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Abstract

Benford's law is the statement that in many real-world data set, the probability of having
digit d in base B, where 1 ≤ d ≤ B, as the �rst digit is logB ((d+ 1)/d). We sometimes refer
to this as weak Benford behavior, and we say that a data set exhibits strong Benford behavior
in base B if the probability of having signi�cand at most s, where s ∈ [1, B), is logB(s). We
examine Benford behaviors in two di�erent probabilistic model: stick and box fragmentation.
Building on the joint work of Becker et al. [1] on the single proportion stick fragmentation
model, we employ combinatorial identities on multinomial coe�cients to reduce the multi-
proportion stick fragmentation model to the single proportion model. We provide a necessary
and su�cient condition for the lengths of the stick fragments to converge to strong Benford
behavior along with a quanti�cation of the discrepancy from uniform distribution on [0, 1]
in terms of irrationality exponent. Then we answer a conjecture posed by Betti et al. [5] on
the high dimensional box fragmentation model. Using tools from order statistics, we prove
that under some conditions, faces of any arbitrary dimension of the box have total volume
converging to strong Benford's behavior.
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1. Introduction

At the beginning of the 20th century, astronomer and mathematician Simon Newcomb
[14] noticed an unusual pattern in the logarithmic tables he used at work. The early pages
of the books were far more worn than the later ones, suggesting that numbers starting with
smaller digits were consulted more often. From this, Newcomb inferred that people had a
tendency to encounter numbers beginning with 1 more frequently. Speci�cally, he found that
1 appeared as the leading digit about 30% of the time, 2 about 17%, with the frequency
decreasing for larger digits. Although he formulated a mathematical explanation for this
curious phenomenon, his discovery initially went largely overlooked.

It took another 57 years after Newcomb's discovery for physicist Frank Benford to make
the exact same observation as Newcomb: the �rst pages of logarithmic tables were used far
more than others. He formulated this law as follows.

De�nition 1. [4, Page 554] Data exhibits (weak) Benford behavior base B if the fre-
quency Fd of leading digit d is

Fd = logB

(
d+ 1

d

)
. (1)

Nowadays, Benford's Law is used in detecting many di�erent forms of fraud, and its
prevalence in the world fascinates not only mathematicians, but many other scientists as
well (to learn more about Benford's law and its many applications, we recommend [3, 13, 15]
to name a few).

In 1986, Lemons [12] proposed using Benford's law to analyze the partitioning of a con-
served quantity. Since then, driven by the potential application to nuclear fragmentation,
mathematicians and physicists have taken an interest in the Benford behavior of various
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fragmentation processes. Among these processes of interest is stick fragmentation. In a 1-
dimensional stick fragmentation model, one begins with a stick of length L. Draw p1 from a
probability distribution on (0, 1). This fragments the stick into two sub-sticks of lengths p1L
and (1 − p1)L. For each sub-stick, draw two probabilities p2 and p3 from the same distri-
bution. We perform this fragmentation process for a total of N stages, where at each stage
we fragment all the sub-sticks created during the previous stage according to probabilities.
Hence, by the end of N stages, there are 2N sticks. Of particular interest is whether or not
this fragmentation process converges to Benford's behavior.

1.1. Previous Work on Fragmentation

An important de�nition when studying a more precise statistical version of Benford
behavior is the notion of the signi�cand of a real number, i.e., its leading digits in scienti�c
notation.

De�nition 2. Given a positive real number x, we say that its signi�cand base B > 1,
denoted SB(x), is the unique real number SB(x) ∈ [1, B) such that x = SB(x) · Bk, where k
is an integer.

As is common practice with these techniques involving proofs of Benford behavior, we
de�ne a more general version of Benford behavior that allows for processes that do not
necessarily exhibit Benford behavior at �rst but converge to it in the limit.

De�nition 3. We say that a sequence of random variables X(n) converges to strong
Benford behavior base B if

P(SB(X
(n)) ≤ s) → logB(s) (2)

for all s ∈ [1, B]. Notice by compactness that this implies uniform convergence of (2).

An equivalent formulation to the above is the Uniform Distribution Characteriza-

tion, which is especially suited for investigation of products of random variables; see [6] for
a proof.

Proposition 1 (Uniform Distribution Characterization). [6] A sequence of random variables
X(n) converges to strong Benford behavior in base B if and only if

P
(
logB(X

(n)) mod 1 ≤ t
)
→ t, (3)

for all t ∈ [0, 1]. If (1) is satis�ed, then we say that logB(X
(n)) converges to being

equidistributed mod 1.

We may now state some previous results on stick fragmentation. Becker et al. [1] proved
a theorem regarding a �xed proportion 1-dimensional stick fragmentation process (compare
with their Theorem 1.11), which provides a necessary and su�cient condition for the pro-
cess to converge to strong Benford behavior and quanti�es the discrepancy from uniform
distribution mod 1 in terms of irrationality exponent. We �rst introduce some necessary
de�nitions.
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De�nition 4. [11] Suppose that x is a real number. The irrationality exponent µ of x
is the supremum of the set of µ such that 0 < |x − p/q| < 1/qµ is satis�ed by an in�nite
number of coprime integer pairs (p, q) with q > 0. If such a set does not exist, then we say
x has irrationality exponent ∞.

De�nition 5. [11] For a �nite sequence {xi}ni=1, denote by A([a, b), n) the number of xi's
such that xi mod 1 ∈ [a, b) for 0 ≤ a < b ≤ 1. Then we call the number

Dn := sup
0≤a<b≤1

∣∣∣∣A([a, b), n)n
− (b− a)

∣∣∣∣ (4)

the discrepancy of the sequence. It measures how far a sequence is from being uniform mod
1.

Now we are ready to state the theorem from [1].

Theorem 1. [1] Choose any p ∈ (0, 1). In Stage 1, cut a given stick at proportion p to
create two pieces of length p and 1 − p. In Stage 2, cut each resulting piece into two pieces
at the same proportion p. Perform this process for a total of N stages, generating 2N sticks
with N + 1 distinct lengths (assuming p ̸= 1/2) given by

x1 = LpN

x2 = LpN−1(1− p)

x3 = LpN−2(1− p)2

...

xN = Lp(1− p)N−1

xN+1 = L(1− p)N , (5)

where the frequency of xn is
(
N
n

)
/2N . Choose y so that By = (1 − p)/p, which is the ratio

of adjacent lengths (i.e., xi+1/xi). The decomposition process results in stick lengths that
converge to strong Benford's behavior base B if and only if y ̸∈ Q. If y has �nite irrationality
exponent, the discrepancy of the sequence {logB(xi)}Ni=1 can be quanti�ed in terms of that
exponent, and there is a power savings.

Theorem 1 suggests the possibility of examining another �xed proportion 1-dimensional
stick fragmentation model, where we cut a piece into an arbitrary m ≥ 2 number of pieces
according m−1 �xed proportions at each stage. Using new techniques involving multinomial
coe�cients to reduce the problem into the original �xed proportion 1-dimensional stick
fragmentation model in [1], this paper establishes the following result (see Section 2).

Theorem 2. For any integer m > 2, choose p1, p2, . . . , pm−1 ∈ (0, 1) such that p1+p2+ · · ·+
pm−1 < 1. Set pm := 1− (p1 + p2 + · · ·+ pm−1). At each stage, we cut all sticks according to
proportions p1, p2, . . . , pm−1 to create m pieces. After stage N , we have mN sticks in total,
of lengths

A
(N)
k1,k2,...,km

= pk11 pk22 · · · pkmm , (6)
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for 0 ≤ k1, k2, . . . , km ≤ N such that k1 + k2 + · · · + km = N . Let yi = logB(pi/pi+1) for
1 ≤ i ≤ m−1. Then the decomposition process results in stick lengths that converge to strong
Benford's behavior base B if and only if yi ̸∈ Q for some 1 ≤ i ≤ m− 1. Let κ0 be the least
irrationality exponent among all the irrational yi's. Then the discrepancy of the sequence{
logB(A

(N)
k1,k2,...,km

)
}

0≤k1,k2,...,km≤N
k1+k2+···+km=N

is O(N δ(−1/(κ0−1)+ϵ′)) for some δ > 0 and for every ϵ′ > 0.

Another possibility is to consider fragmentation processes in higher dimensions. This was
considered by Durmi¢ and Miller in [8] and Benford behavior was established in the case of
volume of an arbitrary m-dimensional box under mild assumptions. This was generalized
by Betti et al. in [5] to any d-dimensional volume of d-dimensional faces of an arbitrary
m-dimensional box, where d ≤ m. To state their results, we start with some de�nitions.

De�nition 6. We say that a set B ⊂ Rm is an m-dimensional box if it is a set of the
form [a1, b1]× · · · × [am, bm] ⊂ Rm, where ai < bi are �nite numbers.

De�nition 7. A linear-fragmentation process is a sequence of random variablesB0,B1,B2, . . .
such that the following holds.

1. The random variables Bi are m-dimensional boxes.

2. The random variables Bi form a descending chain B0 ⊃ B1 ⊃ B2 ⊃ . . . .

3. The distribution Bn+1 conditioned on Bn is some �xed distribution of independent
proportion cuts P1, . . . , Pm along each Cartesian axis. These Pi are �xed over all n ≥ 0.

4. The proportion cuts Pi are continuous random variables with �nite mean, variance,
and third moment.

5. E[logB Pi] = µP ∈ R and Var[logB Pi] = σ2
P > 0 for all 1 ≤ i ≤ m.

De�nition 8. Given an m-dimensional box B and a positive integer d ≤ m, we say the
d-volume of B =

∏
i[ai, bi] is the sum of the d-dimensional volumes of the d-dimensional

faces of B:

Vold(B) := 2m−d
∑
|I|=d

∏
i∈I

(bi − ai), (7)

where we are summing over all subsets I ⊂ {1, . . . ,m} with cardinality d.

[5] established a su�cient condition for strong Benford behavior to emerge (see their
Theorem 1.9), which involves the maximum d-dimensional volume of a d-dimensional face.

Theorem 3 (Maximum Criterion). [5] Let B := B0 be a �xed m-dimensional box and
B0 ⊃ B1 ⊃ · · · be a linear-fragmentation process whose proportion cuts Pi have probability
density functions fi : (0, 1) → (0,∞). Let

V
(N)
d := Vold(BN) (8)

be the sequence of volumes obtained from this process and m
(N)
d denote the maximum product

of d sides of BN . If m
(N)
d converges to strong Benford behavior base B as N → ∞, then so

too does V
(N)
d converge to strong Benford behavior base B as N → ∞.
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In the same paper, the Maximum Criterion was veri�ed for d = m for any linear frag-
mentation process, and for d = 1 in a special case.

Theorem 4. Let P
(j)
i be i.i.d. log-uniform distributions, i.e., logB P

(j)
i 's have uniform dis-

tributions. In the case of d = 1, i.e., perimeter, the maximum side length of each box

m
(N)
1 = max1≤i≤mP

(1)
i · · ·P (N)

i (9)

converges to strong Benford behavior base B as N → ∞.

Hence, it was conjectured in the same paper (see Conjecture 4.1) that for any linear
fragmentation process, m(N)

d converges to strong Benford behavior.

