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ABSTRACT. Random matrix theory successfully models many systems, from the energy levels of
heavy nuclei to zeros of L-functions. While most ensembles studied have continuous spectral distri-
bution, Burkhardt et al introduced the ensemble of k-checkerboard matrices, a variation of Wigner
matrices with entries in generalized checkerboard patterns fixed and constant. In this family, N − k
of the eigenvalues are of size O(

√
N) and were called bulk while the rest are tightly contrained

around a multiple of N and were called blip.
We extend their work by allowing the fixed entries to take different constant values. We can

construct ensembles with blip eigenvalues at any multiples of N we want with any multiplicity (thus
we can have the blips occur at sequences such as the primes or the Fibonaccis). The presence of
multiple blips creates technical challenges to separate them and to look at only one blip at a time.
We overcome this by choosing a suitable weight function which allows us to localize at each blip,
and then exploiting cancellation to deal with the resulting combinatorics to determine the average
moments of the ensemble; we then apply standard methods from probability to prove that almost
surely the limiting distributions of the matrices converge to the average behavior as the matrix size
tends to infinity. For blips with just one eigenvalue in the limit we have convergence to a Dirac delta
spike, while if there are k eigenvalues in a blip we again obtain hollow k × k GOE behavior.
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1. INTRODUCTION

1.1. Background. Initially introduced by Wishart [Wis] for some problems in statistics, random
matrix theory has successfully modeled a large number of systems from energy levels of heavy
nuclei to zeros of the Riemann zeta function; see for example the surveys [Bai, BFMT-B, Con, FM,
KaSa, KeSn] and the textbooks [Fo, Meh, MT-B, Tao2]. A simple but important example is the
ensemble of real symmetric matrices whose upper triangular entries are independent, identically
distributed random variables from some fixed probability distribution with mean 0, variance 1 and
finite higher moments. Wigner’s semi-circle law states that as the size of the matrix N → ∞, the
properly normalized spectral distribution of a matrix from the ensemble converges almost surely
to a semi-circle (or semi-ellipse):

σR(x) =

{
2

πR2

√
R2 − x2 if |x| ≤ R,

0 if |x| > R.
(1.1)

See [Wig1, Wig2, Wig3, Wig4, Wig5] for more details.
Besides the more well-known families such as the Gaussian Orthogonal, Unitary and Symplec-

tic Ensembles, many other special ensembles have been studied; see for example [Bai, BasBo1,
BasBo2, BanBo, BLMST, BCG, BHS1, BHS2, BM, BDJ, GKMN, HM, JMRR, JMP, Kar, KKMSX,
LW, MMS, MNS, MSTW, McK, Me, Sch], where the additional structures on the entries of the
matrices lead to different behaviors of the eigenvalues in the limit.

For most ensembles that people have studied, while it is possible to prove the convergence of
the limiting spectral measure, in only a few (such as d-regular graphs [McK], block circulant
matrices [KKMSX] and palindromic Toeplitz matrices [MMS]) can the limiting distribution be
written down in a nice, closed form expression.

This paper is a sequel to [BCDHMSTPY], where they introduce ensembles of checkerboard
matrices which also have a nice, closed-form expression for its limiting distribution. The spectrum
splits into two; most of the eigenvalues are in the bulk and are of size

√
N , but a small number are

of sizeN . They studied the splitting behavior of the ensemble similar to that in [CDF1, CDF2], and
used the combinatorial method in the style of [KKMSX, MMS]. The ensemble in [BCDHMSTPY]
is defined as follows in the real symmetric case.

Definition 1.1. Fix k ∈ N and w ∈ R. The N × N (k, w)-checkerboard ensemble over R is the
ensemble of matrices M = (mij) given by

mij =

{
aij if i 6≡ j mod k

w if i ≡ j mod k,
(1.2)
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where aij = aji are i.i.d. random variables with mean 0, variance 1, and finite higher moments,
and the probability measure on the ensemble given by the natural product probability measure.

For this ensemble N − k of the eigenvalues (called the bulk eigenvalues) are of order
√
N and

converge to a semi-circle, while k of the eigenvalues (called the blip eigenvalues) are of order N
and converge to the spectral distribution of a k × k hollow Gaussian orthogonal ensemble.

Definition 1.2. The k × k hollow Gaussian Orthogonal Ensemble is given by k × k matrices
A = (aij) = AT with

aij =

{
NR(0, 1) if i 6= j

0 if i = j.
(1.3)

See [BCDHMSTPY] for a collection of histograms of eigenvalues of matrices from some k× k
hollow GOE.

1.2. Generalized Checkerboard Ensembles. We generalize [BCDHMSTPY] by allowing the
constant w to take different values. While the Checkerboard ensembles in [BCDHMSTPY] only
allow one blip for each ensmble, the generalized Checkerboard ensembles allow arbitrarily many
blips for each ensemble. Moreover, we have control over the positions of these blips. That is,
given a list of points, the generalized checkerboard ensemble allows the spectrum at those points
in a “non-trivial” way. We can always “trivially” construct ensembles with prescribed locations
and frequency by taking a diagonal union of block matrices. But then the blocks are independent
from each other. The significance of the generalized checkerboard ensemble is that we can control
the locations of normalized eigenvalues within an ensemble that doesn’t have independent diagonal
blocks. It is a "mixed" matrix whose eigenvalues have a nice split limiting distribution.

Definition 1.3. Fix k ∈ N and a k-tuple of real numbers W = (w1, . . . , wk), then the N × N
(k,W )-checkerboard ensemble is the ensemble of matrices AN = (mij) given by

mij =

{
aij if i 6≡ j (mod k),

wu if i ≡ j ≡ u (mod k), with u ∈ {1, 2, . . . , k},
(1.4)

where aij = aji are independent and identically distributed random variables with mean 0, vari-
ance 1, and finite higher moments.

For example, when k = 3, W = (1, 1, 2), a (3,W ) checkerboard looks like the following (we
assume 3|N ):

X =


1 a12 a13 1 a15 a16 . . . 1 a1N−1 a1N
a12 1 a23 a24 1 a26 . . . a2N−2 1 a2N
a13 a23 2 a34 a35 2 . . . a3N−2 a3N−1 2

...
...

...
...

...
... . . . ...

...
...

a1N a2N 2 a4N a5N 2 . . . aN−2N aN−1N 2

 .

1.3. Results. What makes the checkerboard ensemble in [BCDHMSTPY] interesting is that the
eigenvalues of a matrix from the ensemble almost surely fall into two separate regimes. With our
generalization we can exploit the freedom to choose different constants to force the eigenvalues
to fall into more regimes. To be more precise, using matrix perturbation theory we prove the
following result.
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Theorem 1.4. Let {AN}N∈N be a sequence of (k,W )-checkerboard matrices. Suppose that W
has x non-zero entries and there are s distinct w’s, then almost surely as N →∞, the eigenvalues
of AN fall into s+ 1 regimes: N − x of the eigenvalues are O(N1/2+ε) and if w′i appears ki times,
ki eigenvalues are of magnitude Nw′i/k +O(N1/2+ε).

As in [BCDHMSTPY], we refer to the N − x eigenvalues that are on the order of
√
N as the

eigenvalues in the bulk, while for each distinct wi, the ki eigenvalues near Nwi/k are called the
eigenvalues in the blips. We study the eigenvalue distribution of each regime.

For the remainder of this paper, AN always refers to an N ×N matrix.
Let νAN be the empirical spectral measure of an N ×N matrix AN , where we have normalized

the eigenvalues by dividing by
√
N :

νAN (x) =
1

N

∑
λ an eigenvalue of AN

δ

(
x− λ√

N

)
. (1.5)

For example, Figure 1 gives this normalized eigenvalue distribution of a collection of 500 × 500
(6,W )-checkerboard matrices with W = (1,−2,−2, 3, 3, 3).

FIGURE 1. A histogram of the normalized eigenvalue distribution on a proba-
bility density scale for 500 × 500 (6,W )-checkerboard real matrices with W =
(1,−2,−2, 3, 3, 3) after 500 trials.

As in [BCDHMSTPY], the blip eigenvalues of order N prevent us from directly using the
method of moments (for large m, the contribution from these eigenvalues dwarfs that from the
bulk). We use following result (see [Tao1]) to bypass the complications presented by the small
number of blip eigenvalues.

Proposition 1.5. ([Tao1]) Let {AN}N∈N be a sequence of random Hermitian matrix ensembles
such that {νAN ,N}N∈N converges weakly almost surely to a limit ν. Let {ÃN}N∈N be another
sequence of random matrix ensembles such that 1

N
rank(ÃN) converges almost surely to zero.

Then {νAN+ÃN ,N}N∈N converges weakly almost surely to ν.
4



Taking ÃN to be the fixed matrix with entries mij = wu whenever i ≡ j ≡ u (mod k) and zero
otherwise, we have that the limiting spectral distribution of the (k,W )-checkerboard ensemble is
the same as the limiting spectral distribution of the ensemble with W = 0, which does not have
the k large blip eigenvalues . This overcomes the issue of diverging moments.

Theorem 1.6. Let {AN}N∈N be a sequence of N ×N (k,W )-checkerboard matrices, and let νAN
denote the empirical spectral measure, then νAN converges weakly almost surely to the Wigner
semicircle measure σR with radius

R = 2
√

1− 1/k. (1.6)

The proof is by standard combinatorial arguments. We give the details in §2.1.
Similar to the previous checkerboard paper [BCDHMSTPY], each blip may be thought of as

deviations about the trivial eigenvalues. Instead of having just one blip as in [BCDHMSTPY], we
now have many different blips. A blip containing ki > 1 eigenvalues has the same distribution as
the eigenvalues of the ki × ki hollow Gaussian Orthogonal Ensemble (see Definition 1.2); when
ki = 1 the blip has the distribution of a dirac delta function.

