d

Z (H SO ZmAi— d>> H A<Zm+ifd) +N7° H Qp(zmﬂ'*d)' (70)
Sc[d] \i€eS ie[d]\S i=1

We know from that to bound d&y ) (y)/dy, it suffices to bound

/ H/y B (H SO(Zde))

Scld] Fmt(j—1)—d ieS
S#[d]

H A(zmyi-a)

€[d]\S

Azm—1 - dZmy1-d (71)

d—1
Zm :y_Zizl Zm+4i—d
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as well as

1m+1dd

d J+1
DQ y = N / / HQO Zmti— d
CVN =2

Em+(j—1)—d

dZm—l e dZm+1—d7

d—1
Zm:y_Zi:I Zm+i—d

(72)

because then we have d€y (v dy < D1(y)+ Da(y). We first look at D;(y). Suppose that kg is
the largest index such that k& € [d] \ S. Such an index k exists, since S # [d]. First, assume
that we have S’s where kg = d. Then the integrand of becomes

(H @(Zmﬂ‘—d)) H A(zmii-a)

= i€[d\S

d—1
zm=y*2¢:1 Zm+i—d

(H@(Zmﬂ'—d)) II AGnii-a) A<y— ] Zm+z‘—d>
i€[d—1]\S

€S =1

< N7%76 (H @(Zmﬂd)) H A(Zmﬂ'fd) ) (73)

€S i€[d—1\S

where in the last line we use the fact that A(z) = O(N~'/279). Note that the lower and
upper bounds on the interval of integration for each integral in are O(v/N), since
Yy Zmti—ds - - > 2m—1 are all O(v/N). Choose a constant €’ such that C’v/N is an upper
bound on the upper bounds on the interval of integration for all the integrals in and
—C"v/N is a lower bound on the interval of integration for all the integrals in (71)). Hence,

% d—1 H%W
/C\/N]l—‘!/ ‘ (H @(Zm-l-i—d)) H A(Zm+i—d>

Em+(j—1)—d €S i€[d]\S

Zm:y_zzd:_ll Zm+i—d
dzm—1 - dZmi1-a

C'vVN
< N2 /_le . /C’ <H<P Zmi— d)) H NS dzm—1 - dZmy1-d

€S i€ld—1]\S
d—1
C'VN
<« N2l T / Hlemis a)dmer
ies \/-C'VN
< N—1/2—(1+\[d—1}\5|)6 < N_1/2_5, (74>

where in the last line we use the fact that

/ T e < / Y ow)ds = 1, (75)

—C'VN oS
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which we shall use frequently without reference from now on. Since the number of subsets
S of [d] is finite, then gives us

Di(y) < N71/279 (76)

The case when kg < d is similar, though more care is needed to identify the O(N—1/279)
decay, which essentially comes from the A(z,445—q) term. With this in mind, using the same
method for the case when kg = d as well as the convolution formula for Gaussian PDF, we
can again show that D;(y) < N=1/27%. We leave the details to

We now turn to Dy(y) as defined in (72)), which is relatively more straightforward to
bound. We have

d-1
Dy(y) < N~ / / H ©(Zmti—a)P (y — Z Zm+id> dzm—1 - dzmy1—a.  (77)
-1 i—1

We recognize that the integral is the convolution of d standard Gaussian density functions.
We know that the convolution is the probability density function of sum of d i.i.d. standard
Gaussian random variables, which itself is also with mean 0 and variance d. Hence,

1 2
Dy(y) < N0 /(D 78
Thus,
d s 1 —y?/(2d) -1/2-6
—&m(y) < Di(y)+ Da(y) <« N ——e™ +N . (79)

dy V2nrd

We are now ready to bound the error term Ey(a, b) from (68]):

dC-N—-1 bin

En(a,b) = Z /m dd Ey ) (y)dy

n=—dC-N " /N

dCV/N 1 2 /(2a) dCv/N .y 5
< N~ / e v /2 dy+/ N7V2dy < N~°.  (80)
dcvN V2md —dC-v/N

3.5. Strateqy for remainder of proof
Our next task is to show that the main term My(a,b) defined in satisfies

dC-N—-1

b+n
Z / My x) y)dy ~ b—a. (81)

