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FIGURE 1. Observedy(k, 100), random sample 4458 MSTD sets.

2009. CANT RROBLEM SESSIONS 2009
2009.1. Problem Session I: Tuesday, May 26th (Chair Kevin O'Bryant)

2009.1.1. Steven J Miller: | (sim1@williams.eduProbability an element is in an MSTD
Let v(k,n) be the probability that is in an MSTD setd with A C [0, n]; see for instance the figure
below

Conjecture: Fix a constant < a < 1. Thenlim,,_, o y(k,n) = 1/2 for |an| < k <n — |an].

Questions:

e How big are the spikes? Do the sizes of the spikes tend to zgt1o-a co?

e |s the spike up equal to the spike down?

e Study more generally(n) < k < n — g(n); is it sufficient forg(n) — oo monotonically at any
rate to have alk in the region above having probability 1/2 of being in an MS3dd? Can we take
g(n) = loglog log n, or do we need(n) = an?

e A generic MSTD set has about n/2 elements; what other priepest a generic set are inherited by
an MSTD set?

e How big are the fluctuations in the middle?

e Do we want to look at all MSTD sets containingandn, or do we want to just look at all subsets of
[1,n] that are MSTD sets

Note since the end of the conference: Kevin O’Bryant has obseations relevant to this and other
problems proposed by Miller.
Note added in 2014: Many of these claims were later proved bylzao.

2009.1.2. Steven J Miller: Il (sim1l@williams.edu)ith Dan S. and Brooke O. we constructed very dense
families of MSTD sets if0, 7] such that these families wefe/r* of all subsets ofo, r]. This isn't a positive
percentage of sets, but it is significantly larger than amyipus family. Can one do better? Can one get a
positive percentage?

2009.1.3. Peter Hegarty: | (hegarty@chalmers.se3mallest size of an MSTD is 8 elementd: = {0, 2,
3,4,7,10,12,14}; remove4 and symmetric about. If look in 72, can construct an MSTD set of size 16
from this: takeA x {0, 1} (any set of size two would work). Can you construct MSTD set&3 without
going through an MSTD set ii. Need a computer to show this sétwvas minimal (about 15 hours to find
all MSTD sets of size 8, and thus see that this4ét minimal). To find all MSTD sets up to isomorphism
of a certain size is a finite computation, but practically asgible for 9.
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2009.1.4. Peter Hegarty: Il (hegarty@chalmers.seQuestion: What are the possible orders of a basis for
Zy?

Let A C Z,. We sayA is a basis of ordek if hA = Z,, but(h — 1)A # Z,,. A is a basis of some order
if and only if (gcd(A),n) = 1.

A = {a1,...,ax}, |hA| = O(k"™), order should be abolibg ./ log k, SOk = n. Order for a random
set to be a basis, should be of logarithmic order. Can writenda very inefficient basis where need long
summands to cover all &,,. To do this, taked = {0, 1,...,k — 1}. Order of this will be essentially™.

Conijecture: If the order of a basis i®(n) then the order must be very closertgk for somek. So no
number between /2 andn can be the order. Gives gaps. See paper by Dukes and Herke.

Question from participants: this can’'t go on forever?

Answer from Peter: Can go on forever. Fixdetn — oo, the way you would phrase to make it precise:
Fix ak. Forn > 0 if the order of a basis is greater thah; + O(k) then the order must be withid (k) of
n/¢ for somel < k.

Note : Since the end of the conference, Peter Hegarty has setVthis problem. His result is available
athttp://arxiv.org/abs/0906. 5484

2009.1.5.Kevin O’Bryant (obryant@gmail.com)Takegy, = 0, g; to be the least positive integer such that
{90,91,--.,gi} has no solutions tdw + 2z = 5y + 2z. This is building a set greedily.
Letag = 0and '
54+7300a;
a = |—S=—1 (1)

Let A equal the sum of distinet;’s.

Conjecture: G ={bzx+y:x € A,0 <y <4}

Appears computationally that there is some descriptioigfdort when one number is at least twice as
large as another; can replage 2) with (11, 4) without trouble, but not witt{4, 3).

Question from audience: Why 5 and 2?

Answer: 5, 2 smallest haven't solved and have done the maspetation.

Question from audience: How many other cases investigated?

Answer: Calculated all terms up to about 100,000 if both neirstat most 12 (and can exclude cases,
such as cases with common prime factors). Nice structumiistwice the other, else irregular and nothing
to say (though all irregular in the same way).

2009.1.6.Ruzsa (through Simon Griffiths through Kevin O’Bryaritgt A C Z, |A| = n, and
S = {> _ a:BCA, |B| =k}
aeB
Note|Sk| = [S,—k|. For example, ifd = {1,2,4,8,...,2" '} then|Sy.1| = (,1,) = 755 ISk/-

Question: [Si41| < Z—jr’f]Sk] wheneverk < n/2?

2
Theorem (Ruzsa): Yes, whemn > 47k,

Exercise: [Sk+1| < 74715/


http://arxiv.org/abs/0906.5484
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2009.2. Problem Session II: Wednesday, May 27th.

2009.2.1. Comments after Nathanson’s Talk (Mel Nathanson:
melvyn.nathanson@Ilehman.cuny.edBaper is online dtt t p: / / ar xi v. or g/ pdf / 0811. 3990.

TakeG; with A; of generators. Only one direct product, but many sets of rigémes that can construct
from generators of individual groups. Could take directdud of generators. That's complicated. Given
groups and generating sets, many ways to put together nevofsgénerators. Never thought about finite
groups because thinking about geometric group theory. Rite fijroups know at some point all spheres
empty.

Question: A result like this might not be true for semi-greupunch of things with finite spheres then
empty at some point. Additive sub-model of integers, alifpasintegers exceeding 1000. Can you have in-
finite sphere, finite sphere, infinite sphere, finite sphernswer: don’t know. Wanted to create oscillating
sets of spheres, turned out couldn't.

2009.2.2.Constructing MSTD Sets (Kevin O’Bryant, communicated ¢gest Miller).

Theorem: d; € {3,4,5} independent uniformly distributed;; = 4, zo = 5, ; = z;—1 + d;,
A={1}yu{0,£z1,...,+x,}. Then|A + A| > |A — A| with probability 1.

Note
A+A = (X+X)uX+1)Uu{2}
A-A = X-X)uX-1Hu(l-X)u{o}
= X+X)UX-1)U((l+X)u{o},

whereX is the set of the;’s.

2009.2.3. David Newman (davidsnewman@gmail.corSuppose we have a basis for the non-negative in-
tegers, that is a set so that for any non-negative number wérwhtwo elements of the set whose sum is
this given number. If we arrange the numbers in the set imnakieg order then we can cut it off at a certain
point and look at the firsV terms of this basis.

Question: Can this beginning of a basis be extended into a minimal BaBisminimal basis | mean a
basis where if you remove any element it is no longer a basis.

Has to have 0 and 1 as a start. | think the answer is yes is bethasen’'t seen the beginning of a basis
| couldn’t extend to a minimal basis. | have an algorithm iempénted in Mathematica and in a few seconds
gives a set which is a minimal basis. That’'s about all the Irffave, other than one family of bases that |
can always extend to a minimal basis.

Another problem (from the theory of partitions): Consider

A+z)(1+2%)-- = Zanw",
which is the generating function for partitioning into dist parts. Now put in minus signs:
1-2)1—-2%)- =1l-az—a?+2°+2"+---,
where all coefficients are if0, +=1}. Now do partitions into unrestricted parts:

A+z+22+23+ YA +22+2r4+25+.)... = anx".

Question: can we change some of the signs above into minus signs sd#igfs are also in{0, +1}.


http://arxiv.org/pdf/0811.3990
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Note since the conclusion of the conference: Peter Hegartyd David Newman have made progress
on this. They are currently working on a paper: Let h > 1 be an integer, for any basisA for Ny of
order h and any n € Ny the initial segment A N [0,n] can be extend to a basis oft’ of order h which
is also a minimal asymptotic basis of this order.

2009.2.4. Infinitude of Primes (Steven Miller)Two types of proofs of the infinitude of primes, those that
give lower bounds and those that don’t (such as Furstersbéogological proof). What category does
¢(2) = 7%/6 # Q fall under? It implies there must be infinitely many primes,this is¢(2) = [, -
p~2)~1; if we knew how wellr? can be approximated by rationals, we could convert this mwkedge
about spacings between primes. Unfortunately while we ktimnirrationality exponent for? is at most
5.441243 (Rhin and Viola, 1996), their proof uses the primamiper theorem to estimatem(1,...,n).
This leads tor(z) > loglog z/ log log log « infinitely often; actually, | can show: let(xz) = o(z/log )
thenrw(x) > g(x). A preprint of my paper (with M. Schiffman and B. Wieland) islioe at
http://arxiv.org/PS cache/arxi v/ pdf/0709/0709. 2184v3. pdf

and | hope to have a final, cleaned up version in a few monthms.ldoking for a proof of the finiteness
of the irrationality measure af(2) that doesn’t assume the prime number theordlote added in 2014:
Miller is currently working on this with some of his students.

2009.2.5.Kent Boklan (boklan@boole.cs.gc.ed)here are infinitely many primes, don’'t know much
about twin primes. Know sum of reciprocals of twins conver@pgg Brun’s theorem. This is a hard the-
orem — | want to do elementary things. How do you show thererdir@tely many primes which are not
twin primes. Trivial proof: There are infinitely many primekthe form15k + 7 by Dirichlet, and not prime
if add or subtract 2. But Dirichlet isn’t elementary!

2009.2.6.Mel Nathanson II.A = {ai,...,ax} finite set of integersp = Zleaiaci is solvable for all

n if and only if gcd(A) = 1. In geometric group theory, can deduce algebraic propedi¢he group by
seeing how it acts on geometric objects. Fundamental lenfigaaonetric group theory says the following:
G is a group and acts on a sgt(metric space), want action to be an isometry for any fixeéal the group.
Acts isometrically on the metric spacé Suppose the space is nice (Heine-Borel, want that: angdlos
and bounded set is compact, call this a proper spageicts properly discontinuously ok if intersection
non-empty for only finitely many. Example:Z™ acts onR™ by (g,z) = g + . HaveG\ X, sendz to its
orbit (z). Put a quotient topology o6\ X that makes projection map continuous. Examf@&\R" is the
n-torus. LetK' C X compact, for every € X there is ay € K such thatyy = x. For examplen = 1:

Z acts onR by translation, take unit intervad, 1] (compact), and every number is congruent modulo 1 to
something in unit interval. The fundamental lemma of geoimegroup theory: Group acts as isometry and
properly discontinuously on proper metric space tliemust be finitely generated. Know nothing about
if it is finitely or infinitely generated, but if acts geometily in this nice way, that can only happen if the
group is finitely generated. Proof goes by finding a compaciswith exactly the property above. What
we know aboutK since group action properly discontinuous, group acticen&” only finitely many, that

is a finite set of generators.