We need to define a weighted blip spectral measure which takes into account only the eigen-
values of one blip. Thus we not only need to get rid of the interference from the bulk, we also
need to avoid the interference from the other blips. In order to facilitate the use of eigenvalue trace
lemma, similar to [BCDHMSTPY], we are led to use a polynomial weighting function and we use
a sequence of polynomials of degree tending to infinity as the matrix size N → ∞ so that in the
limit we mimic a smooth cutoff function. Specifically, let

f 2n
i (x) :=

(
x(2− x)

∏
wj 6=wi(x−

wj
wi

)(2− x− wj
wi

)∏
wj 6=wi(1−

wj
wi

)2

)2n

. (1.7)

Thus we alter the standard empirical spectral measure in the following way to capture the blip. For
example, when k = 3 andW = (1, 1, 2), we use the polynomial f 2n

3 (x) = (x(2− x)(2x− 1)(3− 2x))2n

to study the blip around 2N
3

. Figure 2 gives a plot of the polynomial f 200
3 (x). We can see that the

weight function f 2n
3 (x) is large when |x − 1| >

√
5
2

, but this would not cause a problem since
almost surely there will be no scaled eigenvalues in that region.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

FIGURE 2. Weight function with n = 100 to study the blip around 2N
3

when k = 3
and W = (1, 1, 2).
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Definition 1.7. Given k ∈ N and a k-tuple of real numbers W = (w1, . . . , wk), the empirical blip
spectral measure associated to an N ×N (k,W )-checkerboard matrix AN around Nwi/k 6= 0 is

µAN ,i(x) :=
1

ki

∑
λ an eigenvalue of A

f 2n
i

(
kλ

wiN

)
δ

(
x−

(
λ− wiN

k

))
, (1.8)

where ki is the number of wi’s in (w1, . . . , wk), and n(N) is a function satisfying lim
N→∞

n(N) =∞
and n(N) = O(log logN).

Remark 1.8. The actual choice of weight functions should not change the empirical blip spectral
measure in the limit. It will be used in the proof that the weight polynomial f 2n

i (x) has a critical
point at 1 with f 2n

i (1) = 1 and has zeroes of order 2n at 0 and at all wj/w1 with wj 6= w1.
Heuristically, because the fluctuation of eigenvalues in each regime is of order

√
N , we have

f 2n
i

(
kλ
wiN

)
≈ 1 if λ is in the blip around Nwi/k, and f 2n

i

(
kλ
wiN

)
≈ 0 if λ is in the bulk or in the

blip other than Nwi/k. More specifically,

f 2n
i

(
kλ

wiN

)
=

O
(
logN
Nn

)
if λ is O

(√
N
)

or Nwj
k

+O
(√

N
)

with wj 6= wi,

1 +O
(
logN
N2n

)
if λ is Nwi

k
+O

(√
N
)
.

(1.9)

As in [BCDHMSTPY], we use the method of moments to reduce to a combinatorial problem
and relate the expected moments of the empirical blip measure aroundNwi/k to those of the ki×ki
hollow GOE. One remarkable observation is that the values of the constants wj 6= wi do not affect
the blip eigenvalues around Nwi/k.

For example, if we choose W1 = (1,−2,−2, 3, 3, 3) and W2 = (0, 0, 0, 3, 3, 3), then numer-
ically we can observe that the histograms (Figure 3 and 4) of the eigenvalues of the 500 × 500
(6,W1)-checkerboard matrices and (6,W2)-checkerboard matrices at the blip around 1√

N
N ·3
6

=
1√
500

500·3
6
≈ 11.2 after normalization have approximately the same shape.

10.5 11.0 11.5 12.0
Eigenvalues normalized by Sqrt[N]

0.02

0.04

0.06

0.08

0.10

FIGURE 3. A histogram of the largest blip on a probability density scale for 500×
500 (6,W1)-checkerboard real matrices with W1 = (1,−2,−2, 3, 3, 3) after 500
trials.
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10.5 11.0 11.5 12.0
Eigenvalues normalized by Sqrt[N]

0.02

0.04

0.06

0.08

0.10

Scaled bin count

FIGURE 4. A histogram of the largest blip on a probability density scale for 500×
500 (6,W2)-checkerboard real matrices with W2 = (0, 0, 0, 3, 3, 3) after 500 trials.

In particular, when there is only one eigenvalue in a blip, we obtain the following.

Theorem 1.9. Fix k ∈ N and a k-tuple of real numbers W = (w1, . . . , wk) where wi 6= 0 and
there is exactly one wi in W . Let {AN}N∈N be a sequence of (k,W )-checkerboard matrices. Then
the associated empirical blip spectral measure µAN ,i aroundNwi/k converges weakly to the Dirac
delta distribution centered at Nwi

k
+ k−1

wi
.

Thus, when ki = 1, we expect an eigenvalue of magnitude exactly Nwi
k

+ k−1
wi

as N → ∞.
In general, when ki > 1, the empirical blip spectral measure of one matrix AN around Nwi/k
no longer converges to the expected value, as the variances of the moments do not necessarily
converge to zero asN →∞. Thus, we follow [BCDHMSTPY] to modify the moment convergence
theorem and average over the eigenvalues of multiple independent matrices.

Definition 1.10. Fix k ∈ N, a k-tuple of real numbers W = (w1, . . . , wk), and a function g : N→
N. The averaged empirical blip spectral measure around Nwi/k associated to a g(N)-tuple of
N ×N (k,W )-checkerboard matrices (A

(1)
N , A

(2)
N , . . . , A

(g(N))
N ) is

µ
i,g,A

(1)
N ,A

(2)
N ,...,A

(g(N))
N

:=
1

g(N)

g(N)∑
j=1

µ
A

(j)
N ,i

. (1.10)

Theorem 1.11. Fix k ∈ N, a k-tuple of real numbers W = (w1, . . . , wk). Let g : N → N be
such that there exists a δ > 0 for which g(N)� N δ. Let A(j) = {A(j)

N }N∈N be sequences of fixed
N × N matrices, and let A = {A(j)}j∈N be a sequence of such sequences. Then, as N → ∞,
the averaged empirical blip spectral measures µ

i,g,A
(1)
N ,A

(2)
N ,...,A

(g(N))
N

around Nwi/k of the (k,W )-
checkerboard ensemble over R converge weakly almost-surely to the measure with moments equal
to the expected moments of the standard empirical spectral measure of the ki×ki hollow Gaussian
Orthogonal Ensemble, where ki is the number of wi in W .
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In conclusion, we can construct an expanding family to have blips of any desired finite size at
any sequence of positions after normalization. For example, we give an explicit construction of
an ensemble whose limiting spectral measure has a semi-circle bulk and blips at all the Fibonacci
numbers in Appendix F. Moreover, we extend [BCDHMSTPY] by showing that the averaged
empirical blip spectral measure around Nwi

k
converges to a ki × ki hollow Gaussian with its mean

k−1
wi

independent of the choice of all the constants wj 6= wi. This measn that the distribution
of different blips don’t interfere with each other. When the blip has size ki = 1, we get weak
convergence of empirical blip spectral measure around Nwi

k
to a Dirac Delta distribtion.

The paper is organized as follows. In §2 we prove our claims concerning the eigenvalues in the
bulk, then turn to the blip spectral measure in §3. We then prove results on the convergence to the
limiting spectral measure in §4.

2. THE BULK SPECTRAL MEASURE AND THE SPLIT BEHAVIOR

2.1. Bulk Measure. In this section we establish that the limiting bulk measure for the generalized
k-checkerboard matrices follows a semi-circle. We denote by µ(m) the mth moment of the measure
µ.

The commonly used method of moments cannot be directly applied to our ensemble because
as proved in [BCDHMSTPY] the limiting expected moments of the empirical spectral measure do
not exist. As remarked in the introduction, we overcome this difficulty by connecting the limiting
spectral measure of the generalized checkerboard ensemble with that ofN×N(k, 0) checkerboard
ensembles through Proposition 1.5. [BCDHMSTPY] then use the method of moments to establish
the result for (k, 0)-checkerboard matrices, using the eigenvalue trace lemma and combinatorics
to establish convergence of the expected moments. The remaining arguments establishing almost
sure weak convergence are standard (see for example Appendix A of [BCDHMSTPY]); we state
the result below.

Lemma 2.1. The expected moments of the bulk empirical spectral measure taken over AN in the
N×N (k, 0)-checkerboard ensemble converge to the moments of the Wigner semicircle distribution
σR as defined in (1.1) with radius R = 2

√
1− 1/k and

E
[
ν
(l)
AN

]
→ σ

(l)
R (2.1)

as N →∞.

Thus, by Lemmas 2.1 and 1.5, we obtain the limiting distribution for the bulk of the general
checkerboard ensemble.

Lemma 2.2. The expected moments of the bulk empirical spectral measure taken over AN in the
N ×N general (k,W )-checkerboard ensemble converge to the moments of the Wigner semicircle
distribution σR with radius R = 2

√
1− 1/k and

E
[
ν
(`)
AN

]
→ σ

(`)
R (2.2)

as N →∞.

2.2. Split Behavior. In this section we demonstrate that general checkerboard matrices with s
different non-zero w’s almost surely have s + 1 regimes of eigenvalues. One is O(N1/2+ε) (the
bulk) and the others are of order N (the blip). Similar to Appendix B of [BCDHMSTPY], we rely
on matrix perturbation theory. In particular, we view a (k, w)-checkerboard matrix as the sum of
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a (k, 0)-checkerboard matrix and a fixed matrix Z where Zij = wuχ{i ≡ j ≡ u mod k}. In that
sense, we view the (k, w)-checkerboard matrix as a perturbation of the matrix Z. Then, as the
spectral radius of the (k, 0)-checkerboard matrix is O(N1/2+ε), we obtain by standard results in
the theory of matrix perturbations that the spectrum of the (k, w)-checkerboard matrix is the same
as that of matrix Z up to an order N1/2+ε perturbation.