Conjecture 1. [5] Every linear fragmentation process satis�es the Maximum Criterion in
all dimensions 1 ≤ d ≤ m.

We prove the conjecture for any m ≥ 2 and d ≤ m under some mild conditions on the
linear fragmentation process (see Section 3).

Theorem 5. Suppose that B0 ⊃ B1 ⊃ B2 ⊃ · · · is a linear fragmentation process on an
m-dimensional box for an arbitrary m ≥ 2, such that the proportion cut Pi at every stage
satis�es the following.

1. We have E[logB(Pi)] = 0 and Var[logB(Pi)] = 1.

2. We have logB(Pi) is supported on [−C,C], where C > 0 is a constant.

3. Suppose that P
(k)
i is a sequence of i.i.d. random variables ∼ Pi. De�ne the random

variable

Z
(N)
i :=

logB(P
(1)
i · · ·P (N)

i )√
N

. (10)

Then Z
(N)
i has probability density function f

Z
(N)
i

(zi) = φ(zi) + A(zi) and cumulative

density function F
Z

(N)
i

(zi) = Φ(zi) + B(zi), where φ(x) and Φ(x) are the probabil-

ity density function and cumulative density function of the standard normal N(0, 1),
A(x) = O(N−1/2−δ) and B(x) = O(N−δ) for some δ > 0.

Then this linear fragmentation process satis�es the condition of the Maximum Criterion for
any d ≤ m, i.e., m

(N)
d converges to strong Benford behavior base B as N → ∞ for any

d ≤ m, thus by Theorem 3, V
(N)
d converges to strong Benford behavior base B as N → ∞

for any d ≤ m.

2. Proof of Theorem 2

2.1. Preliminary

In [10], Fang, Irons, Lippelman and Miller proved that if yi ∈ Q for all 1 ≤ i ≤ m − 1,
then the distribution of the stick lengths does not follow Benford behavior as N → ∞. To
be exact, they were able to show that the distribution of the logarithms of the stick lengths
converges to a discrete distribution, contrary to a uniform distribution on [0, 1] which is an
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equivalent condition for convergence to strong Benford behavior by Uniform Distribution
Characterization 1. Hence, having yi ̸∈ Q for some 1 ≤ i ≤ m − 1 is a necessary condition
for the distribution of the stick lengths to follow Benford behavior.

For the remainder of this section, we show that having yi ̸∈ Q for some 1 ≤ i ≤ m− 1 is
also a su�cient condition for the distribution of the stick lengths to converge to Benford's
behavior. Since we can always reorder the pkii 's in the stick length A

(N)
k1,k2,...,km

:= pk11 pk22 · · · pkmm
and thus the order of yi's in the factorization, then it su�ces to show that the �rst exponent
y1 ̸∈ Q is a su�cient condition for the distribution of the stick lengths to converge to
Benford's behavior.

We know that after stage N , the number of sticks of length A
(N)
k1,k2,...,km

is equal to the
multinomial coe�cient (

k1 + k2 + · · ·+ km
k1, k2, . . . , km

)
=

(
N

k1, k2, . . . , km

)
. (11)

From the proof of Theorem , we know that the stick length A
(N)
k1,k2,...,km

has the factorization

A
(N)
k1,k2,...,km

= pk11 pk22 · · · pkmm =

(
p1
p2

)k1 (p2
p3

)k1+k2

· · ·
(
pm−1

pm

)∑m−1
j=1 kj

(pm)
N , (12)

which motivates us to de�ne the exponents yi = logB(pi/pi+1) for 1 ≤ i ≤ m − 1. Now, �x
an interval (a, b) ⊂ (0, 1). Let

χ(a,b)(x) := 1

(
logB(x) mod 1 ∈ (a, b)

)
(13)

be the indicator function for logB(x) mod 1 ∈ (a, b). Then after stage N , the probability
that a stick length mod 1 is in (a, b) equals

FN(a, b) :=
1

mN

∑
0≤k1,k2...,km≤N
k1+k2+···+km=N

(
N

k1, k2, . . . , km

)
χ(a,b)

(
m∏
i=1

pkii

)
. (14)

Our goal is to prove that as N → ∞,

F (a, b) := lim
N→∞

FN(a, b) = b− a, (15)

which is a su�cient condition for Benford behavior.

2.2. Combinatorial identities

The key steps to our proof are two combinatorial identities related to multinomial coef-
�cients, which we present and prove below. We �rst review the multinomial coe�cients.

De�nition 9. Suppose that n, k1, k2, . . . , km ≥ 0 and k1 + · · · + km = n, then we de�ne the
multinomial coe�cients by (

n

k1, k2, . . . , km

)
:=

n!

k1!k2! · · · km!
. (16)
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The following identity on the factorization of multinomial coe�cients allows us to express
multinomial coe�cients in terms of product of binomial coe�cients. As we shall see, this
forms the key ingredient that reduces our multi-proportion problem into the original single-
proportion problem in [1].

Lemma 1. [16] For m ≥ 1,(
k1 + k2 + · · ·+ km

k1, k2, . . . , km

)
=

m∏
i=1

(
k1 + · · ·+ ki

ki

)
. (17)

The proof for the identity above is a straightforward induction through the expansion of
the multinomial and binomial coe�cients. Below is another identity that is especially useful
later for evaluating sums of multinomial coe�cients.

Lemma 2. [16] For N ∈ Z≥0 and m ∈ Z>0,

mN =
∑

0≤k1,k2,...,km≤N
k1+k2+···+km=N

(
N

k1, k2, . . . , km

)
=

∑
0≤k1,...,km−1≤N

k1+k2+···+km−1=N

2k1
(

N

k1, k2, · · · , km−1

)
. (18)

The most straightforward proof of the identity above relies on two di�erent ways of
representing and expanding mN : one as (1 + · · ·+ 1︸ ︷︷ ︸

N

)N and the other as (2 + 1 + · · ·+ 1︸ ︷︷ ︸
N − 2

)N .

See [16] for more.

2.3. Truncation

We prove that for any ϵ ∈ (0, 1), the contribution to FN(a, b) of multinomial coe�cients
with k1 + k2 < N ϵ is negligible. This allows us to only consider k1 + k2 that are su�ciently
large for these stick lengths Ak1,k2,...,km .

Proposition 2. For any ϵ ∈ (0, 1),∑
0≤k1,k2...,km≤N
k1+k2+···+km=N

k1+k2<Nϵ

(
N

k1, k2, . . . , km

)
≤ (m− 2)NNNϵ+2. (19)

Proof. We know that if k1 + k2 + · · ·+ km = N , then(
N

k1, k2, . . . , km

)
=

N(N − 1) · · · (N − (k1 + k2) + 1)

k1!k2!
· (N − (k1 + k2))!

k3!k4! · · · km!

≤ Nk1+k2 ·
(
N − (k1 + k2)

k3, k4, . . . , km

)
. (20)
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Hence, ∑
0≤k1,k2,...,km≤N
k1+k2+···+km=N

k1+k2<Nϵ

(
N

k1, k2, . . . , km

)

=
∑

0≤k1,k2<Nϵ

k1+k2<Nϵ

Nk1+k2
∑

0≤k3,k4,...,km≤N−(k1+k2)
k3+k4+···+km=N−(k1+k2)

(
N − (k1 + k2)

k3, k4, . . . , km

)

≤ (m− 2)N
∑

0≤k1,k2<Nϵ

k1+k2<Nϵ

Nk1+k2

≤ (m− 2)N(N ϵ)2NNϵ ≤ (m− 2)NNNϵ+2. (21)

We know the probability that a stick length pk11 pk22 · · · pkmm satis�es k1 + k2 < N ϵ is

1

mN

∑
0≤k1,k2...,km≤N
k1+k2+···+km=N

k1+k2<Nϵ

(
N

k1, k2, . . . , km

)
. (22)

According to Proposition 2, we have that (22) is bounded above by ((m − 2)/m)NNNϵ+2.
Hence, the logarithm of the probability is bounded above by

log

((
m− 2

m

)N

NNϵ+2

)
= N log

(
m− 2

m

)
+ (N ϵ + 2) log(N). (23)

It is clear that (23) goes to −∞ as N → ∞. Thus the probability goes to 0 as N →
∞. So it su�ces to consider the case where k1 + k2 ≥ N ϵ. Now, �x k(N) ≥ N ϵ and
let 0 ≤ k1, k2 ≤ k(N) with k1 + k2 = k(N) and 0 ≤ k3, k4, . . . , km ≤ N − k(N) with
k3 + k4 + · · · + km = N − k(N). By [1], we know that the frequency k1 of stick length
A

(N)
k1,k2,...,km

= pk11 pk22 . . . pkmm follows a binomial distribution with mean k(N)/2 and standard

deviation
√

k(N)/2. Pick some δ ∈ (0, ϵ/10). We see that it su�ces to consider cases where
|k1 − k(N)/2| < (⌈N δ⌉

√
k(N))/2, because the probability that k1 is outside this range is

asymptotically small by Chebyshev's inequality:

P

(∣∣∣∣k1 − k(N)

2

∣∣∣∣ ≥
⌈N δ⌉

√
k(N)

2

)
≤ 1

⌈N δ⌉2
. (24)

2.4. Near uniform probability within small intervals

We keep the same notation and de�nition and �x ϵ, δ, k(N) := k1 + k2, k3, k4, . . . , km as
before. Our goal is to prove that the stick length A

(N)
k1,k2,...,km

is roughly uniformly distributed

over small intervals of k1. Since ⌈N δ⌉ = o(⌈N δ⌉⌈
√

k(N)/2⌉), we can evenly divide the range
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of k1 between k(N)/2 ± ⌈N δ⌉⌈
√
k(N)/2⌉ into intervals of ⌈N δ⌉ values of k1, where the ℓth

interval starts with k1,ℓ = k1,ℓ,0 and ranges over k1,ℓ,i for 0 ≤ i ≤ ⌈N δ⌉ − 1, as de�ned below:

k1,ℓ := fℓ

(
k(N)

2

)
+ ℓ⌈N δ⌉,

k1,ℓ,i := fℓ

(
k(N)

2

)
+ ℓ⌈N δ⌉+ i, 0 ≤ i ≤ N δ − 1, (25)

where fℓ(·) := ⌈·⌉ when ℓ ≥ 0 and fℓ(·) := ⌊·⌋ when ℓ < 0. We see that ℓ ranges from
−⌈
√

k(N)/2⌉ to ⌈
√

k(N)/2⌉. Note that we are using the �oor and the ceiling functions to
ensure that f1,ℓ,i's have integer values. For convenience, we will make a slight abuse of nota-
tion from now on to drop the �oor and the ceiling signs, as they have negligible e�ect on our

calculation. We want to show that the di�erence
∣∣∣(k(N)

k1,ℓ,i

)
−
(
k(N)
k1,ℓ,j

)∣∣∣ is asymptotically smaller

than
(
k(N)
k1,ℓ

)
uniformly for all 0 ≤ i < j ≤ N δ − 1, which would imply that the stick length is

roughly uniformly distributed over small intervals of k1. Since the binomial distribution is
symmetric around its mean, it su�ces to look at ℓ ≥ 0. Moreover, the probability density
function is monotonically decreasing to the right of the mean, the di�erence is uniformly
bounded within each interval and∣∣∣∣(k(N)

k1,ℓ,i

)
−
(
k(N)

k1,ℓ,j

)∣∣∣∣ ≤
∣∣∣∣(k(N)

k1,ℓ

)
−
(
k(N)

k1,ℓ+1

)∣∣∣∣ . (26)

We follow Section (5.52) of [1] to obtain a bound for the di�erence.

