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Abstract. Building on the work of Iwaniec, Luo and Sarnak, we use the n-level density
to bound the probability of vanishing to order at least r at the central point for families
of cuspidal newforms of prime level N → ∞, split by sign. There are three methods to
improve bounds on the order of vanishing: optimizing the test functions, increasing the
support, and increasing the n-level density studied. Previous work has determined the
optimal test functions for the 1 and 2-level densities in certain support ranges, with the ef-
fectiveness of the bounds only marginally increasing by the optimized test functions over
simpler ones, and thus this is not expected to be a productive avenue for further research.
Similarly the support has been increased as far as possible, and further progress is shown
to be related to delicate and difficult conjectures in number theory. Thus we concentrate
on the third method, and study the higher centered moments (which are similar to the
n-level densities but combinatorially easier). We find the level at each rank for which the
upper bounds on the order of vanishing is the best, thus producing world-record bounds
on the order of vanishing to rank at least r for every r > 2 (for example, our bounds for
vanishing to order at least 5 or at least 6 are less than half the previous bounds, a signifi-
cant improvement). Additionally, we calculate the bound using the optimal test function
for the 1-level density from previous work and compare it to the naive test functions for
higher levels. We find that the optimal test function for certain levels are not the optimal
for other levels, and some test functions may outperform others for some levels but not
in others. Finally, we calculate the integrals needed to determine the bounds, doing so by
transforming an n-dimensional integral to a 1-dimensional integral and greatly reducing
the computation cost in the process.
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1. Introduction

1.1. Background. Building on the work of Iwaniec, Luo and Sarnak [ILS] we determine
new world records for bounding the probability of L-functions of cuspidal newforms of
prime level N → ∞, split by sign, vanishing to order at least r at the central point. We
recall some standard definitions (see [IK] for more details), review connections between
L-functions and Random Matrix Theory, and then state our improved results.

Definition 1.1 (Cuspidal Newforms). Let H⋆

k (N) denote the set of holomorphic cusp forms of
weight k that are newforms of level N. For every f ∈ H⋆

k (N), we have a Fourier expansion

f (z) =
∞

∑
n=1

a f (n)e(nz). (1.1)

We set λ f (n) = a f (n)n
−(k−1)/2, and obtain the L-function associated to f

L(s, f ) =
∞

∑
n=1

λ f (n)n
−s. (1.2)

The completed L-function is

Λ(s, f ) :=

(√
N

2π

)s

Γ

(
s +

k − 1

2

)
L(s, f ). (1.3)

Since Λ(s, f ) satisfies the functional equation Λ(s, f ) = ǫ f Λ(1 − s, f ) with ǫ f = ±1, H⋆

k (N)

splits into two disjoint subsets, H+
k (N) = { f ∈ H⋆

k (N) : ǫ f = +1} and H−
k (N) = { f ∈

H⋆

k (N) : ǫ f = −1}. The associated symmetry group of H⋆

k (N) is Orthogonal (O), H+
k (N) is

Special Orthogonal even SO(even), and H−
k (N) is Special Orthogonal odd SO(odd).

1.2. Random Matrix Theory and Statistics of L-functions. The Riemann Hypothesis
states that all zeroes of the Riemann zeta function are either at the negative even integers
(the trivial zeros, and these numbers are well understood!) or complex numbers with
real part 1/2 (the nontrivial zeros); the Generalized Riemann Hypothesis (GRH) asserts
this is true for all L-functions, in particular for the cuspidal newforms we study.

It turns out that the behavior of many different objects in mathematics and physics are
the same, and this has led to fruitful conversations where one subject suggests problems
and predicts answers in another. In the early 1900s, random matrix theory was used for
applications in statistics and harmonic analysis. However, a major advance in the subject
was made with the seminal work of Eugene Wigner, who noticed a remarkable connec-
tion between fluctuations in the position of compound nuclei resonances and statistics
for the eigenvalues of random matrices. As more researchers began exploring random
matrix theory, they discovered connections between random matrix theory (specifically
the distribution of eigenvalues of matrices) and number theory (the distribution of the



non-trivial zeros). See [BFMT-B, Ha] and the references therein for the history and many
of the results.

The first statistics studied were the n-level correlations and the spacings between ad-
jacent zeros; see [Hej, Mon, Od1, Od2, RS], where it was observed that the behavior of
zeros far from the central point converged to a universal behavior, independent of the
arithmetic of the L-function. This led to the quest to find a new statistic that was sen-
sitive to the behavior near the central point, which by the Birch and Swinnerton-Dyer
Conjecture was known to be an important point to study.

Katz and Sarnak [KS1, KS2] introduced a new statistic, the n-level density, which has
different values for different families of L-functions, and essentially only depends on the
zeros near the central point. They found that as the level of the forms approach infinity,
the statistics for the zeroes of families of L-functions can be modelled by eigenvalue
statistics for one of the classical compact groups (unitary, orthogonal, symplectic).

Definition 1.2 (n-level Density). The n-level density of an L-function L(s, f ) is defined as

Dn( f ; φ) := ∑
j1,...,jn
ji 6=±jk

φ

(
log c f

2π
γ
(j1)
f , . . . ,

log c f

2π
γ
(jn)
f

)
(1.4)

for a test function φ : R
n → R where c f is the analytic conductor of f and γ

(j)
f represents the

imaginary parts of the zeroes of an L-function associated with the modular form f ∈ H+
k (N) with

an additional zero γ
(0)
f = 0 if f ∈ H−

k (N). For many applications we assume φ is a non-negative

even Schwartz function (see Definition 2.5) with compactly supported1 Fourier transform 2 and
φ(0, . . . , 0) > 0.

There is now an extensive series of papers showing that the n-level densities of various
families of L-functions match the random matrix theory predictions; see for example the
introduction in [C–] for a review of the literature. Our main result is to use the n-level
densities to bound how often forms in the family FN vanish to a given order (or more),
with FN being the basis for the set of cuspidal newforms of level N and some fixed

weight k, with N → ∞ through the primes3

1.3. Test Functions. To get the best bounds, we must choose a good test function to use
in the n-level density. As shown later (see Theorem 3.1), we require the test function to
be even, non-negative, Schwartz, and have a Fourier transform with finite support; we
will later see how to pass from such functions to bounds on vanishing.