We begin with the following observation on the spectrum of the matrix Z.

Lemma 2.3. Suppose that W has x non-zero entries and suppose that w′i appears ki times in W =
(w1, . . . , wk), then the matrix Z has exactly ki eigenvalues at Nw′i/k and has N − x eigenvalues
at zero.

Proof. Suppose wi1 = wi2 = · · · = wit = wi′ , then for 1 ≤ j ≤ t the vectors
∑(N−1)/k

i=0 eki+ij are
eigenvectors with eigenvalues Nwi′/k. Furthermore, for 1 ≤ i ≤ N and 1 ≤ j < k the vector
eki+j − eki+j+1 are eigenvectors with eigenvalues equal to 0. �

Weyl’s inequality gives the following.

Lemma 2.4. (Weyl’s inequality) [HJ] Let H,P be N × N Hermitian matrices, and let the eigen-
values of H , P , and H + P be arranged in increasing order. Then for every pair of integers such
that 1 ≤ j, k ≤ N and j + k ≥ N + 1 we have

λj+k−N(H + P ) ≤ λj(H) + λk(P ), (2.3)

and for every pair of integers j, k such that 1 ≤ j, k ≤ N and j + k ≤ N + 1 we have

λj(H) + λk(P ) ≤ λj+k−1(H + P ). (2.4)

Let ‖P‖op denote maxi |λi(P )|. By using the fact that |λk(P )| ≤ ‖P‖op and taking k = N in
(2.4), we obtain that λj(H + P ) ≤ λj(H) + ‖P‖op. Taking k = 1 in (2.4) gives the inequality on
the other side, hence |λj(H + P )− λj(H)| ≤ ‖P‖op.

The above lemma implies that if the spectral radius of P isO(f) then the size of the perturbations
are O(f) as well. Hence it suffices to demonstrate that almost surely the spectral radius of a
sequence of (k, 0)-checkerboard matrices is O(N1/2+ε).

Let AN be a (k, 0)-checkerboard matrix. By Remark A.3 in [BCDHMSTPY] we have that
Var(Tr(A2m

N )) = O(N2m) and by the proof of Lemma 2.1 we get E [Tr(A2m
N )] = O(Nm+1).

Since Lemma B.2 in [BCDHMSTPY] holds for all m ∈ Z+, we have that almost surely ‖AN‖op

is O(N1/2+ε). Together with Lemma 2.3 and Lemma 2.4, we obtain the following.

Theorem 1.4. Let {AN}N∈N be a sequence of (k,W )-checkerboard matrices. Suppose that W
has x non-zero entries and there are s distinct w’s, then almost surely as N →∞, the eigenvalues
of AN fall into s+ 1 regimes: N − x of the eigenvalues are O(N1/2+ε) and if w′i appears ki times,
ki eigenvalues are of magnitude Nw′i/k +O(N1/2+ε).

3. THE BLIP SPECTRAL MEASURE

In this section, we study the distribution of the eigenvalues at the blips. First, we define a weight
function to enable us to focus on just one blip at a time. Then, we reduce the general cases to the
case where all wj 6= wi are zero. Finally, we show that the distribution in the special case is hollow
k1 × k1 gaussian following an argument similar to the one in [BCDHMSTPY].
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Without loss of generality, we focus on the blip around Nw1/k 6= 0 and use the polynomial
weight function

f 2n
1 (x) =

(
x(2− x)

∏
wj 6=w1

(x− wj
w1

)(2− x− wj
w1

)∏
wj 6=w1

(1− wj
w1

)2

)2n

. (3.1)

As discussed in Remark 1.8, the particular choice of weight functions does not change the result,
provided that they are essentially 1 close to 1 and vanish to sufficiently high order at 0 and all
wj/w1 to remove the contribution from the eigenvalues within the bulk and the other blips.

Definition 3.1. The empirical blip spectral measure associated to an N × N k-checkerboard
matrix AN around Nw1/k is

µAN ,1(x) :=
1

k1

∑
λ an eigenvalue of A

f 2n
1

(
kλ

w1N

)
δ

(
x−

(
λ− w1N

k

))
, (3.2)

where k1 is the number of w1’s in (w1, . . . , wk), and n(N) is a function satisfying lim
N→∞

n(N) =∞
and n(N) = O(log logN).

Because the fluctuation of the location of the eigenvalues in each regime is of order
√
N , the

modified spectral measure of Definition 3.1 weights eigenvalues within this blip by almost exactly
1 and those in the bulk and the other blips by almost exactly zero.

For fixed N , the polynomial f 2n
1 can be written as f 2n

1 (x) =
4nl∑
α=2n

cαx
α, where l is the number

of distinct constants in (w1, . . . , wk) and all cα ∈ R.
We apply the method of moments to the modified spectral measure (3.2). By the eigenvalue

trace formula and linearity of expectation, the expectedm-th moment of the empirical blip spectral
measure is

E
[
µ
(m)
AN ,1

]
= E

[
1

k1

∑
λ

4nl∑
α=2n

cα

(
kλ

w1N

)α(
λ− w1N

k

)m]

= E

[
1

k1

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
Tr(Aα+iN )

)]

=
1

k1

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
E
[
Tr(Aα+iN )

])
. (3.3)

Recall that
E
[
Tr(Aα+iN )

]
=

∑
1≤j1,...,jα+i≤N

E
[
mj1j2mj2j3 · · ·mjα+ij1

]
. (3.4)

The calculation of the moment has been transformed into a combinatorial problem of counting
different types of products of entries. We follow the vocabulary from [BCDHMSTPY] to describe
the combinatorics problem.

Definition 3.2. A block is a set of adjacent a’s surrounded by w’s in a cyclic product, where the
last entry of a cyclic product is considered to be adjacent to the first. We refer to a block of length
` as an `-block or sometimes a block of size `.

10



Definition 3.3. A configuration is the set of all cyclic products for which it is specified (a) how
many blocks there are, and of what lengths, and (b) in what order these blocks appear (up to cyclic
permutation); However, it is not specified how many w’s there are between each block.

Definition 3.4. A congruence configuration is a configuration together with a choice of the con-
gruence class modulo k of every index.

Definition 3.5. Given a configuration, a matching is an equivalence relation ∼ on the a’s in
the cyclic product which constrains the ways of indexing (see Definition 3.6) the a’s as follows: an
indexing of a’s conforms to a matching∼ if, for any two a’s ai`,i`+1

and ait,it+1 , we have {i`, i`+1} =
{it, it+1} if and only if ai`i`+1

∼ ait,it+1 . We further constrain that each a is matched with at least
one other by any matching ∼.

Definition 3.6. Given a configuration, matching, and length of the cyclic product, then an indexing
is a choice of

(1) the (positive) number of w’s between each pair of adjacent blocks (in the cyclic sense), and
(2) the integer indices of each a and w in the cyclic product.

Example 3.7. Consider the configuration

· · · ai1i2wi2i3wi3i4ai4i5ai5i6 · · · . (3.5)

Then we have
i2 ≡ i3 ≡ i4 (mod k). (3.6)

We see that the congruence classes of the indices of the a’s determine which congruence classes
of the indices of the w’s belong to, and thus which wj’s appear between the blocks.

3.1. Reducing to the case where all wj 6= w1 are zero. We will show that if there is some
wj 6= w1 in a fixed congruence configuration, then it does not contribute to the expected moment
(3.3) in the limit.

We begin by analyzing the form of the summands in the total contribution of a congruence
configuration in Lemma 3.9. The following lemma helps us to derive this form, and its proof is
provided in Appendix A.

Lemma 3.8. Fix s ∈ N with s ≥ 2 and some polynomial p(x1, . . . , xs) ∈ R[x1, . . . , xs] of degree
q. For η ∈ N with η ≥

∑s
i=1 yi and distinct w1, . . . , ws, we have∑

x1+···+xs=η
xi≥yi

p(x1, . . . , xs)w
x1
1 · · ·wxss =

∑s
l=1w

η+2−
∑s
i=1 yi

l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (3.7)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws of
degree 2q

(
s
2

)
+ (
∑s

i=1 yi)− 2. Furthermore, the coefficients in the polynomial fl,η(w1, . . . , ws) are
polynomials in η of degree ≤ q.

Lemma 3.9. Fix a congruence configuration and a matching. The contribution to E
[
Tr(Aα+iN )

]
is

a sum of terms of the form

p(α + i)wα+i−γj

(
N

k

)α+i−t
(3.8)

11



where p is a polynomial of degree ≤ β − s + 1, β is the number of blocks determined by the
configuration, s is the number of distinct constants w’s determined by the chosen congruence
classes, and t is the lost degrees of freedom determined by the matching.