Proposition 3. For ℓ ≤
√

k(N)/2,∣∣∣∣(k(N)

k1,ℓ

)
−
(
k(N)

k1,ℓ+1

)∣∣∣∣ ≤ O

((
k(N)

k1,ℓ

)
·N− 3ϵ

10

)
. (27)

Since the proof follows similar argument to Section (5.52) of [1], we leave the proof details
to Appendix A.

2.5. Equidistribution within small intervals

In this subsection, we want to show that for �xed k(N), k3, . . . , km, logarithm base B of
the stick length logB(A

(N)
k1,ℓ,i,k2,...,km

) for 0 ≤ i ≤ ⌈N δ⌉ − 1 converges to being equidistributed
mod 1, in the sense that logarithm of the stick length is thought of as a random variable
that takes value in logB(A

(N)
k1,ℓ,i,k2,...,km

) for 0 ≤ i ≤ ⌈N δ⌉−1 with equal probabilities. We �rst
state the following theorem which provides an easy criterion for checking equidistribution
mod 1.

Lemma 3 (Weyl's Criterion). [17] A sequence {an}∞n=1 is equidistributed mod 1 if and only
if for all nonzero integers ℓ,

lim
n→∞

1

n

n∑
j=1

e2πiℓaj . (28)

10



Now, notice for �xed k(N) and ℓ, logB(A
(N)
k1,ℓ,i,k2,...,km

) forms an arithmetic progression

over the ℓth interval of k1 with common di�erence logB(p1/p2) ∈ Q. Then equidistribution
mod 1 is a direct consequence of the following corollary of Lemma 3.

Corollary 1. [11] For any a ∈ R, the arithmetic progression {a+ nd}∞n=1 is equidistributed
mod 1 if and only if d ̸∈ Q.

Corollary 1 su�ces to establish convergence to equidistribution mod 1 of logB(A
(N)
k1,ℓ,i,k2,...,km

).
However, it does not provide any quantitative measure of the discrepancy from uniform distri-
bution on [0, 1]. It turns out that the key ingredient behind this quanti�cation is irrationality
exponent. We restate the de�nition here.

De�nition 10. [11] Suppose that x is a real number. The irrationality exponent µ of x
is the supremum of the set of µ such that 0 < |x − p/q| < 1/qµ is satis�ed by an in�nite
number of coprime integer pairs (p, q) with q > 0. If such a set does not exist, then we say
x has irrationality exponent ∞.

Since Q is dense in R, then every real number can be approximated by rational numbers.
However, what di�erentiates them is how well they can be approximated. Irrationality
exponent measures exactly how well a real number can be approximated by rational numbers.
The bigger the irrationality exponent, the �ner the rational approximation can be. The
following are some well-known facts about irrationality exponent, which comes handy later
in this section.

Proposition 4. [11] The irrationality exponent of any rational number is 1. As a conse-
quence of Dirichlet's approximation theorem, which states that for any irrational number
x, ∣∣∣∣x− p

q

∣∣∣∣ <
1

q2
(29)

for in�nitely (p, q) where p and q are coprime, the irrationality exponent of any irrational
number is at least 2. Further more, any algebraic irrational (irrational numbers that are
zeros of polynomials over Q) has irrationality exponent exactly 2.

We now state a theorem that quanti�es discrepancy of the logarithm of the stick length
in terms of irrationality exponent.

Theorem 6. [11, Theorem 3.2] Let κ be the irrationality exponent of logB(p1/p2) and

Jℓ(a, b) ⊂ {0, 1, . . . , N δ − 1} be the set of indices i such that logB(A
(N)
k1,ℓ,i,k2,...,km

) mod 1 is

in (a, b). If κ < ∞, then

|Jℓ(a, b)| = (b− a)N δ +O
(
N δ(1− 1

κ−1
+ϵ′)
)
, (30)

for every ϵ′ > 0 and there is a power saving with the error term. The error term is optimal
in the sense that ∣∣∣∣Jℓ(a, b)N δ

− (b− a)

∣∣∣∣ = Ω
(
N δ(− 1

κ−1
)−ϵ′
)

(31)

for every ϵ′ > 0. If κ = ∞, then

|Jℓ(a, b)| = (b− a)N δ + o(N δ). (32)

11



Note that [11] has a di�erent convention for irrationality exponent and if the irrationality
exponent of x is µ in our de�nition, then it is µ− 1 in their de�nition. This is the reason for
the change made to the presentation of Theorem [11], where there is a −1/(κ − 1) instead
of a 1/κ in the exponent.

2.6. Evaluation of sums within and across intervals

We �rst proceed to our calculation with the case where logB(p1/p2) has a �nite irra-
tionality exponent κ < ∞. For �xed k(N) := k1 + k2, k3, k4, . . . km, and ℓ ≤

√
k(N)/2, we

�rst count the number of lengths A(N)
k1,ℓ,i,k2,...,km

such that logB(A
(N)
k1,ℓ,i,k2,...,km

) mod 1 is in (a, b)

within the ℓth interval. By de�nition, this is given by∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
. (33)

By Proposition 3 and Section 2.5, we have∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
=

∑
i∈Jℓ(a,b)

{(
k(N)

k1,ℓ

)
+O

((
k(N)

k1,ℓ

)
N− 3ϵ

10

)}

=

{(
k(N)

k1,ℓ

) ∑
i∈Jℓ(a,b)

1

}
+O

(k(N)

k1,ℓ

)
N− 3ϵ

10

∑
i∈Jℓ(a,b)

1


= (b− a)N δ

(
k(N)

k1,ℓ

)
+O

((
k(N)

k1,ℓ

)
N δ(1− 1

κ−1
+ϵ′)
)
. (34)

We justify the error term in the last line of (34). Since κ is the irrationality exponent of an
irrational number, then κ ≥ 1 (see [2]). Also, ϵ′ > 0, so −1/2 < −1/(κ− 1) + ϵ′. Moreover,
for some proper choice of ϵ′, we have −1/(κ − 1) + ϵ′ < 0. Combining these with the fact
that δ ∈ (0, ϵ/10) gives the dominant error term in the last line of (34).

Now, we count the number of stick lengths A(N)
k1,ℓ,i,k2,...,km

such that logB(A
(N)
k1,ℓ,i,k2,...,km

) mod
1 is in (a, b) over all the intervals. By the truncation in Section 2.3 the main term comes
from the sum over ℓ from −

√
k(N)/2 to

√
k(N)/2. The number is given by

k(N)/(2Nδ)∑
ℓ=−k(N)/(2Nδ)

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
=

√
k(N)/2∑

ℓ=−
√

k(N)/2

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
+

∑
|ℓ|>

√
k(N)/2

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
.

(35)

Using (24), we can provide an upper bound on the second sum on the RHS of (35):∑
|ℓ|>

√
k(N)/2

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
≤ P

(∣∣∣∣k1 − k(N)

2

∣∣∣∣ ≥
N δ
√

k(N)

2

)
·
∑

0≤k1≤N

(
k(N)

k1

)

= P

(∣∣∣∣k1 − k(N)

2

∣∣∣∣ ≥
N δ
√

k(N)

2

)
· 2k(N) = O

(
2k(N)

N2δ

)
.

(36)
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On the other hand, we apply (34) to the �rst sum on the RHS of (35):

√
k(N)/2∑

ℓ=−
√

k(N)/2

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
=

√
k(N)/2∑

ℓ=−
√

k(N)/2

(b− a)N δ

(
k(N)

k1,ℓ

)

+O


√

k(N)/2∑
ℓ=−

√
k(N)/2

(
k(N)

k1,ℓ

)
N δ(1− 1

κ−1
+ϵ′)

 . (37)

By (36) and (5.17) and (5.18) of [1], by choosing q = N δ, we have

√
k(N)/2∑

ℓ=−
√

k(N)/2

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
= (b− a)2k(N) +O

(
2k(N)N δ(− 1

κ−1
+ϵ′)
)
. (38)

Substituting (36) and (38) into (35) yields

k(N)/(2Nδ)∑
ℓ=−k(N)/(2Nδ)

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)
= (b− a)2k(N) +O

(
2k(N)N δ(− 1

κ−1
+ϵ′)
)
. (39)

Finally, we sum over all k(N), k3, k4, . . . , km, which gives us the total number of lengths
A

(N)
k1,k2,...,km

such that logB(A
(N)
k1,k2,...,km

) mod 1 is in (a, b). We break the sum based on whether
k(N) ≥ N ϵ or not. For k(N) ≥ N ϵ, we apply (39):

∑
0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

k(N)≥Nϵ

(
N

k(N), k3, k4, . . . , km

) k(N)/(2Nδ)∑
ℓ=−k(N)/(2Nδ)

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)

= (b− a)
∑

0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

k(N)≥Nϵ

2k(N)

(
N

k(N), k3, k4, . . . , km

)

+O

N δ(− 1
κ−1

+ϵ′)
∑

0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

k(N)≥Nϵ

2k(N)

(
N

k(N), k3, k4, . . . , km

)
 . (40)
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Note that by Lemma 2 ∑
0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

k(N)≥Nϵ

2k(N)

(
N

k(N), k3, k4, . . . , km

)

= mN −
∑

0≤k1,k2,...,km≤N
k1+k2+···+km=N

k1+k2<Nϵ

k1+k2∑
k1=0

(
N

k1, k2, . . . , km

)

= mN +O((m− 2)NNNϵ+2), (41)

where in the last line, we apply Proposition 2. Substituting (41) into (40) gives

∑
0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

k(N)≥Nϵ

(
N

k(N), k3, k4, . . . , km

) k(N)/(2Nδ)∑
ℓ=−k(N)/(2Nδ)

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)

= (b− a)mN +O
(
(m− 2)NNNϵ+2 +mNN δ(− 1

κ−1
+ϵ′) + (m− 2)NNNϵ+2N δ(− 1

κ−1
+ϵ′)
)

= (b− a)mN +O
(
mNN δ(− 1

κ−1
+ϵ′)
)
. (42)

For k(N) < N ϵ, by Lemma 17 and Proposition 2 we have

∑
0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

k(N)<Nϵ

(
N

k(N), k3, k4, . . . , km

) k(N)/(2Nδ)∑
ℓ=−k(N)/(2Nδ)

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)

≤
∑

0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

k(N)<Nϵ

(
N

k(N), k3, k4, . . . , km

) k(N)∑
k1=0

(
k(N)

k1

)

=
∑

0≤k1,k2,...,km≤N
k1+k2+···+km=N

k1+k2<Nϵ

(
N

k1, k2, . . . , km

)
= O

(
(m− 2)NNNϵ+2

)
. (43)

Combining (42) and (43), we have

∑
0≤k(N),k3,k4,...,km≤N
k(N)+k3+k4+···+km=N

(
N

k(N), k3, k4, . . . , km

) k(N)/(2Nδ)∑
ℓ=−k(N)/(2Nδ)

