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Abstract. Given a linear recurrence of the form cn = a1cn−1 + · · · + ajcn−j , it is well-
known that cn =

∑
r pr(n)r

n, where the sum is taken over the set of characteristic roots
and each pr(n) is some polynomial. We give a closed formula for the coefficients of each
polynomial pr(n) for any linear recurrence of this form.

1. Introduction

Let {an}1≤n≤j be a sequence of complex numbers and {cn}n≥0 be the sequence defined by
the recurrence cn = a1cn−1+· · ·+ajcn−j for all n ≥ j, where the initial conditions {ck}0≤k≤j−1

are fixed. Such a sequence {cn} is called a linear recurrence with constant coefficients. The
characteristic polynomial of {cn} is the polynomial p(z) = zj−a1z

j−1−a2z
j−2−· · ·−aj−1z−

aj. A characteristic root of the recurrence satisfied by {cn} is defined to be a root of p.
A classical result (e.g., [7, Theorem IV.9]) in the theory of recurrence relations states that

{cn} admits a generalized Binet formula: for all n ≥ 0, we have that cn =
∑

r pr(n)r
n, where

the sum is taken over the set of characteristic roots and each pr(n) is a polynomial depending
on the initial conditions. We construct closed formulas for the coefficients of each pr(n).

Theorem 1.1. Define the sequence {cn} ⊆ C by the recurrence relation

cn = a1cn−1 + · · ·+ ajcn−j (1)

with c0, c1, . . . , cj−1 ∈ C. For each characteristic root r and nonnegative integer k ≤ j − 1,
let

(i) mr be the multiplicity of r,
(ii) sr,k,h :=

∑
ℓ≥j−k

(
k+ℓ
h

)
aℓr

−k−ℓ, and

(iii) Nr := (−1)mr−1
(∑

ℓ≥mr

(
ℓ

mr

)
aℓr

−ℓ
)−1

.

Then cn =
∑

r

∑mr

i=1 κr,in
mr−irn, where the outer sum is taken over the set of characteristic

roots and

κr,i =
(−1)i−1

(mr − i)!

∑
∅̸={d1,...,dp}⊆{0,1,...,i−1}

d1<···<dp=i−1

Np
r

j−1∑
k1=0

ck1sr,k1,d1

p−1∏
u=1

j−1∑
k2=0

kmr−1−du
2 rk2sr,k2,du+1

(−1)du−1(mr − 1− du)!
.

(2)
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Computing pr(n) is traditionally done by algorithmically computing the generating func-
tion for {cn} and determining its partial fraction decomposition. Algorithms for computing
partial fraction decompositions are well-studied, some of which can be found in [8, 9, 15].

From Theorem 1.1, one may obtain a closed formula for the partial fraction decomposition
of a proper rational function, circumventing any algorithmic computations. A closed formula
for such a partial fraction decomposition was also recently given by Chargeishvili, Fekésházy,
Somogyi, and Van Thurenhout in [5]. Of course, from [5, Equation 11], a closed formula
for the linear recurrence may be obtained by applying Newton’s binomial expansion to each
term in the composition. However, our formula contrasts favorably with this approach in
two ways:

(i) the formula given for each κr,i is not a function of any of the other characteristic roots,
and

(ii) our formula provides an exact formula for each coefficient of pr(n) rather than repre-
senting pr(n) as a sum of binomial coefficients.

Thus, if one wished to compute a particular pr(n), none of the roots other than r would need
to be computed.

The primary application of Theorem 1.1 is toward an implementation to symbolically
compute the generalized Binet formula of any linear recurrence with constant coefficients.
Most of the difficulty lies in accounting for multiple roots, since each leading coefficient κr,1

reduces to

κr,1 =
Nr

(mr − 1)!

j−1∑
k=0

cksr,k,0. (3)

Thus, Theorem 1.1 simplifies dramatically if all of the characteristic roots of the recurrence
are of multiplicity one. A prototypical class of recurrences with this property are the j-
nacci numbers, which are defined by the recurrence F (n, j) =

∑j
ℓ=1 F (n − ℓ, j) and initial

conditions F (0, j) = F (1, j) = · · · = F (j − 2, j) = 0 and F (j − 1, j) = 1. Letting j ≥ 2 and
n ≥ 0, from Theorem 1.1 we have the formula

F (n, j) =
∑
r

rn+1(1− r−j)

rj+1 − j
, (4)

where the sum is taken over the set of roots of the characteristic polynomial xj − xj−1 −
· · · − x − 1. This follows from Theorem 1.1 by a simplification of geometric series and the
identity

∑j−1
k=0 r

k = rj. This result is, of course, equivalent to the various closed forms for
the j-nacci numbers given in the literature (e.g., [4, Lemma 3.2]).