—dC-N

Our strategy is the following. First, we want to write the integral of dMy v (y)/dy over
each interval [(a +n)/v/N, (b+n)/v/N] as the sum of a main term m,,(a, b) that is constant
with respect to y within the interval and an error term e, (a,b) for each n. Essentially, this

22



shows that dMy v (y)/dy is almost constant within a small interval, incurring an negligible
cost that, as we shall prove, does not accumulate, i.e.,

dC-N—-1

Men(a,b) = > en(ab) ~ 0. (82)

n=—dC-N
Finally, we prove that the sum of the main term

dC-N—1

Mumamn(a,b) = > mu(a,b) (83)

n=—dC-N

is a Riemann sum that converges to b — a. It then follows that
Mn(a,b) = Mpainn(a,b) + Mexn(a,b) = b—a. (84)
Thus, based on the estimate on the error term in ,
Fn(a,b) = My(a,b)+En(a,b) = b—a, (85)
which establishes the equidistribution result.

3.6. Equidistribution within small interval

In this section, we show that dMy v (y)/dy is equidistributed within each small interval
[((a+n)/vVN,(b+n)/vN]. For each n, we write the integral over [(a+n)/vN, (b+n)/v/N]

in terms of a main term my,(a, b) that is constant with respect to y and an error term e, (a, b),
ie.,

b+n

N d
_MY(N)(y)dy = mn(a> b)+en(aab>7 (86)
atn dy
VN
where
b+n
VN d n
mp(a,b) = / — My (—> dy,
e M VN
b+n
VN d d n
n(a,b) = — - — — | dy. 7
coat) = [ Mot Mo () dy (57)

Since dMy ) (n/v/N)/dy is constant, then the main term m,(a,b) is

ma(a,b) = b_—a%MwN) (L> . (88)

We now quantify the error term. We start by providing an upper bound on

d d
@Mwm(y) - d_yMY(N) (L) : (89)

VN
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fory € [n/V'N, (n+1)/vVN] 2 [(a+n)/VN, (b+n)/v/N]. As we shall see, dMy-w (y)/dy is a
continuous function over [n/v/N, (n+1)/v/N] and a differentiable function over (n/v/N, (n+
1)/v/N). By the Mean Value Theorem, for any yy,y, € [n/vV/N, (n + 1)/v/N] with y; < s,

we have

d d d?
@Myw) (1) — d—y/\/lwm(yz) = o ——=Myw (en)(y1 — 32) (90)
for some ¢, € (y1,y2). Hence
My ) = - M) < [ oMyt b -l < | LMy

(91)

We want to provide an upper on |d> My v (y)/dy?| over the interval [n/\/ﬁ, (n+ 1)/\/N]
Recall from that

y d—1 v=S0"1 tmticd d—1
d d d—j11
d_MY(N) (?J) = H my ) | 2m4+1—ds--+32m—1,Y — § Zm+i—d dZm—l
y —C\/ﬁ ]:2 Zm+(j—1)7d =1
dzmy1-a
v d-1 ¥ cmiia d—1

d d—j+1 m—
- / 1 / (@i ))" [ ¢ (omsi-a)
—CVN j—g Y zmi(j-1)-d '

i=1
d—1
4 (y - Z Zm-i—i—d) dzm—l T dzm-‘,—l—d- (92)
=1

Following the same procedure as shown in Section [3.2] we can again exchange the order of
differentiation and integration. Since the product in the integrand in goes from j = 2
to d — 1, we need to discuss the cases when d = 2 and d > 2 separately. If d = 2,

Yy

d 2
My (y) = / My (Zm—1,Y = Zm-1) dzm—1. (93)
Y —-CVN

By the Leibniz integral rule and (59),

d2
MY<N)< )

1 Yy 2 0
= QmY(N) (2 2) +/cf ay (mY(N)(Zm lay_zm—l))dzm—l

) 2 m—2
< p (5) + /C\/ﬁ<¢)<zm_1)) P(zm-1) - (=1) - (y = Zm-1)o(y = 2m-1)dzm-1.  (94)

We know that y is an upper bound on the value of z,_; + 2, then y > —2C+/N, and
y/2 > —C+v/N. We now break into cases when y < 0 and y > 0. When y < 0, ¢(2,_1) is at