∑
i∈Jℓ(a,b)

(
k(N)

k1,ℓ,i

)

= (b− a)mN +O
(
N δ(− 1

κ−1
+ϵ′)mN +NNϵ+2(m− 2)N

)
= (b− a)mN +O

(
N δ(− 1

κ−1
+ϵ′)mN

)
, (44)
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After dividing by mN , the total number of sticks after stage N , we arrive at

FN(a, b) = b− a+O
(
N δ(− 1

κ−1
+ϵ′)
)
. (45)

We have shown that if logB(p1/p2) has a �nite irrationality exponent κ, then the logarithm
of the stick lengths is equidistributed mod 1, and thus the stick lengths converge to the
Benford distribution. Moreover, the discrepancy between the distribution of the logarithm
of the stick length and uniform distribution mod 1 is quanti�ed in terms of the irrationality
exponent of logB(p1/p2). Equation (45) tells us that the smaller the irrationality exponent,
the smaller the discrepancy is (thanks to the guarantee that the error term is optimal), and
the closer the distribution of the stick length is to the Benford distribution. If log(p1/p2)
has in�nite irrationality exponent, the calculation is exactly the same, except that we start
with the error term o(N δ) instead of O(N δ(1− 1

κ−1
+ϵ′)) in Section 2.5, and so we end up with

the FN(a, b) = b− a+ o(1).
Thus, this establishes the strong Benford behavior of �xed multi-proportion 1-dimensional

stick fragmentation process when yi ̸∈ Q for some 1 ≤ i ≤ m − 1. On a �nal note, recall
from Section 2.1 our choices of the order of p1, p2, . . . , pm and thus factorization are arbitrary.
Hence, to obtain an optimal error term, we simply need to choose an order of p1, p2, . . . , pm
such that logB(p1/p2) is irrational and its irrationality exponent is minimized. Let κ0 be the
irrationality exponent of logB(p1/p2). Then we have

FN(a, b) = b− a+O

(
N

δ
(
− 1

κ0−1
+ϵ′

))
. (46)

3. Proof of Theorem 5

3.1. Preliminary

In this section, we prove Theorem 5, i.e., resolve Conjecture 4.1 of [5] that we mentioned
in Section 1 under some mild conditions. Let us �rst recall the conjecture.

Conjecture 2. Every linear fragmentation process satis�es the maximum criterion in all
dimensions 1 ≤ d ≤ m.

[5] has veri�ed the conjecture in the case of d = 1 and arbitrary m for i.i.d. log-uniform
distributions, i.e., the proportion at which each dimension is cut is Pi, where logPi ∼
Uniform(a, b) and a < b ≤ 0. They decide to normalize Pi to Uniform(−

√
3,
√
3) with

mean 0 and variance 1, which simpli�es the calculation later on and does not a�ect the
nature or the solution to the problem. After stage N , the side length of the ith dimension of
the box, after taking logarithm and normalizing, is

Z
(N)
i :=

logB(P
(1)
i · · ·P (N)

i )−NµP√
NσP

=
logB(P

(1)
i · · ·P (N)

i )√
N

. (47)
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By the CLT, Z(N)
i converges to N(0, 1). Moreover, Lemma 3.1 states that if f

Z
(N)
i

(z) is the

probability density function of Z(N)
i and φ(z) is the probability density function of N(0, 1),

then for all z ∈ [−
√
3N,

√
3N ] and any ϵ > 0, we have

f
Z

(N)
i

(zi) = φ(zi) +O(N−1+4ϵ), (48)

where

φ(x) :=
1√
2π

e−x2/2. (49)

Due to the presence of the error term, to establish the strong Benford behavior of the process,
they need to rely on the fact that the distributions for the cuts are �nitely supported with
uniformly bounded supports. They also need to rely on the fact that the exponent of the
error term is less than −1/2 for su�ciently small ϵ > 0, which allows the error term from
integrating f

Z
(N)
i

(z) over the support to be asymptotically 0.

For the rest of this paper, we prove Conjecture 4.1 of [5] for any m ≥ 2 and d ≤ m.
Physically, this means that we consider any arbitrary dimensional volume of faces of that
dimension of the m-dimensional box. We assume that the log(Pi) are i.i.d., have mean 0
and variance 1, are �nitely supported with support [−C,C], and that the probability density
function (PDF) of Z(N)

i is f
Z

(N)
i

(zi) = φ(zi) + A(zi), where A(zi) = O(N−1/2−δ) for some

δ > 0. We also assume that the cumulative density function (CDF) of Z(N)
i is given by

F
Z

(N)
i

(zi) = Φ(zi) + B(zi), where Φ is the CDF of N(0, 1) and B(zi) = O(N−δ) (for an

example of a distribution satisfying these condition, see [5]). We prove that the maximum
d-dimensional volume m

(N)
d of a d-dimensional face of the m-dimensional box converges to

strong Benford behavior. Once we prove this statement, then by the maximum criterion
established in [5], we have that the d-dimensional volume V (N)

d of the d-dimensional faces of
the m-dimensional box also converges to strong Benford behavior.

The key idea behind our proof is the use of the Mean Value Theorem and a recursive
method of change of variables and consistent cancellation that provide upper bounds on the
error terms in terms of Gaussian densities. We shall explore this more in Section 3.6.

To begin, we use knowledge from order statistics to �nd the PDF of m(N)
d .

De�nition 11. Suppose that X1, X2, . . . , Xk are random variables, and []i returns the ith

largest number among a list (a1, a2, . . . , ak) of real numbers. For each outcome ω in the
sample space Ω, we de�ne

X(k−i+1)(w) := [(X1(w), X2(w), . . . , Xk(w))]k−i+1. (50)

We say that the random variable X(k−i+1) is the ith order statistics, or the ith largest
random variable among X1, X2, . . . , Xk. Hence, as random variables, X(1) ≤ X(2) ≤ · · · ≤
X(k).

Let S(N)
i be the side length of the ith dimension of the m-dimensional box after stage N .

Then the maximum volume of a d-dimensional face is the product of the longest d sides of
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the box, i.e., m(N)
d =

∏d
i=1 S

(N)
(m+1−i). We de�ne

Y (N) :=
logB(m

(N)
d )√

N
=

d∑
i=1

logB(S
(N)
(m+1−i))√
N

=
d∑

i=1

Z
(N)
(m+1−i), (51)

To �nd the PDF of Y (N), we need the joint PDF of Z(N)
(m+1−i) for all 1 ≤ i ≤ d. This is a

standard question in order statistics.

Proposition 5. [7] For i.i.d. random variables X1, . . . , Xk with PDF f(x) and CDF F (x),
the joint PDF of X(i), . . . , X(k) where 1 ≤ i ≤ k is given by

fX(i),...,X(k)
(xi, . . . , xk) = Ci

kf(xi) · · · f(xk)(F (xi))
i−1, (52)

where Ci
k := k!/(i− 1)!.

Thus, in our case, the joint PDF of Z(N)
(m+1−i) for all 1 ≤ i ≤ d is

fZ(m+1−d),...,Z(m)
(zm+1−d, . . . , zm)

= Cm+1−d
m (Φ(zm+1−d) +B(zm+1−d))

m−d
d∏

i=1

(φ(zm+i−d) + A(zm+i−d)) . (53)

By binomial expansion,

(Φ(zm+1−d) +B(zm+1−d))
m−d =

m−d∑
j=0

(
m− d

j

)
(Φ(zm+1−d))

m−d−j(B(zm+1−d))
j. (54)

Note that B(zm+1−d) = O(N−δ) and 0 ≤ Φ(x) ≤ 1, which we shall constantly use without
reference for the remainder of the paper. Then any term where j > 1 is at most of the same
magnitude as B(zm+1−d). We have

(Φ(zm+1−d) +B(zm+1−d))
m−d = (Φ(zm+1−d))

m−d +O(B(zm+1−d)). (55)

We make a slight abuse of notation here to write the error term above as B(zm+1−d), which
does not change the order of magnitude of the error term. Hence,

fZ(m+1−d),...,Z(m)
(zm+1−d, . . . , zm)

= Cm+1−d
m

(
Φ(zm+1−d)

m−d +B(zm+1−d)
) d∏

i=1

(φ(zm+i−d) + A(zm+i−d)) . (56)

3.2. PDF of Y (N)

In this section, we �nd the PDF of Y (N) as de�ned in (53). The CDF FY (N)(y) of
Y (N) is given by integrating over the appropriate region in Rd, that is, over all the values
(zm+1−d, . . . , zm) of (Z

(N)
(m+1−d), . . . , Z

(N)
(m) ) that sums to y. We know that Z

(N)
(m+1−d), . . . Z

(N)
(m)

are not independent, i.e., they have to satisfy Z
(N)
(m+1−d) ≤ · · · ≤ Z

(N)
(m) . In general, we know
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that any 1 ≤ j ≤ d, zm+j−d can take value from zm+(j−1)−d to (y−
∑j−1

i=1 zm+i−d)/(d− j+1).
The only exception is zm+1−d, whose upper bound is already correctly stated but the lower
bound is −C

√
N . Hence, we have

FY (N)(y)

=

∫ y
d

−C
√
N

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

fZ(m+1−d),...,Z(m)
(zm+1−d, . . . , zm)dzm · · · dzm+1−d, (57)

where we use the product of integrals to denote

d∏
j=k

∫ yj

zj

:=

∫ yk

zk

· · ·
∫ yj

zj

· · ·
∫ yd

zd

. (58)

We separate out the main term Cm+1−d
m Φ(zm+1−d)

m−d
∏d

i=1 φ(zm+i−d) of the joint PDF (56)
and denote it by

mY (N)(zm+1−d, . . . , zm) := Cm+1−d
m Φ(zm+1−d)

m−d

d∏
i=1

φ(zm+i−d). (59)

We also denote the error term of the joint PDF (56) by eY (N)(zm+1−d, . . . , zm). Let MY (N)(y)
and EY (N)(y) be the main term and the error term of FY (N)(y). Then

FY (N)(y) = MY (N)(y) + EY (N)(y)

MY (N)(y) =

∫ y
d

−C
√
N

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

mY (N)(zm+1−d, . . . , zm)dzm · · · dzm+1−d

EY (N)(y) =

∫ y
d

−C
√
N

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

eY (N)(zm+1−d, . . . , zm)dzm · · · dzm+1−d. (60)

We are now ready to �nd the PDF fY (N) of Y (N). We know that

fY (N)(y) =
d

dy
FY (N)(y) =

d

dy
MY (N)(y) +

d

dy
EY (N)(y). (61)

To di�erentiateMY (N)(y) and EY (N)(y), we apply the Leibniz integral rule for di�erentiate
under the integral sign.