Proof. Suppose that the distinct constants wj1 , wj2 , . . . , wjs appear in the configuration, where
each wjq appears xq times and the xq wjq ’s are separated by the blocks into yq parts. There are(
xq−1
yq−1

)
ways to put xq wjq into yq gaps. Note that E

[
mj1j2mj2j3 · · ·mjα+ij1

]
= wx1j1 x

x2
j2
· · ·wxsjsA

where A is some constant determined by the matching.
Denote the number of a’s in this configuration by r, then x1 + x2 + · · · + xs = α + i − r and

there are ∑
xi≥yi

x1+···+xs=α+i−r

s∏
q=1

(
xq − 1

yq − 1

)
w
xq
jq

(3.9)

ways to place the constants wj1 , wj2 , . . . , wjs . For fixed y1, . . . , ys, we can write (3.9) as∑
xi≥yi

x1+···+xs=α+i−r

g̃y1,...,ys(x1, . . . , xs)w
x1
j1
wx2j2 · · ·w

xs
js

(3.10)

where g̃y1,...,ys(x1, . . . , xs) ∈ R[x1, . . . , xs] is a polynomial in x1, . . . , xs of degree
∑s

q=1(yq−1) =

(y1 + · · ·+ ys)− s = β − s.
By Lemma 3.8, we can write (3.10) as a sum of the terms of the form

w
α+i−r+2−

∑s
i=1 yi

j p̃(α + i− r) = p̃(α + i− r)wα+i−r+2−β
j (3.11)

where p̃(x) ∈ R[x] is a polynomial of degree ≤ β − s.
Recall that β, r are constants fixed by the configuration. Taking into account cyclic permutation,

the contribution is a sum of the terms of the form

p(α + i)wα+i−γj

(
N

k

)α+i−t
where p(x) ∈ R[x] is a polynomial of degree ≤ β − s + 1, γ ∈ Z and

(
N
k

)α+i−t is from choosing
the indices from given equivalence classes modulo k. �

Observe that in (3.4) there are (α + i) degrees of freedom in choosing j1, . . . , jα+i. Whenever
the lost degrees of freedom t ≥ m+ 1, we have

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
Nα+i−t

)

= Nm−t

(
4nl∑
α=2n

cα

(
k

w1

)α)( m∑
i=0

(
m

i

)(
−w1

k

)m−i)

� Nm−t
(

1 +
|w1|
k

)m ∣∣∣∣f 2n
1

(
k

w1

)∣∣∣∣
� N−1

∣∣∣∣f1( k

w1

)∣∣∣∣2n , (3.12)

then since we have required n(N) = O(log logN), we only need to consider the contribution from
E
[
Aα+iN

]
that loses at most m degrees of freedom.
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Remark 3.10. Even though each term contributes O(1/N), the contribution adds up to cn(N)/N
for some c ∈ R. Thus, in order to remove the contributions from configurations with more than
m blocks in this way, we have to require n = o(logN), so we correct the assumed growth rate
n(N)� N ε in [BCDHMSTPY].

We cite the following lemma from [BCDHMSTPY], which relates the number of blocks to the
lost degree of freedom.

Lemma 3.11. ([BCDHMSTPY]) Fix the number of blocks β, and consider all classes with β
blocks. Then the classes among these with the highest number of degrees of freedom are exactly
those which contain only 1- or 2-blocks, 1-blocks are matched with exactly one other 1-block, and
both a’s in any 2-block are matched with their adjacent entry and no others.

Remark 3.12. In [BCDHMSTPY], they prove Lemma 3.11 by showing that the average number of
degrees of freedom lost per block is at least 1, and that the average number of degrees of freedom
lost per block is 1 if and only if we have the configurations and matchings specified in Lemma 3.11.

By Lemma 3.11, we can restrict ourselves to the configurations that have no more thanm blocks.
The following lemma allows us to cancel the contributions from the congruence configurations

that contain some constants wj 6= w1 and reduce the general case to the special one where all the
constant wj 6= w1 are zero.

Lemma 3.13. Suppose the polynomial f(x) :=
∑

α cαx
α ∈ R[x] has a zero of order n > 0 at x0.

Then ∑
α

cαx
α
0p(α) = 0 (3.13)

for any polynomial p of degree d < n.

The lemma is proved in Appendix B.
We are now ready to show that the contributions from the congruence configurations that contain

some constants wj 6= w1 cancel.
Given any polynomial p(x) ∈ R[x] and γ, t ∈ Z, notice the following

(1) If wj 6= w1, wj 6= 0, and p has degree less than 2n, then

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p(α + i)wα+i−γj

(
N

k

)α+i−t)

=
kt

wγjN
t

4nl∑
α=2n

cα

(
wj
w1

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p(α + i)

(
wjN

k

)i)

=
kt

wγjN
t

m∑
i=0

(
m

i

)(
−w1N

k

)m−i(
wjN

k

)i 4nl∑
α=2n

cα

(
wj
w1

)α
p(α + i)

= 0, (3.14)

where we get
∑4nl

α=2n cα(
wj
w1

)αp(α + i) = 0 from Lemma 3.13 using the fact that f 2n
1 (x) =∑4nl

α=2n cαx
α ∈ R[x] has a zero of order 2n at wj/w1.

13



(2) If wj = w1, and p has degree less than m, then
4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p(α + i)wα+i−γ1

(
N

k

)α+i−t)

=
kt−m

wγ−m1 N t−m

4nl∑
α=2n

cα

(
m∑
i=0

(
m

i

)
(−1)m−ip(α + i)

)
= 0, (3.15)

where we get
∑m

i=0

(
m
i

)
(−1)m−ip(α+i) = 0 from Lemma 3.13 using the fact that (x−1)m

has a zero of order m at 1.
By Lemma 3.9, we know given a configuration with β blocks, the polynomial p in the con-

tribution (3.8) has degree ≤ β − s + 1 where s the number of distinct w’s in this configuration
determined by the chosen congruence classes. In particular, given β ≤ m, the polynomial p has
degree ≤ m − 1 + 1 = m, and whenever both w1 and wj 6= w1 appear in the configuration, the
polynomial p has degree ≤ m− 2 + 1 = m− 1.

From (3.14) and (3.15), we conclude that the configurations with some wj 6= w1 do not con-
tribute to the moment. We may therefore assume that all all wj 6= w1 are zero.

3.2. The special case where all wj 6= w1 are zero. We have reduced to the special case where k1
of the wj’s are w1 and the rest k − k1 are 0.

Following the arguments in §3 of [BCDHMSTPY], we can show that the contributions to the
m-th moment from all configurations with fewer than m blocks cancel, and the contributions from
all configurations with matchings that lose more than m degrees of freedom become insignificant
as N →∞. In particular, by Lemma 3.11, we are only left with the configurations with m blocks.

Proposition 3.14. Fix the number of blocks β, the total contribution of configurations with m1

1-blocks to E
[
Tr(Aα+iN )

]
is

w
α+i−m1−2(β−m1)
1

(
(α + i)β

β!
+ p̃(α + i)

)(
β

m1

)
(k − 1)β−m1Ek1 [Tr(Bm1)]

(
N

k

)α+i−β
+Oβ

(
(α + i)β

(
N

k

)α+i−β−1)
(3.16)

where p̃ is a polynomial of degree ≤ β − 1.

The proof follows closely from that of Proposition 3.15 in [BCDHMSTPY], and is given in
Appendix C.

Proposition 3.15. The expected m-th moment in the limit is

lim
N→∞

E
[
µ
(m)
AN ,1

]
=

1

k1

m∑
m1=0

(
m

m1

)(
k − 1

w1

)m−m1

Ek1 [Tr(Bm1)] . (3.17)

The proof follows closely from that of Theorem 3.18 in [BCDHMSTPY], and is given in Ap-
pendix D.

Note that the expected first moment in the limit is

lim
N→∞

E
[
µ
(1)
AN ,1

]
=

k − 1

w1

. (3.18)
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Following the same calculation as in Theorem 3.18 of [BCDHMSTPY], we obtain the centered
m-th moment

µmc,1 := lim
N→∞

E
[∫

(x− µ(1)
AN ,1

)mdµAN,1

]
=

1

k1
Ek1 [Tr(Bm)] . (3.19)

4. WEAK AND ABSOLUTE CONVERGENCE OF THE BLIP SPECTRA MEASURE

In this section we establish the convergence result for the blip spectra measure. We first use
the standard technique to show weak convergence for a blip of size one, and then we follow
[BCDHMSTPY] to established a modified spectral measure and prove its convergence.

4.1. Weak convergence for blip of size 1.

Definition 4.1. (Weak Convergence). A family of probability distribution µn weakly converges to
µ if and only if for any bounded, continuous f we have

lim
n→∞

∫ ∞
−∞

f(x)µn(dx) =

∫ ∞
−∞

f(x)µ(dx).

Since µ(m)
AN ,1

is finite, to prove weak convergence we should prove the variance of expected mth

tends to zero as N goes to infinity. That is,

lim
N→∞

E[(µ
(m)
AN ,1

)2]− E[(µ
(m)
AN ,1

)]2 = 0.

By (3.3), we have that

E[(µ
(m)
AN ,1

)2] =
1

k21

4nl∑
α=2n

4nl∑
β=2n

cαcβ

m∑
i=0

m∑
j=0

(
m

i

)(
m

j

)
(−1)i+j(

w1N

k
)2m−(i+j)−(α+β)∑

Ci+α
Cj+β

(E[Ci+αCj+β]

 , (4.1)

E
[
µ
(m)
AN ,1

]2
=

1

k21

4n∑
α=2n

4n∑
β=2n

cαcβ

m∑
i=0

m∑
j=0

(
m

i

)(
m

j

)
(−1)i+j

(
w1N

k

)2m−(i+j)−(α+β)

∑
Ci+α,
Cj+β

E [Ci+α]E [Cj+β]

 , (4.2)

whereCt denotes the cyclemi1i2mi2i3 . . .miti1 Notice that the difference cancels unless there exists
at1t2 such that at1t2 ∈ Ci+α and Cj+β . Therefore we only need to count the pair of cycles where
Ci+α and Cj+β has at least one common a. We call such pair of cycles the crossover terms.