Suppose we specialize to elementary number theory: irdegeing on reals by translations, compact set
K such that every real number is congruent modulo 1 to an eleafidfi. Then we get a finite set of gener-
ators for the group, but the group is the integers and a fiettefsintegers is a finite set of relatively prime
integers. Get certain sets of relatively prime integers.atfimite sets of integers can we get geometrically
in this way? Every finite set of relatively prime set of integjean be obtained this way. Curious thing is
that there is this geometric way to describe these sets. ablaktice points in two dimensions, seems quite
complicated.

Article might be:htt p: / /ar xi v. or g/ pdf/0901. 1458.
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2009.3. Problem Session llI: Thursday, May 28th.

2009.3.1.Gang Yu (yu@math.kent.edu): C N is an infinite sequencé&;(N) = C N [N] (where[N] =
{0,..., N} or perhaps it starts at 1)), > 2 fixed, callA C [N] anh-basis ofC(N) if hA D C(N).

Trivial estimate:| A| > h!|C(N)|'/*.

Interesting cases™' is sparse but arithmetically nice:

CcC = {nz}
¢ = {n"}
¢ = {fn)}
wheref is a degree 2 polynomial. Let
rie = T 0 @)
where
Dp(C,N) = min |Al. 3)

A is an h—basis of C(N)

Question: IsT',(C') = 0 for polynomialC (ie, degree at least 2)?

Audience: Is it true for any sequence?

Gang: Don’t know. ForAP = C, bounded away from 0. Specifically, C [N], A+ A D {n?: D <
n <VNY, NV = o(|A])?

After the conference it was noted: Some information availake at htt p://arxi v. or g/ pdf/
0711.1604.

2009.3.2.Simon Griffiths (sg332@cam.ac.ukdn n-sum of a sequence, ..., z, is a sum of the form
i, + -+ + x;, wWherei; < --- < i,, i.e. an element that can be obtained as the sum of-term
subseqguence.

EGZ: Every sequencey, ..., xs,_1 € Z, has 0 as an-sum.

Bollobas-Leader: Let,...,z,+, € G and supposé® is not an

n-sum, then you have at least+ 1 n-sums.

Examples: EGZ is tight as demonstrated by the sequenge-of 0s andn — 1 1s; Bollobas-Leader is
tight as deomnstrated by the segof 1 Os andr + 1 1s.

What about finite abelian groups more generally?

D(Q) is Davenport constant, the minimunwhere every--term sequence has a non-trivial subsequence
with sum0. For example: not difficult to show(Z,,) = n.

Example: Letry, ..., zp)—1 be a sequence i& with no non-trivial subsequence summingtoand
adjoinn — 1 0s by settinge p(qy, ---» Tnt-p(G)—2 = 0. Then, by an easy check, we see that this sequence, of
lengthn + D(G) — 2 does not havé as ann-sum.

Gao: Every sequence,, ..., z,, pg)-1 has 0 as am-sum.

Question: EGZ is to Bollobas-Leader as Gao is to ..?..?..

One Answer: A theorem of Gao and Leader.

Why do we need another answer: Both of the results, Bollale@sler and Gao-Leader allow us to see
the set ofn-sums grow as the length of the underlying sequence ingeakmvever perhaps in the case of
general abelian groups there may be a different way to ssgtbivth - to see this growth as a growth of
dimension in the sense described below.


http://arxiv.org/pdf/0711.1604
http://arxiv.org/pdf/0711.1604
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Our approach to defining the dimension of a suliset G is similar to describing the dimension of a
subspace via the maximum dimension of an independent stdaspizall a sequence zero-sum-free if no
non-trivial subsequence has sum Let dim(.S) equal D(G) minus the minimum- such that for every
zero-sum-free sequence

y1, ...,y there exists an € S and a subsequendesuch that

S—i—zlyzzo

If 0 € S then we take the minimum to be zero. Thus,
Examplesdim(G) = D(G). S = G — {0} impliesdim(S) = D(G) — 1. S = () impliesdim(S) = 0.

Conjecture: z1,...,z,4+, either 0 as am-sum ordim ({n — SUMS}) > r + 1.

2009.4. Problem Session IV: Saturday, May 30.

2009.4.1. Urban Larsson.How small can anaximalAP-free set be? Specifically, how large is the smallest
maximal (with respect to not having 3 terms in arithmeticguession) subset 0f|? Set

wu(n) == mjn |AN[n]|.
Alis 3-free

Examples: The greedy subset{of 1, ... } with 3-term APsign € N : base-3 expansion ef has no '2'g.
This shows thati(3') < 2!. A better example is the set of natural numbers whose bagpahsions have
neither '2’s nor '3’s. This gives(4!) < 2°.

Each pair of elements of, which is 3-free, forbids at most three other numbers fmmso?)('g“) >
n — |Al, so that|A| > ¢\/n. Attention to detail give$A| > /2n/3. If A is uniformly distributed mod 4,
and u.d. infn], then many pairs will not forbid three other numbers, and gjives|A| > /420n/401.

| conjecture thagi(4') = 2¢, andu(n) > /n for all n.

2009.4.2.Renling Jin.Let d(A) = liminf,,_,, A(n)/n be the lower asymptotic density &f, and letP
be the set of primes. Clearly
VACN (d(A+P) > f(d(A))

for f(x) = x. What is the rightf?

Using Plinnecke and(3P) = 1 (due to Easterman, van der Corput, and possibly others emdiemtly)
we getf(z) = z2/3.

Audience: Can replac® with any h-basis and still have (z) = =~/

Note that Erés proved the existence df with A(n) ~ logn andA + P ~ N, so the primes are not a
typical basis.

Audience: Canz?/® be improved assuming the Goldbach conjecture? Answer: Baokd gives only
o(4P) =1, so no.

2009.4.3. Mel Nathanson.Clarifying earlier problem. We say that two pointsl&% are congruent if their
difference is inZ"™. Suppose that C R" is compact and for each € R there is ay € K such thatr = y.

Theorem: A := (K — K) N Z" is afinite set and generates the additive grétip

Forn = 1, there is aK that will give any set of generators that contains 0 and isrsgiric about O.
Forn = 2, which sets of generators arise in this fashion? Specificallthere ak’ (compact and hitting
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every residue class modulo 1) such tHat {(z,y): xy = 0}? Even more specifically, is therefa with
A ={(0,0),(£1,0),(0,£1)}?

Note since the end of the conference: Renling Jin has solveldis problem. Independently, and by
different methods, Mario Szegedy has obtained a partial sakion.
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2010. CANT RROBLEM SESSIONS 2010
2010.1. Problem Session llI: Friday, May 28th (Chair).

2010.1.1. Nathanson: Classical Problems in Additive Number ThedtyG. de Bruijn had two papers:

(1) On bases for the set of intege949.
(2) On number system&956.

Very few references to these papers. The second paper: ted stad solved a problem; in the first he
stated a problem but neither he nor others could solve. y,atelvever, these have become of interest to
people in harmonic analysis.

These are related to the idea of complementing sets. Giverita $ietA, can you find an infinite se
such thatA & B = Z? De Bruijn considered a slightly different problem, but e tsame spirit. Given
a family of sets{4;};,c;y with I = N or {1,...,n}, we are interested in sets with the property tNat=
®@ierA;; in other words, every non-negative integer is of the foriy. ; a; anda; # 0 only finitely often. De
Bruijn calls this aBritish number systemYears ago 12 pence in a shilling, .... The British numbetesys
(pence, shillings, pounds) is the motivation for notatitiryou have 835 pence that is 3 pounds, 9 shillings
and 7 pence. The British number system is based on 12 and 20.

Using 12 pence is 1 shilling and 20 shillings is 1 pound. Tékgicr, i > 2, Go — 1, G1 = g1,

G2 = 9192, Gi = 9192 - Gn,

An - Gn—l * [07 1a27 .. 7gi—1) - Gi—l * [0792)7

and
Al = {071727"'791—1}
A2 = Gl*{o,l,...,gg_l}
Az = GQ*{071727"'793—1}
An+1 = Gn *N(b
where

d* A = {da:ac A}.
Are there other sets? Yes. Le#;}icr and] = UjesL; with I; N 1 = () for j # j', Bj = Zzezj A,

{Bj};c;. Comes down to choosing sequencegysfto be prime numbers to get indecomposable sequence.
Consider a seB of integers such that every € Z has a unique representation in the form

n = Zebb

beB

whereeb € {0, 1} ande, = 1 finitely often. LetA; = {0,b;}, $°,A; = Z.
Take set of powers of 2{21}2° : get all non-negative integers. Suppose we looKes'}2°, where
e; € {£1}. Need infinitely many+1s and—1s to be a basis. No other condition necessary. Works if there
are infinitely manyt-1s and infinitely many-1s. What infinite set$3 have this property? Want subset sums
to give each integer once and only once. First thing can sthaiswe better not have everything even, so
must have at least one odd integer in the set. Then de Brwyeprsomething clever: not only at least one
odd integer, but at most one odd integer. Was a conjecturenoésne else, de Bruijn proves this conjecture.
Think about this for a minute. Exactly one odd number. If yoe going to represent an even number it
cannot have that odd number, and thus if divide all even nusnlipe 2 get another system of this form, so
one of these and only one of these is divisible by 2 and not 4inByction, see for every power of 2 there
is one and only one numberin this set such that”||z. We can thus writé; = d,2' with d; odd. SoB
comes from a sequence of odd numbers. Let's call this sequeinedd numbergd; }>°, okay, sequence
of odd numbers. In other words, it is an additive basis. Jsthted the problem — what sequences of odd
integers are okay?
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No one knows what sequences of odd numbers are okay. De Bmajyed the following: suppose
{di1,ds,ds, ...} is an okay sequence; this is an okay sequence if and ofltisifds, dy, ... } is okay. Can
throw off any bunch — do again. Can really screw around witlolkaly sequence — can chop at any point,
any finite sequence of garbage in the beginning. This is ardsting problem. | went this morning to
MathSciNet to see what papers have referenced this paper®fuijn. There was a gap of about 50 years,
but now relevant for something in harmonic analysis (thaytcsolve this problem, but it is in the same
spirit as something they are interested in).

2010.1.2. Schnirelman.When did additive number theory start? In 1930s Schnirelpramed that every
even number is the sum of a large number of primes; he did yhsdwing a theorem about sumsets. Before
this the results were beautiful (Fermat, Lagrange, Gaussdys Ramanujan, Littlewood, Vinogradov);
Schnirelman had a general theorem about integers.Let

A+B = {a+b:ac A, be B}.

Counting function

An) = L.

acA
1<a<n

Let's say0 € A N B to be safe. Defining

5(4) = imf A

Schnirelman proved
A+ B) > 0(A) +(B) —0(A)d(B).