However, our formula permitting multiple roots allows us to consider more complicated
recurrences. Exposited by Ahlgren in [1], Ramanujan stated in his last notebook [13, pg.54]
that the circular summation of the sixth powers of the symmetric theta function decomposes
into a product of Ramanujan’s general theta function and another function F6. By a formula
for F6(q) given in [1, Theorem 1], Zabolotskiy notes in [12] that the exponents in the ex-
pansion of F6(q

2) are precisely the nonnegative integers congruent to 0, 5, 8, 9 mod 12, which
satisfy the recurrence cn = 2cn−1−2cn−2+2cn−3−cn−4. By definition, c0 = 0, c1 = 5, c2 = 8,
and c3 = 9. The characteristic roots are 1, i,−i, which have multiplicities 2, 1, 1 respectively.
Applying Theorem 1.1, we find that κ1,1 = 3, κ1,2 = 1, κi,1 = (−1− i)/2, κ−i,1 = (−1+ i)/2,
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thus obtaining

cn = 3n+ 1 +
1

2
(−1− i)in +

1

2
(−1 + i)(−i)n = 3n+ 1 + sin

(πn
2

)
− cos

(πn
2

)
. (5)

We now consider another example demonstrating the power of allowing for multiple roots:
the generalized pentagonal numbers are the exponents in the expansion given by the cele-
brated pentagonal number theorem [3], which asserts the q-series identity∏

n≥1

(1− qn) =
∑
k∈Z

(−1)kqk(3k−1)/2. (6)

That is, n is a generalized pentagonal number if and only if n = k(3k− 1)/2 for some k ∈ Z.
We aim to prove a closed formula for the generalized pentagonal numbers in increasing order,
which in turn would provide a singly infinite series expansion of monomials. By [11], this
sequence satisfies the recurrence cn = cn−1+2cn−2− 2cn−3− cn−4+ cn−5 with c0 = 0, c1 = 1,
c2 = 2, c3 = 5, and c4 = 7. The characteristic roots are 1 and −1, which have multiplicities
3 and 2 respectively. Applying Theorem 1.1, we find that κ1,1 = 3/8, κ1,2 = 3/8, κ1,3 =
1/16, κ−1,1 = −1/8, κ−1,2 = −1/16, thus obtaining

cn =
3n2

8
+

3n

8
+

1

16
+

(
−n

8
− 1

16

)
(−1)n, (7)

which matches the formula given by Barry in [2, Section 7].
The rest of the paper is dedicated to proving Theorem 1.1, followed by a discussion on

directions for future work.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we appeal to the fact that the coefficient of the asymptotically
dominant term in the expansion formula for {cn} is straightforward to compute by [7, Note
IV.26]. In particular, to compute the coefficient of nmr−irn, we subtract all terms which
asymptotically dominate nmr−irn, obtaining a new linear recurrence {c′n} satisfying c′n =
κr,in

mr−irn(1 + O(1/n)). To leverage [7, Note IV.26], we first must compute the generating
function of {cn} in closed form. To do this, we break {cn} into a linear combination of a
simpler sequence, which we call the (a1, . . . , aj)-nacci sequence.

Definition 2.1 ((a1, . . . , aj)-nacci sequence). Let {an}1≤n≤j be a sequence of complex num-

bers. Define the sequence {F (a1,...,aj)
n }n≥0, which we call the (a1, . . . , aj)-nacci sequence, by

the recurrence relation

F (a1,...,aj)
n =

∑
ℓ≥1

aℓF
(a1,...,aj)
n−ℓ , (8)

with F
(a1,...,aj)
0 = F

(a1,...,aj)
1 = · · · = F

(a1,...,aj)
j−2 = 0 and F

(a1,...,aj)
j−1 = 1.