To obtain the most information about what is happening at the central point, we want
our test function to be concentrated there and rapidly decay, ideally a delta spike at
the origin. Unfortunately, the closer our test function is to a delta spike, the larger the
support is of its Fourier transform; this is the mathematical instance of the Heisenberg

1A function f is supported in (−σ, σ) if f (x) = 0 for all x with |x| ≥ σ.
2We define the Fourier transform of g by ĝ(y) =

∫ ∞

−∞
g(x)e−2πixydx.

3This latter condition is for technical reasons; with additional work (see [BBDDM] one may take N tending
to infinity through the square-free integers, or with even more work through the integers. We use the
results on the n-level densities of cuspidal newform families as inputs, and thus with standard but tedious
and technical work, we could remove the prime restriction.
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Uncertainty Principle: we cannot localize both a function and its Fourier transform. The
reason this is an obstruction is that the n-level density requires us to compute certain
weighted sums of the L-function coefficients times the Fourier transform of the test
function evaluated at the logarithm of the primes, and we can only compute these sums
if the support of the Fourier transform is suitably restricted. Thus the goal is to find
test functions as close to the delta spike as we can, subject to being able to compute the
resulting sums on the Fourier transform side.

Throughout this paper, the main test function we use is the naive test function (so
named as it is easy to use and easy to guess is worth using).

Definition 1.3 (Naive Test Function). The naive test function is the Fourier test function pair

φnaive(x) =

(
sin(πvnx)

(πvnx)

)2

, φ̂naive(y) =
1

vn

(
1 − |y|

vn

)
(1.5)

for |y| < vn and φ̂naive(y) = 0 otherwise where vn is the support.

Previous work has improved on the naive test function by finding the optimal test
function for some of the n-level densities for certain ranges of support (see, for exam-
ple, [BCDMZ, FM, ILS]). This is one of three ways to improve results; however, the
optimal function for the 1-level density leads to such a small improvement (and there
are similarly small gains in the higher levels) that this avenue is not pursued here. The
second approach is to try to increase the support for the n-level density, but doing so
requires resolving difficult combinatorics and technical sums. There has been a recent
breakthrough here, though, in work by Cohen et. al. [C–], who increased the support
for the n-level density from 1/(n − 1) to 2/n. We thus can use their work as input.

We turn to the third method, high level densities. There has been some progress here;
Li and Miller [LiM] used the 4-level density to obtain better bounds than those from
the first and second level densities, for sufficiently large vanishing at the central point.
Unfortunately the higher level densities have a disadvantage – while they give better
bounds for much larger than expected vanishing at the central point, they give worse
bounds for small vanishing.

This trade-off has never been quantified and analyzed till now, and is the main goal
of this project. In particular, we prove for each r what is the optimal level density to use
(for a fixed test function, usually the naive one), to bound the probability of vanishing
to order at least r at the central point.

1.4. n-th Centered Moments. The first results are due to Iwaniec-Luo-Sarnak [ILS], who
computed the 1-level density for families of cuspidal newforms split by sign with sup-
port up to 2. This was extended by Hughes-Miller [HM] to the n-level; while it was
expected their results should hold up to 2/n for the support, there were combinatorial
obstructions and their methods are only valid if the support is at most 1/(n − 1); these
complications were recently resolved in [C–], and now the n-level is known up to 2/n.

We first present definitions for the one-level density, double factorial, and the uniform
average.
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Definition 1.4 (1-level density). The one-level density of an L-function L(s, f ) is

D( f , φ) := ∑
γ f

φ

(
γ f

2π
log c f

)
, (1.6)

where c f is the analytic conductor of f and φ is a Schwartz test function.

Definition 1.5 (Double Factorial). For positive integer n,

n!! :=

{
n(n − 2)(n − 4) · · · 4 · 2 for n even

n(n − 2)(n − 4) · · · 3 · 1 for n odd.
(1.7)

Definition 1.6 (Uniform Average). If Q is a function defined on f ∈ Hσ
k (N) (for σ being

either + or −), then the uniform average of Q over Hσ
k (N) is

〈Q( f )〉σ :=
1

|Hσ
k (N)| ∑

f∈Hσ
k (N)

Q( f ). (1.8)

The following theorem from [C–] is used to generate bounds on the order of vanishing.

Theorem 1.7. [Theorem 1.2 from [C–].] Let n ≥ 2, supp(φ̂) ⊂ (− 2
n , 2

n ), and supp(φ̂) ⊂
(− 1

n−a , 1
n−a ) for some fixed positive integer a. Define

σ2
φ := 2

∫ ∞

−∞
|y|φ̂(y)2dy,

R(m, i; φ) := 2m−1(−1)m+1
i−1

∑
l=0

(−1)l

(
m

l

)

(
−1

2
φm(0) +

∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂(x2) · · · φ̂(xl+1)

∫ ∞

−∞
φm−l(x1)

sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))
2πx1

dx1 · · · dxl+1

)
,

S(n, a, φ) :=
⌊ a−1

2 ⌋
∑
l=0

n!

(n − 2l)!l!
R(n − 2l, a − 2l, φ)

(
σ2

φ

2

)l

. (1.9)

Then4

lim
N→∞

Nprime

〈(
D( f ; φ)− 〈D( f ; φ)〉±

)n
〉
±

= (n − 1)!!σn
φ1even(n)± S(n, a; φ). (1.10)

1.5. Main Results. We use the n-level densities to bound how often forms in the family
FN vanish with FN being the basis of the set H∗

k (N) of cuspidal newforms of level N
and some fixed weight k, with N → ∞ through the primes.

In order to generate better bounds on the order of vanishing, as remarked there are
three main methods we can turn to: optimizing the test function, increasing the support,
and using higher levels. We concentrate on the last.