Lemma 4.2. The contributions of crossover terms to E[(µ
(m)
AN ,1

)]2 is 0 as N →∞.
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Proof. E[(µ
(m)
AN ,1

)]2 is the product of

1

k1

4nl∑
α=2n

cα

m∑
i=0

(
m

i

)
(−1)m−i(

w1N

k
)m−i−α

∑
Ci+α

E[Ci+α]

and
1

k1

4nl∑
β=2n

cβ

m∑
i=0

(
m

j

)
(−1)m−j(

w1N

k
)m−j−β

∑
Cj+β

E[Cj+β].

Suppose we fix a pair of congruence configurations of Ci+α and Ci+α such that there is a com-
mon at1t2 in the two cycles, and Ci+α has b1 blocks while Cj+β has b2 blocks. If either of b1, b2
is less than m, then by 3.14 and 3.15 their product makes 0 contribution. So we know the that
configuration contributes only when b1 + b2 ≥ 2m. By Lemma 3.11, each block loses at least 1
degree of freedom. However, due to the common at1t2 of Ci+α and Cj+β , there is a block that loses
at least 2 degrees of freedom, so in total at least b1 + b2 + 1 ≥ 2m + 1 degree of freedom is lost.
Thus by (3.12), the crossover terms contribute to 0 when N →∞. �

Now it is sufficient to look at the contribution from crossovers to E[(µ
(m)
AN ,1

)2]. For general k1,
the contributions of the crossovers doesn’t necessarily go to 0 as N → ∞. We want to show that
for k1 = 1, the contribution from the crossovers does go to 0. In order to show this, we first reduce
the general W to the simplest case where all wj 6= w1 are zero.

Lemma 4.3. The contribution from the congruence configurations that containwj 6= w1 to E[(µ
(m)
AN ,1

)2]
is 0.

Proof. Fix a pair of congruence configuration. Say wi1 , wj2 , . . . , wjs appears in the cyclic product
Ci+α and wjq appears xq times, separated by the blocks into yq parts. wj′1 , . . . , wj′s′ appears in the
cyclic product Cj+β , wj′q appears x′q′ times and are separated by the blocks into yq′ parts. The sum
of ys should be the total number of blocks, so we have y1 + · · ·+ys+y′1 + · · ·+y′s′ = b1 + b2. By
Lemma 3.11, the total lost degree of freedom is at least b1 + b2. On the other hand, by (3.12) we
know that the total lost of degree of freedom should be at most 2m. Therefore we have b1 + b2 ≤
2m.

By Lemma 3.9, with the congruence configuration fixed, the total number of ways to place wj
and wj′ is

(α + i)
∑
xi≥yi

x1+···+xs=α+i−r1

s∏
q=1

(
xq − 1

yq − 1

)
w
xq
jq

(β + j)
∑
x′
i′≥y

′
i′

x′1+···+x′s′=β+i−r2

s′∏
q′=1

(
x′q′ − 1

y′q′ − 1

)
w
x′q
j′q

(4.3)

where r1, r2 are the number of a in each cycle. Since yi, y′i′ are fixed, the above expression can be
written as

(α + i)
∑
xi≥yi

x1+···+xs=α+i−r1

py1,...,ys(x1, . . . , xs)w
x1
j1
· · ·wxsjs (β + j)

·
∑
x′
i′≥y

′
i′

x′1+···+x′s′=β+i−r2

py′1,...,y′s′ (x
′
1, . . . , x

′
s′)w

x′1
j′1
· · ·wx

′
s′
j′
s′

(4.4)
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where py1,...,ys and py′1,...,y′s′ are polynomials with variables xi, x′i′ , and the sum of their degree is
y1 + · · ·+ ys + y′1 + · · ·+ y′s′ − s− s′ = b1 + b2− s− s′. Then (4.4) is a sum of terms of the form
p1(α+ j)wα+j−γ1j p2(β + i)wβ+i−γj′ , where sum of degrees of p1 and p2 is b1 + b2 + 2− s− s′, s or
s′ should be at least 2. Since s, s′ ≥ 1, b1 + b2 ≤ 2m, the sum of degree of p1 and p2 would be at
most 2m− 1. Therefore at least one of p1, p2 will have degree≤ m− 1. Without loss of generality
say p1 has degree ≤ m− 1. Then by (3.14) and (3.15)

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
p1(α + i)wα+i−γj

(
N

k

)α+i−t)
= 0. (4.5)

Therefore, the contribution of the terms p1(α + j)wα+j−γ1j p2(β + i)wβ+i−γj′ to will be 0. Thus the

contribution from congruence configurations containing wj 6= w1 to E[(µ
(m)
AN ,1

)2] is 0 as N →∞.
�

Now we can restrict ourselves to the simplest case where wj 6= w1 are all 0. We want to prove
that when k1 = 1, the contribution from the crossovers to E[(µ

(m)
AN ,1

)2] is 0. Assume w1 6= 0 and
w2 = · · · = wk = 0.

Theorem 4.4. When k1 = 1 and wj = 0 for all wj 6= w1, we have

lim
N→∞

Var
[
µ
(m)
AN ,1

]
= 0. (4.6)

Proof. We are left to prove that the contributions from crossovers to E[(µ
(m)
AN ,1

)2] is 0.
Fix the pair of congruence configuration at Ci+α and Cj+β . Suppose there are b1 blocks in Ci+α

and b2 blocks in Cj+β .
If b1 < m or b2 < m, then

m∑
i=0

m∑
j=0

(
m

i

)(
m

j

)
(−1)2m−i−jip

′
jq
′

=
m∑
i=0

(
m

i

)
(−1)m−iip

′
m∑
j=0

(
m

j

)
(−1)m−ijq

′
= 0

for all integers 0 ≤ p′ ≤ b1 and 0 ≤ q′ ≤ b2, so that the contributions from this configuration
cancel out. So we only need to look at configurations with b1 ≥ m and b2 ≥ m.

Now notice that in this W , wj = 0 for all j 6≡ 1 (k). Thus, if there is some 1-block in Ci+α or
Cj+β , then both E [Ci+αCj+β] and E [Ci+α] E [Cj+β] are 0. Therefore, we can restrict ourselves to
the configurations where all the blocks are 2-blocks.

By Lemma 3.11 and Equation (3.12), We only need to consider congruence configurations where
b1 +b2 ≤ 2m. Combining with b1 ≥ m, b2 ≥ m, We require b1 = b2 = m, and both a’s in 2-blocks
matched with their adjacent entry. But then crossover matchings between Ci+α and Cj+β become
impossible. Therefore, we conclude that

lim
N→∞

Var
[
µ
(m)
AN ,1

]
= 0. (4.7)

�

4.2. Absolute Convergence of modified blip spectral measure. We have computed the expected
m-th moment E

[
µ
(m)
AN ,1

]
of the empirical blip measure around Nw1/k. However, given one matrix
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AN from our ensemble, the m-th moment µ(m)
AN ,1

of its empirical blip measure do not necessar-

ily converge to this system average E
[
µ
(m)
AN ,1

]
, as we will show in the following example that

lim
N→∞

Var
[
µ
(2)
AN ,1

]
= lim

N→∞

(
E
[(
µ
(2)
AN ,1

)2]
− E

[
µ
(2)
AN ,1

]2)
> 0.

Example 4.5. Consider the special case where all wj 6= w1 are zero and k1 > 1. We can obtain

the expression of Var
[
µ
(2)
AN ,1

]
by plugging m = 2 into Equations (4.1) and (4.2). By Lemma 4.3

we only need to calculate E
[(
µ
(2)
AN

)2]
.

The configurations that neither cancel out nor contribute insignificantly in the limit have two 1-
blocks in both Ci+α and Cj+β with cross-over matching. Its contribution to

∑
Ci+α,
Cj+β

E [Ci+αCβ+j]

is given by

2

(
α + i

2

)(
β + j

2

)
k1(k1 − 1)

(
Nw1

k

)α+i+β+j−4
, (4.8)

where 2
(
α+i
2

)(
β+j
2

)
is from matching and choosing the positions of the 1-blocks and k1(k1 − 1) is

from choosing the equivalence classes of the indices. Then

lim
N→∞

Var
[
µ
(2)
AN ,1

]
=

1

k21

4n∑
α=2n

4n∑
β=2n

cαcβ

2∑
i=0

2∑
j=0

(
2

i

)(
2

j

)
(−1)4−i−j2

(
α + i

2

)(
β + j

2

)
k1(k1 − 1)

=
2(k1 − 1)

k1

4n∑
α=2n

4n∑
β=2n

cαcβ

2∑
i=0

(
2

i

)
(−1)2−i

(
α + i

2

) 2∑
j=0

(
2

j

)
(−1)2−j

(
β + j

2

)

=
2(k1 − 1)

k1

4n∑
α=2n

4n∑
β=2n

cαcβ

=
2(k1 − 1)

k1
> 0 (4.9)

where we have used
∑2

i=0

(
2
i

)
(−1)2−i

(
α+i
2

)
=
∑2

j=0

(
2
j

)
(−1)2−j

(
β+j
2

)
= 1.

Therefore, the traditional way of showing weak convergence and absolute convergence fail here.
In order to resolve this, we modify the empirical blip spectral measure by taking average over
a large number of matrices and prove that the modified blip spectral measure converges. The
definitions and the process of the proof follow closely to Section 5 of [BCDHMSTPY]. The only
change needed is the proof of the following lemma.

Lemma 4.6. LetXm,N,i be as defined in Definition E.1 Then for any t ∈ N, the rth centered moment
of Xm,N,i satisfies

X
(r)
m,N,i = E [(Xm,N,i − E[Xm,N,i])

r] = Om,r(1) (4.10)

as N goes to infinity.