The upside of considering the simpler (a1, . . . , aj)-nacci sequence is that its generating
function is easy to compute in closed form. Thus, once we precisely describe the linear
combination yielding {cn}, the desired generating function formula for {cn} quickly follows.

Lemma 2.2. Let {an}1≤n≤j be a sequence of complex numbers. Then∑
n≥0

F (a1,...,aj)
n zk =

zj−1

1−
∑

ℓ≥1 aℓz
ℓ
. (9)
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Proof. To determine the ordinary generating function of {F (a1,...,aj)
n }, we use the standard

ansatz (see [14] for example) that this function is rational with denominator 1−
∑

ℓ≥1 aℓz
ℓ.

Indeed, we have(
1−

∑
ℓ≥1

aℓz
ℓ

)∑
k≥0

F
(a1,...,aj)
k zk =

∑
k≥0

F
(a1,...,aj)
k zk −

∑
ℓ≥1

∑
k≥0

aℓF
(a1,...,aj)
k zk+ℓ

=
∑
k≥0

F
(a1,...,aj)
k zk −

∑
ℓ≥1

∑
k≥ℓ

aℓF
(a1,...,aj)
k−ℓ zk

∗
= F

(a1,...,aj)
j−1 zj−1 +

∑
k≥j

(
F

(a1,...,aj)
k −

∑
ℓ≥1

aℓF
(a1,...,aj)
k−ℓ

)
zk

= F
(a1,...,aj)
j−1 zj−1 = zj−1, (10)

where the starred equality follows since F
(a1,...,aj)
k = 0 if k ≤ j − 2. So

∑
k≥0

F
(a1,...,aj)
k zk =

zj−1

1−
∑

ℓ≥1 aℓz
ℓ
, (11)

as desired. □

Lemma 2.3. Define the sequence {cn} ⊆ C by the recurrence relation cn = a1cn−1+a2cn−2+
· · ·+ ajcn−j with c0, c1, . . . , cj−1 ∈ C. Then for all n ≥ j,

cn =

j−1∑
k=0

ck
∑
ℓ≥j−k

aℓF
(a1,...,aj)
n+j−1−k−ℓ. (12)

In [10, pg.6], Liu proves a result similar to Lemma 2.3, using instead an explicit formula

for F
(a1,...,aj)
n . As we are ultimately only concerned with the generating function of F

(a1,...,aj)
n ,

we need not consider its explicit form.
We now recall the definition of the Kronecker delta for use in the proof of Lemma 2.3. For

two numbers k, k′, the Kronecker delta is defined by

δk,k′ :=

{
1 if k = k′,

0 if k ̸= k′.
(13)

Proof of Lemma 2.3. We have that

Q(a1, . . . , aj) :=


a1 a2 · · · aj−1 aj
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 (14)
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is the j × j companion matrix of the (a1, . . . , aj)-nacci sequence. This matrix encodes the
recurrence relation for the (a1, . . . , aj)-nacci sequence in that

F
(a1,...,aj)
n+1

F
(a1,...,aj)
n

...

F
(a1,...,aj)
n−j+2

 = Q(a1, . . . , aj)


F

(a1,...,aj)
n

F
(a1,...,aj)
n−1

...

F
(a1,...,aj)
n−j+1

 . (15)

For each 0 ≤ k ≤ j − 1, let ek,n be such that cn =
∑j−1

k=0 ckek,n. From the linear recurrence
satisfied by {cn}, we deduce ek,n =

∑
ℓ≥1 aℓek,n−ℓ. As this is the same recurrence satisfied by

the (a1, . . . , aj)-nacci sequence,
ek,n+1

ek,n
...

ek,n−j+2

 = Q(a1, . . . , aj)


ek,n
ek,n−1

...
ek,n−j+1

 . (16)

Thus,


ek,n+j−1

ek,n+j−2
...

ek,n

 = (Q(a1, . . . , aj))
n


ek,j−1

ek,j−2
...

ek,0

 = (Q(a1, . . . , aj))
n


δk,j−1

δk,j−2
...