4As remarked earlier, by [BBDDM] we may remove the condition that N → ∞ through the primes.
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Because work done to find the optimal test function produces marginal improvements,
we turn to using higher levels using the recently improved results with support 2/n, thus
producing record bounds for the order of vanishing as shown in the following tables.
For example, the previous record for vanishing to order 5 or more was .06580440 and
for order 6 it was .00853841 from [LiM], while we show for vanishing to order 5 or more
it is at most .020408300 while 6 or more we have .003346510 as the bound; these are not
slight improvements but a decrease by more than a factor of two! The tables below show
our results for the various symmetry groups; cuspidal newforms with even functional
equations are SO(even), while those with odd signs are SO(odd).

Best Upper Bounds for Each Rank for G=SO(even)
Rank Level Used Bound
2 1 0.43231300
4 2 0.066666667
6 6 0.003346510
8 8 0.000579210
10 10 1.14380 × 10−6

12 12 1.85901 × 10−8

14 14 2.59310 × 10−10

16 16 3.09185 × 10−12

18 18 3.26332 × 10−14

20 20 3.08920 × 10−16

Best Upper Bounds for Each Rank for G=SO(odd)
Rank Level Used Bound
1 N/A 1.0000000
3 2 0.111111111
5 2 0.020408300
7 6 0.000292790
9 8 7.65596 × 10−6

11 10 1.53302 × 10−7

13 12 2.50956 × 10−9

15 16 3.03362 × 10−11

17 18 3.10549 × 10−13

19 20 4.18402 × 10−17

We find that although using higher levels can create better bounds, increasing the lev-
els to an arbitrarily large value does not lead to better bounds for small rank. Increasing
the level eventually produces trivial bounds (such as the percent that vanish to a given
level is at most a number greater than 100%!). Thus there are only a finite number of
levels that need to be checked to find which level creates the optimal bound for each or-
der of vanishing. Additionally, we find that the optimal test functions for certain levels
will not necessarily outperform other test functions for higher levels, as shown by the
worse results produced by the 1-level optimal test function for higher levels as opposed
to the naive test function; this was a very surprising result, namely that a function which
is superior for one n can become inferior to a test function it beat for larger n.
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In addition to calculating bounds, we show explicit calculations for the integrals
needed to generate bounds. For support 2/n, we are able to reduce an n-dimensional
integral to a 1-dimensional integral, thus significantly reducing the computation time
and complexity needed to evaluate the integral (it is unfortunately not solvable in closed
form, and requires numerical approximation, which we do via Simpson’s method).

After reviewing some number theory and complex analysis preliminaries we continue
to a review of work done by [ILS] to generate bounds for the 1-level density. We show
the bounds obtained by [ILS] by both the naive and optimal test function while explicitly
enumerating the optimal Fourier pair for the 1-level density. We then continue to results
for the bounds with higher levels for support 1/(n − 1) and extend this to support 2/n,
highlighting the effects of improved support. Lastly, we display tables of the bounds of
the order of vanishing based on the rank and level.

2. Preliminaries

We record some needed definitions and standard results; see [SS] for more details and
proofs.

Definition 2.1 (Fourier Transform). The Fourier transform of a function φ(x) is

φ̂(y) :=
∫ ∞

−∞
φ(x)e−2πixydx. (2.1)

We often denote this by F (φ(x)).

Theorem 2.2 (Plancherel Theorem). For a Fourier pair f (x) and f̂ (y) such that f (x) is
square-integrable, ∫ ∞

−∞
| f (x)|2dx =

∫ ∞

−∞
| f̂ (y)|2dy. (2.2)

Remark 2.3. As a result of the polarization identity, for square-integrable functions f and g, the
Plancherel Theorem can be re-expressed as

∫ ∞

−∞
f (x)g(x)dx =

∫ ∞

−∞
f̂ (y)ĝ(y)dy. (2.3)

Recall the convolution of two functions f and g is defined by

( f ∗ g)(x) :=
∫ ∞

−∞
f (t)g(x − t)dt. (2.4)

Theorem 2.4 (Convolution Theorem). For functions f and g,

F ( f ∗ g) = F ( f )F (g). (2.5)

Definition 2.5 (Schwartz space). A Schwartz function is a function such that f is infinitely
differentiable and the derivatives of f decay faster than any polynomial. The Schwartz space is
the space of Schwartz functions.

Definition 2.6 (Even Indicator Function). The Even Indicator function is defined to be

1even(n) :=

{
1 if n is even

0 if n is odd.
(2.6)
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Since we encounter integrals later which we cannot evaluate in closed form, we use
Simpson’s Rule to approximate the integral accurately.

Theorem 2.7 (Simpson’s Rule). Let [a, b] be an interval that is split into n equal sub-intervals
with n even and h = (b − a)/n. Let f be a four times continuously differentiable function.

Then,
∫ b

a f (x)dx is approximated by

∫ b

a
f (x)dx ≈ h

3


 f (x0) + 4

n
2

∑
j=1

f (x2j−1) + 2

n
2−1

∑
j=1

f (x2j) + f (xn)


 (2.7)

where xj = a + jh for j = 0, 1, 2, ..., n and the difference between the integral and the sum,

Err( f ), is bounded by

|Err( f )| ≤ h4

180
(b − a) max

ǫ∈[a,b]
| f (4)(ǫ)|. (2.8)

Theorem 2.8 (Fubini’s Theorem). If
∫∫

X×Y | f (x, y)|d(x, y) < ∞,
∫∫

X×Y
f (x, y)d(x, y) =

∫

X

(∫

Y
f (x, y)dy

)
dx =

∫

Y

(∫

X
f (x, y)dx

)
dy. (2.9)

Definition 2.9. Define the family of forms in FN that vanish to exact order r to be FN,r and the
proportion of f ∈ FN that vanish to exact order r to be

pr(FN) :=
|FN,r|
|FN|

. (2.10)

Definition 2.10. For a fixed r, define pr(F ) to be the limit of the percent of forms in FN whose
order of vanishing is r as N tends to infinity through the primes:

pr(F ) := lim
N→∞

|FN,r|
|FN|

. (2.11)

Definition 2.11. For a fixed r, define qr(F ) to be the limit of the percent of forms in FN that
vanish to order at least r as N tends to infinity through the primes:

qr(F ) = ∑
i≥r

pi(F ). (2.12)

Remark 2.12. For Definition 2.10 and Definition 2.11, when the limit does not exist, we can
take the limit supremum to obtain our values of pr(F ) and qr(F ).