Norwegians are funny — go off to the mountains and come dowmawreat theorem. In WWI de Bruijn
goes up to mountains and invents a sieve method that allows$dprove things about Goldbach and Twin
Primes. No one could understand the paper. Landau coulddigmstand it, didn’t try. Schnirelman did
understand and used it to get his results, which made th# fesethod fashionable. Now people studied
de Bruijn’s paper. Landau’s exposition in one of the semjimainals became the standard exposition for the
de Bruijn sieve. Same thing happened with Selberg. WWiltetiahe was captured by Germans, released
if promised not to stay in Oslo, went to family home and proxesllts on zeros af(s).

Could also look at

dr(A) = lim M
n—oo n
SayA ~ B if there is anN such that for alh > N we haven € A if and only if n € B. Embarrassment:
if every element is even then all sums even, must be caréfui,(hA) > 0 for someh then ifd = ged(A)
and0 € A there there is ahg such thathgA ~ d * Ny. First time appears is in a paper with John C. M.
Nash (the son).
Let0 € Aanddy(hA) = 0forall h > 1. Assume

AC24AC3AC4A C --- C hA C ---.

If any set has positive density then get all integers fromespoint onward. Maybe in this case some infinite

case appears. The question is: take a set of non-negatagemstcontaining 0 such that all of these sets
have asymptotic density zero. Get an increasing sequersaddto itself more and more times, does any
structure appear? Can you say something that interestsfyends mathematically about this? Is there

anything that must happen?
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2010.1.3. Alex Kontorovich.Not convinced problem is difficult, but we haven't made pesg. The ques-
tion is the additive energy ifiL(2,Z). This means that we take elementss, v3,v4 in SL(2,7Z) in a ball
By and want to know how many there are such that- v2 = 73 + 74}. The number of points in a ball (4
variables, 1 quadratic equation) gives?.

We have 16 variables (unknowns), 4 quadratic equationgd@terminants equaling 1) and 4 linear equa-
tions. Want an upper bound of the forn N4*<. Have a trivial lower bound oN*. Easy thing to prove is
N? for the following reason. Let

N2 if w=0

n(w) = #{y72 € BN(SL2) : 1 — 2 =w} = {NHE i £ 0.

What about non-trivial bounds? See
http://arxiv.org/pdf/1310. 7190v1. pdf
for more on this problem.

2010.1.4. Peter Hegarty.This is a problem on Phase Transitions inspired by Hannakrédptalk. LetG

be an Abelian groupA a set of generators, everything infinite. Havél), S(2), S(3), ..., S(r), ...,
where the sequenceds, o, ..., 0, (n),0,0,... (where we may or may not have theerm). We should
be able to compare the sizes of infinite, i.e., their meassuppose= is a compact Abelian group, such as
the circle, and letd be a measurable set. Want to look at Lebesgue (or Haar) neeafstire setsy(S(1)),
1(S(2)), et cetera. The sequence should be unimodal (regular).

David Neumann looked at something similar. For finite graopg&ing at the sizes, did a lot of computa-
tions with different groups and generating sets. Did find amgle where it wasn't the case, but typically
do have unimodality. Hegarty conjectured that for any figiteup (not necessarily Abelian) can always find
a set of generators such that the sequence is unimodal.

2010.2. Problem Session IV: Saturday, May 29th.

2010.2.1.Peter Hegarty.Let A C N,
r(A,n) = #{(a1,a2) : a1 + az = n}.

What sequences of non-negative integers can be asymptptiesentation functions? Of course there are
restrictions if start from 0. Obviously only one way to reggat 0 (0+0). Given a sequence of numbers,
want the sequence to equdlA, n) starting at some point. Assuming Erdds-Turan, cannot bedex and
simultaneously not have infinitely many zeros.

Comment from Nathanson: Matter of choice whether talké, n) or the function

t(A,n) = #{(a1,a2) : a1 + a2 =n,a1 < as}.

More generally, sayS| = co andS C G, A is an asymptotic basis (of order 2) f6rif S<A 4 A (up to
finite sets). Let

ra(s) = #{(a1,a2) : a1 + ag = s}.
We haver, : S — N U {oo}. Hardest problem is what we had earlier.
2010.2.2. Mel Nathanson.Erdds-Renyi Method: Let
) = {all sequences of non — negative integers}.
Let0 <p(n) <1forn=0,1,2,.... Then there exists a probability measuteon 2 such that
P,(E,) = P,({A€Q:neA}) = p(n)

then the event#,, are independent.


http://arxiv.org/pdf/1310.7190v1.pdf
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If choosep(n) to be something like a logarithm over a powermfsayal"ﬁ# with1/3 < v <1/2 -
want a result that doesn’t use any probability. If put thishability measure on the sequence of integers,
then if A € No with A+ A ~ NpandS(n) = {a € A: n—a € A}, then form # n we have

2

Stm) N8| < 5

for all but finitely many pairs of integers.

Below is an example of where this result was used. An asymediasis means every number from some
point onward can be written as+ o’ with a,a’ € A. An asymptotic basis! is minimal if no proper subset
of A is an asymptotic basis. This means we have the set of integdrghe property that if throw away
any number then all of a sudden infinitely many numbers cabaoepresented. Came up in an attempt to
construct a counter-example to the Erdds-Turan conjecNioé every asymptotic basis contains a minimal
basis. There is a theorem that says thatsifn) — oo and|S4(m) N Sa(n)| = O(1) then A contains a
minimal asymptotic basis.

Theorem: If have a sequence witlh(n) > clogn for somec > 1/log(4/3) ~ 3.47606 andn > ng
then A contains a minimal asymptotic basis.
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2011. CANT RROBLEM SESSIONS 2011

2011.1. Problem Sessions.There was an issue with my computer and the original file wsisfty 2011;
the items below are restored from earlier copies, thouglvé th@st who spoke on what day and thus have
run this as one entry.

2011.1.1.Seva Lev.Problem: Let A C 3, p € Fa[z;]}_,, and for alla,b € Aif a # bthenp(a +b) = 0.
Does this imply thap(0) = 0?

For example, ifA = {a, b} thenp(a + b) = 0 does not implyp(0) = 0.
If Ais large and the degree pfis small, what is true? For a given how large mustA| be for this to be
true? We have the following:

deg P need
0 |A| > 2
1 |A| >3
2 |A| >n+3
3 |A| > 2n
< (fracl2o(1))n 777.

2011.1.2.Giorgis Petridis. P-R: Dy > 1 implies that there exists) vertex disjointed paths of length 2 x.
Problem: What can be said wheby > k € Z?

Guess: there exisiy vertex disjoint trees iy each having at leagt; vertices inV;. Note: there is an
example which shows that one cannot hope to prove this gs@sg max flow - min out. Guess confirmed
ink = |Vy| = 2 by Petridis.

2011.1.3. Mel Nathanson.Believe the following is an unsolved problem by Hamidouneglhoposed it and
no one has solved it):

Problem: Let G be a torsion free grougg; # {e}. Let.S be a finite subset af, e € 5,
kE(S) = min{|X S| — | X] : finitesets X C G, |X| > k}.
Hamidoune conjectured that there isArC G with |AS| — |A| = kx(S) and|A| = k.

True fork = 1, unknown fork > 2. It is true for ordered groups. As every free abelian grouprite
rank can be ordered, true here. In generalfer 2 still unknown.

2011.1.4.Matthew DeVosProblem: Let G be a multiplicative group$ C G a finite set, and set

I(S) = {s1---sp:s,€ 8,8, =sj<=1i=7U{l}.
Not allowed to use an element multiple times. Conjecturerdlis ac > 0 such that for every grou@ and
setS C G there existdd C G with [TI(S)| > |H| +c|H|-|S\ H|%.

True withc = 1/64 whenG is abelian.

2011.1.5.David Newman.Problem: How many partitions are there where no frequency is used thare
once?

For example, the partitions of 4 afd}, {3,1}, {2,2}, {2,1,1} and{1,1,1,1}. The ones that are okay
are all but{3, 1}. The problem here is that the two decompositions each oastiopce: we have one 3 and
one 1.



16 MILLER

2011.1.6. Steven J. Miller, Sean Pegado, Luc RobinsBmnoblem: For each positive integér, consider all
AsuchthatkA + kA| > |kA — kA| andl € A (for normalization purposes). Lét, be the smallest of the
largest elements of sucii's. What can you say about the growth@jf?

Ci=15Cy=31,....

2011.1.7.Speaker unremembere&roblem: Assume that you havd, B in a general group aniB| <
alA| and|AbB| < a|A| for all b € B. Does there exist an absolutesuch thatX c A then|X B"| <
ah| X|?

Rusza showed that if you hayé+ B;| < a;|A|for j = 1,2, then there is aiX such thatX + B;+Bs| <
011012|X|.

Problem: Is there a prescription fak given that Rusza'’s theorem shows the existenck of

2011.1.8.Speaker unremembere@roblem: Let 5 be a partition of». Consider the partition wherg +
-+ ¢ =n,and1%2% ... Thed,’s are the number of the’s andd; + - - - + d,, = m. Consider

Z n n+m+1 1
cl,...,cx)\n+1,dy,...,d,) |m4+n+1]"

BeP(n)

What can be said?

Try putting in anr™ and summing over. Maybe this is a holomorphic part of a non-holomorphic Maass
form.

2011.1.9. Peter Hegarty.Problem: Consider the least residue afmodulo ¢, denoted[n],, which is in
{—q/2,...,q/2}. Want a function fromr : {1,...,27} to itself (a permutation, so 1-1) with the property
that given anyu, b, ¢ not all equal with|[a + ¢ — 2b]27| < 1 then|[r(a) + 7(c) — 27(b)]27| > 2.

Motivation: replace 27 with, ..., have a permutation avoiding a progression. Conjechat a permuta-
tion of Z,, exists for every sufficiently large.

2011.1.10.Speaker unremembere®@roblem: Defineh : {1,..., N} — Z/NZ; call it a partial homomor-
phism if it a bijection such that wheneverb, ab € {1,..., N} thenh(ab) = h(a) + h(b) mod N. Does
such a function exist for alN ?

Have built by hand for allV up to 647?