δk,0

 . (17)

We claim that (Q(a1, . . . , aj))
n equals

∑
ℓ≥1 aℓF

(a1,...,aj)
n+j−1−ℓ

∑
ℓ≥2 aℓF

(a1,...,aj)
n+j−ℓ · · ·

∑
ℓ≥j−1 aℓF

(a1,...,aj)
n+2j−3−ℓ

∑
ℓ≥j aℓF

(a1,...,aj)
n+2j−2−ℓ∑

ℓ≥1 aℓF
(a1,...,aj)
n+j−2−ℓ

∑
ℓ≥2 aℓF

(a1,...,aj)
n+j−1−ℓ · · ·

∑
ℓ≥j−1 aℓF

(a1,...,aj)
n+2j−4−ℓ

∑
ℓ≥j aℓF

(a1,...,aj)
n+2j−3−ℓ

...
...

. . .
...

...∑
ℓ≥1 aℓF

(a1,...,aj)
n+1−ℓ

∑
ℓ≥2 aℓF

(a1,...,aj)
n+2−ℓ · · ·

∑
ℓ≥j−1 aℓF

(a1,...,aj)
n+j−1−ℓ

∑
ℓ≥j aℓF

(a1,...,aj)
n+j−ℓ∑

ℓ≥1 aℓF
(a1,...,aj)
n−ℓ

∑
ℓ≥2 aℓF

(a1,...,aj)
n+1−ℓ · · ·

∑
ℓ≥j−1 aℓF

(a1,...,aj)
n+j−2−ℓ

∑
ℓ≥j aℓF

(a1,...,aj)
n+j−1−ℓ


for any integer n ≥ j. Indeed, let q

(n)
a,b denote the (a, b)th entry of (Q(a1, . . . , aj))

n. By [6,
Theorem 3.2],

∑
n≥0

q
(n)
a,b z

n =
za−b

(
1−

∑b−1
ℓ=1 aℓz

ℓ
)

1−
∑

ℓ≥1 aℓz
ℓ

(18)

if a ≥ b, and ∑
n≥0

q
(n)
a,b z

n =

∑
ℓ≥b aℓz

a−b+ℓ

1−
∑

ℓ≥1 aℓz
ℓ

(19)
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if a < b. Lemma 2.2 gives that∑
n≥0

F (a1,...,aj)
n zk =

zj−1

1−
∑

ℓ≥1 aℓz
ℓ
. (20)

From these formulas, we see that

q
(n)
a,b = F

(a1,...,aj)
n+j−1+b−a −

b−1∑
ℓ=1

aℓF
(a1,...,aj)
n+j−1+b−a−ℓ =

∑
ℓ≥b

F
(a1,...,aj)
n+j−1+b−a−ℓ (21)

for any a, b, verifying the formula for (Q(a1, . . . , aj))
n.

The last entry ek,n, of the vector in (17) is obtained by taking the (j − k)th entry (with
entries numbered from left to right starting from 1) of the last row of (Q(a1, . . . , aj))

n. Thus,

ek,n =
∑
ℓ≥j−k

aℓF
(a1,...,aj)
n+j−1−k−ℓ, (22)

completing the proof. □

From Lemmas 2.2 and 2.3, we obtain a closed formula for the generating function of an
arbitrary linear recurrence with constant coefficients. We note that this formula is equivalent
to other such generating function formulas in the literature, such as [16, Theorem 5]; however,
writing the formula in this particular manner is conducive to ultimately simplifying the
formula for κr,i.

Proposition 2.4. Define the sequence {cn} ⊆ C by the recurrence relation

cn = a1cn−1 + a2cn−2 + · · ·+ ajcn−j (23)

with c0, c1, . . . , cj−1 ∈ C. Then∑
n≥0

cnz
n =

∑j−1
k=0 ck

∑
ℓ≥j−k aℓz

k+ℓ + (1− a1z − · · · − ajz
j)
∑j−1

k=0 ckz
k

1− a1z − · · · − ajzj
. (24)