Definition 2.13. The one-level density of an L-function L(s, f ) with Schwartz test function φ is

D( f , φ) := ∑
γ f

φ

(
γ f

2π
log c f

)
, (2.13)

where c f is the analytic conductor of f . The average or expectation of D( f , φ) over a family FN

is

E(FN, φ) :=
1

|FN| ∑
f∈FN

D( f , φ). (2.14)
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Definition 2.14. The mean of the 1-level density of a family FN is denoted µ(φ,FN), with its
main term being

µ(φ,FN) = φ̂(0) +
1

2

∫ 1

−1
φ̂(y)dy (2.15)

for the families FN having either SO(even) or SO(odd) symmetry if supp(φ̂) ⊂ (−1, 1).

Definition 2.15. The mean of the 1-level density of the family F is denoted µ(φ,F ) and can be
expressed as

µ(φ,F ) = lim
N→∞

µ(φ,FN) (2.16)

3. Bounds on the Order of Vanishing From the 1-Level Density

As we use the same functions and similar techniques as [ILS], we quickly summarize
their work to obtain bounds on the order of vanishing using the 1-level density, and then
discuss the complications that arise in extending these arguments to the n-level densities.

Theorem 3.1. [Bounds on the 1-level density from [ILS]] Let φ be a non-negative, even Schwartz
function with supp(φ̂) ⊂ (−σ, σ) for some finite σ and φ(0) = 1. Let G be the group associated
to the family {FN} (i.e., Unitary, Symplectic, Orthogonal, SO(even), SO(odd)) and WG(F ) be
a distribution depending on GF as in [ILS]. Set

gF (φ) :=
∫ ∞

−∞
φ̂(y)ŴG(F )(y)dy. (3.1)

For a given r, as N → ∞ the percent of forms in the family FN that vanish to order exactly r
is bounded by

pr ≤ 1

r
(gF (φ)). (3.2)

Corollary 3.2. Let φ be the naive test function with supp(φ̂) ⊂ (−vn, vn). Then

pr(F ) ≤ 1

r

(
1

vn
+

1

2
+ ǫ

)
for G = O

pr(F ) ≤





1
r

(
1

vn
+ 1

2 + ǫ
)

if vn ≤ 1

1
r

(
2

vn
− 1

2v2
n
+ ǫ
)

if vn ≥ 1



 for G = SO(even)

pr(F ) ≤





1
r

(
1

vn
+ 1

2 + ǫ
)

if vn ≤ 1

1
r

(
1 + 1

2v2
n
+ ǫ
)

if vn ≥ 1



 for G = SO(odd). (3.3)

Proof of Corollary 3.2. To use Theorem 3.1 we need to choose a good pair of functions, φ

and φ̂. In [ILS] the authors remark that a particularly good choice is the following (what
we call the naive test function):

φvn(x) =

(
sin(πvnx)

πvnx

)2

, φ̂vn(y) =
1

vn

(
1 − |y|

vn

)
(3.4)

for |y| < v.
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Additionally, from [ILS], we know the following values for WG(F ) to be

ŴG(O) = δ0(y) +
1

2

ŴG(SO(even)) = δ0(y) +
1

2
η(y)

ŴG(SO(odd)) = δ0(y)−
1

2
η(y) + 1, (3.5)

where δ0(y) is the Fourier transform of δ0(x), the Dirac distribution at x = 0, and η(y) =
1, 1

2 , 0 for |y| < 1, y = ±1, |y| > 1 respectively.
To find the bounds on the order of vanishing, we first must find g for specific cases.

From (3.1), we get

gF (vn) =
1

vn
+

1

2
+ ǫ for G = O

gF (vn) =

{
1

vn
+ 1

2 + ǫ if vn ≤ 1
2

vn
− 1

2v2
n
+ ǫ if vn ≥ 1

}
for G = SO(even)

gF (vn) =

{
1

vn
+ 1

2 + ǫ, if vn ≤ 1

1 + 1
2v2

n
+ ǫ if vn ≥ 1

}
for G = SO(odd). (3.6)

We now want to find the bounds for the order of vanishing as a function of the support
v. Substituting in our values for gF (v) from (3.6) into (3.2) we get

pr(F ) ≤ 1

r

(
1

vn
+

1

2
+ ǫ

)
for G = O

pr(F ) ≤





1
r

(
1

vn
+ 1

2 + ǫ
)

if v ≤ 1

1
r

(
2

vn
− 1

2v2
n
+ ǫ
)

if v ≥ 1



 for G = SO(even)

pr(F ) ≤





1
r

(
1

vn
+ 1

2 + ǫ
)

if v ≤ 1

1
r

(
1 + 1

2v2
n
+ ǫ
)

if vn ≥ 1



 for G = SO(odd). (3.7)

�

The best results to date give the support for the 1-level density to be supp(φ̂) ⊂
(−2, 2). As a result, we get

pr(F ) ≤ 1

r
for G = O

pr(F ) ≤ 7

8r
for G = SO(even)

pr(F ) ≤ 9

8r
for G = SO(odd). (3.8)

The test function φv(x) is not the optimal test function that we can use. The function
that satisfies

φ̂optimal(y) := ( f0 ∗ f0)(y) (3.9)
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for

f0(x) :=
cos

(
|x|
2 − π+1

4

)

√
2 sin

(
1
4

)
+ sin

(
π+1

4

) , 0 ≤ |x| ≤ 1 (3.10)

for G = SO(even) and

f0(x) :=
cos

(
|x|
2 + π−1

4

)

3 sin
(

π+1
4

)
− 2 sin

(
π−1

4

) , 0 < |x| < 1 (3.11)

for G = SO(odd) from [ILS] has been proven to be the optimal test function to use for
the 1-level density and yields better bounds for this support. We now want to calculate
the test function using the values provided by [ILS] and compare the bounds from the
optimal test function to that of the naive test function.