24



most (y/2) on [-CV/'N,y/2]. So becomes

d2 y y 0
d—ngY(N) (y) < @ (5) + @ (5) /_OO ]y - me1|90(y - mel)dszl

= o) e () [ i < 2(3). 09

where in the last line we use the fact that the integral [*_|z|p(x)dz is the expected value
of the absolute value of a standard normal random variable, which is finite. When y > 0, we
have

Y Y
— > —Z == > 0.
Yy—ima Zy—5 =35 20 (96)

Hence, becomes

j—;Mym(y) <e(h)+] iw(y — )Py = 2mo1)dz
- 90(%)+90(y_2m—1) o < @(%)Jrso(erC\/N), (97)
2m—1=—CVN

where in the second line we employ the fact that [(y—z)e(y—z)dz = ¢(y—=z). Thus, if d = 2,
regardless of whether y < 0 ory > 0, d> My (y)/dy? is on the order of (y/2)+¢(y+CV/N).
This concludes the estimate of d*> My ) (y)/dy?* for d = 2.

If d > 2, we repeatedly apply Leibniz integral rule as we have demonstrated in Subsection
to obtain

d2
d_ngY(N) (y)

j—1 d—2
Y d—2 yfzizl m+i—d ( yfzizl *m+i—d
2

d d—j+1 8 —
= I I oy My ™) | Em+l—ds- -3 *fm—-1,Y — § Am+i—d
70\/Nj:2 Zm+(j—1)—d y Zm—2 =1

dZm—1> dzm—2 - dzmy1-a

j—1
d—2 Y=37") Zmyi—d

i - d—2 y — Zd__Q » - 2
<[ T (@Camir-)™ (H so<zm+id>) <90 ( Ly ))
—CVN 525 Y 2m(j-1)-d i=1
y—E?:_lzzm-o-i—d d—1 d—1
+ </ (®(Zms1-a))™ <H SD(Zerid)) (=1) (?/ - szJrid)
Zm—2 i= 1=
. 1 1
R4 <y - Z Zm+i—d> dZm—l) dZm—? e dZm+1—d- (98)

i=1

ake

Now, similar to the case when d = 2, we estimate the second integrand in by breaking
down into cases when (y — ij Zmti—a)/2 < 0 and (y — Zf;f Zm+i—a) > 0. We leave the
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> dzy—2 dZmy1-a

details to Hence, we have d?Myw (y)/dy? in (98) is bounded above by
() o [d=2 d—2
Yy — i=1 “m+i—
/ / (H (p(zm—i-i—d)) o ( > 21 +i—d
N — \i=1
d—2
s [d=2 d—2
/ / (H @(zm+i_d)> @ (y - (Z Zm—i—i—d) - zm_2> dzpm—2 - dZmi1-d
i=1

—0o0
d—2
We first obtain some estimate on the first integral of (99). The idea behind estimating this

(99)

integral is recursive uses of change of variables that lead to consistent cancellation. We first
d—3
Y iy Zm+i—a)/D. We have

d—2 P
i=1 “m+i—d
dzm—2 dZmi1-a

do the change of variable z,, o — 2,2 + (y
2

[ [ (M) o (2
(#m—2+(v-57 Zmﬂ,d)/a)Q

2

> & Zg;f Z72n+i—d

< / Ce / e 2 e
—00 —00

d—2
%<7zm_2+4(y72?;13 Zm+1—d)/5>2
e z Azpm_o dzmi1—q. (100)
Notice that in the expansion of the exponents, we get a cancellation of the term 2z, o((y
S 2mtioa)/5). Hence, (L00) is bounded above by
o & Ei: n+4+i— %(y Zg:3zm+i7d)2 0 ézgn_
/ / e 2 Hi=d e 12 (/ 6_4 2 dem_2) dzm_3...dzm+1_d

oo —0o0
o0 o0 Zf;ingn i %(y*Zf:_SZm-&-i—df

< / / P 3 Azpm-3-+dzZmi1-q (101)

—00 — 00
—_——
d-3
We see that the estimate in (101)) has a similar structure, which allows us to use induction
to estimate the interval. For an arbitrary k such that 1 < k < d — 2, we want to look at
Z’L 1 m+z 7‘4]@(?/_27’;@:1 Zm+7,7d)2
- e 2 dzm+k_d . dZm_|_1_d, (102)
k—1
1+Ak (y - Zi:l Zerifd)?