Lemma 4. [9] Suppose that f(x, t) is a function such that both f(x, t) and df(x, t)/dx are
continuous in t and x in the xt-plane, and a(x) and b(x) are also continuously di�erentiable.
Then

d

dx

∫ b(x)

a(x)

f(x, t)dt = f(x, b(x)) · d

dx
b(x)− f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt. (62)
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For the rest of this paper, one can easily check the regularity conditions on f(x, t), a(x),
and b(x) each time we apply the Leibniz integral rule, so there will not be explicit mention
of the regularity conditions again. We �rst make some observations on the e�ect of d/dy on

∫ y
d

−C
√
N

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

g(zm+1−d, . . . , zm)dzm · · · dzm+1−d (63)

for any Riemann integrable function g(zm+1−d, . . . , zm). One can check that each application
of the Leibniz integral rule to (63) gives two integrals, one of which has the lower bound of
the integration coinciding with the upper bound of the integration and thus equals to 0. As
a result, we are always left with one integral that interchanges the order of the di�erentiation
and the integration signs. Eventually, (63) becomes

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

∂

∂y

(∫ y−
∑d−1

i=1 zm+i−d

zm−1

g(zm+1−d, . . . , zm)dzm

)
dzm−1 · · · dzm+1−d

=

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

g

(
zm+1−d, . . . , zm−1, y −

d−1∑
i=1

zm+i−d

)
dzm−1 · · · dzm+1−d.

(64)

Applying (64) to dMY (N)(y)/dy and dEY (N)(y)/dy, where MY (N)(y) and EY (N)(y) are as
de�ned in (60), we have

d

dy
MY (N)(y) =

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

mY (N)

(
zm+1−d, . . . , zm−1, y −

d−1∑
i=1

zm+i−d

)
dzm−1

· · · dzm+1−d

d

dy
EY (N)(y) =

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

eY (N)

(
zm+1−d, . . . , zm−1, y −

d−1∑
i=1

zm+i−d

)
dzm−1

· · · dzm+1−d. (65)

3.3. Outline of problem

We are ready to formulate our problem. We want to show that m
(N)
d converges to

strong Benford behavior, which is equivalent to showing that logB(m
(N)
d ) converges to be-

ing equidistributed mod 1. Hence, in terms of the probability density function fY (N)(y) of
Y (N) := logB(m

(N)
d )/

√
N , we can formulate our problem as to showing

FN(a, b) :=
dC·N−1∑
n=−dC·N

∫ b+n√
N

a+n√
N

fY (N)(y)dy ≈ b− a, (66)
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for all (a, b) ⊂ (0, 1) for su�ciently large N . Let the main term and the error term of FN(a, b)
be de�ned respectively as

MN(a, b) :=
dC·N−1∑
n=−dC·N

∫ b+n√
N

a+n√
N

d

dy
MY (N)(y)dy; (67)

EN(a, b) :=
dC·N−1∑
n=−dC·N

∫ b+n√
N

a+n√
N

d

dy
EY (N)(y)dy. (68)

Our goal is to show

MN(a, b) ≈ b− a, EN(a, b) ≈ 0. (69)

3.4. Upper bound on error term EN(a, b)
We want to show that the error term EN(a, b) is negligible. We start by giving some

bounds on dEY (N)(y)/dy from (65). Recall that eY (N)(zm+1−d, . . . , zm) is the error term of the
joint density function (56). Let [ℓ] be short hand for {1, . . . , ℓ}. Then

1

Cm+1−d
m

eY (N)(zm+1−d, . . . , zm)

= Φ(zm+1−d)
m−d

(
d∏

i=1

(φ(zm+i−d) + A(zm+i−d))−
d∏

i=1

φ(zm+i−d)

)

+B(zm+1−d)
d∏

i=1

(φ(zm+i−d) + A(zm+i−d))

=
(
Φ(zm+1−d)

m−d +B(zm+1−d)
)∑

S⊊[d]

(∏
i∈S

φ(zm+i−d)

) ∏
i∈[d]\S

A(zm+i−d)


+B(zm+1−d)

d∏
i=1

φ(zm+i−d)

≪
∑
S⊊[d]

(∏
i∈S

φ(zm+i−d)

) ∏
i∈[d]\S

A(zm+i−d)

+N−δ

d∏
i=1

φ(zm+i−d). (70)

We know from (65) that to bound dEY (N)(y)/dy, it su�ces to bound

D1(y) :=
∑
S⊂[d]
S ̸=[d]

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(∏
i∈S

φ(zm+i−d)

)

·

 ∏
i∈[d]\S

A(zm+i−d)

∣∣∣∣∣
zm=y−

∑d−1
i=1 zm+i−d

dzm−1 · · · dzm+1−d (71)
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as well as

D2(y) := N−δ

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

d∏
i=1

φ(zm+i−d)

∣∣∣∣∣
zm=y−

∑d−1
i=1 zm+i−d

dzm−1 · · · dzm+1−d,

(72)

because then we have dEY (N)dy ≪ D1(y)+D2(y). We �rst look at D1(y). Suppose that kS is
the largest index such that k ∈ [d] \ S. Such an index k exists, since S ̸= [d]. First, assume
that we have S's where kS = d. Then the integrand of (71) becomes(∏

i∈S

φ(zm+i−d)

) ∏
i∈[d]\S

A(zm+i−d)

∣∣∣∣∣
zm=y−

∑d−1
i=1 zm+i−d

=

(∏
i∈S

φ(zm+i−d)

) ∏
i∈[d−1]\S

A(zm+i−d)

A

(
y −

d−1∑
i=1

zm+i−d

)

≪ N− 1
2
−δ

(∏
i∈S

φ(zm+i−d)

) ∏
i∈[d−1]\S

A(zm+i−d)

 , (73)

where in the last line we use the fact that A(x) = O(N−1/2−δ). Note that the lower and
upper bounds on the interval of integration for each integral in (71) are O(

√
N), since

y, zm+1−d, . . . , zm−1 are all O(
√
N). Choose a constant C ′ such that C ′

√
N is an upper

bound on the upper bounds on the interval of integration for all the integrals in (71) and
−C ′

√
N is a lower bound on the interval of integration for all the integrals in (71). Hence,

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(∏
i∈S

φ(zm+i−d)

) ∏
i∈[d]\S

A(zm+i−d)

∣∣∣∣∣
zm=y−

∑d−1
i=1 zm+i−d

dzm−1 · · · dzm+1−d

≪ N−1/2−δ

∫ C′√N

−C′
√
N

· · ·
∫ C

√
N

−C′
√
N︸ ︷︷ ︸

d−1

(∏
i∈S

φ(zm+i−d)

) ∏
i∈[d−1]\S

N−1/2−δ

 dzm−1 · · · dzm+1−d

≪ N−1/2−δ−|[d−1]\S|δ
∏
i∈S

(∫ C′√N

−C′
√
N

φ(zm+i−d)dzm+i−d

)
≪ N−1/2−(1+|[d−1]\S|)δ ≪ N−1/2−δ, (74)

where in the last line we use the fact that∫ C′√N

−C′
√
N

φ(x)dx ≪
∫ ∞

−∞
φ(x)dx = 1, (75)
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which we shall use frequently without reference from now on. Since the number of subsets
S of [d] is �nite, then (71) gives us

D1(y) ≪ N−1/2−δ. (76)

The case when kS < d is similar, though more care is needed to identify the O(N−1/2−δ)
decay, which essentially comes from the A(zm+kS−d) term. With this in mind, using the same
method for the case when kS = d as well as the convolution formula for Gaussian PDF, we
can again show that D1(y) ≪ N−1/2−δ. We leave the details to Appendix B.

We now turn to D2(y) as de�ned in (72), which is relatively more straightforward to
bound. We have

D2(y) ≪ N−δ

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−1

d−1∏
i=1

φ(zm+i−d)φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1 · · · dzm+1−d. (77)

We recognize that the integral is the convolution of d standard Gaussian density functions.
We know that the convolution is the probability density function of sum of d i.i.d. standard
Gaussian random variables, which itself is also with mean 0 and variance d. Hence,

D2(y) ≪ N−δ 1√
2πd

e−y2/(2d). (78)

Thus,

d

dy
EY (N)(y) ≪ D1(y) +D2(y) ≪ N−δ 1√

2πd
e−y2/(2d) +N−1/2−δ. (79)

We are now ready to bound the error term EN(a, b) from (68):

EN(a, b) =
dC·N−1∑
n=−dC·N

∫ b+n√
N

a+n√
N

d

dy
EY (N)(y)dy

≪ N−δ

∫ dC
√
N

−dC
√
N

1√
2πd

e−y2/(2d)dy +

∫ dC·
√
N

−dC·
√
N

N−1/2−δdy ≪ N−δ. (80)

3.5. Strategy for remainder of proof

Our next task is to show that the main term MN(a, b) de�ned in (67) satis�es

MN(a, b) :=
dC·N−1∑
−dC·N

∫ b+n√
N

a+n√
N

d

dy
MY (N)(y)dy ≈ b− a. (81)

Our strategy is the following. First, we want to write the integral of dMY (N)(y)/dy over
each interval [(a+n)/

√
N, (b+n)/

√
N ] as the sum of a main term mn(a, b) that is constant

with respect to y within the interval and an error term en(a, b) for each n. Essentially, this
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shows that dMY (N)(y)/dy is almost constant within a small interval, incurring an negligible
cost that, as we shall prove, does not accumulate, i.e.,

Merr,N(a, b) =
dC·N−1∑
n=−dC·N

en(a, b) ≈ 0. (82)

Finally, we prove that the sum of the main term

Mmain,N(a, b) =
dC·N−1∑
n=−dC·N

mn(a, b) (83)

is a Riemann sum that converges to b− a. It then follows that

MN(a, b) = Mmain,N(a, b) +Merr,N(a, b) ≈ b− a. (84)

Thus, based on the estimate on the error term in (68),

FN(a, b) = MN(a, b) + EN(a, b) ≈ b− a, (85)

which establishes the equidistribution result.

3.6. Equidistribution within small interval

In this section, we show that dMY (N)(y)/dy is equidistributed within each small interval
[(a+n)/

√
N, (b+n)/

√
N ]. For each n, we write the integral over [(a+n)/

√
N, (b+n)/

√
N ]

in terms of a main term mn(a, b) that is constant with respect to y and an error term en(a, b),
i.e., ∫ b+n√

N

a+n√
N

d

dy
MY (N)(y)dy = mn(a, b) + en(a, b), (86)

where

mn(a, b) :=

∫ b+n√
N

a+n√
N

d

dy
MY (N)

(
n√
N

)
dy,

en(a, b) :=

∫ b+n√
N

a+n√
N

d

dy
MY (N)(y)−

d

dy
MY (N)

(
n√
N

)
dy. (87)

Since dMY (N)(n/
√
N)/dy is constant, then the main term mn(a, b) is

mn(a, b) =
b− a√

N

d

dy
MY (N)

(
n√
N

)
. (88)

We now quantify the error term. We start by providing an upper bound on∣∣∣∣ ddyMY (N)(y)−
d

dy
MY (N)

(
n√
N

)∣∣∣∣ , (89)
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for y ∈ [n/
√
N, (n+1)/

√
N ] ⊃ [(a+n)/

√
N, (b+n)/

√
N ]. As we shall see, dMY (N)(y)/dy is a

continuous function over [n/
√
N, (n+1)/

√
N ] and a di�erentiable function over (n/

√
N, (n+

1)/
√
N). By the Mean Value Theorem, for any y1, y2 ∈ [n/

√
N, (n + 1)/

√
N ] with y1 < y2,

we have

d

dy
MY (N)(y1)−

d

dy
MY (N)(y2) =

d2

dy2
MY (N)(cn)(y1 − y2) (90)

for some cn ∈ (y1, y2). Hence∣∣∣∣ ddyMY (N)(y1)−
d

dy
MY (N)(y2)

∣∣∣∣ ≤
∣∣∣∣ d2dy2

MY (N)(cn)

∣∣∣∣ |y1 − y2| ≤ 1√
N

∣∣∣∣ d2dy2
MY (N)(cn)

∣∣∣∣ .
(91)

We want to provide an upper on |d2MY (N)(y)/dy2| over the interval [n/
√
N, (n + 1)/

√
N ].