The proof of this lemma uses similar technique as Lemma 5.6 of [BCDHMSTPY] and reduces
to a special case of Section 3. The detail of the proof is also given in Appendix E.
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APPENDIX A. PROOF OF LEMMA 3.8

Lemma A.1. Fix s ∈ N with s ≥ 2. For η ∈ N with η ≥ s and distinct w1, . . . , ws, we have∑
x1+···+xs=η
x1,...,xs≥1

wx11 . . . wxss =

∑s
l=1w

η+2−s
l fl(w1, . . . , ws)∏

1≤i<j≤s(wi − wj)
, (A.1)

where each fl(w1, . . . , ws) ∈ R[w1, . . . , ws] is a homogeneous polynomial of degree
(
s
2

)
+ s− 2.

Proof. Induct on s. For s = 2, by geometric progression, we have∑
x1+x2=η
x1,x2≥1

wx11 w
x2
2 =

wη1w2 − wη2w1

w1 − w2

(A.2)

for all η ∈ N with η ≥ 2. Suppose s ∈ N with s ≥ 2 and equation (A.1) holds for all η ∈ N with
η ≥ s. Then for η ≥ s+ 1,∑

x1+···+xs+1=η
x1,...,xs+1≥1

wx11 . . . w
xs+1

s+1 =

η−s∑
xs+1=1

∑
x1+···+xs=η−xs+1

x1,...,xs≥1

wx11 . . . wxss w
xs+1

s+1

=

η−s∑
xs+1=1

∑s
l=1w

η−xs+1+2−s
l fl(w1, . . . , ws)∏
1≤i<j≤s(wi − wj)

w
xs+1

s+1

=
s∑
l=1

fl(w1, . . . , ws)∏
1≤i<j≤s(wi − wj)

η−s∑
xs+1=1

w
η−xs+1+2−s
l w

xs+1

s+1

=
s∑
l=1

fl(w1, . . . , ws)∏
1≤i<j≤s(wi − wj)

wη+1−s
l ws+1 − wlwη+1−s

s+1

1− ws+1

wl

=
s∑
l=1

wlfl(w1, . . . , ws)∏
1≤i<j≤s(wi − wj)

wη+1−s
l ws+1 − wlwη+1−s

s+1

wl − ws+1

=

∑s
l=1w

η+1−s
l (wlws+1

∏
1≤i≤s
i 6=l

(wi − ws+1)fl(w1, . . . , ws))∏
1≤i<j≤s+1(wi − wj)

−
wη+1−s
s+1 (

∑s
l=1w

2
l

∏
1≤i≤s
i 6=l

(wi − ws+1)fl(w1, . . . , ws))∏
1≤i<j≤s+1(wi − wj)

, (A.3)

where each wlwj
∏

1≤i≤s
i 6=l

(wi−ws+1)fl(w1, . . . , ws) is a homogeneous polynomial in w1, . . . , ws+1

of degree 2 + (s− 1) + (
(
s
2

)
+ s− 2) =

(
s+1
2

)
+ s+ 1− 2. �

Lemma A.2. Fix s ∈ N with s ≥ 2, q ∈ N∪{0}, and α1, . . . , αq ∈ N≤s (may not be distinct). For
η ∈ N with η ≥ s and distinct w1, . . . , ws, we have∑

x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαqw
x1
1 . . . wxss =

∑s
l=1w

η+2−s
l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (A.4)
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where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws of de-
gree 2q

(
s
2

)
+s−2. Furthermore, the coefficients in the polynomial fl,η(w1, . . . , ws) are polynomials

in η of degree ≤ q.

Proof. Induct on q. The case q = 0 was proved in Lemma A.1. Suppose q ∈ N and we have

∑
x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαq−1w
x1
1 . . . wxss =

∑s
l=1w

η+2−s
l fl,η,α1,...,αq−1(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q−1 (A.5)

for all η ∈ N with η ≥ s, where each fl,η,α1,...,αq−1(w1, . . . , ws) is a homogeneous polynomial in
w1, . . . , ws of degree 2q−1

(
s
2

)
+ s− 2 and the coefficients are polynomials in η of degree ≤ q − 1.

Then ∑
x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαqw
x1
1 . . . wxss

= wαq
∂

∂wαq

∑
x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαq−1w
x1
1 . . . wxss

= wαq
∂

∂wαq

∑s
l=1w

η+2−s
l fl,η,α1,...,αq−1(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q−1

=

∑s
l=1w

η+2−s
l wαq

∂fl,η,α1,...,αq−1
(w1,...,ws)

∂wαq
(
∏

1≤i<j≤s(wi − wj))2
q−1

(
∏

1≤i<j≤s(wi − wj))2
q

+
wη+2−s
αq (η + 2− s)fl,η,α1,...,αq−1(w1, . . . , ws)(

∏
1≤i<j≤s(wi − wj))2

q−1

(
∏

1≤i<j≤s(wi − wj))2
q

−

∑s
l=1w

η+2−s
l fl,η,α1,...,αq−1(w1, . . . , ws)wαq

∂
∂wαq

(
∏

1≤i<j≤s(wi − wj))2
q−1

(
∏

1≤i<j≤s(wi − wj))2
q . (A.6)

Note that by induction hypothesis, we have

(1) wαq
∂fl,η,α1,...,αq−1

(w1,...,ws)

∂wαq
(
∏

1≤i<j≤s(wi−wj))2
q−1 is a homogeneous polynomial inw1, . . . , ws

of degree 1 + (2q−1
(
s
2

)
+ s − 2 − 1) + 2q−1

(
s
2

)
= 2q

(
s
2

)
+ s − 2 and the coefficients are

polynomials in η of degree ≤ q − 1;
(2) (η+2−s)fl,η,α1,...,αq−1(w1, . . . , ws)(

∏
1≤i<j≤s(wi−wj))2

q−1 is a homogeneous polynomial
in w1, . . . , ws of degree (2q−1

(
s
2

)
+ s− 2) + 2q−1

(
s
2

)
= 2q

(
s
2

)
+ s− 2 and the coefficients

are polynomials in η of degree ≤ q;
(3) fl,η,α1,...,αq−1(w1, . . . , ws)wαq

∂
∂wαq

(
∏

1≤i<j≤s(wi − wj))2
q−1 is a homogeneous polynomial

in w1, . . . , ws of degree (2q−1
(
s
2

)
+ s − 2) + 1 + (2q−1

(
s
2

)
− 1) = 2q

(
s
2

)
+ s − 2 and the

coefficients are polynomials in η of degree ≤ q − 1.

Therefore, after collecting the terms, we get (A.9). �
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Lemma A.3. Fix s ∈ N with s ≥ 2 and some polynomial p(x1, . . . , xs) ∈ R[x1, . . . , xs] of degree
q. For η ∈ N with η ≥ s and distinct w1, . . . , ws, we have∑

x1+···+xs=η
x1,...,xs≥1

p(x1, . . . , xs)w
x1
1 · · ·wxss =

∑s
l=1w

η+2−s
l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (A.7)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws of de-
gree 2q

(
s
2

)
+s−2. Furthermore, the coefficients in the polynomial fl,η(w1, . . . , ws) are polynomials

in η of degree ≤ q.

Proof. By Lemma A.2, fix any d ∈ N ∪ {0} with d ≤ q, and α1, . . . , αd ∈ N≤s, we have∑
x1+···+xs=η
x1,...,xs≥1

xα1 . . . xαdw
x1
1 . . . wxss =

∑s
l=1w

η+2−s
l f̃l,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
d

=

∑s
l=1w

η+2−s
l f̃l,η(w1, . . . , ws)(

∏
1≤i<j≤s(wi − wj))2

q−2d

(
∏

1≤i<j≤s(wi − wj))2
q ,

(A.8)

for some degree 2d
(
s
2

)
+ s − 2 homogeneous polynomials f̃l,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws]

whose coefficients are polynomials in η of degree ≤ d. Then f̃l,η(w1, . . . , ws)(
∏

1≤i<j≤s(wi −
wj))

2q−2d are homogeneous polynomials in w1, . . . , ws of degree 2d
(
s
2

)
+ s− 2 + (2q − 2d)

(
s
2

)
=

2q
(
s
2

)
+ s− 2, and the coefficients are polynomials in η of degree ≤ d ≤ q, and the result follows.

�

Lemma A.4. Fix s ∈ N with s ≥ 2, q ∈ N ∪ {0}, y1, . . . , ys ∈ N, and α1, . . . , αq ∈ N≤s (may not
be distinct). For η ∈ N with η ≥

∑s
i=1 yi and distinct w1, . . . , ws, we have∑

x1+···+xs=η
xi≥yi

xα1 . . . xαqw
x1
1 . . . wxss =

∑s
l=1w

η+2−
∑s
i=1 yi

l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (A.9)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws of
degree 2q

(
s
2

)
+ (
∑s

i=1 yi)− 2. Furthermore, the coefficients in the polynomial fl,η(w1, . . . , ws) are
polynomials in η of degree ≤ q.

Proof. By lemma A.3, we have∑
x1+···+xs=η

xi≥yi

xα1 . . . xαqw
x1
1 . . . wxss

=
s∏
i=1

wyi−1i

∑
x1+···+xs=η+s−

∑s
i=1 yi

x1,...,xs≥1

(xα1 + yα1 − 1) · · · (xαq + yαq − 1)wx11 . . . wxss

=
s∏
i=1

wyi−1i

∑s
l=1w

η+2−
∑s
i=1 yi

l f̃l,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (A.10)
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where each f̃l,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws of
degree 2q

(
s
2

)
+ s − 2, and the coefficients of fl,η(w1, . . . , ws) are polynomials in η of degree

≤ q. Then each fl,η(w1, . . . , ws) =
∏s

i=1w
yi−1
i f̃l,η(w1, . . . , ws) is a homogeneous polynomial in

w1, . . . , ws of degree 2q
(
s
2

)
+ (
∑s

i=1 yi) − 2, and the coefficients are polynomials in η of degree
≤ q. �

Lemma A.5. Fix s ∈ N with s ≥ 2 and some polynomial p(x1, . . . , xs) ∈ R[x1, . . . , xs] of degree
q. For η ∈ N with η ≥

∑s
i=1 yi and distinct w1, . . . , ws, we have

∑
x1+···+xs=η

xi≥yi

p(x1, . . . , xs)w
x1
1 . . . wxss =

∑s
l=1w

η+2−
∑s
i=1 yi

l fl,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
q , (A.11)

where each fl,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws] is a homogeneous polynomial in w1, . . . , ws of
degree 2q

(
s
2

)
+ (
∑s

i=1 yi)− 2. Furthermore, the coefficients in the polynomial fl,η(w1, . . . , ws) are
polynomials in η of degree ≤ q.