Lemma 3.3. Let

f (x) :=
cos

(
|x|
2 − a

)

b
, 0 ≤ |x| ≤ 1. (3.12)

Then,

( f ∗ f )(y) = 1
b2

[
sin
(

1 − |y|
2 − 2a

)
− sin

(
|y|
2 − 2a

)
+ (1 − |y|) cos

(
|y|
2

)

+ 1
2 |y| cos

(
|y|
2 − 2a

)
+ sin

(
|y|
2

)]
(3.13)

for 0 ≤ |y| ≤ 1 and

( f ∗ f )(y) =
1

2b2

[
(2 − |y|) cos

( |y|
2

− 2a

)
+ 2 sin

(
1 − |y|

2

)]
(3.14)

for 1 ≤ |y| ≤ 2.

Proof. Since f is a real-valued function, f = f . We want to find ( f ∗ f )(y). Since our
resulting function is an even function with support vn = 2, we consider the values of
y ∈ [0, 2] and reflect over the y-axis to find the values of y ∈ [−2, 0]. Using the definition
of a convolution, we get

( f ∗ f )(y) =
1

b2

∫ 1

y−1
cos

( |x|
2

− a

)
cos

( |y − x|
2

− a

)
dx. (3.15)

We first consider the case of y ∈ [0, 1]. We proceed to split the integral into 3 cases:
x < 0, x > 0 and y ≥ x, x > 0 and y < x, denoting the contribution to the integral from
each case by V1, V2, and V3 respectively.

For x < 0, we get

V1 =
1

b2

∫ 0

y−1
cos

(
−x

2
− a
)

cos

(
y − x

2
− a

)
dx

=
1

2b2

∫ 0

y−1
cos

(y

2
− x − 2a

)
+ cos

(y

2

)
dx

=
1

2b2

[
sin
(

2a − y

2

)
− sin

(
2a +

y

2
− 1
)
− (y − 1) cos

(y

2

)]
. (3.16)
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When x > 0 and y ≥ x, we get

V2 =
1

b2

∫ y

0
cos

(x

2
− a
)

cos

(
y − x

2
− a

)
dx

=
1

2b2

∫ y

0
cos

(y

2
− 2a

)
+ cos

(
x − y

2

)
dx

=
1

2b2

[
y cos

(y

2
− 2a

)
+ 2 sin

(y

2

)]
. (3.17)

Finally, when x > 0 and y < x, we get

V3 =
1

b2

∫ 1

y
cos

(x

2
− a
)

cos

(
x − y

2
− a

)
dx

=
1

2b2

∫ 1

y
cos

(
x − y

2
− 2a

)
+ cos

(y

2

)
dx

=
1

2b2

[
sin
(

1 − y

2
− 2a

)
− sin

(y

2
− 2a

)
+ (1 − y) cos

(y

2

)]
. (3.18)

Since V1 = V3, we get

( f ∗ f )(y) = 2V1 + V2

=
1

b2

[
sin
(

1 − y

2
− 2a

)
− sin

(y

2
− 2a

)
+ (1 − y) cos

(y

2

)

+
1

2
y cos

(y

2
− 2a

)
+ sin

(y

2

)]
(3.19)

for 0 ≤ |y| ≤ 1. We now consider the case of y ∈ [1, 2]. Since x ∈ [0, 1], x > 0 and
y − x > 0. Therefore, for y ∈ [1, 2], we get

( f ∗ f )(y) =
1

b2

∫ 1

y−1
cos

(x

2
− a
)

cos

(
y − x

2
− a

)
dx

=
1

2b2

∫ 1

y−1
cos

(y

2
− 2a

)
+ cos

(
x − y

2

)
dx

=
1

2b2

[
(2 − y) cos

(y

2
− 2a

)
+ 2 sin

(
1 − y

2

)]
. (3.20)

�

We now calculate φ from φ̂. We first show that the Fourier transform of φ̂ is the same
as the inverse Fourier transform of φ̂. Let F (g) denote the Fourier transform of g. Since
φ̂ is even,

F (φ̂) =
∫ ∞

−∞
φ̂(y)e−2πixydy =

∫ ∞

−∞
φ̂(y)e2πixydy = F−1(φ̂). (3.21)

Thus,
φ(x) = (F−1(φ̂))(x) = (F ( f ∗ f ))(y). (3.22)

From Theorem 2.4, we obtain

(F ( f ∗ f ))(y) = F ( f )F ( f ) = F ( f )2. (3.23)
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Therefore, we need to compute the Fourier transform of

f (x) =
cos

(
|x|
2 − a

)

b
(3.24)

for |x| ∈ [0, 1]. From the definition of the Fourier transform, we have

f̂ (y) =
∫ 1

−1

cos
(
|x|
2 − a

)

b
e−2πixydx

=
∫ 1

−1

cos
(
|x|
2 − a

)

b
cos(2πxy)dx − i

∫ 1

−1

cos
(
|x|
2 − a

)

b
sin(2πxy)dx. (3.25)

Since the right integral is the integral from −1 to 1 of an odd function, it is 0 and thus

f̂ (y) =
∫ 1

−1

cos
(
|x|
2 − a

)

b
cos(2πxy)dx

=
16
(

cos(2πy) sin
(

1
2 − a

)
+ sin(a)− 4πy cos

(
1
2 − a

)
sin(2πy)

)2

(b − 16bπ2y2)2
. (3.26)

Substituting in our values of a and b for the cases of SO(even) and SO(odd), we find

pr(F ) ≤ 0.8645...

r
for G = SO(even) (3.27)

pr(F ) ≤ 1.1145...

r
for G = SO(odd). (3.28)

We now present tables for the bounds of the 1-level density from the naive and optimal
test function. As shown in the tables, the two functions have values that are close to each
other and thus produce similar bounds.