Proof. By Lemmas 2.2 and 2.3,∑
n≥0

cnz
n =

j−1∑
k=0

ckz
k +

∑
n≥j

zn
j−1∑
k=0

ck
∑
ℓ≥j−k

aℓF
(a1,...,aj)
n+j−1−k−ℓ

=

j−1∑
k=0

ckz
k +

j−1∑
k=0

ck
∑
ℓ≥j−k

aℓ
∑
n≥j

F
(a1,...,aj)
n+j−1−k−ℓz

n

=

j−1∑
k=0

ckz
k +

j−1∑
k=0

ck
∑
ℓ≥j−k

aℓ
∑

n≥2j−1−k−ℓ

F (a1,...,aj)
n zn−j+1+k+ℓ

=

j−1∑
k=0

ckz
k +

j−1∑
k=0

ck
∑
ℓ≥j−k

aℓ
∑

n≥j−1

F (a1,...,aj)
n zn−j+1+k+ℓ

=

j−1∑
k=0

ckz
k +

j−1∑
k=0

ck
∑
ℓ≥j−k

aℓ
zk+ℓ

1− a1z − · · · − ajzj
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=

∑j−1
k=0 ck

∑
ℓ≥j−k aℓz

k+ℓ + (1− a1z − · · · − ajz
j)
∑j−1

k=0 ckz
k

1− a1z − · · · − ajzj
. (25)

□

The final lemma before the proof of Theorem 1.1, Lemma 2.5, is crucial toward simplifying
our formula for κr,i. In particular, it is due to this result that our formula for κr,i does not
depend on any characteristic root other than r.

Lemma 2.5. Let p(z) = zj − a1z
j−1 − · · · − aj. Then for any nonzero distinct roots r1, r2 of

p,

j−1∑
k=0

kM1rk1
∑
ℓ≥j−k

(
k + ℓ

M2

)
aℓr

−k−ℓ
2 = 0 (26)

for any nonnegative integers M1 ≤ mr1 − 1 and M2 ≤ mr2 − 1, where mr1 and mr2 are the
multiplicities of r1 and r2 respectively.

Proof. Rewriting the sum as

j−1∑
k=0

kM1rk1
∑
ℓ≥j−k

(
k + ℓ

M2

)
aℓr

−k−ℓ
2 =

j∑
ℓ=1

aℓr
−ℓ
2

j−1∑
k=j−ℓ

(
r1
r2

)k (
k + ℓ

M2

)
kM1

=

j∑
ℓ=1

aℓr
−j
2 r−ℓ

1

ℓ−1∑
k=0

(
r1
r2

)k (
j + k

M2

)
(j + k − ℓ)M1 , (27)

we see that it suffices to show that bℓ := r−j
2 r−ℓ

1

∑ℓ−1
k=0 (r1/r2)

k (j+k
M2

)
(j+ k− ℓ)M1 satisfies the

linear recurrence with characteristic polynomial zjp(1/z) = ajz
j + aj−1z

j−1 + · · · + a1z − 1
for all ℓ ≥ j. We proceed by determining the generating function of {bℓ}ℓ≥0. Splitting into
two series, we observe that∑
ℓ≥0

bℓz
ℓ =

∑
ℓ≥0

zℓ

(
r−j
2 r−ℓ

1

ℓ∑
k=0

(
r1
r2

)k (
j + k

M2

)
(j + k − ℓ)M1

)
−
∑
ℓ≥0

zℓ

(
r−j
2 r−ℓ

1

(
r1
r2

)ℓ(
j + ℓ

M2

)
jM1

)

= r−j
2

∑
ℓ≥0

(
z

r1

)ℓ ℓ∑
k=0

(
r1
r2

)k (
j + k

M2

)
(j + k − ℓ)M1 − D(z)

(1− z/r2)M2+1
(28)

for some polynomial D(z) of degree at most M2. Recognizing that
∑ℓ

k=0 (r1/r2)
k (j+k

M2

)
(j +

k − ℓ)M1 is a Cauchy product, we see that

r−j
2

∑
ℓ≥0

(
z

r1

)ℓ ℓ∑
k=0

(
r1
r2

)k (
j + k

M2

)
(j + k − ℓ)M1 =

A(z)

(1− z/r1)M1+1(1− z/r2)M2+1
(29)

for some polynomial A(z) of degree at most M1 + M2. Let L(z) = (1 − z/r1)
M1+1(1 −

z/r2)
M2+1. Since r1 and r2 are distinct, deg(A) ≤ M1 + M2 < j. So (28) and (29) show

that {bℓ}ℓ≥0 is a linear combination of sequences which, by [7, pg.255], all satisfy the linear
recurrence with characteristic polynomial zM1+M2+2L(1/z) for all ℓ ≥ j. As r1, r2 are distinct,
zM1+M2+2L(1/z) divides zjp(1/z), whence it follows that bℓ satisfies the linear recurrence with
characteristic polynomial zjp(1/z) for all ℓ ≥ j. □
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Definition 2.6. Let u = {cn} be as in Theorem 1.1. For each characteristic root r, let pur (n)
be the polynomial such that cn =

∑
r p

u
r (n)r

n for all n ≥ 0.