Recall from (65) that

d

dy
MY (N)(y) =

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

mY (N)

(
zm+1−d, . . . , zm−1, y −

d−1∑
i=1

zm+i−d

)
dzm−1

· · · dzm+1−d

=

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(Φ(zm+1−d))
m−d

d−1∏
i=1

φ(zm+i−d)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1 · · · dzm+1−d. (92)

Following the same procedure as shown in Section 3.2, we can again exchange the order of
di�erentiation and integration. Since the product in the integrand in (92) goes from j = 2
to d− 1, we need to discuss the cases when d = 2 and d > 2 separately. If d = 2,

d

dy
MY (N)(y) =

∫ y
2

−C
√
N

mY (N) (zm−1, y − zm−1) dzm−1. (93)

By the Leibniz integral rule and (59),

d2

dy2
MY (N)(y)

=
1

2
mY (N)

(y
2
,
y

2

)
+

∫ y
2

−C
√
N

∂

∂y
(mY (N)(zm−1, y − zm−1)) dzm−1

≪ φ
(y
2

)
+

∫ y
2

−C
√
N

(Φ(zm−1))
m−2φ(zm−1) · (−1) · (y − zm−1)φ(y − zm−1)dzm−1. (94)

We know that y is an upper bound on the value of zm−1 + zm, then y ≥ −2C
√
N , and

y/2 ≥ −C
√
N . We now break into cases when y ≤ 0 and y ≥ 0. When y ≤ 0, φ(zm−1) is at
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most φ(y/2) on [−C
√
N, y/2]. So (94) becomes

d2

dy2
MY (N)(y) ≪ φ

(y
2

)
+ φ

(y
2

)∫ ∞

−∞
|y − zm−1|φ(y − zm−1)dzm−1

= φ
(y
2

)
+ φ

(y
2

)∫ ∞

−∞
|zm−1|φ(zm−1)dzm−1 ≪ φ

(y
2

)
, (95)

where in the last line we use the fact that the integral
∫∞
−∞ |x|φ(x)dx is the expected value

of the absolute value of a standard normal random variable, which is �nite. When y ≥ 0, we
have

y − zm−1 ≥ y − y

2
=

y

2
≥ 0. (96)

Hence, (94) becomes

d2

dy2
MY (N)(y) ≪ φ

(y
2

)
+

∫ y
2

−C
√
N

(y − zm−1)φ(y − zm−1)dzm−1

= φ
(y
2

)
+ φ(y − zm−1)

∣∣∣∣∣
zm−1=

y
2

zm−1=−C
√
N

≪ φ
(y
2

)
+ φ

(
y + C

√
N
)
, (97)

where in the second line we employ the fact that
∫
(y−x)φ(y−x)dx = φ(y−x). Thus, if d = 2,

regardless of whether y ≤ 0 or y ≥ 0, d2MY (N)(y)/dy2 is on the order of φ(y/2)+φ(y+C
√
N).

This concludes the estimate of d2MY (N)(y)/dy2 for d = 2.
If d > 2, we repeatedly apply Leibniz integral rule as we have demonstrated in Subsection

3.4 to obtain

d2

dy2
MY (N)(y)

=

∫ y
d

−C
√
N

d−2∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

∂

∂y

(∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

mY (N)

(
zm+1−d, . . . , zm−1, y −

d−1∑
i=1

zm+i−d

)

dzm−1

)
dzm−2 · · · dzm+1−d

≪
∫ y

d

−C
√
N

d−2∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(Φ(zm+1−d))
m−d

(
d−2∏
i=1

φ(zm+i−d)

)(
φ

(
y −

∑d−2
i=1 zm+i−d

2

))2

+

(∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

(Φ(zm+1−d))
m−d

(
d−1∏
i=1

φ(zm+i−d)

)
(−1)

(
y −

d−1∑
i=1

zm+i−d

)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

)
dzm−2 · · · dzm+1−d. (98)

Now, similar to the case when d = 2, we estimate the second integrand in (98) by breaking
down into cases when (y −

∑d−2
i=1 zm+i−d)/2 ≤ 0 and (y −

∑d−2
i=1 zm+i−d) ≥ 0. We leave the
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details to Appendix C. Hence, we have d2MY (N)(y)/dy2 in (98) is bounded above by∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
dzm−2 · · · dzm+1−d

+

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

(
d−2∑
i=1

zm+i−d

)
− zm−2

)
dzm−2 · · · dzm+1−d.

(99)

We �rst obtain some estimate on the �rst integral of (99). The idea behind estimating this
integral is recursive uses of change of variables that lead to consistent cancellation. We �rst
do the change of variable zm−2 7→ zm−2 + (y −

∑d−3
i=1 zm+i−d)/5. We have∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
dzm−2 · · · dzm+1−d

≪
∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

e−
∑d−3

i=1
z2m+i−d
2 · e−

(zm−2+(y−
∑d−3

i=1
zm+i−d)/5)

2

2

· e−
1
4(−zm−2+4(y−∑d−3

i=1
zm+i−d)/5)

2

2 dzm−2 · · · dzm+1−d. (100)

Notice that in the expansion of the exponents, we get a cancellation of the term 2zm−2((y−∑d−3
i=1 zm+i−d)/5). Hence, (100) is bounded above by∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−3

e−
∑d−3

i=1
z2m+i−d
2 · e−

1
5(y−

∑d−3
i=1

zm+i−d)
2

2

(∫ ∞

−∞
e−

5
4 z2m−2

2 dzm−2

)
dzm−3 · · · dzm+1−d

≪
∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−3

e−
∑d−3

i=1
z2m+i−d
2 · e−

1
5(y−

∑d−3
i=1

zm+i−d)
2

2 dzm−3 · · · dzm+1−d (101)

We see that the estimate in (101) has a similar structure, which allows us to use induction
to estimate the interval. For an arbitrary k such that 1 ≤ k ≤ d− 2, we want to look at∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
k

e−
∑k

i=1 z2m+i−d
2 · e−

Ak(y−
∑k

i=1 zm+i−d)
2

2 dzm+k−d · · · dzm+1−d, (102)

where Ak > 0. Using the change of variable zm+k−d 7→ zm+k−d +
Ak

1+Ak
(y −

∑k−1
i=1 zm+i−d),
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(102) is bounded above by∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
k

e−
∑k−1

i=1
z2m+i−d
2 · e−

(zm+k−d+
Ak

1+Ak
(y−∑k−1

i=1
zm+i−d))

2

2

· e−
Ak(−zm+k−d+

1
1+Ak

(y−∑k−1
i=1

zm+i−d))
2

2 dzm+k−d · · · dzm+1−d. (103)

Expanding the exponents also gives a cancellation of the term

2Ak

1 + Ak

zm+k−d

(
y −

k−1∑
i=1

zm+i−d

)
. (104)

Hence, (102) is bounded above by∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
k

e−
∑k−1

i=1
z2m+i−d
2 · e−

Ak−1(y−
∑k−1

i=1
zm+i−d)

2

2 e−
(1+Ak)z2m+k−d

2 dzm+k−d · · · dzm+1−d, (105)

where

Ak−1 :=
A2

k

1 + A2
k

+
Ak

(1 + Ak)2
. (106)

Note that since Ak > 0, then Ak+1 > 0. Hence, (102) becomes bounded above by∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
k−1

e−
∑k−1

i=1
z2m+i−d
2 · e−

Ak−1(y−
∑k−1

i=1
zm+i−d)

2

2

(∫ ∞

−∞
e−

(1+Ak)z2m+k−d
2 dzm+k−d

)

dzm+(k−1)−d · · · dzm+1−d

≪
∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
k−1

e−
∑k−1

i=1
z2m+i−d
2 · e−

Ak−1(y−
∑k−1

i=1
zm+i−d)

2

2 dzm+(k−1)−d · · · dzm+1−d, (107)

Thus, by induction, (100) becomes bounded above by

e−(A0y2)/2, (108)

where A0 > 0 is recursively de�ned by (106) with Ad−2 = 1/4. Similarly, we can show by
induction that the second integral in (99) has the estimate∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)(
φ

(
y −

(
d−2∑
i=1

zm+i−d

)
− zm−2

))
dzm−2 · · · dzm+1−d

≪ e−(B0y2)/2 (109)
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for some B0 > 0. Hence, if d > 2, (99) becomes

d2

dy2
MY (N)(y) ≪ e−(A0y2)/2 + e−(B0y2)/2 ≪ e−(C0y2)/2, (110)

where C0 := min{A0, B0}. Recall from (97) that when d = 2,

d2

dy2
MY (N)(y) ≪ φ

(y
2

)
+ φ

(
y + C

√
N
)
. (111)

Thus, regardless of whether d = 2 or d > 2,

d2

dy2
MY (N)(y) ≪ e−

D0y
2

2 + e−
D0(y+C

√
N)2

2 , (112)

where D0 := min{C0, 1/4}. Note that e−D0y2/2 and φ(
√
D0(y + C

√
N)) each has only one

global extreme, at y = 0 and y = −C
√
N respectively. Hence, locally on [n/

√
N, (n+1)/

√
N ]

the functions are monotonic and can be bounded above by the sum of its values at the two
end points. Hence, for all n,

d2

dy2
MY (N)(y) ≪ e−

D0

(
n√
N

)2

2 + e−
D0

(
n+1√

N

)2

2 + e−
D0

(
n√
N

+C
√
N

)2

2 + e−
D0

(
n+1√

N
+C

√
N

)2

2 , (113)

for all y ∈ [n/
√
N, (n+1)/

√
N ]. Thus, returning to (91), for all y1, y2 ∈ [n/

√
N, (n+1)/

√
N ],∣∣∣∣ ddyMY (N)(y1)−

d

dy
MY (N)(y2)

∣∣∣∣
≪ 1√

N

e−
D0

(
n√
N

)2

2 + e−
D0

(
n+1√

N

)2

2 + e−
D0

(
n√
N

+C
√
N

)2

2 + e−
D0

(
n+1√

N
+C

√
N

)2

2

 . (114)

Thus, the error term en(a, b) as de�ned in (87) is bounded by

en(a, b) ≤
∫ b+n√

N

a+n√
N

∣∣∣∣ ddyMY (N)(y)−
d

dy
MY (N)

(
n√
N

)∣∣∣∣ dy
≪

(
1√
N

)2
e−

D0

(
n√
N

)2

2 + e−
D0

(
n+1√

N

)2

2 + e−
D0

(
n√
N

+C
√
N

)2

2 + e−
D0

(
n+1√

N
+C

√
N

)2

2

 . (115)

3.7. Upper bound on error term Merr,N(a, b)

In this section, we want to prove that the error term of the main term MN(a, b) is small,
i.e.,

Merr,N(a, b) =
dC·N−1∑
n=−dC·N

en(a, b) ≈ 0. (116)
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Based on the estimate en(a, b) in (115), we can pull out one of the 1/
√
N factors in the

bracket and obtain

Merr,N(a, b) =
dC·N−1∑
n=−dC·N

en(a, b)

≪ 1√
N

·

 1√
N

dC·N−1∑
n=−dC·N

e−
D0

(
n√
N

)2

2 + e−
D0

(
n+1√

N

)2

2 + e−
D0

(
n√
N

+C
√
N

)2

2 + e−
D0

(
n+1√

N
+C

√
N

)2

2

 .