Comparison of Bounds for the 1-level density for G = SO(even)
Rank Naive test function bound Optimal test function bound
2 0.43750000 0.43231300
4 0.21875000 0.21615700
6 0.14583333 0.14410400
8 0.10937500 0.10807800

10 0.08750000 0.08646260
12 0.07291670 0.07205220
14 0.06250000 0.06175900
16 0.05468750 0.05403910
18 0.04861110 0.04803848
20 0.04375000 0.04323130
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Comparison of Bounds for the 1-level density for G = SO(odd)
Rank Naive test function bound Optimal test function bound
1 1.12500000 1.11454000
3 0.37500000 0.37151300
5 0.22500000 0.22908000
7 0.16071400 0.15922000
9 0.12500000 0.12383838

11 0.10227300 0.10132200
13 0.08653850 0.08573380
15 0.07500000 0.07430270
17 0.06617650 0.06556120
19 0.05921050 0.05866000
21 0.05357140 0.05307333

As shown in the tables, the improvements in the bounds by the optimal function are
marginal, with a difference in the bounds only showing up in the hundredths digit for
the non-trivial bounds. Previous work has been done by [BCDMZ, FM, ILS] to generate
the optimal test functions for the 1- and 2-level densities for certain supports. However,
since the gain is so small, we choose to pursue alternate methods rather than optimizing
the test functions for higher levels; we choose to look at higher levels to generate better
bounds.

4. Bounds from the n-Level Densities (n even) with support v = 2/n

Until recently, the largest support found was from [HM], which was vn = 1/(n − 1).
This has been extended to vn = 2/n for the n-level density by [C–]. The increased
support results in a great increase in the complexity of the integrals. For support
vn = 1/(n − 1), we only have a one-dimensional integral, which can be easily inte-
grated with methods like Mathematica’s NIntegrate, Simpson’s Method, or Riemann
approximations (we can also do directly through a contour integral, though some work
is required as there is a pole of high order on the line of integration). However, the
extended support introduces n-dimensional integrals and sums over n-dimensional in-
tegrals which renders these methods unusable or far too computationally intensive.

In this section, we describe how to obtain bounds using the n-level density and support
vn = 2/n. Additionally, we detail methods to lower the complexity of the calculations,
including converting our n-dimensional integral to a 1-dimensional integral, which al-
lows us to use the aforementioned methods. For convenience we restate Theorem 1.7.
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Theorem 4.1. (Theorem 1.2 from [C–]) Let n ≥ 2, supp(φ̂) ⊂ (− 2
n , 2

n ), and supp(φ̂) ⊂
(− 1

n−a , 1
n−a ) for some fixed positive integer a. Define

σ2
φ := 2

∫ ∞

−∞
|y|φ̂(y)2dy,

R(m, i; φ) := 2m−1(−1)m+1
i−1

∑
l=0

(−1)l

(
m

l

)

(
−1

2
φm(0) +

∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂(x2) · · · φ̂(xl+1)

∫ ∞

−∞
φm−l(x1)

sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))
2πx1

dx1 · · · dxl+1

)
,

S(n, a, φ) :=
⌊ a−1

2 ⌋
∑
l=0

n!

(n − 2l)!l!
R(n − 2l, a − 2l, φ)

(
σ2

φ

2

)l

. (4.1)

Then5

lim
N→∞

Nprime

〈(
D( f ; φ)− 〈D( f ; φ)〉±

)n
〉
±

= (n − 1)!!σn
φ1even(n)± S(n, a; φ). (4.2)

Remark 4.2. For each n, we can choose a = ⌈n/2⌉ to get supp(φ̂) ⊂ (− 2
n , 2

n ).

Remark 4.3. Since the integrand is an even function in x1, x2, . . . , xl+1, we can re-write R as

R(m, i; φ) := 2m−1(−1)m+1
i−1

∑
l=0

(−1)l

(
m

l

)

(
−1

2
φm(0) + 2l+1

∫ ∞

0
· · ·

∫ ∞

0
φ̂(x2) · · · φ̂(xl+1)

∫ ∞

0
φm−l(x1)

sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))
2πx1

dx1 · · · dxl+1

)
. (4.3)

This decreases the computation by a factor of 1/2l+1 when computing the integral.

Remark 4.4. Letting C f =
log c f

2π , we can rewrite (4.2) as

lim
N→∞

Nprime

1

|FN| ∑
f∈FN

(

∑
j

φ
(

γ
(j)
f C f

)
− µ(φ,FN)

)n

= (n − 1)!!σn
φ1even(n)± S(n, a; φ) (4.4)

for φ an even Schwartz function with supp(φ̂) ⊂ (− 2
n , 2

n ), even n = 2m, and the families FN

being SO(even) or SO(odd).

5As remarked earlier, by [BBDDM] we may remove the condition that N → ∞ through the primes.
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Corollary 4.5. For φ an even Schwartz function with supp(φ̂) ⊂ (− 1
n−1 , 1

n−1), even n = 2m,

and FN being SO(even) or SO(odd), we have

lim
N→∞

Nprime

1

|FN| ∑
f∈FN

(

∑
j

φ
(

γ
(j)
f C f

)
− µ(φ,F )

)n

= (n − 1)!!σn
φ1even(n)± S(n, a; φ). (4.5)

Proof. From (4.4), we get

lim
N→∞

Nprime

1

|FN| ∑
f∈FN

(

∑
j

φ
(

γ
(j)
f C f

)
− µ(φ,FN)

)n

= (n− 1)!!σn
φ1even(n)±S(n, a; φ). (4.6)

We now consider the following term, T, and show that it equals the LHS of (4.6):

T := lim
N→∞

Nprime

1

|FN| ∑
f∈FN

(

∑
j

φ
(

γ
(j)
f C f

)
− µ(φ,FN) + µ(φ,FN)− µ(φ,F )

)n

. (4.7)

Applying the Binomial Theorem yields

T = lim
N→∞

Nprime

1

|FN| ∑
f∈FN

n

∑
k=0

(
n

k

)(

∑
j

φ(γ
(j)
f C f )− µ(φ,FN)

)k

(µ(φ,FN)− µ(φ,F ))n−k .

