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ABSTRACT. We derive a combinatorial identity which is useful in studying the distri-
bution of Fourier coefficients of L-functions by allowing us to pass from knowledge of
moments of the coefficients to the distribution of the coefficients.

1. INTRODUCTION

Recently M. Ram Murty and K. Sinha [MS] proved effective equidistribution results
showing the eigenvalues of Hecke operators on the space of cusp forms of weight k
and level N agree with the Sato-Tate distribution. Their proof relied on bounding the
discrepancy through an application of the Erdös-Turan inequality and estimates of expo-
nential sums. In [MM] the first two authors generalized their techniques to the Fourier
coefficients of families of elliptic curves. The purpose of this note is to describe an
interesting combinatorial identity needed in that analysis.

We first describe the problem that motivated this work. Recall that if E : y2 =
x3 + ax+ b with a, b ∈ ℤ is an elliptic curve over ℚ, the associated L-function is

L(E, s) =
∞∑
n=1

aE(n)

ns
=
∏
p

(
1− aE(p)

ps
+
�0(p)

p2s−1

)−1
, (1.1)

with Δ = −16(4a3 + 27b2) the discriminant of E, �0 the principal character modulo
Δ, and

aE(p) = p−#{(x, y) ∈ (ℤ/pℤ)2 : y2 ≡ x3 + ax+ b mod p}

= −
∑

x mod p

(
x3 + ax+ b

p

)
. (1.2)
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By Hasse’s bound we know ∣aE(p)∣ ≤ 2
√
p, so we may write aE(p) = 2

√
p cos �E(p),

where we may choose �E(p) ∈ [0, �]. The distribution of the aE(p)’s are related to
numerous problems of interest; for example, by the Birch and Swinnerton-Dyer conjec-
ture the order of vanishing of L(E, s) at the central point s = 1/2 is conjecturally equal
to the group of rational solutions of E. See [Sil1, Sil2, ST] for more on elliptic curves.

In the analysis in [MM], one needs to understand sums of cos(m�n), with n ranging
over a family of L-functions. Such estimates exist [Ka, Mic, Ni], and have been used by
others to prove effective equidistribution results for two-parameter families of elliptic
curves [BS, Sh1, Sh2]. It is possible to avoid these estimates if instead one uses results
of Birch [Bi] for sums of the moments, i.e., sums of cosr(�n). While typically these lead
to worse results, as there may be situations in future research where only the moments
are known we describe how one may prove effective equidistribution results concerning
the distribution of the Fourier coefficients of L-functions using just the moments and
combinatorics.

The key combinatorial ingredient in [MM] is the following, which is the main result
of this paper.

Theorem 1.1. Let m be an integer greater than or equal to 1. Then

m∑
r=0

(−1)r
(
m

r

)(
m+ r

r

)
1

(r + 1)(m+ r)
=

{
1/2 if m = 1

0 if m ≥ 2.
(1.3)

The purpose of this paper is to highlight the various methods of proving combina-
torial identities and their applications. We give two proofs of Theorem 1.1 in §2, and
discuss alternative methods of proving this and related combinatorial identities. We
conclude with a discussion of its application to effective equidistribution in §3.

2. COMBINATORIAL IDENTITIES

Below we give two different proofs of Theorem 1.1, each highlighting a different
approach to proving combinatorial identities. We first state some needed properties of
the binomial coefficients. For n, r non-negative integers we set

(
n
k

)
= n!

k!(n−k)! . We
generalize to real n and k a positive integer by setting(

n

k

)
=

n(n− 1) ⋅ ⋅ ⋅ (n− (k − 1))

k!
, (2.1)

which clearly agrees with our original definition for n a positive integer and vanishes
when n is a non-negative integer less than k. Finally, we set

(
n
0

)
= 1 and

(
n
k

)
= 0 if k is

a negative integer.
To prove our main result we need the following two lemmas; we follow the proofs in

[Ward].
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Lemma 2.1 (Vandermonde’s Convolution Lemma). Let r, s be any two real numbers
and k,m, n integers. Then∑

k

(
r

m+ k

)(
s

n− k

)
=

(
r + s

m+ n

)
. (2.2)

Proof. Note that the summand is zero if either m+ k > r or n− k > s, and thus it is a
finite sum over k. It suffices to prove the claim when r, s are integers. The reason is that
both sides are polynomials, and if the polynomials agree for an infinitude of integers
then they must be identical. By changing n and k, we see it suffices to consider the
special case m = 0, in which case we are reduced to showing∑

k

(
r

k

)(
s

n− k

)
=

(
r + s

n

)
. (2.3)