(117)

We observe that the above in the parentheses are Riemann sums for e−D0x2/2 and e−D0(x+C
√
N)2/2

on (−∞,∞), which are both �nite. Hence

Merr,N(a, b) ≪ 1√
N
. (118)

We have thus established that the error term Merr,N(a, b) of the main term MN(a, b) is
negligible.

3.8. Evaluation of main term Mmain,N(a, b)

Finally, we establish the main term Mmain,N(a, b) of the main term MN(a, b). From (83)
and (88), we see that

Mmain,N(a, b) =
dC·N−1∑
n=−dC·N

mn(a, b)

= (b− a) ·

(
1√
N

dC·N−1∑
n=−dC·N

d

dy
MY (N)

(
n√
N

))
. (119)

Since the term in the parentheses above is a Riemann sum for
∫∞
−∞

d
dy
MY (N)(y)dy, we have

1√
N

2C·N−1∑
n=−2C·N

d

dy
MY (N)

(
n√
N

)
=

∫ ∞

−∞

d

dy
MY (N)(y)dy + o(1)

= MY (N)(∞)−MY (N)(−∞) + o(1). (120)

Hence the main term Mmain,N(a, b) becomes

Mmain,N(a, b) = (b− a)(MY (N)(∞)−MY (N)(−∞)) + o(1). (121)

Recall that

MY (N)(y) =

∫ y
d

−C
√
N

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

mY (N)(zm+1−d, . . . , zm)dzm · · · dzm+1−d. (122)
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To simplify our calculation, we want to extend the interval of integration of the outer integral
to −∞. We do so by showing that the tail of the integral is small, i.e.,

TN :=

∫ −C
√
N

−∞

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

mY (N)(zm+1−d, . . . , zm)dzm · · · dzm+1−d ≈ 0. (123)

We have

TN ≪
∫ −C

√
N

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−1

(Φ(zm+1−d))
m−d

d∏
i=1

φ(zm+i−d)dzm · · · dzm+1−d

≪
∫ −C

√
N

−∞
φ(zm+1−d)dzm+1−d, (124)

Hence, we have reduced the problem to showing the smallness of the Gaussian tail. We
�rst make a de�nition.

De�nition 12. For functions f(x) and g(x), we say that f(x) = Θ(g(x)) if f(x) = O(g(x))
and g(x) = O(f(x)).

The following result is a straightforward calculation that provides an upper bound on
the Gaussian tail.

Proposition 1. [13] Suppose that g : R → R≥0 is a function such that g(N) = Θ(N ϵ′) for
some ϵ′ > 0. Then∫ −g(N)

−∞

1√
2π

e−x2/2dx =

∫ ∞

g(N)

1√
2π

e−x2/2dx ≪ e−g(N)/2. (125)

Back to (124), by Proposition 1

TN ≪ e−C
√
N . (126)

Thus, (122) becomes

MY (N)(y) =

∫ y
d

−∞

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

mY (N)(zm+1−d, . . . , zm)dzm · · · dzm+1−d +O
(
e−C

√
N
)
.

(127)

Now, by Proposition 5,

mY (N)(zm+1−d, . . . , zm) := Cm+1−d
m (Φ(zm+1−d))

m−d
d∏

i=1

φ(zm+i−d) (128)
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is the joint PDF of W(m+1−d), . . . ,W(m), where W1, . . . ,Wm are i.i.d. ∼ N(0, 1). Thus,
following our derivation in Subsection 3.2,

H(y) :=

∫ y
d

−∞

d∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

mY (N)(zm+1−d, . . . , zm)dzm · · · dzm+1−d (129)

is the CDF of
∑d

i=1W(m+i−d). We know that for a cumulative density function H(y),
H(−∞) = 0 and H(∞) = 1. Hence,

MY (N)(−∞) = H(−∞) +O(e−C
√
N) = O

(
e−C

√
N
)

MY (N)(∞) = H(∞) +O(e−C
√
N) = 1 +O

(
e−C

√
N
)
. (130)

Thus, substituting these two estimates into (121) yields

Mmain,N(a, b) = (b− a)
(
1 +O

(
e−C

√
N
))

+ o(1)) = (b− a) + o(1). (131)

Returning to (85) and (84), combined with the estimate for the error term EN(a, b) in (80)
and the error term Merr,N(a, b) of MN(a, b) in (118), we have

FN(a, b) = MN(a, b) + EN(a, b)
= Mmain,N(a, b) +Merr,N(a, b) + EN(a, b)

= (b− a) + o(1) +O

(
1√
N

)
+O(N−δ)

= (b− a) + o(1). (132)

We conclude that logB(m
(N)
d ) converges to being equidistributed mod 1, and therefore by

Uniform Distribution Characterization m
(N)
d converges to strong Benford behavior.
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Appendix A. Proof of Proposition 3

In this section, we prove Proposition 3 which provides a quantitative bound on the di�er-
ence among probabilities within an interval. Let us �rst recall the statement of Proposition
3.

Proposition 3. For ℓ ≤
√

k(N)/2,∣∣∣∣(k(N)

k1,ℓ

)
−
(
k(N)

k1,ℓ+1

)∣∣∣∣ ≤ O

((
k(N)

k1,ℓ

)
·N− 3ϵ

10

)
. (A.1)

31



Proof. We �rst factor out
(
k(N)
k1,ℓ

)
from the di�erence:(

k(N)

k1,ℓ

)
−
(
k(N)

k1,ℓ+1

)
=

(
k(N)

k(N)
2

+ ℓN δ

)
−
(

k(N)
k(N)
2

+ (ℓ+ 1)N δ

)
=

k(N)!(
k(N)
2

+ ℓN δ
)
!
(

k(N)
2

− ℓN δ
)
!
− k(N)!(

k(N)
2

+ (ℓ+ 1)N δ
)
!
(

k(N)
2

− (ℓ+ 1)N δ
)

=
k(N)!

(
k(N)
2

+ (ℓ+ 1)N δ
)
!
(

k(N)
2

− (ℓ+ 1)N δ
)
!− k(N)!

(
k(N)
2

+ ℓN δ
)
!
(

k(N)
2

− ℓN δ
)
!(

k(N)
2

+ ℓN δ
)
!
(

k(N)
2

− ℓN δ
)
!
(

k(N)
2

+ (ℓ+ 1)N δ
)
!
(

k(N)
2

− (ℓ+ 1)N δ
)
!

=
k(N)!(

k(N)
2

+ ℓN δ
)
!
(

k(N)
2

− ℓN δ
)
!

·

(
k(N)
2

+ (ℓ+ 1)N δ
)(

k(N)
2

− (ℓ+ 1)N δ
)
!−
(

k(N)
2

+ ℓN δ
)
!
(

k(N)
2

− ℓN δ
)
!(

k(N)
2

+ (ℓ+ 1)N δ
)
!
(

k(N)
2

− (ℓ+ 1)N δ
)
!

=

(
k(N)

k1,ℓ

)1−

(
k(N)
2

+ ℓN δ
)
!
(

k(N)
2

− ℓN δ
)
!(

k(N)
2

+ (ℓ+ 1)N δ
)
!
(

k(N)
2

− (ℓ+ 1)N δ
)
!

 . (A.2)

Now, we analyze the term

αℓ,N :=

(
k(N)
2

+ ℓN δ
)
!
(

k(N)
2

− ℓN δ
)
!(

k(N)
2

+ (ℓ+ 1)N δ
)
!
(

k(N)
2

− (ℓ+ 1)N δ
)
!
. (A.3)

We want to show that αℓ,N → 1 as N → ∞, so that the di�erence in (A.2) is asymptotically
much smaller than the main term

(
k(N)
k1,ℓ

)
. We have(

k(N)
2

− (ℓ+ 1)N δ
)Nδ

(
k(N)
2

+ (ℓ+ 1)N δ
)Nδ ≤ αℓ,N ≤

(
k(N)
2

− ℓN δ
)Nδ

(
k(N)
2

+ ℓN δ
)Nδ

(
1− 4(ℓ+ 1)N δ

k(N) + 2(ℓ+ 1)N δ

)Nδ

≤ αℓ,N ≤
(
1− 4ℓN δ

k(N) + 2ℓN δ

)Nδ

. (A.4)

Since ℓ ≤
√

k(N)/2, then

0 ≤ 4ℓN δ

k(N) + 2ℓN δ
≤ 4ℓN δ

k(N)
≤ 2N δ√

k(N)
. (A.5)

Since k(N) ≥ N ϵ, and δ ∈ (0, ϵ/10), then

0 ≤ 2N2δ√
k(N)

≤ 2N ϵ/10

N ϵ/2
= 2N−2ϵ/5 = O(N−2ϵ/5). (A.6)
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Similarly, we also have

4(ℓ+ 1)N δ

k(N) + 2(ℓ+ 1)N δ
= O(N−2ϵ/5). (A.7)

Hence, for su�ciently large N ,

0 < 1− 4(ℓ+ 1)N δ

k(N) + 2(ℓ+ 1)N δ
< 1

0 < 1− 4ℓN δ

k(N) + 2ℓN δ
< 1. (A.8)

Returning to (A.4), given (A.8), we have(
1− 4(ℓ+ 1)N δ

k(N) + 2(ℓ+ 1)N δ

)Nδ

≤ αℓ,N ≤
(
1− 4ℓN δ

k(N) + 2ℓN δ

)Nδ

. (A.9)

Using binomial expansion,

Nδ∑
j=1

(
N δ

j

)
(−1)j

(
4(ℓ+ 1)N δ

k(N) + 2(ℓ+ 1)N δ

)j

≤ αℓ,N − 1 ≤
Nδ∑
j=1

(
N δ

j

)
(−1)j

(
4ℓN δ

k(N) + 2ℓN δ

)j

.