(4.8)

Since lim N→∞
Nprime

(µ(φ,F )− µ(φ,FN)) = 0, we would like to say each term vanishes in

the limit except the k = n term. Unfortunately more care is needed, as it is possible that
one term goes to infinity and counterbalances the other term going to 0. A standard
application of the Cauchy-Schwarz inequality however suffices. We now have the square
root of two sums. The first involves n-level densities to even arguments, and is O(1),
while the second involves our differences and thus tends to zero. Thus the only term
that contributes in the limit is the first, and

lim
N→∞

Nprime

1

|FN| ∑
f∈FN

(

∑
j

φ
(

γ
(j)
f C f

)
− µ(φ,FN)

)n

= lim
N→∞

Nprime

1

|FN| ∑
f∈FN

(

∑
j

φ
(
γ f ,jC f

)
− µ(φ,F )

)n

. (4.9)

Substituting this back into our original equation gives

lim
N→∞

Nprime

1

|FN| ∑
f∈FN

(

∑
j

φ
(

γ
(j)
f cn

)
− µ(φ,F )

)n

= 1n even(n − 1)!!σn
φ ± S(n, a; φ). (4.10)

�

We use the following from [ILS].
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Theorem 4.6. For a given test function φ where supp(φ̂) ⊂ (−1, 1), the main term of the mean
of the 1-level density of FN is

µ(φ,F ) := φ̂(0) +
1

2

∫ 1

−1
φ̂(y)dy. (4.11)

Theorem 4.7. For an even n with r > µ(φ,F )/φ(0),

pr(F ) ≤
(n − 1)!!σn

φ ± S(n, n
2 ; φ)

(rφ(0)− µ(φ,F ))n
. (4.12)

Proof. For even-level densities, the contribution to the sum in Corollary 4.5 by forms in
which there are not r zeroes at the central point is positive (as n is even), so removing
them cannot increase the sum. Therefore, from Corollary 4.5, we have

lim
N→∞

Nprime

1

|FN| ∑
f∈FN,r

(
rφ(0) + B f (φ)− µ(φ,F )

)n ≤ 1n even(n − 1)!!σn
φ ± S(n, a; φ) (4.13)

where B f (φ) = ∑j φ(γ
(j)
f C f )− rφ(0). Since we assumed n to be even, we have 1n even = 1.

Consider the factor (rφ(0) + B f (φ)− µ(φ,FN))
n; we would like to say dropping B f (φ)

cannot increase the sum, but if the first two terms are less than the third, this is not
the case. By our assumption on r, however, we see the sum with and without B f (φ) is
positive and thus dropping it leads to an upper bound:

lim
N→∞

Nprime

1

|FN| ∑
f∈FN,r

(rφ(0)− µ(φ,F ))n ≤ (n − 1)!!σn
φ ± S(n, a; φ). (4.14)

Since the quantity rφ(0) − µ(φ,FN) is not dependent on f , we can pull it out of the
summation:

(rφ(0)− µ(φ,F ))n lim
N→∞

Nprime

1

|FN| ∑
f∈FN,r

1 ≤ (n − 1)!!σn
φ ± S(n, a; φ). (4.15)

As ∑ f∈FN,r
1 = |FN,r|,

(rφ(0)− µ(φ,FN))
n lim

N→∞
Nprime

|FN,r|
|FN|

≤ (n − 1)!!σn
φ ± S(n, a; φ). (4.16)

Using the definition for the percent that vanish to exact order r from (2.10) and sub-
stituting in a = n/2, we get

lim
N→∞

Nprime

pr(FN) ≤
(n − 1)!!σn

φ ± S(n, n/2; φ)

(rφ(0)− µ(φ,FN))n
. (4.17)

Taking the limit as N → ∞ yields

pr(F ) ≤
(n − 1)!!σn

φ ± S(n, n/2; φ)

(rφ(0)− µ(φ,F ))n
. (4.18)

�
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For quicker computation, we convert the multi-dimensional R integral to a one-dimensional
integral.

Lemma 4.8. Let

I1(x, vn) :=
2iπvnx − e2iπvnx + 1

2π2v2
nx2

, I2(x, vn) :=
1 − e−2iπvnx − 2iπvnx

2π2v2
nx2

= I1(−x, vn).

(4.19)
Then

R(m, i; φnaive) = 2m−1(−1)m+1
i−1

∑
l=0

(−1)l

(
m

l

)

(
−1

2
φm

naive(0) +
∫ ∞

−∞
φm−l

naive(x)
I1(x, vn)le2πix

2πix

)
dx (4.20)

for the naive test function.

Proof. Let

Tl :=
∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂naive(x2) · · · φ̂naive(xl+1)

∫ ∞

−∞
φm−l

naive(x1)
sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))

2πx1
dx1. · · · dxl+1. (4.21)

Then,

R(m, i; φnaive) = 2m−1(−1)m+1
i−1

∑
l=0

(−1)l

(
m

l

)(
−1

2
φm

naive(0) + Tl

)
. (4.22)

We reduce Tl to a 1-dimensional integral. To do so, we first show that the conditions for
Fubini’s Theorem hold, which allows us to switch the order of integration. Therefore,
we show that integral of the absolute value converges. Let

T′
l :=

∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂naive(x2) · · · φ̂naive(xl+1)

∫ ∞

−∞
φm−l

naive(x1)

∣∣∣∣
sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))

2πx1

∣∣∣∣ dx1 · · · dxl+1. (4.23)

Since φnaive and φ̂naive are non-negative and the absolute value is non-negative, the value
inside the integrand is non-negative. Multiplying by (1 + |x2|+ · · ·+ |xl+1)/(1 + |x2|+
· · ·+ |xl+1|), we get

T′
l =

∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂naive(x2) · · · φ̂naive(xl+1)(1 + |x2|+ · · ·+ |xl+1|)

∫ ∞

−∞
φm−l

naive(x1)

∣∣∣∣
sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))

2πx1(1 + |x2|+ · · ·+ |xl+1|)

∣∣∣∣ dx1 · · · dxl+1. (4.24)
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As | sin(u)/u| ≤ 1 for all u, we find

T′
l ≤

∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂naive(x2) · · · φ̂naive(xl+1)(1+ |x2|+ · · ·+ |xl+1|)

∫ ∞

−∞
φm−l

naive(x1)dx1 · · · dxl+1.