2011.1.11.Steven Sengeil he basic idea is that an additive shift will destroy muitative structure. Given

a large, finite setA C N, suppose thatd A| = n. We know that there exists no generalized geometric pro-
gression,iG, of lengthcin, such that(AA + 1) N G| > con, wherec; andce do not depend om. The
guestion is, given the same conditions &ndo there exist set&, I’ C N, such that the following hold for
c3, ¢4 independent ofy, andd > 0:

hd |E|> |F| > n(5

o |[EF|=csn

o [(AA+1)NEF|>cyn
Even partial results would be interesting to me. Also, cdeishg the problem oveR would be interesting
to me.
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2011.1.12.Urban Larsson.2 pile Nim can be described as the set of moves on a chessbeate by a
rook, moving only down and left. Players take turns moving tbok, and the person to move it to the
lower-left corner is the winner. The set of legal moves isrdefito be

{(0,2), (x,0)}
In this case, the positions which guarantee victory follayverfect play, op-positionsare along the diag-

onal. That is, the player who consistently moves the rookeadiagonal will eventually win.
In Wythoff Nim, the piece is replaced by a queen, and the diagmove is added. The set of legal moves

for Wythoff Nim is
{(0,2), (x,0), (z,2)}.

This game has p-positions close to the lines of slppnd ¢!, where,¢ denotes the golden ratio. For
example, the point§| ¢z |, |z |) are p-positions in Wythoff Nim.

Now, adjoin the multiples of the last possible p-positiorat Wythoff Nim which are not in Wythoff
Nim, namely the multiples of the knight's move. The legal mewf the new game are

{0,z), (z,0), (x,2), (z,2z), (2z,x)}.
The p-positions for this game appear to split along linedages nearly 2.25 and 1.43. Why?

2011.1.13.Thomas Chartier.Let n,k € N, andp = nk + 1 be prime. Exclude 1 and 2. Fixing does
there exist & such that

1%, 2k 3k . nF
are distinct mogh? The conjecture is that suchkaxists for every non-triviah.

2011.1.14.Mel Nathanson.Recall the classical sum-product problem of &8dGiven a large set of positive
integers,A C N, either the set of sums or the set of products should be large.conjecture is that, for
such an4, with ¢ independent of, for anye > 0,

max{|A + A|, |AA|} > en?®C.
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(28) Luc Robinson, Willliams College

(29) Steve Senger, University of Missouri

(30) Jonathan Sondow, New York



COMBINATORIAL AND ADDITIVE NUMBER THEORY PROBLEM SESSIONS'09-'16 19

2012. CANT RROBLEM SESSIONS 2012

2012.1. Problem Session I: Tuesday, May 22nd (Chair Renling Jin).

e From Renling Jin, jinr@cofc.eduDefine a subset of the natural numbéssto be an essential
componentifforalld ¢ N,o(A+ B) > o(A) if 0 < 0(A) < 1. B is an extraordinary component
if

o(A+ B)

liminf ——% = oo.

o(A)—0 o(A)
Here
o(4) = inf A

z>1 X

Ruzsa conjectured that every essential component is aoedinary component.
What are the essential components we know? If

B = {k*: ke N}
then
o(A+B) > o(A)71/1
sinceB is a basis of order four. We get
o(A+ B) 1

> .
oA T Vol

Similar for cubes ok-powers.
e From Steven J. Miller, sim1@williams.edWe say a setd is a More Sums Than Differences Set,

oran MSTD set, if A + A| > |A — AJ, where
A+A = {ai—i—aj:az-,ajeA}
A—A = {a;—aj:aa; € A}

As addition is commutative and subtraction is not, it's estpd that ‘most’ sets are difference dom-
inated; however, Martin and O’Bryant proved that a posifieecentage of sets are sum-dominated.
There are explicit constructions of infinite families of sulmminant sets. Initially the best result
was a density 0f,°2"/2/2", then1/n* (or 1/n?), and now the record is/n (where our setsl are
chosen uniformly from subsets ¢f),1,...,n — 1}). Can you find an ‘explicit’ family that is a
positive percentage.

e From Urban Larsson, urban.larsson@yahoo.set A = {0, 1, 3,4, ... } for a set that avoids arith-
metic progression, thought to be best set to avoid aritlon@gression but not (comes from a
greedy construction). Equivalence with a base 3 constmictd = {0,1, 10,11, 100, 101,... }
gives A((3" + 1)/2) = 2", whereA(n) = #{i € A | i < n}. Hence, for alln, A(n) <
Cnlos2/log3 ~ n2/3  Study impartial heap games. Is it possible to find a game thattthe P and
N-positions correspond to the numbers in this constru@tioh position is in N if and only if the
first player wins.) In some sense such that:

PPNPPNN
012345 6

We rather use three heaps of sizes in three-term arithmetiggssion. A legal move is to erase the
largest pile and then to announce one of the smaller pilesearew largest pile. Notatiofx, y),

wherez is the number of tokens in the smallest heap arid the second smallest. In the table
below, the first entry is the outcome, the second is the pwosithe third is the Grundy value, and
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the fourth are the options.

P (0,1) 0

N (0,2) 1 (0,1)

P (0,3) 0 (1,2

N (0,4) 0 (0,2), (2,3)

N (1,2) 1 (0,1)

N (1,3) 0 (1,2),

P (1,4 0 (0,2), (2,3)

N (2,3) 2 (0,1), (1,2)

N (2,4) 3 (1,2), (0,2), (2,3
N (3,4 0 (1,2), (0,2), (2,3)

The P positions (Grundy value 0) have both lower heap sizéwisetA. The N positions have
Grundy values> 0, defined as theninimal exclusivef the Grundy values of the options. What are
they? Is it possible to extend the gameduljoining moveso obtain limsupl(n) /n'°82/1083 = o2
The game generalizes keterm arithmetic progressions and the Sidon-conditiorel@mple.

How do we extend such games? We need a general definitionefdantily of games. Auleset
is a set of finite sets of positive integers. Fronpasition consisting of a sef of non-negative
integers, choose one of the numbers S and a sef\/ of numbers from the given ruleset. The next
position, which is a set of nonnegative numberssis- m | m € M}, provided mad/ < s. We
get a recursive definition of the sétwhich determines the P-positions for a givieh A position S
isin Pifand only ifS C A. ThatisS isin N iff SN A # (). In this sense we can abuse notation and
regardA as the set of “P-positions”. A game extension\dfis M U M’, for M’ a set of finite sets
of nonnegative numbers. For our game theMeis M = {{d,2d} | d > 0}. One first example of
a game extension &/ = {{d,2d} | d > 0} U {{1}}. Question: does the sdtbecome less dense
for this game than for our original AP-avoiding game?

2012.2. Problem Session Il: Wednesday, May 23rd (Chair Steven J Mikr).

e From Steven J Miller, sim1@williams.edWe investigated in

http://arxiv.org/pdf/1109. 4700v2. pdf) properties of A+ A| andA + A asA varies
uniformly over all subsets of0,1,...,n — 1}. How does the behavior change if we change the
probability of choosing varioud’s (see for example my work with Peter Hegarty:
http://arxiv.org/pdf/0707.3417v5).

Another related problem is to ‘clean-up’ the formula we héwethe variance. This involves
sums of products of Fibonacci numbers — can the answer bdifsauip

What about the expected values2afA versusk A — kA.

From Ryan Ronan, ryan.p.ronan@gmail.coiarlier today | discussed joint work on generalized
Ramanujan primes,

http://arxiv.org/pdf/1108. 0475. One natural question is whether or not for each prime
p there is some constant such thaip is ac,-Ramanujan prime.

Another question is the distribution efRamanujan primes among the primes, in particular the
length of runs of these and non-these. It can take awhileh@dimiting behavior of primes to
set in; it's dangerous to make conjectures based on smalll glata sets. Are the calculations
here sufficiently far enough down the number line to haveHhdtlimiting behavior? For a related
question, perhaps the Cramer model is not the right modeséaa build predictions, and instead
we should use a modified sieve to construct ‘random primésvould be worthwhile to do so and
see what happens / what the predictions are.


http://arxiv.org/pdf/1109.4700v2.pdf
http://arxiv.org/pdf/0707.3417v5
http://arxiv.org/pdf/1108.0475
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e From Steven Senger, senger@math.udel.¢thve a subset of a finite fieldlF, satisfying for alle
ands positive (1)|A| [AA| > ¢3/%F¢, (2) |AA| < ¢"~°. For all generalized geometric progressions
G with |G| ~ |AA| we have|(AA + 1) \ G| > ¢°. Can reduce the size constraint (1)? Can we
increase the size ¢fAA + 1)\ G| > ¢°?

e From Kevin O’Bryant, obryant@gmail.conow far out can you gdx1, x2, 3, x4, - - - } such that
the first four are in the first four quadrant, the first nine ia finst nine subdivisions3(x 3), the first
16 in the first4 x 4 and so on.... We know this can’t go on forever, violates Sdami

The discrepancy of the sequenice } is

#{wi c R}
T _

We haveDisc({z;}_,) > C“’gd. If we spread the points too well, the discrepancy gets \asy |

Let me rephrase — | strongly believe that this logarithmatdawill kill this arrangement.
2012.3. Problem Session lll: Thursday, May 24th (Chair Alex losevidc).

e From Jerry Hu, Hul@uhv.edu:
This problem is related to Nathanson'’s talk “The Calkinffige and a forest of linear fractional
transformations” from Tuesday. Recall the form of the QaWilf tree, where we have:

Disc({z;}% ) = S%p A(R)|.

SIS

Ve N\
a a+b
a+b
N\ N\
a 2a + b a+b a+2b
2a+b a-+b a—+2b b
Whena andb are both initialized as 1, each positive rational numbereapp on the tree exactly
once.
The question is: how can we generalize this? More specificddl there exist other trees of the
form
z
e N\
L(z)  R(z)

in which every positive rational number appears exactlye@n€an we find all, or any, nontrivial
functional pairsL, R such that this condition holds?

e From Nathan Kaplan, nathanckaplan@gmail.corhtere is a problem about counting lines among
points inF%. | will give two different kinds of motivation for why someermight be interested in
this.

The card game SET is played wigh distinct cards, each of which has four attributes (number,
color, shading, and shape), where each attribute has thesgogities. We can identify a card with
a4-tuple (x4, 9, x3,24), Where eachr; € Fs. The game is played by collecting sets. A setis a
collection of three cardér, y, z) such that for each of the four attributes each card is the same
all three cards are different. It is equivalent that the @ectn F5 represented by our three cards
take the form(z, y, —(x + y)), or equivalentlyz, x + d, z + 2d). Therefore, we see that what we
are looking for is a three term arithmetic progressioffin In F; a 3-term AP is equivalent to a
line. A set of vectors with n@-term AP is called a cap set. The cap set problem asks, “Wltlag is
maximum size of a cap set if;?”. This problem is very hard and has been well-studied. Exac
answers are known only for < 6. We note that fom = 3 the cap set problem is equivalent to
asking for the maximum number of SET cards one can have sthivat is no set among them. The
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answer to this i20 and an argument is given in the pafdére Card Game Sdty Benjamin Davis
and Diane MacLagan.