L)

where A, > 0. Using the change of variable 2, x g — Zmik_a +
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(102)) is bounded above by

_ A k—1 2
o s S epid _ (Z"“fk*‘# T+Ag (y72i:1 Z”Lﬂ'*d))
“ e e 2 - e 2
—0o0 —00
—_———————

2

Ak<_zm+k—d+‘l‘47(y_zi'€:_1 Zm+i—d))
ce = k2 : dzm-i—k—d Tt dZm+1—d- (103)

Expanding the exponents also gives a cancellation of the term

24, k—1
— ke — mti—d | - 104
1+Akz +k d(y ;Z+ d) ( )

Hence, (102)) is bounded above by

_ 2
f =y En-&-z d _Akfl(y_zlel Zmﬂ'*d) AR g
e P e P Azmik—a- dzmi1-q, (105)

where

A? Ay
A = k ) 1
kot TR TR (106)

Note that since Ay > 0, then A1 > 0. Hence, (102]) becomes bounded above by

_ 2
i 1 szM 7Ak—l(y*2§:1l Zm+i—d) o0 7(1+Ak)z$n+k7d
-€ 2 e 2 AZmik—d
—0oQ

dZm+ (k—1)—d " * 'dzm+1fd

z m i— Ak71(9*2f;11 Zm+i7d)2
< / / 1 +i ~€_ 2 dZm+(k—1)—d"'dZm+1_d, (107)

Thus, by induction, (100) becomes bounded above by
o~ ()2 (108)

where Ay > 0 is recursively defined by (106 with A, » = 1/4. Similarly, we can show by
induction that the second integral in has the estimate

/Z e /Z (ﬁ SO(Zm-i-i—d)) (SO (y - (dz_f zmﬂ»_d) — zm_2>) AZm_g - d2mi1—d
—— i=1 P

< e (Bov)/2 (109)
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for some By > 0. Hence, if d > 2, becomes

d2
d_y2MY(N><y) < e*(Aon)/2+€f(Boy2)/2 < e*(Con)/Q’ (110)

where Cy := min{ Ay, By}. Recall from that when d = 2,

d2
M) < ¢ (5) + ¢ (v+CVN). (111)
Thus, regardless of whether d =2 or d > 2,
d? _ Doy? _ Do(y+CVN)?
d—yQMy(m (y) K e 2 +He 2 , (112)

where Dy := min{Cp, 1/4}. Note that e ¥’/2 and (v/Do(y + Cv/N)) each has only one
global extreme, at y = 0 and y = —C'v/N respectively. Hence, locally on [n/v/N, (n4+1)/v/'N]
the functions are monotonic and can be bounded above by the sum of its values at the two
end points. Hence, for all n,

d? DO(L>2 Do(”“)2 DO(TnﬁJrC\/N)Z DO(”—\/%+C\/N>2

4
M) < e T te +e s pe T, (113)

for all y € [n/vV'N, (n+1)/v/N]. Thus, returning to (91)), for all y1,y> € [n/V'N, (n+1)/V'N],

d d
d—y/\/lym (y1) — @Mwm (y2)
1L [ () R () ()
K — e 2 T 4e Tz ez e =T (114)

VN

Thus, the error term e, (a, b) as defined in (87) is bounded by

b+n
v~ | d d n
en(a, b) < /% —My(N)(y) — _yMy(N) (\/_N) ' dy

LN () mlR) (o) ()
< (\/_N) © e T T e o . (115)

3.7. Upper bound on error term Mey n(a,b)
In this section, we want to prove that the error term of the main term My (a,b) is small,
ie.,

dC-N—1

Merex(a,b) = D en(a,b) ~ 0. (116)

n=—dC-N
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Based on the estimate e,(a,b) in (I15), we can pull out one of the 1/v/N factors in the
bracket and obtain

dC-N—1
Merr,N(aa b) = Z €n(CL, b)
n=—dC-N
1 1A () mCR)T m(ggren) m(gee)”
<L —= — Z e 2 +e 2 +e 2 +e 2

We observe that the above in the parentheses are Riemann sums for e=20#%/2 and e~ Po(@+CVN)?/2
on (—o00,00), which are both finite. Hence

1
Menn(a,0) € —=. (118)

VN

We have thus established that the error term M., y(a,b) of the main term My(a,b) is
negligible.