Proof. By Lemma A.4, fix any d ∈ N ∪ {0} with d ≤ q, and α1, . . . , αd ∈ N≤s, we have∑
x1+···+xs=η

xi≥yi

xα1 . . . xαdw
x1
1 . . . wxss =

∑s
l=1w

η+2−s
l f̃l,η(w1, . . . , ws)

(
∏

1≤i<j≤s(wi − wj))2
d

=

∑s
l=1w

η+2−s
l f̃l,η(w1, . . . , ws)(

∏
1≤i<j≤s(wi − wj))2

q−2d

(
∏

1≤i<j≤s(wi − wj))2
q ,

(A.12)

for some degree 2d
(
s
2

)
+(
∑s

i=1 yi)−2 homogeneous polynomials f̃l,η(w1, . . . , ws) ∈ R[η][w1, . . . , ws]

whose coefficients are polynomials in η of degree ≤ d. Then f̃l,η(w1, . . . , ws)(
∏

1≤i<j≤s(wi −
wj))

2q−2d are homogeneous polynomials in w1, . . . , ws of degree 2d
(
s
2

)
+ (
∑s

i=1 yi) − 2 + (2q −
2d)
(
s
2

)
= 2q

(
s
2

)
+ (
∑s

i=1 yi)− 2, and the coefficents are polynomials in η of degree ≤ d ≤ q, and
the result follows. �

APPENDIX B. PROOF OF LEMMA 3.13

Lemma B.1. Suppose the polynomial f(x) :=
∑

α cαx
α ∈ R[x] has a zero of order n > 0 at x0.

Then for d ∈ N∪{0} with d < n, the polynomial fd(x) :=
∑

α cαx
ααd has a zero of order (n−d)

at x0. In particular, we have ∑
α

cαx
α
0α

d = 0 (B.1)

for all d ∈ N ∪ {0} with d < n.

Proof. The result follows from the fact that

fd(x) = xf ′d−1(x) (B.2)

for all d ∈ N with d < n. �
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Lemma B.2. Suppose the polynomial f(x) :=
∑

α cαx
α ∈ R[x] has a zero of order n > 0 at x0.

Then ∑
α

cαx
α
0p(α) = 0 (B.3)

for all polynomial p of degree d < n.

Proof. The result follows immediately from Lemma B.1. �

APPENDIX C. PROOF OF PROPOSITION 3.14

By Lemma 3.11, the configurations with the highest number of degrees of freedom contain only
1- and 2-blocks. The number of ways to arrange the constants w1’s and the blocks (take all blocks
to be identical) is

(α + i)β

β!
+ p̃(α + i)

where p̃ is a polynomial of degree ≤ β− 1, and the number of ways to choose the 1-blocks among
all the blocks is

(
β
m1

)
.

Now we assign the equivalence classes modulo k of the inner indices of the 2-blocks. The
number of ways to assign inner indices of 2-blocks is (k − 1)β−m1 . The number of ways to assign
indices of the 1-blocks is the same as the number of cyclic product bi1i2bi2i3 · · · bim1 i1

, where ij’s are
chosen from k1 residues modulo k with the b’s matched in pairs under the restriction that ij 6= ij+1

for all j. Thus it is the expected trace of mth
1 power of k1 × k1 GOE, which is

Ek1 [Tr (Bm1)] .

Finally, for each index, once we have specified its congruence class modulo k, the number of ways
to choose it from {1, 2, . . . , N} is

(
N
k

)α+i−β
+O(N

k
)α+i−β−1.

APPENDIX D. PROOF OF PROPOSITION 3.15

By Proposition 3.14 and (3.3), we get the contribution from the configurations with β blocks to
the expected mth moment of the blip is

1

k1

4nl∑
α=2n

cα

(
k

w1N

)α m∑
i=0

(
m

i

)(
−w1N

k

)m−i
(

β∑
m1=0

w
α+i−m1−2(β−m1)
1

(
β

m1

)
(k − 1)β−m1Ek1 [Tr(Bm1)]

)
(

(α + i)β

β!
+ p̃(α + i)

)(
N

k

)α+i−β
+Oβ

(
(α + i)β

(
N

k

)α+i−β−1)
. (D.1)

Recall that by (3.12) and Lemma 3.11, the contribution becomes insignificant as N → ∞ if
β > m. On the other hand, given any polynomial p(x) ∈ R[x] of degree less than m and t ∈ Z, we
have

∑m
i=0

(
m
i

) (
−w1N

k

)m−i
p(α+ i)

(
N
k

)α+i−t
=
(
N
k

)m+α−t∑m
i=0

(
m
i

)
(−1)m−ip(α+ i) = 0 from

Lemma 3.13 using the fact that (x− 1)m has a zero of order m at 1, so the contribution cancels out
if β < m. Therefore, only the configurations with m blocks will contribute.
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We set β = m in (D.1), and use the identity
m∑
i=0

(
m

i

)
(−1)m−iij =

{
0 if j = 0, 1, . . . ,m− 1,

m! if j = m,

and the fact that
∑4nl

α=2n cα = f 2n
1 (1) = 1 to get the expected m-th moment

lim
N→∞

E
[
µ
(m)
AN ,1

]
=

1

k1

m∑
m1=0

(
m

m1

)(
k − 1

w1

)m−m1

Ek1 [Tr(Bm1)] . (D.2)

APPENDIX E. DETAILS FOR ABSOLUTE CONVERGENCE AND PROOF OF LEMMA 4.6

By [BCDHMSTPY], we can treat the mth moment of empirical spectral measure near Nwi/k,
µ
(m)
AN ,i

, as a random variable on Ω. Here Ω :=
∏

N∈N ΩN , where ΩN is the probability space of
N ×N (k,W ) Checkerboard matrices.

Definition E.1. [BCDHMSTPY] We define the random variable Xm,N,1 on Ω

Xm,N,i({AN}) := µ
(m)
AN ,i

. (E.1)

which has the centered rth moment as

X
(r)
m,N,i := E[(Xm,N,i − E[Xm,N,i])

r]. (E.2)

Definition E.2. [BCDHMSTPY] Fix a function g : N→ N. The averaged empirical blip spectral
measure associated to A ∈ ΩN is

µN,g,A,i :=
1

g(N)

g(N)∑
j=1

µ
A

(j)
N ,i

(E.3)

This is to project onto the N th coordinate in each copy of Ω and then average over the first g(N)
of these N ×N matrices.

Definition E.3. [BCDHMSTPY] We denote by Ym,N,g,i the random variable on ΩN defined by the
moments of the averaged empirical blip spectral measure near Nwi/k.

Ym,N,g,i(A) := µ
(m)

N,g,A,i
. (E.4)

The centered rth moment (over ΩN) of this random variable will be denoted by Y (r)
m,N,g,i.

With the defintions, we are ready to prove Lemma 4.6.

Proof. Without loss of generality it suffices to prove it when i = 1.

E [(Xm,N,1 − E[Xm,N,1])
r] = E

[
r∑
l=0

(
r

l

)
(Xm,N,1)

` (E[Xm,N,1])
r−l

]

=
r∑
l=0

(
r

l

)
(−1)lE

[
(Xm,N,1)

l
]

(E[Xm,N,1])
r−l . (E.5)

By (3.19), we have E[Xm,N,1] = Om(1), hence (E[Xm,N,1])
r−l = Om,r,l(1) for all l. As such, it

suffices to show that E
[
(Xm,N,1)

λ
]

= Om,l(1).
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E[Xm,N,1
l] = E

 1

k1

4nl∑
α=2n

cα

(
k

w1N

)α( m∑
i=0

(
m

i

)(
−w1N

k

)m−i
Tr(Aα+iN )

)l


= E

 ∑
2n≤α1≤4nl
0≤i1≤m

∑
2n≤α2≤4nl
0≤i2≤m

· · ·
∑

2n≤αl≤4nl
0≤il≤m

l∏
ν=1

cαv

(
m

iv

)
(−1)m−iv(

w1N

k
)l−iv TrAα+iv


=

∑
2n≤α1≤4nl
0≤i1≤m

∑
2n≤α2≤4nl
0≤i2≤m

· · ·
∑

2n≤αl≤4nl
0≤il≤m

l∏
ν=1

cαv

(
m

iv

)
(−1)m−iv(

w1N

k
)l−ivE

[
l∏

v=1

TrAαv+iv

]
.

(E.6)

Now consider E
[∏l

v=1 TrAαv+iv
]
. Let Ct denotes the cycle mi1i2mi2i3 . . .miti1 , then

E

[
l∏

v=1

TrAαv+iv

]
=
∑
Cα1+i1

∑
Cα2+i2

· · ·
∑
Cαl+il

E

[
l∏

v=1

Cαv+iv

]
,

where
∑

Cαk+ik
means summing over all cycles of length αk + ik.