There is a related problem motivated by SET which does nahgteehave appeared in the lit-
erature. The game is usually played by dealing Butards. We know that it is possible to have
no sets at all, but we could ask for the largest number of skishacould occur among@2 cards. |
can show that this i$4, but the argument is sort of ad hoc and not so satisfying. & ment found
anything written before about the following question. Wisathe maximum number of lines that
m points in[Fy can contain? Note that any two points determine a unique d$ioéf a set contains
many lines, then it determines few lines. Equivalently waldaask for the minimum number of
lines determined by points inF;. This question is very general and includes the cap setgmobl
as a subcase. This is because the number of lines contaiesuinset of; determines the num-
ber of lines contained in its complement, so if we know the imaxn number of lines among any
collection ofm points for allm, then we also know the minimum number of lines amengoints.

Here is the actual problem | am asking. In the argument fontagimum number of lines among
12 points inF3 is 14, it is clear that the maximum number of lines amdrgpoints inF% is 14 for
anyn > 3. That s, if we want lots of lines, the best thing that we carisdo put our points into the
smallest possible dimensional subspace that can contim. th

Conjecture 2012.1.Fix m > 0 and letd = [logs(m)]. For anyn > d, the maximum number of
lines contained amongr points inF% is equal to the maximum number of lines contained among
m points inF4.

I think that this is probably true and that the proof for it i®pably easy. One could also ask
similar questions fol; for otherg.

Here is some extra motivation that the cap set problem isastieig. Tic-Tac-Toe on&x 3 x 3
board can never end in a draw no matter how many moves are maeb player. This is the first
case of a more general phenomenon, the Hales-Jewett The@Gieen k, there exists & such that
Tic-Tac-Toe on & x ---k = [k]" board (where it takes in a row to win) cannot end in a draw
no matter how many times each player moves. A more precitentat is that for large enough
n, either a set or its complement must contain a combinattinal |1 won't define exactly what a
combinatorial line is, but it is a slightly more restrictizendition than a Tic-Tac-Toe line, which is
slightly more restrictive than the type of line describedwabin the discussion of SET.

A few years ago, the initial Polymath project organized by Thowers was focused on giving a
combinatorial proof of the Density Hales-Jewett Theoretme ®nly previous proof of this theorem
involved arguments from ergodic theory. L&t, be the largest number of points @f|" which
does not contain a combinatorial line. L, be the largest number of points @f" which does
not contain a geometric line (you can think of this as a Tic-Tae line. These are called Moser
numbers. Finally, Iett':;;’,‘C be the largest number of points [&™ without a line of the type described
above. Clearly] , < ¢, ;. < ¢k

Theorem 2012.2(Density Hales-Jewett)Fix £ > 1. Then

k
lim "—k =0.
n—oo n

This result is important in understanding the growth of aap.sThe Polymath project also proved
the best known lower bound fay, .. It is quite difficult to compute these numbers in generagrev
for small k. We mentioned above that ; = 20 and it is also known thatf ; = 45 and that
cg 3 = 112. This last statement determines the maximum number of anumg36 — 112 points in
3], for example. The Polymath project also determined mongegbfc,, 5 andcgh3 than previously
known.

Since so much work has gone into understanding large subs@t$* with no lines, it seems
reasonable to study collections of points which containdgest possible number of lines.
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2012.4. Problem Session IV: Friday, May 25th (Chair Kevin O'Bryant). The following papers are rel-
evant for the problems proposed by Steven Miller.

e http://arxiv.org/abs/1107.2718

e http://arxiv.org/abs/1008. 3204

e http://arxiv.org/abs/1008. 3202 (the gap paper referenced below is in preprint stage,
but available upon request).

e http://www. em s. de/journal s/1 NTEGERS/ paper s/j 57/ 57. pdf (Hannah Alpert).

Proposed problems.

e From Steven J. Miller, sim1@williams.edihe following problems are related to Zeckendorf de-
compositions. Many of these are currently being studied by my summer REUdesiis in the
Williams 2012 SMALL program. If you are interested in worgiton these, please email me at
siml@williams.edu.

o We know every number has a unique Zeckendorf decomposdimhappropriately localized
the number of summands converges to being a Gaussian. Wissif we have a decomposition
where some integers have multiple representations? Witia¢ré are some integers that have no
representations? Instead of counting the total number mhsands, what if you just count how
many of each summand one has (so in decimal 4031 wouldn't@sdA-0+3+1 but1+0-+1-+1).

o We have formulas for the limiting distribution of gaps beémesummands of Fibonacci and
some generalized Fibonacci sequences. Try to find formolageneral recurrence relations as a
function of the coefficients of the relations. Do this for igned Fibonacci decomposition (see
Hannah Alpert’'s paper; can we generalize signed distobgtio other recurrence relations). What
about the distribution of the largest gap (that should grath w for numbers betweei#/,, and
H,.1). If we appropriately normalize it, does it have a nice lingtdistribution?

e From Mizan Khan, khanm@easternct.ediet

Hy:={(z,y) €ZXxZ:2y=1(modn),1 <z,y <n-—1)}.

Consider the convex closure &f,— what can we say about the number of vertices in this convex
closure? Leb(n) be the number of vertices. Easilyin) > 2(7(n —1) — 1), wherer is the number
of positive divisors.
It is easy to see thdim sup v(n) = oo. Can we show thdim,, ., v(n) = co?
Also, considerD(n) = v(n) — 2(7(n — 1) — 1). We know thatD(n) > 0 for a set of density 1
in the naturals and furthermor@(n) = 0 on a set which is> -Z—. Can we improve the second
estimate?
e From Steven Senger, senger@math.udel.&deiwill call a family of sets P, C [0, 1]?, s-adaptable
if they satisfy the following bound:

1
T) Z |z —y|7%. 1.
(2 T#y;x,y€Pn

The Szemerédi-Trotter incidence theorem says that for af sepoints andn “reasonable” curves
in the plane, the number of incidences of points and curveeusided above by

2
I.(nm)3 +n+m.

Can we get better incidence bounds femdaptable sets? Specifically, can we get tighter bounds in
the case of points andn circles centered at those points?

e From Nathan Pflueger, pflueger@math.harvard.e8upposes is a numerical semigroup, C N, ,
closed under addition, i.e§ + S C S. LetG := N, \ S. Define the weight of5 to bew(s) =
H{(z,y) € S x G :0 <z < y}|. Define the irreducible elements 6fto be the minimal generators.
Define the effective weight af to bew.s¢(s) = |[{(x,y) € Sirrea X G : 0 < z < y}|. Let the
genus ofS beg = |G].

For exampleS = (3,5). Thenw(s) = 4, andw,¢¢(s) = 3.


http://arxiv.org/abs/1107.2718
http://arxiv.org/abs/1008.3204
http://arxiv.org/abs/1008.3202
http://www.emis.de/journals/INTEGERS/papers/j57/j57.pdf
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Can we characterize the gengsubgroups of largest effective weight? We believe the Eirige

~ 2 and inthe form(a,a + 1,...,b — 1,b), whereb < 2a.

This comes from algebraic geometry. Pick a pginbn an algebraic curve or surface =
{ord,(f) : f is arational functiof, whereord,(f) is the order of the single pole atof f.
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John Bryk, John Jay College (CUNY)

Mei-Chu Chang, University of California-Riverside
Emel Demirel, Bergen County College
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Jerry Hu, University of Houston - Victoria

Alex losevich, University of Rochester

Geoff lyer, University of Michigan

Renling Jin, College of Charleston
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Sandra Kingan, Brooklyn College (CUNY)
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Xian-Jin Li, Brigham Young University

Neil Lyall, University of Georgia
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Rishi Nath, York College (CUNY)

Mel Nathanson, Lehman College (CUNY)

Kevin O'Bryant, College of Staten Island (CUNY)
Kerry Ojakian, St. Joseph’s College, New York
Ryan Ronan, Cooper Union

Steven Senger, University of Delaware

Jonathan Sondow, New York
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2013. CANT RROBLEM SESSIONS 2013
2013.1. Problem Session I: Tuesday, May 21st (Chair Steven Miller).

2013.1.1.MSTD sets and their GeneralizationBroposed by Steven J. Miller and expanded on by the
audience: There are many problems one can ask about More BuansDifferences sets. Here are just a
few.

e We know that, in the uniform model, a positive percentagde®t subsets of0,1,...,n—1} are
sum-dominant. Unfortunately these proofs are non-coat$ir) in that one shows with high prob-
ability almost anything thrown between two specially chiof&nges work. Early constructions of
explicit families often involved tweaking arithmetic pregsions (which are balanced). While these
early families were often sub-exponential in terms of thelative size, work of Miller, Scheinerman
and Orosz proved that one can find ‘explicit’ families witidiéy 1/n2; Zhao obtained a density of
1/n through the use of bidirectional ballot sequences. Can odeafi explicit formula with a better
density (or, dare to dream, one that is a positive percefijage

e Continue to investigate phase transitions, and the natfithe relative size function, for more sum-
mands with different combinations of siz&his is currently being studied by students in Miller’s
2013 REU at Williams.

e Instead of looking atl + A and A — A, chooseA and B randomly and study + B and A — B (of
course,A — B allow botha — b andb — a for a € A andb € B.

e In determining ifA is sum-dominant or difference-dominant, it doesn’t mattaw much larger one
is than the other. Try and find a natural weighting on the $Bt$o take into account by how much
one beats the other.

e |Is there a setd such thatjA + A| > |A — A] and |A - A] > |A/A|? If yes, can you find an
explicit, infinite family? What is the density of such setd@te: Miller finds this problem interest-
ing and wants to bring this to his REU students. Anyone istex in collaborating please email
siml@williams.edu

e Instead of looking at subsets of the integers or finite grplguk at subsets df¢, intersected with
different regions (say spheres, boxes). These sets hdeeedif fringe structures. How does the
shape of the fringe affect the answer? We can play with tlaivel sizes of the length and width of
a box in two dimensions, for examplé&his is currently being studied by students in Miller's 2013
REU at Williams.

e Can we say anything about MSTD sets in the continuous cas#islgelated to some results on
measures? What about subsets of fractals or other spef@at®similar to the modular hyperbolas
Amanda mentioned).

e (Mizan Khan): Speaking of Amanda’s talk, the 84% lower boumehtioned is almost surely not
the true answer. What do numerical investigations sugg#4tat is the correct limiting behavior?
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2013.1.2. Weakened Convex FunctionBroblem proposed by Seva Lev.

Consider functiond : [0,1] — R that satisfy (L)max{f(0), f(1)} < 0and (2) forany) < z; < ---
z., < 1we have

IN

f<m1—|—---+mm> < flxy) +--+ f(zm)

— - + ( — 21).