3.8. Evaluation of main term Miyam n(a, b)

Finally, we establish the main term M, v(a,b) of the main term My (a,b). From (83))
and , we see that

dC-N—-1

Mmain,N(a) b) = Z mn(a’ b)

n=—dC-N
dC-N—1
1 d n
= (b—a) | —= E —./\/l()(—) . 119
Since the term in the parentheses above is a Riemann sum for ffooo d%/\/lym(y)dy, we have

2C-N—-1

1 d n > d
VR (m) Lyl
= My(N)(OO) — My(N)<_OO) + 0(1). (120)
Hence the main term Min n(a, b) becomes
Miainn(a,b) = (b—a)(Myx) (00) — My (—00)) + o(1). (121)
Recall that
y d y=2I] Fmricd
d d—j+1
My (y) = / H My ) (Zmai—ds -+ 5 Zm)@zZm *+* AZmy1—q- (122)

-CVN =2 Fm+(i-1)—d
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To simplify our calculation, we want to extend the interval of integration of the outer integral
to —oo. We do so by showing that the tail of the integral is small, i.e.,

_cyN d y*Z{d%ljinlLH—d
Ty = / H/ My ) (Zmaids -+ s 2m)82Zm » dzZmi1—a =~ 0. (123)

o0 j=2 " Fm+(j-1)—d
We have
—CVN oo 00 d
o< [ [ [ @ T e o
d—1
—-CVN
<</ O(Zmy1-a)d2mi1-d; (124)

Hence, we have reduced the problem to showing the smallness of the Gaussian tail. We
first make a definition.

Definition 12. For functions f(z) and g(x), we say that f(z) = O(g(x)) if f(z) = O(g(z))
and g(x) = O(f(x)).

The following result is a straightforward calculation that provides an upper bound on
the Gaussian tail.

Proposition 1. [13] Suppose that g : R — Rsq is a function such that g(N) = O(N¢) for
some € > 0. Then

/_H(N) L o2y /Oo L 212y « cmo2 (125)
—e r = —e T e .

—0 V2T g(N) V21

Back to (124]), by Proposition

Ty < e VN, (126)

Thus, (122)) becomes
v=I") tmia

v d Y=351 *mi=d
d d—j+1
My (y) = / I |/ My ) (Zms1—ds - - Zm)dZm =+ AZmy1—q + O <€—c\/ﬁ>‘

m+(j—1)—d

(127)

Now, by Proposition

d
My (Zmii-ds - 2m) = O (@(zmy1-a)™ " ] (zmi-a) (128)

=1
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is the joint PDE of Winti1-a), ..., Wiy, where Wi, ... W, are iid. ~ N(0,1). Thus,
following our derivation in Subsection [3.2]

y- Ez 1 FmAti—
d—j+1
/ H / iy st ) demna (129)
Em4(j—1)—d

is the CDF of 25:1 Winti-a)- We know that for a cumulative density function H(y),
H(—o00) =0 and H(co) = 1. Hence,

My (—o0) = H(—o00)+ 0Ny = 0 (e_C\/N>
My (0) = H(oo) +0(e YY) = 1+0 (aoﬁ) . (130)
Thus, substituting these two estimates into yields
Muainv(@,b) = (b—a) (1 +0 (e,cm)) Yo(1)) = (b—a)+o(l).  (131)

Returning to and (84), combined with the estimate for the error term Ey(a,b) in (80)
and the error term Mey y(a,b) of My(a,b) in (118)), we have

FN<G7 b) = MN(aa b) + 8N<a7 b)
= Mmain,N(aa b) + Merr,N(aa b) + (S'N(CL, b)

= (b—a)+o(1)+0 (\/LN) +O(N™°)

= (b—a)+o(1). (132)
We conclude that logB(m&N)) converges to being equidistributed mod 1, and therefore by
Uniform Distribution Characterization mdN) converges to strong Benford behavior. O]
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Appendix A. Proof of Proposition

In this section, we prove Proposition |3| which provides a quantitative bound on the differ-
ence among probabilities within an interval. Let us first recall the statement of Proposition

Proposition [3| For ¢ < \/k(N)/2,
(i) = (el = o () -2). A
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Proof. We first factor out (kk(lj\i )) from the difference:

(i)~ () = (o) = (o i o)
k(N)! k(N)!