Now fix the congruence class of each cycle. For a fixed congruence configuration of TrAαv+iv ,
suppose that the distinct constants wvj1 , wvj2 , . . . , wvjsv appear in the configuration, where each wvjq
appears xvq times and the xvq w

v
jq ’s are seperated by the blocks into yvq parts. Notice that when we fix

the configurations, yvq are fix. Denote the number of a as rv, so we have xv1+· · ·+xvsv = αv+iv−rv.
When we fix the configuration for all the cycles, by Equation (3.9) there are

l∏
v=1

∑
xvi≥yvi

xv1+···+xvs=αv+iv−rv

sv∏
qv=1

(
xvq − 1

yvq − 1

)
w
xvq
jvq

(E.7)

ways to place the constants wvj1 , wvj2 , . . . , wvjs . For fixed yv1 , . . . , y
v
sv , we can write it as

l∏
v=1

∑
xvi≥yvi

xv1+···+xvsv=αv+iv−rv

g̃vyv1 ,...,yvsv (xv1, . . . , x
v
sv)w

xv1
jv1
w
xv2
jv2
· · ·wx

v
sv
jvsv

(E.8)

where g̃vyv1 ,...,yvsv (xv1, . . . , x
v
sv) ∈ R[xv1, . . . , x

v
sv ] is a polynomial in xv1, . . . , x

v
sv of degree

∑sv
qv=1(y

v
qv−

1) = (yv1 + · · ·+ yvsv)− sv = βv − sv. Following the same reasoning as Lemma 3.9, apply Lemma
3.8 and take into account the cyclic permutation, we get that the total contribution can be written
as a sum of the terms of the form

l∏
v=1

pv(αv + iv)w
αv+iv−γv
jv

(
N

k

)αv+iv−tv
where p(x) ∈ R[x] is a polynomial of degree≤ βv− sv + 1, γ ∈ Z and

(
N
k

)α+i−t is from choosing
the indices from given equivalence classes modulo k, and tv is the lost degree of freedom.

25



By similar reasoning as (3.12), we can restrict ourselves to the set of configurations that β1 +
β2 + · · ·+ βl ≤ ml. If any of the βv ≤ m− 1, or sv ≥ 2 (which means there is some wjv 6= w1 in
the configuration), then the degree of pv(αv + iv) ≤ m− 1. By (3.14) and (3.15),

4nl∑
αv=2n

cαv

(
k

w1N

)αv ( m∑
i=0

(
m

iv

)(
−w1N

k

)m−iv
pv(αv + iv)w

αv+iv−γv
jv

(
N

k

)αv+iv−tv)
= 0.

Then the contribution of the configuration to E
[∏l

v=1 TrAαv+iv
]

is 0. Therefore, the only set of

configurations that make contribution to E
[∏l

v=1 TrAαv+iv
]

is those where βv = m for all v, and
only w1 between the blocks, and there are only 1-blocks and 2-blocks that match with each other
in the way described by Lemma 3.11.

Now we can apply the same argument as in the Lemma 5.6 of [BCDHMSTPY]. At each cy-
cle, fix the number of blocks βv = m, the number of ways to arrange the blocks and w1’s is(

(αv+iv)βv

βv !
+ p̃(αv + iv)

)
where p̃(αv + iv) has degree ≤ βv − 1. The number of ways to choose

1-blocks and to choose the matchings and the indexing modulo k is independent of N ; the contri-
bution made by power of w1, so we can denote the constant as C. Therefore

E[Xm,N,1
l] = C

∑
2n≤α1≤4nl
0≤i1≤m

· · ·
∑

2n≤αl≤4nl
0≤il≤m

l∏
ν=1

cαv

(
m

iv

)
(−1)m−iv(

w1N

k
)m−iv

(
(αv + iv)

βv

βv!
+ p̃(αv + iv)

)
,

which is just C since
∑m

i=0

(
m
i

)
(−1)m−iim = m! and

∑4nl
α=2n cα = 1. This proves the lemma. �

Then following the exactly same steps as the proof of Theorem 5.5 in [BCDHMSTPY], we can
prove the convergence of averaged empirical blip spectral measure:

Theorem E.4. Let g : N→ N be such that there exists an δ > 0 for which g(N) = ω(N δ). Then,
as N → ∞, the averaged empirical spectral measures µN,g,A,i of the k-checkerboard ensemble
converge weakly almost-surely to the measure with moments Mk,m,i = 1

ki
Eki [Tr (Bm1)].

APPENDIX F. AN EXPLICIT CONSTRUCTION OF BLIPS AT FIBONACCI NUMBERS

In this section, we give an explicit construction of a sequence of random matrices such that as
N → ∞, almost surely there is an eigenvalue, after normalized by dividing N , at all Fibonacci
numbers. We can apply the same approach to force the normalized blip eigenvalues at any given
sequence of real numbers. We begin by extending the definition of the generalized checkerboard
matrices to allow k to grow with N .

Definition F.1. For fixed N ∈ N and a collection of kN ≤ N real numbers WN = (w1, . . . , wkN ),
the N ×N (kN ,WN)-checkerboard ensemble is the ensemble of matrices M = (mij) given by

mij =

{
aij if i 6≡ j (mod kN),

wu if i ≡ j ≡ u (mod kN), with u ∈ {1, 2, . . . , kN},
(F.1)

where aij = aji are independent and identically distributed random variables with mean 0, vari-
ance 1, and finite higher moments.
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Let (kN)N∈N be a non-decreasing sequence of positive integers with kN ≤ N for each N ∈ N,
lim
N→∞

kN =∞ and kN = O(
√
N). Denote the n-th Fibonacci number by Fn where F1 = 1, F2 = 2

and Fn+1 = Fn + Fn−1.
Let (AN)N∈N be a sequence of matrices such that each AN is a (kN ,WN)-checkerboard matrix

with WN = (0, . . . , 0), and consider the normalized empirical spectral measures

νAN (x) =
1

N

∑
λ an eigenvalue of AN

δ

(
x− λ√

N

)
. (F.2)

By the same argument as in §2, we obtain the following two results.

Proposition F.2. Let (AN)N∈N be a sequence of matrices such that each AN is from the N ×
N (kN , 0)-checkerboard ensemble. Then the empirical spectral measure µAN defined as (F.2)
converges almost surely to the Wigner semicircle measure σR with radius

R =

2
√

1− 1
k

if lim
N→∞

kN = k,

2 if lim
N→∞

kN =∞.
(F.3)

Proposition F.3. Let (AN)N∈N be a sequence of matrices such that each AN is from the N × N
(kN , 0)-checkerboard ensemble. Then as N →∞,

‖AN‖op = Oε(N
1
2
+ε) (F.4)

almost surely.

For each N ∈ N, define a fixed N ×N matrix ZN by

(ZN)ij =

{
Fn if i ≡ j ≡ n (mod kN), where 1 ≤ n ≤ kN ,

0 otherwise.
(F.5)

Lemma F.4. The matrix ZN has rank kN , and the kN nonzero eigenvalues are exactly F1d NkN e,
. . . , FrN d NkN e, FrN+1b NkN c, . . . , FkN b

N
kN
c, where we write N = qNkN + rN with qN ∈ Z and

rN ∈ {0, 1, 2, . . . , kN − 1}.

Proof. By definition, the matrix ZN has at most kN different columns.
For each i ∈ {1, 2, . . . , rN}, define vi ∈ RN by vi =

∑qN
j=0 ei+jkN , then vi is an eigenvector of

ZN associated with eigenvalue Fid NkN e.
For each i ∈ {rN + 1, . . . , kN}, define vi ∈ RN by vi =

∑qN−1
j=0 ei+jkN , then vi is an eigenvector

of ZN associated with eigenvalue Fib NkN c. �

Remark F.5. By assumption, we have

lim
N→∞

rank (ZN)

N
= lim

N→∞

kN
N

= 0. (F.6)

Construct a sequence (MN)N∈N of matrices by

MN = AN + kNZN . (F.7)

Note that each MN is an N ×N checkerboard matrix.
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Theorem F.6. Let (MN)N∈N be a sequence of checkerboard matrices defined as (F.7). Then almost
surely MN has N − kN eigenvalues of magnitude O(N

1
2
+ε) as N →∞. Moreover, for all n ∈ N,

almost surely MN has one eigenvalue of magnitude NFn + O(N
1
2
+ε) as N → ∞, where Fn

denotes the n-th Fibonacci number.

Proof. Fix any n ∈ N. By lemma F.4, we know the matrix kNZN has eigenvalue 0 of multiplicity
N − kN , and because lim

N→∞
kN = ∞, the matrix kNZN has one eigenvalue within the interval

(NFn − kN , NFn + kN) for all sufficiently large N . By assumption lim
N→∞

kN
N1/2 < ∞, the matrix

kNZN has one eigenvalue of magnitude NFn +O(N
1
2 ) for all sufficiently large N .

Let the eigenvalues of MN and kNZN be arranged in increasing order. As a consequence of
Weyl’s inequality, we have |λj(MN)− λj(kNZN)| ≤ ‖AN‖op for each j ∈ {1, 2, . . . , N}.

By Lemma F.3, almost surely ‖AN‖op = O(N
1
2
+ε) as N → ∞. Therefore, almost surely MN

has N − kN eigenvalues of magnitude O(N
1
2
+ε), and almost surely MN has one eigenvalue of

magnitude NFn +O(N
1
2
+ε), as N →∞. �

Therefore, if normalized by N , the limiting spectrum has one eigenvalue at each Fibonacci
number. For example, Figure 5 shows a histogram of the normalized eigenvalues with blips at the
first 10 Fibonacci numbers.

0 20 40 60 80
Eigenvalues normalized byN0

5

10

15

20

25

30

FIGURE 5. A histogram of the scaled eigenvalue distribution forMN withN = 100
and k100 = 10.
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