Note that convex functions satisfy this.
Set

Fn(z) = sup{f(x): f € Fn},

whereF,, € C([0,1]) andF(0) = F(1) =0 < F(z) for 0 < z < 1. What isF},, explicitly?
Results are known fan € {2, 3,4}. For suchm we have

Fn(z) = Y m ™ min{|[m"a||,1/m}.
k=1

Whenm = 2 we have2w(x), where

wz) = Y 272",
k=0
What aboutn = 4?
2013.2. Problem Session Il: Wednesday, May 23rd (Chair Seva Lev).
2013.2.1. Matrices and CurvesProblem proposed by Seva Lev.

Consider ann x n matrix A whose entries are 0 or 1. Considepoints in the plan€gp,...,p,}, with
each point corresponding to a column Af If there existsm curves (continuous, no self-intersection)
{c1,...,cm } With each curve corresponding to a columndfsuch that

e curvec; passes through poipt if A; ; = 1 and does not pass through pojntif A4; ; = 0, and
e any two curves intersect at most once,

we will call A realizable by curves.

The following are questions we can ask:

e What conditions can we put oA to guarantee is realizable? Note: requiring the dot product of
any two rows of4 to be at most one does not guarantees realizable.

e Can you find a small matrix that is not realizable?

e Lastly, if A is realizable, does this meaf? is realizable? The speaker does not see a reason this
should be true, but hasn’t found a counterexample yet.

This problem might be related to planar graphs.

2013.2.2. Enumerating Points in the Plane with PolynomiaRroblem proposed by Mel Nathanson.

Consider the seP = {(z,y) : = > 0,0 < y < ax}. Does there exist a bijective polynomial
f:P—NuU{0}?
For instance, it = 1, thenf(z,y) = w + y. Notice wheny = 0, f(z,0) is a triangular number.

However, even when = 2/3, it is not clear whaif should be or iff even exists.
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2013.2.3. SumsetsProblem posed by Dmitry Zhelezov.

Let B be a set such thaB| = n. Let
B+ B2 A= {a0<---<an},

whereA is concaved; —ag > as—aq > -+ > ap—ap_1) OFCONVEX 1 —ag < ao—ay < -+ < Up—0Gp_1).
Is it true that| A| = O(n?)?

Problem posed by Steven Senger.

Let A and B be “large” subsets oN (or R, or Z,...). Do there exists “large” subsets df, C' and D,
suchthat((A-B)+1)N(C-D)| = |A- B|'=¢?

2013.3. Problem Session llI: Thursday, May 24th (Chair Kevin O’Brya nt).

2013.3.1. 3-term Geometric Progressions in Sets of Positive Den§itpblem proposed by Kevin O’Bryant.

As motivation for this problem, recall Van der Waerden’s diteen: given any partition oN, at least
one part has an arithmetic progression of arbitrarily ldeggth. Similarly, we have Szemeredi’'s Theorem:
given any set of positive density M, there exists an arithmetic progression of arbitrarilgéalength. Here
we are defining the density of C N asd(A) = lim,, M

It is known that Van der Waerden’s Theorem holds for geomepmmgressmns as well. We would like to
consider Szemeredi’'s Theorem for geometric progresshartsynfortunately it is not true: the square-free
integers provide a simple counter-example. Currentlygtiework being done on which densities we can
obtain with no geometric progressions.

The original problem proposed in the session wasd i€ N has densityl, doesA have a three-term
geometric progression? After some Googling by Nathan Kaeld 996 paper by Brienne Brown and Daniel
M. Gordon, “On Sequences Without Geometric Progressiomas, found which stated that4# C N has a
density and has no 3-term geometric progressions, theretigtg of A is bounded by .869.

The revised problem proposed is: Given a suldset N, which densities ofl guarantee 3-term geometric
progressions?

2013.3.2.Convex Subsets of Sumse®oblem proposed by Dmitry Zhelezov and requested by Giorgi
Petridis.

We consider a variant of the Erdés-Newman conjecture, Iplace the idea of squaring a set with sum-
sets.

The problem proposed is: does there exist anyBsefth | B| = n such thatB + B O A for some convex
setA with |[A] = Q(n?)?

2013.4. Problem Session IV: Friday, May 24th (Chair Renling Jin).
2013.4.1. SumsetsProblem proposed by Renling Jin.
Let A, B C N such thatnaxA > maxB,0 = minA = minB, andgcd(A,B) = 1. Letd = 1if

maxA = maxB and 0 otherwise. IfA + B| = |A|+ |B| — 24, what structure cad + B have? We can
also ask the same questionjifs replaced by (A, B), where(A, B) = 1if A C B and 0 otherwise.
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2013.5. Additional Problems. Proposed by Vsevolod F. Lev.

For integerm > 2, let F,,, denote the class of all real-valued functiofisdefined on the intervgD, 1]
and satisfying the boundary conditiamax{ f(0), f(1)} < 0 and the “relaxed convexity” condition
f<x1+...+xm> o fa) 4+ flan)

m >~ m +(Q:m_$1)7

0<z <--- <a, <1 Now,letF, = sup{f: f € F,}. Itis easy to prove that,, € CI0,1],
0= F,0)=F,1) < Fy(z) forallz € (0,1), F,,,(1 — z) = F,,,(z) for all z € [0,1], and, somewhat
surprisingly, F,,, € F,,, (meaning that-,, is the maximal function of the class,,). What isF,,,, explicitly?
We have

o0
() = 3 m' ™ min{[ma, 1/m}, m € {2,3,4)
k=0

(where||z|| denotes the distance fromto the nearest integer), but for > 5 this fails to hold.

It is easy to see that for any 0-1 matrix, s&¥, one always can find a system of simple curves and a
system of points in the plane so that their incidence masrexactly the matrix\/. Suppose now that any
pair of curves is allowed to intersect in at most one pointofhg@ng or not to our system of points), and
let's say thatM is realizableif such curves and points can be found. Clearly, a necessargitmn for
this is that the scalar product of any two rows/df be at mostl, but this condition is insufficient: say,
for ¢ large enough, by the Trotter-Szemeredi theorem, the piomtncidence matrix o?G(q, 2) has two
many incidences to be realizable. What are other reasonallessary / sufficient conditions féf to be
realizable? What are "small* examples of non-realizablerfatrices?
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2014. CANT RROBLEM SESSIONS 2014
2014.1. Problem Session I: Wednesday, May 28th (Chair Steven J Millg.

2014.1.1. Steve Sengert-rom last year from a talk of Dmitry Zhelezov.

Let A C R, |A] < oo, let P be the longest arithmetic progressionAm = {ab : a,b € A}. We have
|P| < entte < n?.

Dmintry (possibly from Hegarty): What if instead & we haveF,, the finite field withq elements?
Due to Grosu we get the longest progression is at meste if n < cloglog log p whereq = p a prime.
Question: What bounds can | get on the sizé’df we replaceR with F,? Hereq can be anything.

2014.1.2. Steven J Miller.The following builds on my talk from earlier.

e How does the structure of number affect the answer or theofatenvergence?

e How does the answer depend ¢h

e What is the best way to compute all thesymmetric means for a given? What if we want just a
certain one (such ds= n/2?).

e Find other sequences and compute these means — is thererasting phase transition?

2014.1.3. Steven J Miller.Consider the 196 game (or problem). Takeradigit number; if it is not a
palindrome reverse the digits and add. If the sum is not agedime continue, else stop. Lather, rinse and
repeat. It's called the 196 problem as 196 is the first numiarerwe don’t know if the process terminates
(in a palindrome) or goes off to infinity. We know numbers tti@inot terminate in base 2 (as well as powers
of 2, base 11, base 17 and base 26).

What can you say about this problem? What about other baged 0¥ What about other decomposition
schemes? Sd# t p: / / ww. mat h. ni u. edu/ ~r usi n/ known- mat h/ 96/ pal i ndr one.

2014.1.4.Nathan Kaplan.Let C be a cubic curve if??(F,). Want a large subset so that there are no three
points on a line.

The set ofF,-points form an abelian grou@. Three points sum to zero if and only if they lie on a line.

Given groupG what'’s the largest subséf s.t. z + y + z = 0 with x, y, z distinct has no solutions i ?

For example take&' = Z /27 x G’ and take(1, g).

What if G = Z/pZ, consider{0, 1,2, ..., |p/3]}.

What if Z/5Z x G, take things of the fornfl, g) and(4, g). For each group ask such a question.

One thing you can do is look at a greedy construction. Whdtteest percentage you can get?

2014.2. Problem Session Il: Thursday, May 29th (Chair Kevin O’Bryant).

2014.2.1.Kevin O'Bryant ? A k-GP cover ofl N] is a family of F of k-term geometric progressions with

N c | F

FreF

Set
| 7|

Y = lim inf —
k N1—>oo I.F N ’
the infimum beir 1g over alk-GP covers OtN]

It is easy to see that; > v, > -- -, and by basic counting, > 1/k. The cover
F = {b~2’“~{1,2,...,2k‘1} 1<b-2M < N> o,bodd}

shows that
2k
<
Ve > 2(2k — 1)7
so thatlimy_,, v exists and is inf0, 1/2]. | conjecture that the limit is positive.


http://www.math.niu.edu/~rusin/known-math/96/palindrome
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Comment from Bloom (in audience): The GP,2,...,2V 11 is covered by the AP§l, 2,3, 4}, {8,16, 24,32}, ...,
so the analog of;, does go to 0.

Comment from Xiaoyu (in audience): Each GP has at most 2 sffearnumbers, sg, > 3/72. This
proves the conjecture, but leaves open the precise limit.

2014.2.2.David Newman.About partitions. Finding two sets of partitions which aggial. Finding a type
of partition which can divide into two different sefg](1 + =™) counts partition into distinct parts. Change
plus sign into minus signs:

[[a-2m=1-2-2®+a°+27"+---.
Most of the time, the partitions (?) are equal, but for 1, Z,5,. , they differs by one

1
Hl—w" =(l+z+22+ VA +22+2t+.) .

Question: if you change some of the plus signs on the RHS toigrsigns, is is possible to get all the
coefficients (when you expand) to bd , 0, 1.

“| have an example where it works up 6°!.”

Kevin O'Bryant: throw in lots of (taking value int-1), becomes a SAT problem.

2014.3. Problem Session llI: Friday, May 24th (Chair Mel Nathanson).

2014.3.1.Mel Nathanson.Think of ¢ as being a parent of 2 children. Left child ;. Right child is“T“’.
Starting with1 as root, this gives tree with rows

1 (4)

1/2,2 (5)
1/3,3/2,2/3,3/1 (6)
1/4,4/3,3/5,5/2,2/5,5/3,3/4,4 (7
(8)

“Calkin-Wilf tree”
Every fraction occurs exactly once in this tree.
Start withz (variable) at root instead df. Apply Calkin-Wilf: z — (%5, 2 + 1). Get linear fractional

. b
transformations f(z) = %£2.