(400 4 ons)1 (00— ons)r (M0 (¢ 1)No) 1 (D (¢ 4 1))

k()| (@ + 0+ 1)N5>! (M (41 N5)! — k(N)! (M + ezvé)! (@ - ezvé)!
)

2
(@MNJ)! (@—mé)! (’“TN)+(£+1 N5)! (@-(ﬁﬂ)m)!

IE
- (50) (- e o) e

B (H22 4+ N )1 (02 — o)1
R (@ + (0 + 1)N6)! (@ —(t+ 1)N6)!' (49)

We want to show that ayy — 1 as N — oo, so that the difference in ({A.2) is asymptotically
much smaller than the main term (k(l]\? . We have

N° g
(532 = ¢+ )A°) (K52 — env)
No S ae,N ~ Né
(H22 + e+ 1)N9) (K02 + o)
g N
A(0+1)N° N ACN?
1— < <(1-———~7= . .
( k(N) +2(¢ + 1)N5> < oy = {1 k(N) + 2€N5> (A-4)
Since ¢ < /k(N)/2, then
ACN® 4¢N° IN?
0 < < < . A5
~ K(N)+2(N° T K(N) T /k(N) (A-5)

Since k(N) > N¢, and § € (0,¢/10), then

2N26 2Ne/10
0 < < —7
]{J(N) Ne/2

= IN"X/5 = O(N~*/%), (A.6)
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Similarly, we also have

4004 1)N? _
= O(N7*/). A.
S A (A7)
Hence, for sufficiently large IV,
400+ 1)N?
1— 1
R T ET S
A(N?
1—— . .
O <= rmraw =1 (4.8)
Returning to (A.4)), given (A.8)), we have
g N
A(0 +1)N? N A0N®
1— < < (1-— ) . .
( K(N) +2(0+ 1)N5) =GN = k(N + 2€N5> (A.9)

Using binomial expansion,

2 () (i) < vt 2 R0 (o)
(A.10)

We first bound the right sum in (A.4)). Using the assumption that ¢ < \/k(N)/2, we have
N° 5 5 j N° 5\ 7
Z (N >(_1)j < 40N 5> < ZNj6 (4€N >
\ k(N) +2(N k()
NS J
[ 2y/kE(N)N?
< N[ VT
2 (M)

Y[ anw !
B Z( k<N>>

J=1

N5
28 1— ( 2 >
2N NG
R = (A1)

where on the last line we use the geometric series formula. Since k(N) > N°€ and ¢ €
(0,€/10), then

2N25 2Ne/5

< — QN 3¢/10, A.12
KN) — N (A12)
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Hence

o (NN (AN N e !
Z j (=1) k(N)+2(No ) | = 1 —2N-3¢/10

7=1
= O (N73/10) (A.13)
Similarly, for the left sum in (A.4)), we also have
Né i
N? : 4(€+1)N? !
1) — —3¢/10
2 (j )( b (k(N) +2(€+1)N5) O (NTR). (A.14)

j=1
Applying (ET3) and (E13) to (&3, we get

gy — 1] = O (N73/10). (A.15)
Thus, substituting the estimate (A.15)) back to (A.2)) gives us

(-l o(()v) o

Appendix B. Case for kg < d

In this appendix, we want to show that D;(y) < N™%/?27% when kg < d. Recall that S
is a proper subset of [d] and kg is the largest index such that k € [d] \ S, and that D;(y) is

defined in to be
y— ZL 1 Fm4i—
d—j+1
/ H (H so(zmﬂ»_d))

Scld] Zm+t(j—1)—d ies

S#[d]
1T AGmsi-a) d2m_1 - dZmi1—a. (B.1)
(S d]\s Z"L:y_z?;ll Zm+4i—d

Let [¢1; (5] denote {1, ..., 0y} if {1, {5 are integers such that ¢; < £, and let it be () otherwise.
Then the integrand of becomes

(H 90(2m+i—d)> H A(zmyi—a)

i€S [d\S

d—1
Zm:y_Zi:I Zm+ti—d

= H go(szri_d) H A(Zm-l—i—d) : A('Zm-l—ks—d)

i€S\[ks+1;d] i€ld\(SU{ks})
d—1

H 90<Zm+i—d) ¥ (y - Z 2m+i—d> . (B2)
i€lks+1;d—1] =1
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Hence,
y d—1 ?/—Z{;ll Zmti—d (