(A.10)

We �rst bound the right sum in (A.4). Using the assumption that ℓ ≤
√

k(N)/2, we have∣∣∣∣∣∣
Nδ∑
j=1

(
N δ

j

)
(−1)j

(
4ℓN δ

k(N) + 2ℓN δ

)j
∣∣∣∣∣∣ ≤

Nδ∑
j=1

N jδ

(
4ℓN δ

k(N)

)j

≤
Nδ∑
j=1

N jδ

(
2
√

k(N)N δ

k(N)

)j

=
Nδ∑
j=1

(
2N2δ√
k(N)

)j

=
2N2δ√
k(N)

·
1−

(
2N2δ√
k(N)

)Nδ

1− 2N2δ√
k(N)

, (A.11)

where on the last line we use the geometric series formula. Since k(N) ≥ N ϵ, and δ ∈
(0, ϵ/10), then

0 ≤ 2N2δ√
k(N)

≤ 2N ϵ/5

N ϵ/2
= 2N−3ϵ/10. (A.12)
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Hence ∣∣∣∣∣∣
Nδ∑
j=1

(
N δ

j

)
(−1)j

(
4ℓN δ

k(N) + 2ℓN δ

)j
∣∣∣∣∣∣ ≤ 2N−3ϵ/10 · 1

1− 2N−3ϵ/10

= O
(
N−3ϵ/10

)
. (A.13)

Similarly, for the left sum in (A.4), we also have∣∣∣∣∣∣
Nδ∑
j=1

(
N δ

j

)
(−1)j

(
4(ℓ+ 1)N δ

k(N) + 2(ℓ+ 1)N δ

)j
∣∣∣∣∣∣ = O

(
N−3ϵ/10

)
. (A.14)

Applying (A.13) and (A.14) to (A.4), we get

|αℓ,N − 1| = O
(
N−3ϵ/10

)
. (A.15)

Thus, substituting the estimate (A.15) back to (A.2) gives us∣∣∣∣(k(N)

k1,ℓ

)
−
(
k(N)

k1,ℓ+1

)∣∣∣∣ ≤ O

((
k(N)

k1,ℓ

)
·N−3ϵ/10

)
. (A.16)

Appendix B. Case for kS < d

In this appendix, we want to show that D1(y) ≪ N−1/2−δ when kS < d. Recall that S
is a proper subset of [d] and kS is the largest index such that k ∈ [d] \ S, and that D1(y) is
de�ned in (71) to be

D1(y) :=
∑
S⊂[d]
S ̸=[d]

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(∏
i∈S

φ(zm+i−d)

)

·

 ∏
i∈[d]\S

A(zm+i−d)

∣∣∣∣∣
zm=y−

∑d−1
i=1 zm+i−d

dzm−1 · · · dzm+1−d. (B.1)

Let [ℓ1; ℓ2] denote {ℓ1, . . . , ℓ2} if ℓ1, ℓ2 are integers such that ℓ1 ≤ ℓ2, and let it be ∅ otherwise.
Then the integrand of (71) becomes(∏

i∈S

φ(zm+i−d)

) ∏
i∈[d]\S

A(zm+i−d)

∣∣∣∣∣
zm=y−

∑d−1
i=1 zm+i−d

=

 ∏
i∈S\[kS+1;d]

φ(zm+i−d)

 ∏
i∈[d]\(S∪{kS})

A(zm+i−d)

 · A(zm+kS−d)

·

 ∏
i∈[kS+1;d−1]

φ(zm+i−d)

φ

(
y −

d−1∑
i=1

zm+i−d

)
. (B.2)
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Hence,

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(∏
i∈S

φ(zm+i−d)

) ∏
i∈[d]\S

A(zm+i−d)

∣∣∣∣∣
zm=y−

∑d−1
i=1 zm+i−d

dzm−1 · · · dzm+1−d

=

∫ y
d

−C
√
N

d−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

 ∏
i∈S\[kS+1;d]

φ(zm+i−d)

 ∏
i∈[d]\(S∪{kS})

A(zm+i−d)


· A(zm+kS−d) ·

(
d−1∏

i=kS+1

φ(zm+i−d)

)
· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1 · · · dzm+1−d. (B.3)

To bound (B.3), we �rst give some estimate on the following

d−1∏
j=kS+1

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(
d−1∏

i=kS+1

φ(zm+i−d)

)
· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1 · · · dzm+(kS+1)−d

≪
∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−kS−1

(
d−1∏

i=kS+1

φ(zm+i−d)

)
· φ

((
y −

kS∑
i=1

zm+i−d

)
−

d−1∑
i=kS+1

zm+i−d

)
dzm−1

· · · dzm+(kS+1)−d

≪ 1√
2π(d− kS)

e
−

(
y−

∑kS
i=1

zm+i−d

)2

2(d−kS) , (B.4)

where in the last line we use the fact that the second last line is exactly the convolution of
d − kS standard Gaussian density function evaluated at y −

∑kS
i=1 zm+i−d, which is exactly

the probability density function of sum of d − kS independent standard Gaussian random
variables and thus is itself also Gaussian with mean 0 and variance d − kS, evaluated at
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y −
∑kS

i=1 zm+i−d. Hence, (B.3) is bounded above by

∫ y
d

−C
√
N

kS−1∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

 ∏
i∈S\[kS+1;d]

φ(zm+i−d)

 ∏
i∈[d]\(S∪{kS})

A(zm+i−d)


∫ y−

∑kS−1
i=1

zm+i−d
d−kS+1

zm+(kS−1)−d

A(zm+kS−d) ·
1√

2π(d− kS)
e
−

(
y−

∑kS
i=1

zm+i−d

)2

2(d−kS) dzm+kS−d · · · dzm+1−d

≪ N− 1
2
−δ

∫ C′√N

−C′
√
N

· · ·
∫ C′√N

−C′
√
N︸ ︷︷ ︸

kS−1

 ∏
i∈S\[kS+1;d]

φ(zm+i−d)

 ∏
i∈[d]\(S∪{kS})

A(zm+i−d)


dzm+(kS−1)−d · · · dzm+1−d

≪ N− 1
2
−δ

∏
i∈S\[kS+1;d]

(∫ C′√N

−C′
√
N

φ(zm+i−d)dzm+i−d

)

·
∏

i∈[d]\(S∪{kS})

(∫ C′√N

−C′
√
N

A(zm+i−d)dzm+i−d

)
≪ N−1/2−(1+|[d]\(S∪{kS})|)δ ≪ N−1/2−δ, (B.5)

where in the second line, we use the change of variable zm+kS−d 7→ zm+kS−d−(
∑kS−1

i=1 zm+i−d+
y) and the fact that ∫ ∞

−∞

1√
2π(d− kS)

e
−

(zm+kS−d)
2

2(d−kS) dzm+kS−d = 1. (B.6)

Since the number of proper subsets S of [d] is �nite, then when kS < d, we have that
D1(y) ≪ N−1/2−δ by de�nition of D1(y) in (B.1).

Appendix C. Case for d > 2

In this section, we want to obtain the following estimate on d2MY (N)(y)/dy2 when d > 2

d2

dy2
MY (N)(y)

≪
∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
dzm−2 · · · dzm+1−d

+

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

(
d−2∑
i=1

zm+i−d

)
− zm−2

)
dzm−2 · · · dzm+1−d.

(C.1)
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First, recall from (98) that

d2

dy2
MY (N)(y)

≪
∫ y

d

−C
√
N

d−2∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(Φ(zm+1−d))
m−d

(
d−2∏
i=1

φ(zm+i−d)

)(
φ

(
y −

∑d−2
i=1 zm+i−d

2

))2

+

(∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

(Φ(zm+1−d))
m−d

(
d−1∏
i=1

φ(zm+i−d)

)
(−1)

(
y −

d−1∑
i=1

zm+i−d

)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

)
dzm−2 · · · dzm+1−d. (C.2)

Since y is an upper bound on
∑d

i=1 zm+i−d and zm−2 ≤ zm−1, zm, then we have zm−2 ≤
(zm−1+ zm)/2 ≤ (y−

∑d−2
i=1 zm+i−d)/2. When (y−

∑d−2
i=1 zm+i−d)/2 ≤ 0, φ(zm−1) is at most

φ((y −
∑d−2

i=1 zm+i−d)/2). Hence,∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

(Φ(zm+1−d))
m−d

(
d−1∏
i=1

φ(zm+i−d)

)
(−1)

(
y −

d−1∑
i=1

zm+i−d

)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

≪

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

∑d−2
i=1 zm+i−d

2

)∫ ∞

−∞

(
y −

d−1∑
i=1

zm+i−d

)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

≪

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

∑d−2
i=1 zm+i−d

2

)∫ ∞

−∞
|zm−1|φ(zm−1)dzm−1, (C.3)

where in the last line we use the change of variable zm−1 7→ −zm−1 + y −
∑d−2

i=1 zm+i−d.
The integral

∫∞
−∞ |x|φ(x)dx is the expected value of the absolute value of a standard normal

random variable, which is �nite. Hence, when (y −
∑d−2

i=1 zm+i−d)/2 ≤ 0,

∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

(Φ(zm+1−d))
m−d

(
d−1∏
i=1

φ(zm+i−d)

)
(−1)

(
y −

d−1∑
i=1

zm+i−d

)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

≪

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
. (C.4)
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On the other hand, when (y −
∑d−2

i=1 zm+i−d)/2 ≥ 0,

y −
d−1∑
i=1

zm+i−d ≥ y −
d−2∑
i=1

zm+i−d −

(
y −

∑d−2
i=1 zm+i−d

2

)
=

y −
∑d−2

i=1 zm+i−d

2
≥ 0.

(C.5)

Hence, we �nd

∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

(Φ(zm+1−d))
m−d

(
d−1∏
i=1

φ(zm+i−d)

)
(−1)

(
y −

d−1∑
i=1

zm+i−d

)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

≪

(
d−2∏
i=1

φ(zm+i−d)

)∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

(
y −

d−1∑
i=1

zm+i−d

)
φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

=

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

d−1∑
i=1

zm+i−d

)∣∣∣∣∣
zm−1=

y−
∑d−2

i=1
zm+i−d

2

zm−1=zm−2

=

(
d−2∏
i=1

φ(zm+i−d)

)(
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
− φ

(
y −

(
d−2∑
i=1

zm+i−d

)
− zm−2

))
.

(C.6)

Thus, if d > 2, regardless of whether (y−
∑d−2

i=1 zm+i−d)/2 ≤ 0 or (y−
∑d−2

i=1 zm+i−d)/2 ≥ 0,
we have by combining (C.4) and (C.6) that

∫ y−
∑d−2

i=1
zm+i−d

2

zm−2

(Φ(zm+1−d))
m−d

(
d−1∏
i=1

φ(zm+i−d)

)
(−1)

(
y −

d−1∑
i=1

zm+i−d

)

· φ

(
y −

d−1∑
i=1

zm+i−d

)
dzm−1

≪

(
d−2∏
i=1

φ(zm+i−d)

)(
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
+ φ

(
y −

(
d−2∑
i=1

zm+i−d

)
− zm−2

))
.

(C.7)
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Hence, (98) becomes

d2

dy2
MY (N)(y)

≪
∫ y

d

−C
√
N

d−2∏
j=2

∫ y−
∑j−1

i=1
zm+i−d

d−j+1

zm+(j−1)−d

(
d−2∏
i=1

φ(zm+i−d)

)(
φ

(
y −

∑d−2
i=1 zm+i−d

2

))2

+

(
d−2∏
i=1

φ(zm+i−d)

)(
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
+ φ

(
y −

(
d−2∑
i=1

zm+i−d

)
− zm−2

))
dzm−2 · · · dzm+1−d

≪
∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

∑d−2
i=1 zm+i−d

2

)
dzm−2 · · · dzm+1−d

+

∫ ∞

−∞
· · ·
∫ ∞

−∞︸ ︷︷ ︸
d−2

(
d−2∏
i=1

φ(zm+i−d)

)
φ

(
y −

(
d−2∑
i=1

zm+i−d

)
− zm−2

)
dzm−2 · · · dzm+1−d,

(C.8)

which is exactly the estimate we need.
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