Consider the polynomial

(x+ y)r(x+ y)s = (x+ y)r+s. (2.4)

If we use the binomial theorem to expand the left hand side of (2.4), we get the coef-
ficient of the xnyr+s−n is the left hand side of (2.3); this follows from looking at all
the ways we could get an xnyr+s−n, which involves summing over the coefficients of
xkyr−k times the coefficients of xn−kys−n+k. Similarly, if we use the binomial theorem
we find the coefficient of xnyr+s−n is the right hand side of (2.4). This proves (2.3),
which completes the proof. □

Lemma 2.2. Let ℓ,m, s be non-negative integers. Then∑
k

(−1)k
(

ℓ

m+ k

)(
s+ k

n

)
= (−1)ℓ+m

(
s−m
n− ℓ

)
. (2.5)

Proof. Using
(
a
b

)
=
(
a
a−b

)
, we rewrite

(
s+k
n

)
as
(

s+k
s+k−n

)
, and we then rewrite

(
s+k

s+k−n

)
as

(−1)s+k−n
( −n−1
s+k−n

)
by using the extension of the binomial coefficient, where we have

pulled out all the negative signs in the numerators. The advantage of this simplification
is that the summation index is now only in the denominator; further, the power of −1 is
now independent of k. Factoring out the sign, our quantity is equivalent to

(−1)s−n
∑
k

(
ℓ

m+ k

)(
−n− 1

s+ k − n

)
= (−1)s−n

∑
k

(
ℓ

ℓ−m− k

)(
−n− 1

s+ k − n

)
,

(2.6)

where we again use
(
a
b

)
=
(
a
a−b

)
. By Vandermonde’s Convolution Lemma, this equals

(−1)s−n
(

ℓ−n−1
ℓ−m−n+s

)
. Using

(
s−m

ℓ−m−n+s

)
=
(
s−m
n−ℓ

)
and collecting powers of−1 completes

the proof (note (−1)ℓ−m = (−1)ℓ+m). □

Using the above two lemmas, we can now prove our main result.
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First Proof of Theorem 1.1. The case m = 1 follows by direct evaluation. Consider
now m ≥ 2. We have

Sm :=
m∑
r=0

(−1)r
(
m

r

)(
m+ r

r

)
1

(r + 1)(m+ r)

=
m∑
r=0

(−1)r
(
m

r

)
m+ 1

m+ 1

(
m+ r

r

)
1

(r + 1)(m+ r)

=
m∑
r=0

(−1)r
m!(m+ 1)

(r + 1) ⋅ r!m!

1

m+ 1

(m+ r)(m+ r − 1)!

r!m ⋅ (m− 1 + r)!

1

m+ r

=
m∑
r=0

(−1)r
(
m+ 1

r + 1

)(
m− 1 + r

r

)
1

m(m+ 1)

=
1

m(m+ 1)

m∑
r=0

(−1)r
(
m+ 1

r + 1

)(
m− 1 + r

m− 1

)
. (2.7)

We change variables and set u = r + 1; as r runs from 0 to m, u runs from 1 to m+ 1.
To have a complete sum, we want u to start at 0; thus we add in the u = 0 term, which
is
(
m−2
m−1

)
. As m ≥ 2, this is 0 from the extension of the binomial coefficient (this is the

first of two places where we use m ≥ 2). Our sum Sm thus equals

Sm = − 1

m(m+ 1)

m+1∑
u=0

(−1)u
(
m+ 1

u

)(
m− 2 + u

m− 1

)
. (2.8)

We now use Lemma 2.2 with k = u, m = 0, ℓ = m+1, s = m−2 and n = m−1; note
the conditions of that lemma require s to be a non-negative integer, which translates to
our m ≥ 2. We thus find

Sm = − 1

m(m+ 1)
(−1)m+1

(
m− 2

−2

)
= 0, (2.9)

which completes the proof. □

We give another proof of Theorem 1.1 below using hypergeometric functions, high-
lighting other approaches to proving combinatorial identities.

Second Proof of Theorem 1.1. Consider the hypergeometric function

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1dt
(1− tz)a

. (2.10)

The following identity for the normalization constant of the Beta function is crucial in
the expansions:

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
. (2.11)
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We can use the geometric series formula to expand (2.10) as a power series in z involv-
ing Gamma factors,

2F1(a, b, c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
. (2.12)

Rewriting
(
m
r

)
as (−1)r

(
r−m−1

r

)
, Sm can be written

Sm =
1

m!(−m− 1)!

∞∑
r=0

(r −m− 1)!(r +m− 1)!

(r + 1)!