Proof of Theorem 1.1. By a standard result in the theory of recurrence relations (e.g.,
[7, Theorem IV.9]), we know that cn =

∑
r

∑mr

i=1 κr,in
mr−irn for some constants κr,i. So it

suffices to show that formula (2) holds for all characteristic roots r and 1 ≤ i ≤ mr.
Let u = {cn}n≥0. Let r be a characteristic root, let 1 ≤ i ≤ mr, and let S ̸∋ r be the set

of characteristic roots greater than or equal to r in modulus. Define

u′ =

{
cn −

∑
R∈S

puR(n)R
n −

i−1∑
v=1

κr,vn
mr−vrn

}
n≥0

. (30)

Noting that κr,i = [zmr−i] pur (z) = [zmr−i] pu
′

r (z), we proceed by computing [zmr−i] pu
′

r (z).
As nMRn satisfies recurrence (1) for any characteristic root R and M ≤ mR − 1, it fol-
lows that u′ also satisfies recurrence (1) with initial conditions {ck −

∑
R∈S p

u
R(k)R

k −∑i−1
v=1 κr,vk

mr−vrk}0≤k≤j−1. Let p(z) be the characteristic polynomial of (1). Then by Propo-
sition 2.4, the generating function of u′ is

f(z) :=
1

p(z)

(
j−1∑
k=0

(
ck −

∑
R∈S

puR(k)R
k −

i−1∑
v=1

κr,vk
mr−vrk

) ∑
ℓ≥j−k

aℓz
k+ℓ + p(z)

j−1∑
k=0

ckz
k

)
.

(31)

Note that f has a single dominant pole r−1 with multiplicitymr−i+1 since the asymptotically
dominant term of u′ is κr,in

mr−irn. So by [7, Note IV.26], κr,i = C/(mr − i)!, where C =
limz→r−1(1 − rz)mr−i+1f(z). Since the numerator of f is divisible by (1 − rz)i−1, it follows
that C = C1/C2, where C2 = limz→r−1 p(z)/(1− rz)mr and C1 equals

lim
z→r−1

1

(1− rz)i−1

(
j−1∑
k=0

(
ck −

∑
R∈S

puR(k)R
k −

i−1∑
v=1

κr,vk
mr−vrk

) ∑
ℓ≥j−k

aℓz
k+ℓ + p(z)

j−1∑
k=0

ckz
k

)
.

(32)

As i− 1 < mr,

lim
z→r−1

p(z)

(1− rz)i−1

j−1∑
k=0

ckz
k = 0; (33)

hence, (32) reduces to

lim
z→r−1

1

(1− rz)i−1

(
j−1∑
k=0

(
ck −

∑
R∈S

puR(k)R
k −

i−1∑
v=1

κr,vk
mr−vrk

) ∑
ℓ≥j−k

aℓz
k+ℓ

)
. (34)

Thus,

C1 =
(−1)i−1

ri−1(i− 1)!

j−1∑
k=0

(
ck −

∑
R∈S

puR(k)R
k −

i−1∑
v=1

κr,vk
mr−vrk

) ∑
ℓ≥j−k

(i− 1)!