(4.25)

Since φ̂ decays faster than any polynomial and φm−l
naive(x) =

(
sin(πvnx)

πvnx

)2m−2l
is integrable,

the integral converges so Fubini’s Theorem holds. Therefore, we can apply Fubini’s
Theorem to get

Tl =
∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂naive(x3) · · · φ̂naive(xl+1)

∫ ∞

−∞
φ̂naive(x2)φ

m−l
naive(x1)

sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))
2πx1

dx2 · · · dxl+1dx1. (4.26)

Converting sine to exponential form yields

Tl =
∫ ∞

−∞
· · ·

∫ ∞

−∞
φ̂naive(x3) · · · φ̂naive(xl+1)

∫ ∞

−∞
φ̂naive(x2)

φm−l
naive(x1)

e2πix1 · · · e2πix1|xl+1| − e−2πix1 · · · e−2πix1|xl+1|

4πix1
dx2 · · · dxl+1dx1. (4.27)

To evaluate this integral, we use
∫ ∞

−∞
φ̂naive(y)e

2πix1|y|dy = 2
∫ vn

0
φ̂naive(y)e

2πix1ydy

=
2iπvnx1 − e2iπvnx1 + 1

2π2v2
nx2

1

= I1(x1, vn). (4.28)

Additionally, we find
∫ ∞

−∞
φ̂naive(y)e

−2πix1|y|dy = 2
∫ vn

0
φ̂naive(y)e

−2πix1|y|dy

=
1 − e−2iπvnx1 − 2iπvnx1

2π2v2
nx2

1

= I2(x1, vn). (4.29)

Substituting in these values into (4.26) yields

Tl =
∫ ∞

−∞
I1(x1, vn)

lφm−l
naive(x1)

e2πix1

4πix1
dx1 −

∫ ∞

−∞
I2(x1, vn)

lφm−l
naive(x1)

e−2πix1

4πix1
dx1

=
∫ ∞

−∞
φm−l

naive(x)
I1(x1, vn)le2πix1 − I2(x1, vn)le−2πix1

4πix1
dx1. (4.30)

Since I2(x, vn) = I1(−x, vn), applying a change of variable to the second integral yields

Tl =
∫ ∞

−∞
φm−l

naive(x)
I1(x, vn)le2πix

2πix
dx (4.31)
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Therefore, plugging in our value of Tl from (4.30) with x = x1 gives

R(m, i; φnaive) = 2m−1(−1)m+1
i−1

∑
l=0

(−1)l

(
m

l

)

(
−1

2
φm

naive(0) +
∫ ∞

−∞
φm−l

naive(x)
I1(x, vn)le2πix

2πix

)
dx. (4.32)

�

Remark 4.9. From the equations of I1(x, v) and I2(x, v), we see that I1(x, v) and I2(x, v) are
complex conjugates. Therefore, since Tl can be written including the difference of I1(x, v) and
I2(x, v) as in (4.30), we only need to calculate 2ℜ(I1(x, v)) which reduces the computation
further.

We now want to calculate the values of S for small cases to find bounds using support
2/n. We first consider the cases of n = 2 and n = 4 with the naive test function.

5. Tables of the Bounds for support v = 2/n

We display bounds found using support v = 2/n. We first present bounds for the
naive test function.

We now show our bounds using the optimal test function for the 1-level density. As
shown in Figure 1, the 1-level optimal test function does not produce better results than
the naive test function for higher levels. While the bounds for the 1-level optimal are
better for the 1-level, interestingly the naive test function outperforms it for higher levels
and ranks.

See the table in §1.5 for a summary of the bounds attainable using the best choice of
level and the naive test function for each rank from 2 through 20. In Figures 1 to 8, we
report on the approximate bounds for the percent of vanishing using different choices
of groups, levels, and test functions. Here, invalid bounds denote bounds that could
not be obtained for the given level and test function as it did not meet the preliminary
conditions for applying the bounds.

Figure 1. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(even) with support v = 2 for the 1-level and v = 2/n
for the n-level with n going from 1 to 10 and r from 2 through 20 obtained
using the naive test function.
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Figure 2. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(even) with support v = 2 for the 1-level and v = 2/n
with n going from 12 through 20 and r going from 2 through 20 obtained
using the naive test function.

Figure 3. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(odd) with support v = 2 for the 1-level and v = 2/n
with n going from 1 through 10 and r going from 1 through 21 obtained
using the naive test function.

Figure 4. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(odd) with support v = 2 for the 1-level and v = 2/n
with n going from 12 through 20 and r going from 1 through 21 obtained
using the naive test function.

Data Availability and COI Statements

No data was generated and used in this paper; all programs used to compute or
approximate the multi-dimensional integrals are available upon request (email the cor-
responding author at sjm1@williams.edu). The authors attest that they have no conflict
of interest related to this work.
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Figure 5. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(even) with support v = 2 for the 1-level and v = 2/n
for the n-level with n going from 1 to 10 and r from 2 through 20 obtained
using the optimal test function.

Figure 6. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(even) with support v = 2 for the 1-level and v = 2/n
with n going from 12 through 20 and r going from 2 through 20 obtained
using the optimal test function.

Figure 7. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(odd) with support v = 2 for the 1-level and v = 2/n
with n going from 1 through 10 and r going from 1 through 21 obtained
using the optimal test function.
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Figure 8. Approximate bounds for the percent of vanishing to exact order
r for the case G=SO(odd) with support v = 2 for the 1-level and v = 2/n
with n going from 12 through 20 and r going from 1 through 21 obtained
using the optimal test function.
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