1

r!
, (2.13)

where we have formally extended the series to ∞ as the coefficients will vanish for
r ≥ m+ 1. By comparing the two infinite series and using the fact that z! = Γ(z + 1),
we see that if we take a = −m, b = m, c = 2, n = r and z = 1, after some simple
algebra we obtain

Sm =
Γ(m)2F1(−m,m, 2; 1)

Γ(2)Γ(1 +m)
=

Γ(m)

Γ(1 +m)Γ(2 +m)Γ(2−m)
, (2.14)

where the last step uses

2F1(a, b, c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, (2.15)

which follows from the normalization constant of the Beta function. Note that the
right hand side of (2.14) is 1/2 when m = 1 and 0 for m ≥ 2 because for such m,
1/Γ(2−m) = 0 due to the pole of Γ(2−m). □

Remark 2.3. It is also possible to prove Theorem 1.1 through symbolic manipulations.
Using the results from [PS, PSR], one may input this into a Mathematica package,
which outputs a proof. The reasoning behind this automated proof method is described
in [PWZ], and many of the identities for hypergeometric functions can be interpreted in
a very computational manner. These results are also useful in random walk calculations
in physics (quantum and classical), and reduction to the hypergeometric function is a
convenient first step towards continuum limits or long-time asymptotics.

Remark 2.4. We thank the referee for pointing out another approach to proving Sm =
0. Let A and B be two vector spaces with A ∼= ℂm+1 and B ∼= ℂm. Their difference
A−B is a virtual vector space whose exterior powers can be evaluated in a consistent
fashion as

∧m(A−B) =
m⊕
r=0

(−1)r ∧m−r A⊗ SrB,

where SrB denotes the symmetric product. As dim(∧m−rA) =
(
m+1
r+1

)
and dim(SrB) =(

m−1+r
m−1

)
, we obtain the expansion in (2.7). The proof is completed by noting A−B has

virtual dimension 1, so the dimension of its mth exterior power is zero if m > 1 and 1 if
m = 1.
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Remark 2.5. The combinatorial identity in Theorem 1.1 is a special case of the Chu-
Vandermonde summation formula (see [Sl]):

2F1

(
a,−n
c

; 1

)
=

(−a+ c)n
(c)n

. (2.16)

We thank Christian Krattenthaler for pointing this out to us.

3. EFFECTIVE EQUIDISTRIBUTION

For a sequence of numbers xn modulo 1, a measure � and an interval I ⊂ [0, 1], let

NI(Vp) = #{n ≤ Vp : xn ∈ I}

�(I) =

∫
I

�(t)dt. (3.1)

The discrepancy DI,Vp(�) is

DI,Vp(�) = ∣NI(Vp)− Vp�(I)∣ ; (3.2)

with this normalization, the goal is to obtain the best possible estimate for how rapidly
DI,Vp(�)/Vp tends to 0. A standard approach is to use exponential sums and the Erdös-
Turan theorem. Modifying the ideas in [MS] (see [MM] for the details), one finds

Theorem 3.1. Let {xn} ⊂ [0, 1] and let the notation be as above. Let {cm} be a
sequence of numbers such that

∑∞
m=−∞ ∣cm∣ < ∞. Let ∣∣�∣∣ = supx∈[0,1] ∣F (x)∣ with

� = F (−x)dx. Then for any Vp and M the discrepancy satisfies

DI,Vp(�) ≤ Vp∣∣�∣∣
M + 1

+
∑

1≤m≤M

(
1

M + 1
+ min

(
1,

1

�∣m∣

)) ∣∣∣∣∣
Vp∑
n=1

e(mxn)− Vpcm

∣∣∣∣∣ .
(3.3)

Let �st = F (−x)dx be the normalized Sato-Tate distribution on [0, 1]. Its density is

2 sin2(�x) = 1− 1

2
(e(x) + e(−x)) , where e(x) := e2�ix, (3.4)

which implies that the coefficients of �st are c0 = 1, c±1 = −1/2 and cm = 0 for
∣m∣ ≥ 2.