/d H/ d—j+1
—C\/szg Zmt(j—1)—d

dzm—1 - dzmi1-a

H (p(szrid)) H A(Zmsi-a)

€S e[d}\s ZmZy*Z‘j;ll Zm+i—d

y d—1 l’*l"d;f#
] —j+1
- / H/ H gp(zm-i-i—d) H A(Zm+i—d>
~OVN jm2 Eme-n-d i€5\[ks+1;d] i€ld)\(SU{ks})
d—1 d—1
' A(Zm+ks—d) : ( H @(zm—i-i—d)) C P (?J - Z Zm+i—d> dzm—l U dzm—i—l—d- (BB)
i=kg+1 i=1

To bound (B.3]), we first give some estimate on the following

H d—j+1

j=kg+1 Y Fm+(-1)-d

00 0o d—1 kS d—1
<K / e / < H Qp(zm+zd)> R4 ((y - Z Zm+id> - Z zm+id> dszl
—c0 —00 i=1 i=kg+1

i:ks+1

d—1 v=512) Fmtiod d—1 d—1
( H Qp(zm-&-i—d)) e (?/ - Z Zm-i—i—d) dzm-1 - dZmt (ksg+1)—d

i=kg+1 i=1

d—ks—1
T dZer(kerl)fd

1 B (y*Efi Zm+i—d)2
< e 2(d—kg) , (B4)

27T(d — k)g)
where in the last line we use the fact that the second last line is exactly the convolution of
d — kg standard Gaussian density function evaluated at y — ijl Zma+i—d, which is exactly
the probability density function of sum of d — kg independent standard Gaussian random

variables and thus is itself also Gaussian with mean 0 and variance d — kg, evaluated at
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Yy — Zf’jl Zm+i—a- Hence, (B.3)) is bounded above by

g ksl %
—J
/ H / ) H Sp(szrifd) H A<zm+i7d)
~OVN =g Jamt(-1)-d i€\ [ks+1id] i€ld)\(SU{ks})
y_szl_kl iﬂ;_‘.i_d 1 (y_zl_l i 2
RS _
A(Zmakg—d) - ———=¢ 2d=ks) Azmikg—d -+ A2Zmi1-d
/zm+(ks—1)—d ° 2m(d — k) ’
) C'vN C'VN
< N26/ / H O(Zmi—d) H A(Zmyi-d)
LCVN TZCVE N\ ieS\lks+1id) ield\(SULks})
kg—1

d2m+(ks—1)—d o dzmyp—g

C'vVN
< N727° H (/ SO(Zde)dZde)

ieS\[kg+1:q \7 ~C'VN
VN
H / A(Zmti-a)d2myi-d
ield]\(Su{ks}) \/~C'VN
« N-V2-QHANSUksNDS o N-1/2-8 (B.5)

. . . ks—1
where in the second line, we use the change of variable 2,4 kg—d = Zmtkg—a— (D21 Zmti—d+

y) and the fact that

7(zm+ks—d>2
2(d—kg) dzm—l—ks—d = 1. (BG)

[ 7

Since the number of proper subsets S of [d] is finite, then when kg < d, we have that
D1 (y) < N~Y279 by definition of D;(y) in (B.).

Appendix C. Case for d > 2

In this section, we want to obtain the following estimate on d*>My-v)(y)/dy* when d > 2

d2
d—yQMYW) (y)
00 ) d—2 d—2
- =1 ~m-4i—
< / / (H CP(zmﬂ'd)) ¥ <y 21_21 = d) dzm—2 " dZmy1—-d
J @ —o9 \i=1
d—2
[ee) o) d—2 d—2
+ / - / (H gp(zm+id)> © (y — (Z Zm+id) - Zm2> dzp—2 - dZpi1—d-
—00 —00 \ ;=1 i=1
d—2