(
k + ℓ

i− 1

)
aℓr

−k−ℓ+i−1

= (−1)i−1

j−1∑
k=0

(
ck −

∑
R∈S

puR(k)R
k −

i−1∑
v=1

κr,vk
mr−vrk

) ∑
ℓ≥j−k

(
k + ℓ

i− 1

)
aℓr

−k−ℓ
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= (−1)i−1

j−1∑
k=0

(
ck −

∑
R∈S

puR(k)R
k −

i−1∑
v=1

κr,vk
mr−vrk

)
sr,k,i−1

∗
= (−1)i−1

j−1∑
k=0

(
ck −

i−1∑
v=1

κr,vk
mr−vrk

)
sr,k,i−1, (35)

where the starred equality follows from Lemma 2.5. Computing C2, we obtain

C2 =
−
∑

ℓ≥mr
mr!
(

ℓ
mr

)
aℓr

−ℓ+mr

(−1)mrrmrmr!
= (−1)mr−1

∑
ℓ≥mr

(
ℓ

mr

)
aℓr

−ℓ = N−1
r . (36)

Therefore, we have the recurrence

κr,i =
(−1)i−1Nr

(mr − i)!

j−1∑
k=0

(
ck −

i−1∑
v=1

κr,vk
mr−vrk

)
sr,k,i−1. (37)

It now only remains to show that recurrence (37) admits the explicit formula

κr,i =
(−1)i−1

(mr − i)!

∑
∅̸={d1,...,dp}⊆{0,1,...,i−1}

d1<···<dp=i−1

Np
r

j−1∑
k1=0

ck1sr,k1,d1

p−1∏
u=1

j−1∑
k2=0

kmr−1−du
2 rk2sr,k2,du+1

(−1)du−1(mr − 1− du)!
.

(38)

Let {κ′
r,i}i∈Z+ be the sequence defined by the explicit formula given in (38). For abbreviation,

let

Π({d1, . . . , dp}) =

j−1∑
k1=0

ck1sr,k1,d1

p−1∏
u=1

j−1∑
k2=0

kmr−1−du
2 rk2sr,k2,du+1

(−1)du−1(mr − 1− du)!
. (39)

Towards proving that κr,i ≡ κ′
r,i, it suffices to show that {κ′

r,i}i∈Z+ satisfies the recurrence
since {κr,i}i∈Z+ is completely determined by (37). Note

i−1∑
v=1

κ′
r,v

j−1∑
k=0

kmr−vrksr,k,i−1 =
i−1∑
v=1

∑
∅̸={d1,...,dp}⊆{0,1,...,v−1}

d1<···<dp=v−1

Np
r Π({d1, . . . , dp})

j−1∑
k=0

kmr−vrksr,k,i−1

(−1)v−1(mr − v)!

= −
i−1∑
v=1

∑
∅̸={d1,...,dp+1}⊆{0,1,...,i−1}
d1<···<dp=v−1, dp+1=i−1

Np
r Π({d1, . . . , dp+1}). (40)

Now with the aid of (40), we have

(−1)i−1Nr

(mr − i)!

j−1∑
k=0

(
ck −

i−1∑
v=1

κ′
r,vk

mr−vrk

)
sr,k,i−1

=
(−1)i−1

(mr − i)!

(
Nr

j−1∑
k=0

cksr,k,i−1 −Nr

i−1∑
v=1

κ′
r,v

j−1∑
k=0

kmr−vrksr,k,i−1

)
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=
(−1)i−1

(mr − i)!

NrΠ({i− 1}) +
i−1∑
v=1

∑
∅̸={d1,...,dp+1}⊆{0,1,...,i−1}
d1<···<dp=v−1, dp+1=i−1

Np+1
r Π({d1, . . . , dp+1})


=

(−1)i−1

(mr − i)!

∑
∅̸={d1,...,dp+1}⊆{0,1,...,i−1}

d1<···<dp+1=i−1

Np+1
r Π({d1, . . . , dp+1}) = κ′

r,i. (41)

Thus, κr,i ≡ κ′
r,i. □

3. Directions for Future Work

A natural continuation of our work is to generalize Theorem 1.1 to a broader class of
recurrences. A particularly natural generalization is to consider linear recurrences of the
form cn = a1cn−1 + · · · + ajan−j + d(n), where d(n) is some polynomial. These recurrences
are classified as non-homogeneous linear recurrences: a linear recurrence cn − a1cn−1 − · · · −
ajan−j = f(n) is homogeneous if f(n) ≡ 0, and non-homogeneous otherwise. This proposed
generalization only encapsulates the case when f is a polynomial; however, this induces the
generating function of {cn} to remain rational, thereby permitting the techniques presented
in this work to be readily generalized.
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