10
1 1
Depth formula (involving continued fraction) holds in thalkin-Wilf tree for z.

f(2) =q0,q15- -, qk—1,q + 2] if kis even

Rule from parent to children: apply matric % } and

f(Z) = [qO, qi,-- 5 Qk—1,qk, Z] if kis odd
The form is different fork even/odd. However, if you use that formula abovei@ven whenrk is odd,
you get a fractional linear transformation with det. (i.e., like starting a tree with/z, gives tree with det
—1.) For a given determinant, only finitely many orphans (ne.parent) of that determinant.
Question from Nathanson: For a given determinant, how maplyams?

Question from Harald Helfgott: What if the parent to childreles use the matrice(s(l) ?) and (; (1)>

instead?
Question from Thao Do: what happens if you start withstead ofl as the root? (i.e., let = ) you get
tree with elements a[:].

Nathanson: it = —1, thenz — 25 gives you—1 again... if you're looking at complex numbers.



32 MILLER

Thomas Bloom: use fields of characterigiie (Nathanson: “I don’t know anything about chail)

2014.3.2. Thomas Bloom.You have the sum set, different set, product set, ratio set.

Because of commutativity, you expect difference set to lgetathan sum set.

Question: Is there some subsetC N that is both MSTD and MPTR?

MSTD “more sums than differencesfd + A| > |A — A]

MPTR “more products than ratios”: as well g§- A| > |A/A].

Nathanson: what is the probability measure? We've seen M&JI®before but not the multiplicative.

Note: from an MSTD set, can exponentiate to get an MPTR set.

Comments from Thao Do: in order to have MSTD, must have “atragsimetric form” i.e., smallest +
largest = 2nd smallest + 2nd largest = 3rd smallest + 3rd $&rgtc. (then change around a little and be
clever)a; + by = as + by impliesa; — by = as — by.

1= {(al,bl), (ag,bg) a1 +by =as+ bg}.

J = {(al,blO, (ag,bg) tayp — bl = a9 — bg}.

Nathanson: tell Miller to have students working on MSTD/M®Pdver summer.Note from Miller:
done!

Bloom: | don't think these sets exist.

2014.4. Speaker List. Talks herehtt p: / / ww. t heor yof nunber s. comi CANT2014- pr ogr am
pdf .

Sukumar Das Adhikari, Harish-Chandra Research Institntga
Paul Baginski, Fair?eld University

Thomas Bloom, University of Bristol

Bren Cavallo, CUNY Graduate Center

Alan Chang, Princeton University

Jean-Marc Deshouillers, IPB-IMB Bordeaux, France
Charles Helou, Penn State Brandywine

Nathan Kaplan, Yale University

Sandra Kingan, Brooklyn College (CUNY)

Angel Kumchev, Towson State University

Thai Hoang Le, University of Texas

Eshita Mazumdar, Harish-Chandra Research InstitutehAbad, India
Nathan McNew, Dartmouth College

Steven J. Miller, Williams College

Mel Nathanson, Lehman College, CUNY

Lan Nguyen, University of Wisconsin-Parkside

Kevin O'Bryant, College of Staten Island, CUNY

Alberto Perelli, University of Genova, Italy

Giorgis Petridis, University of Rochester

Luciane Quoos, Instituto de Matemtatica, UFRJ, Rio de itanBrasil
Steven Senger, University of Delaware

Satyanand Singh, New York City Tech (CUNY)

Jonathan Sondow, New York

Yonutz V. Stancescu, Afeka College, Tel Aviv, Israel

Tim Susse, CUNY Graduate Center

Johann Thiel, New York City Tech (CUNY)

The abstracts are heret t p: / / www. t heor yof nunber s. coml CANT2014- abstract s. pdf.


http://www.theoryofnumbers.com/CANT2014-program.pdf
http://www.theoryofnumbers.com/CANT2014-program.pdf
http://www.theoryofnumbers.com/CANT2014-abstracts.pdf
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2015. CANT RROBLEM SESSIONS 2015

2015.1. Phase Transitions in MSTD sets: Steven J Miller.In previous years | talked about phase tran-
sitions in the behavior ofA + A| and|A — A| when each element iD, ..., N} is chosen independently
with probability p(N) = N~? asé hits 1/2. What happens with three summands? Four?

What happens if we restrici to special types of sets? How does the additional structfieetahe
answer?

Also, is there an ‘explicit’ construction of an infinite fayiof MSTD sets? The word ‘explicit’ is
deliberately not being defined; I would like some nice, ceteprocedure that does not involve randomness.

Finally, is this the 1% or the 13" CANT?

2015.2. An accidental sequence: Satyanand SinghThe two outer graphs which form an envelope around
v3((65 + 2)°) illustrate that:

<%> < (6 +2)°) < <W>

The upper bound is easily seen by finding the powes thiat is closest t¢6; + 2)° but does not exceed
it. We can also say for certain thaf((65 + 2)°) > 3, since Bennett dispensed of the two term cas&jn [
and equality occurs whe?? = 32 + 3! + 2. We were not able to prove the lower bound suggested by the
experimental results, i.eyz((65 + 2)°) > <ln(6j+2)5) for j > 1. This would completely resolve the case

3In3
forg = 5.

Problem 1. For both ¢ and b odd, wherea > b > 0, find all solutions to the diophantine equation
3% + 3% +2 = (65 + 2)° or show that the only solution is:, b, j) = (3, 1,0).

Problem 2. For any positive integen, with (n,3) = 1, find all solutions toys;(n?) < 3 for ¢ a prime
number wherg > 10007

Problem 3. For any positive integen, with (n, 3) = 1, we conjecture thats((65 + 2)°) > c¢In (65 + 2)°
wherec is a constant such th@t < ¢ < 1/(31n (3)).

2015.3. Kevin O’Bryant. Letbq, bo, ... be aninfinite binary sequence, andebe the set of real numbers
of the forma; := Z;’Ozl bnii - 27™. If A has no infinite decreasing subsequence, that i$,i# an ordinal,
what are the possibilities for the order type4®? In particular, can the order type b¢e?

Blair, Hamkins, and O’Bryant [forthcoming] have shown titta¢ order type, if infinite, must be at least
w?, and can be as large ast n for anyn.

2015.4. Steven Senger (repeat from previous years)Given a large finite subse#, of real numbers, and
any non-degenerate, generalized geometric progressSionith |G| ~ | AA|, can we get a nontrivial bound
on|(AA+1)|NnG|?

2015.5. Nathan Kaplan: We say a set of pointd? C R?, is in general position if no curve has more points
than it “ought to”. That is there are no three points on a lm&six points on a conic, etc.... The original

problem posed by Jordan Ellenberg is “How does the minimuighhef a set of completely generic points

grow with the number of points?” It is available at:

htt ps://quonodocungue. wor dpr ess. coni 2014/ 04/ 05/
puzzl e- | ow hei ght - poi nts-i n- general - posi tion/


https://quomodocumque.wordpress.com/2014/04/05/puzzle-low-height-points-in-general-position/
https://quomodocumque.wordpress.com/2014/04/05/puzzle-low-height-points-in-general-position/
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Can anything be said, even if we choose a greedy construciiayur points.

2015.6. Nathan Kaplan (repeat from previous years): In %, define the functiorf (n, m) to be the max-
imum number of lines completely contained in any setopoints. Is it true that the simplest greedy con-
struction (filling in lower dimensional subspaces), is testtpossible? Thatis, j§n, m) = f([logz(m)],m)?

2015.7. Kevin O'Bryant: Given a large finite subsef,, of real numbers, isittrue that A+ A| > | A+ A|?

Oliver Roche-Newton has asked on Math Overflow
(http:// mat hoverfl ow. net/ questi ons/ 204020/
i s-the-set-aaa-al ways- at-1|east-as-|arge-as-aal/)
if it is possible for
|[A- A+ Al <|A+ A
with A being a set of real numbers. Some observations.
e For arandom setl of k real numbersA- A+ A has~ k3/2 elements whiled + A has only~ k2 /2,
S0 any example needs to have some special structure.
e Modulo 13, the setl = {2,5,6,7,8, 11} (the set of positive quadratic non-residues, with a modulus
p =1 mod 4), is an examplea
e if | - | means Lebesgue measure, thén= [0,1/2] is an example, asl - A + A = [0,3/4] but
A+ A=10,1].
e if Ais a set of 3 or more positive integers, then it cannot be ampba as
a1 +apA,as + anA, ... an +a,A

, wherea,, = max A, are necessarily disjoint (reduce moduljg and contain at leasti|?> elements
altogether, whilgA + A| < (141,
The audience asked what was known for Hausdorff measuresugggsted considering the problem over
the integers, positive rationals, and complexes.


http://mathoverflow.net/questions/204020/is-the-set-aaa-always-at-least-as-large-as-aa/
http://mathoverflow.net/questions/204020/is-the-set-aaa-always-at-least-as-large-as-aa/
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A list of talks and abstracts is available online here:

http://ww. t heor yof nunbers. coni CANT2015- abstract s. pdf.
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2016. CANT RROBLEM SESSIONS 2016

2016.1. Problem Session I: Tuesday, May 24th (Nathanson Chair).
Mel Nathanson: Alexander Borisov in his 2005 arXiv paper, “Quotient sirgyities, integer ratios of
factorials and the Riemann Hypothesis,” discussed integkered ratios of factorials and their relation to
problems in number theory and algebrai geometry. Histlyiche application of such ratios to number
theory goes back at least to Pafnuty Chebyshev, who usedtthebtain the order of magnitude afx).
Since (") = % is an integer, it is not hard to see that its prime decommwsitiust include all primeg
such thatn < p < 2n, and so
2n)!
4" > % > H D
n<p<2n
wherep is a prime number. Chebyshev used this fact to show that

X X
< r(r) <€ ——

log(x) log(z)
It is a theorem of Eugéne Charles Catalan that forfaryN one has
(2n)!(2k)!
nlk!(n + k)!

There are combinatorial proofs of this identity for= 0, 1, 2.
Question: For3 < k < n, prove

(2n)!(2k)!
ik (n+ k) < 2
by a counting argument.
One can show that both
(9n)!n!

(5n)!(3n)!(2n)!
and
(14n)!(3n)!

(9n)!(7n)!(n)!
are integers for all positive integens
Question: Find all quintuples(a, b, ¢, d, e) € N° such that
a+b=c+d+e

ged(a, b, c,d,e) =1
and
(an)!(bn)!
(en)!(dn)!(en)!
Show that there are only 29 such quintuples.

€ Z?

Question: Can one deduce something interesting about the distibafitire primes from an integer identity

(an)!(bn)!
of the form @ (dn) (en)! ?

Thomas Blume: Does there existl C Z such that
(1) [A+ Al > |A - A,

(2) |Ax Al > |A/A.
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Mel Nathanson: J. A. Haight showed in a paper from 1973 that for/athnd!, there exists a modulus
and A a subset o%./mZ such thatd — A = Z/mZ buthA omits consecutive residues #i/mZ. He then
used this algebraic result to show the following.