(C.1)
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First, recall from that

d2
d—yQMy(m (?J)

v d-2 H—ng;_fjinlm—d d—2 oy, 2
< / H/ (®(2mi1-a)" (H @(Zmﬂ'—d)) (SO (y 1:21 e d))
~CVN jZ92mi(i-1)-a i=1
9*27;122%%% d—1 d—1
+ (/ (®(zmi1-a))™? (H <P(Zm+z'—d)> (—1) (y - zm—i—i—d)
Z i=1

m—2 i=1

d—1
2 (y - Z Zm+z’—d> dZm—l) dzpm—g - dzmii—q. (C.2)

i=1

Since y is an upper bound on Z?Zl Zmtied A Zm_2 < Zm_1, Zp, then we have z,_o <

(Zm142m)/2 < (Y= Zmpi-a)/2. When (y =327 2inyioa)/2 < 0, (1) is at most
d—

o((y — 07 2mria)/2). Hence,

d—2
Y= 1 Pmti—d

2 (P (zms1-a))™ " (1:[ @(me—d)) (=1) (y — ‘_ Zm+z'—d>

Zm—2 i=1 i=1

-1
P <y > Zm+i—d> dzm—1
=1
d—2 y Zd_g » 00 d—1
- i=1 “m+i—d
< (H QO(Zm-}-i—d)) © ( Cadlias ) / (y - ZZm—i—z‘—d)
i=1 —00 -
d-1
P (y -> Zerid) dzm—1
=1

e Yy — 24—2 Zm+i—d >
< (H Sp(zm—i-i—d)) ' ( Z:21 = ) / |Zm—1|¢(zm—1)dzm—17 (C?))
i=1 -

where in the last line we use the change of variable z,, 1 — —z,_1 + vy — Zf;f Zmti—d-
The integral [°°_|z|p(x)dz is the expected value of the absolute value of a standard normal

random variable, which is finite. Hence, when (y — 307 2, 4i-4)/2 < 0,

(@1 (H so(zmﬂ-d)) 1) <y - Zm>
d—1
g (y - Z Zm+z‘—d> dzpm—1

i=1

< (1:[ w(zmﬂ-d)) @ (y — 21;5 Zm*”) : (C.4)

1

d—2
Y=2i—1 *mti—d
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On the other hand, when (y — Z?:—f Zmi-d)/2 >0,

d—1 d—2 y— Zd—? Zmid y — 24_2 i
Yy — Z Zmti-d 2 Y — Z Zmtied — 1121 — z:21 > 0.
i=1 i=1

Hence, we find

d—2
Y=3, 1 Fmti—d

/ 2 (‘P(Zmﬂ—d))m_d (1:[ SD(Zerz‘—d)) (—1) (?J -
' (y - i Zm+id> dzm—1

d—2 v=S0 0 fmtica g1 i1
2
< (H @(zm-i-i—d)) / (y - Zm-l—i—d) © (y — Zm—i—i—d) dzm—l
=1 Zm—2 i—1 P
d—2 de1 :%
— (H @(Zm—‘ri—d)) SO <y - Z Zm-‘ri—d)
i=1

i=1 Zm—1=Zm—2

= (H Sp(zmﬂ'—d)) (SO (y — 21221 Zmﬂd) - (y — (Z zm+i_d) — zm_2>> .

(C.6)

U

—1
Zm+i—d
=1

1

Zm—1

Thus, if d > 2, regardless of whether (y—Zf:_f Zm+i-d)/2 < 0or (y—Zf:_f Zmti-d)/2 >0,

we have by combining (C.4) and (C.6) that

d—2
y_zizl Zm4i—d

[ @G (me)) (1) (y—zm)

< (f ¢(2m+id)> (s@ (y — Zi:_zl Zm”d> + (y - (i Zm+id> - zm2)> .

38



Hence, becomes

d2
d—yQMYUV) (y)

) T - i=1 “m+i—d
< / 11 / (H SD(Zm—H'—d)) (s@( 5 ))
~CVN 325 Zm(j-1)-a i

=1

- (1:[ QD(Zm-&-i—d)) (90 (y — Zi; zmﬂ_d) +o (y —~ <'_ Zm-l—z‘—d) - zm_2>)

Azm—o+ dzmi1—a

—o0 —oo \i=1
d—2

00 o~ [d—2 d—2
+ / e / <H SO(Zde)) Yly— (Z Zm+id> — Zm2> Azm—2+* dZmy1-d,
J—o —20, \ j=1
d—2

(C.8)

which is exactly the estimate we need.
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