Theorem 2016.1.There exists® C R such thatEl — E = R but u(hE) = 0 for all h > 1, wherey is
Lebesgue measure.

This is a kind of reverse MSTD result for the reals.
Question: Lete > 0. Does there exish C Rsuchthatd — A =R andu(2x A — A) <e.

Using Haight's results, Ruzsa was able to show that for aradfix there exists aml C N such that
|A — A|, but|hA|is small.

Question: Does there existt C R suchthatd — A =Randu(2+ A — A) < ¢, Ve > 0.

Specifically, Ruzsa showed the following.

Theorem 2016.2.For anyh > 1, and anye > 0, there exists a modulus. and anA C Z/mZ such that
A—A=7Z/mZ,and|hA| < e-m.

If one definesdb(tq,ta,...,t5) = 2?21 t; and Y (t1,t2) = t1 — to, then a slight reinterpretation of the
above theorem says thi@(A)| < e-mandY(A) = Z/mZ.

Question: What, if anything, is special about these linear forms? # takesb (¢, to, ..., 1) = Z?Zl oiti,
for some functionp on the index set ob and similarly a for Y'(¢1,to, ... .t,) = > 7_, ¢st;, for what func-
tions+ and¢ does one get a Haight like result?

Consider(¢1, ¢o,...,¢n) andl = {1,2,... h}. Then IetS§<I>) =Y icr P andS§T), then

Exercise: Show that when('(¢,t) = t1 — to and®(t1,t2) = 2t; — t one gets a Haight like result, (i.e.,
JACRsuchthatA — A=Randu(2+ A —A) <e.

Question: What if the measurg in the above statements is replaced with Hausdorff dimefsisre there
Haight like results that one can describe where the diffexeset is of dimension 1, and thefold sum set
is of fractional dimension?

William Keith: Let P = [, (14¢%) andQ = [[32, (1+¢**") for g a prime. Note thatl —¢)2 = (1+¢?)
andP-Q=1+q¢+¢*+....

Question: When is it thatF” = Y f(m)q™, where f(m) is odd with positive density, thdt")* has zero
density for the odd coefficients?

Larsen Urban: Let A ¢ N%, if A+ A = A°\ T4, whereTy = {z € N? | zis unrelated to anything id},
then what can one say abad® LetA, B ¢ N, when s itthats = AN B, andA + B = (AU B)“.

2016.2. Problem Session Il: Wednesday, May 25th (losevich Chair).
Urban Larsson: SupposeX is a sum-free set ofi>(; such sets are known, but now requirgn X =¢c
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Z>o. What is the maximum density of such a Sétf it is sum-free and has smallest eleméfftWhat if we
vary k? Has this been studied? Is it

X = {ipk+k,...,ipk+2k—1:iGZZQ, pr = 3k —1.}

Brendan Murphy: Inspired by Alex and Tom’s talks, say you col8f, £ C F¢, d > 2, 2 andy connected

by an edge ifjz — y|| = ¢t € F, with ||z|| = 27 + --- + 2. How large mustE' be so that we have
monochromatic|(z — y||, = - y). Comment from audience: hope. Alex: for large sets mighbloénaybe

|E| > Cql@+1)/2), small sets....

Sarfraz Ahmad: Goal is to prove that for all > 0 we have

L1612
D T

=0
Comment from audience: is this a difference order problem?

@ = 3 (e,

=0
where
apte = A (ap).

2016.3. Problem Session lll: Thursday, May 26th (Miller Chair).
Steven Miller: Prove unconditionally that there are infinitely many subsdtthe primes that are MSTD
sets. What about other special sets? Answered at lunch dalikirdse Green-Tao, follows immediately.

Mel Nathanson: For all A,B C R", we have(ANZ") + (BNZ") C (A+ B)NZ". The spe-
cial caseA = B is interesting. For example, iR?3, the Reeve polytopel is the convex hull of the set
(0,0,0),(1,0,0), (0,1,0), (1,1,2). The lattice points i c Z3 are{(0,0,0), (1,0,0), (0,1,0), (1,1,2)}.
The sumseR A contains the lattice pointl, 1,1) = (1/2,1/2,0) 4+ (1/2,1/2,1), but it is not the sum of
two lattice points inA. Thus,(A C Z3) + (A C Z?) is a proper subset &4 N Z3. Describe the lattice
polytopesA such thal(A C Z") = (24) N Z™.

In the plane there exist lattice triangles where the sumtiilangles contains a lattice point that is not
the sum of lattice points in the triangle. For example, thentyles with vertices at (0,0), (1,0), (0,1) and at
(0,1), (1,3) and (2,4) have this property.

Kevin O’Bryant: A couple of months ago on Google+, Harald Bogeholz found esngement of the inte-
gers from 1 to 32 such that any adjacent pair adds up to a sgb@echis graphic in Figuag, orht t ps: //
pl us. googl e. conf u/ 0/ 106537406819187054768/ post s/ YOgaWEw Luv?cf enm=1.

For N < 31 itis impossibleto arrange the numbers up 2 on a circle so that each adjacent pair sums
to a perfect square. For exampleNf= 19 what goes next to 16? Could have 9 but then in trouble as need
two neighbors. Considering the graph with verti¢eés2, ..., N} and edges connecting numbers that sum
to a square, we are asking for a Hamiltonian cycle. Uniquesviay N = 32, 33; number of ways of doing
is not monotonic.

Implied question: is it possible for every > 32? Forinfinitely manyN > 32?

Could add all the sums, that gets each number twice, so thaldvwe N (N + 1), has to be a linear
combination of the squares, gives a Diophantine conditibitvmaybe could be easily checked. For some
N, this condition can satisfied even though there is no Hamétocycle.

Generalizations: What about three in a row added? What aboulbe? A sphere?


https://plus.google.com/u/0/106537406819187054768/posts/Y9qaWEwiLuv?cfem=1
https://plus.google.com/u/0/106537406819187054768/posts/Y9qaWEwiLuv?cfem=1
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FIGURE 2. Bogeholz’s arrangement of numbers such that sums ofej@atements are squares.

Sergei Konyagin: What is the cardinality of the maximal subset{@f . .., N} such thatd does not contain
an MSTD subset? Comment: if have an arithmetic progresditength 15 fail.

Colin Defant: Defineo.(n) = Zdln d°, look ato.(N), gives a set of complex numbers, look at closure,

for which complex numbersis o.(N) connected? IRe(c) < —3.02 (approximately) not connected, this
bound is probably not optimal.

2016.4. Problem Session IV: Friday, May 27th (O’Bryant Chair).
Sergei Konyagin: Given a natural number, > 2, consider the equation over natural numbers; x;, y; <
N.

—+ =+t == = — 9)
Ty T2 Ty Yyr Y2 Yr
There are roughly! N trivial solutions of Equation]9, where the are permutations of thg. DefineF, ,,

to be the number of nontrivial solutions to Equatidn 9. Kagigaand Korolev have shown that 45 — oo,
Fon <O (N?"—%> .

They conjecture that the upper bound should reallpiev™—1+°()) . Consider also the following example.
For any choice of with1 < z < N.

22 4z oz ' a, 3z 32z a3y

To bar such examples, we could consider the assumption tgaty; for all ; in Equatior 9. For this variant,
we could haver; = zo = 22, y1 = 2, 13 = 2/, y» = y3 = 272/, etc... The conjecture for the variant is that
the number of nontrivial solutions to Equatioh 9 with thigldgidnal restriction should be no more than

0 (NV?%HO(D) .

1
We know that, for some positive constartand C, F,, ~ r!N” whenr < ¢ (%) ° | but that

1
Frnm > rIN” whenr > C( log N )3 . This is known when one considers the choiceg/pfo be the

loglog N
smooth numbers.
Question 1 (Shparlinski): Consider the solutions to Equé§ withM + 1 < z;,y; < M + N.
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Question 2 (Konyagin): Consider the solutions to the follapequation

ay 1 1 1
__|___|_..._|__:__|___|_..._|__’
Ty T2 Ly Y1 Y2 Yr
wherea; are nonzero rational numbers, and theandy; are as before.
Question 3 (Senger): Consider the solutions to Equafiox@p with different numbers of terms on

each side.

Kamil Bulinski: Let the groupG = Z/NZ & Z/MZ, and

G = |_|(ai + H,),
i=1
where thel; are subgroups of/. Must H; = H; for some: # j? Note that this is false for the case that
G=Z/]2LZ/2Z & 7Z/2Z,as

G = {(0,0,0),(1,0,0)} U{(0,0,1),(0,1,1)} U{(1,1,0),(1,1,1)} U{(0,1,0),(1,0,1)},

a union of four disjoint lines.

Kevin O'Bryant: Sun’s Conjecture: Iy + Hy, a2 + Ho, ... a, + Hy, are disjoint, then there exist< j
such that gcdG : H;], [G : Hj]) > m.

Brian Hopkins: Letp(n,3) denote the number of partitions of a natural numbeimto exactly three parts.
It is known thatp(n, 3) is the nearest integer t@j— This tells us that for Pythagorean triples,b, andc,
wherea? + b2 = ¢2, we have that

p(a,3) +p(b,3) = p(c,3). (10)
Question 1: Is there a direct bijective proof of Equafioh 10?

Question 2: If a triple(a, b, ¢) satisfies Equation 10, it may not be a Pythagorean tripleraCterize the
triples for which Equation 10 holds.

Steven Senger:-Tom Sanders spoke on colorings of the natural numbers where exists a quadruple,
(z,y,x +y,zy), whose entries are all the same color.

Question 1: Can one show that any four-coloring (with equadinse sets of colors) of the natural num-
bers will guarantee the existence of a quadrupley, = + y, xy) are all different colors? Note that if each
residue class modulo 4 is given a different color, then i@stg possible colors to fixed places may render
the answer as no, so we must allow any color to be in any entry.

Answer (Ryan Alweis): NOPE! Actually, even this restrictits irrelevant, as giving each residue class
modulo 4 will render the answer negative. To see this, nakeith: andy are both eveny + y will also be
even, so they cannot come from three distinct equivalerasses modulo 4. To see this, note that @#ndy
are both odd, themy will also be odd, so they cannot come from three distinct\eence classes modulo
4. Thereforex andy must have different parity. This will also not work, as canseen by checking each
case.

Question 2: Perhaps more colors could work?

Tom Bloom: Let A C {1,2,...,2N} is N-circular (as discussed by Kevin O'Bryant earlier, theristxa
permutation of 1,2,..., N} such that pairwise; + b € A).
Question 1: For whichp(n) is it true that a random subset @V ] is N-circular with high probability.
Question 2: If{1,2,...,N} = X UY suchthat X + Y) N A = g, thenA is not N-circular. Are there
any other natural obstructions?
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