We consider the family of all elliptic curves modulo p for p ≥ 5. We may write these
curves in Weierstrass form as y2 = x3 − ax− b with a, b ∈ ℤ/pℤ and 4a3 ∕= 27b2. The
number of pairs (a, b) satisfying these conditions1 is

Vp := p(p− 1). (3.5)

1If a = 0 then the only b which is eliminated is b = 0. If a is a non-zero perfect square there are two
b that fail, while if a is not a square than no b fail. Thus the number of bad pairs of (a, b) is p.
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We use Birch’s [Bi] results on the moments of the family of all elliptic curves mod-
ulo p (there are some typos in his explicit formulas; we correct these in [MM]); un-
fortunately, these are results for quantities such as (2

√
p cos �n)2R, and the quantity

which naturally arises when applying Theorem 3.1 is e(mxn). Here the xn’s are run-
ning over the normalized angles �a,b(p)/�. Recall from Section 1 that for an elliptic
curve E : y2 = x3 + ax + b (with a, b ∈ ℤ) we have aE(p) = 2

√
p cos �a,b(p), where

we may choose �a,b(p) ∈ [0, �]. We are thus led to study∣∣∣∣∣
Vp∑
n=1

e(mxn)− Vpcm

∣∣∣∣∣ . (3.6)

By applying some combinatorial identities we are able to rewrite our sum in terms of
the moments, which allows us to use Birch’s results. The point of this section is not to
obtain the best possible error term but rather to highlight how one may generalize and
apply the framework from [MS].

We first set some notation. Let �k(Tp) denote the trace of the Hecke operator Tp
acting on the space of cusp forms of dimension −2k on the full modular group. We
have �k+1(Tp) = O(pk+c+�), where from [Sel] we see we may take c = 3/4 (there
is no need to use the optimal c, as our final result, namely (3.23), will yield the same
order of magnitude result for c = 3/4 or c = 0). Letℳp(2R) denote the 2Rth moment
of 2 cos(�n) = 2 cos(�xn) (as we are concerned with the normalized values, we use
slightly different notation than in [Bi]):

ℳp(2R) =
1

Vp

Vp∑
n=1

(2 cos(�xn))2R . (3.7)

Lemma 3.2 (Birch). Notation as above, we have

ℳp(2R) =
1

R + 1

(
2R

R

)
+O

(
22RV

− 1−c−�
2

p

)
; (3.8)

we may take c = 3/4 and thus there is a power saving (as the exponent of Vp is nega-
tive).2

Proof. The result follows from dividing the equation for S∗R(p) on the bottom of page 59
of [Bi] by pR, as we are looking at the moments of the normalized Fourier coefficients
of the elliptic curves, and then using the bound �k+1(Tp) = O(pk+c+�), with c = 3/4

2Note 1
R+1

(
2R
R

)
is the Rth Catalan number. The Catalan numbers are the moments of the semi-circle

distribution, which is related to the Sato-Tate distribution by a simple change of variables.
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admissible by [Sel]. Recall Vp = p(p− 1) is the cardinality of the family. We have

ℳp(2R) =
1

R + 1

(
2R

R

)
p(p− 1)

Vp

+ O

(
R∑
k=1

2k + 1

R + k + 1

(
2R

R + k

)
p1+c+�

Vp
+

p

pRVp

)

=
1

R + 1

(
2R

R

)
+O

(
22RV

− 1−c−�
2

p

)
(3.9)

since Vp = p(p− 1). □

A simple argument3 shows that the normalized angles are symmetric about 1/2. This
implies

Vp∑
n=1

e(mxn) =

Vp∑
n=1

cos(2�mxn) + i

Vp∑
n=1

sin(2�mxn) =

Vp∑
n=1

cos(2m�n), (3.10)

where the sine piece does not contribute as the angles are symmetric about 1/2. Thus it
suffices to show we have a power saving in∣∣∣∣∣

Vp∑
n=1

cos(2m�n)− Vpcm

∣∣∣∣∣ . (3.11)

By symmetry, it suffices to consider m ≥ 0.

Lemma 3.3. Let c0 = 1, c±1 = −1/2 and cm = 0 otherwise. There is some c < 1 such
that ∣∣∣∣∣

Vp∑
n=1

cos(2m�n)− Vpcm

∣∣∣∣∣ ≪ (
m223mV

− 1−c−�
2

p

)
; (3.12)

by the work of Selberg [Sel] we may take c = 3/4.

3To see that we may match the angles as claimed for the family of all elliptic curves, consider the
elliptic curve y2 = x3 − ax − b with 4a3 ∕= 27b2. Let c be any non-residue modulo p, and consider
the curve y2 = x3 − ac2x − bc3. Using the Legendre sum expressions for aE(p) and aE′(p), using
the automorphism x → cx we see the second equals

(
c
p

)
times the first; as we have chosen c to be a

non-residue, this means 2
√
p cos(�E′(p)) = −2√p cos(�E(p)), or �E′(p) = � − �E(p) as claimed.



A COMBINATORIAL IDENTITY FOR STUDYING SATO-TATE TYPE PROBLEMS 9

Proof. The case m = 0 is trivial. For m = 1 we use the trigonometric identity
cos(2�n) = 2 cos2(�n)− 1. As c±1 = −1/2 we have

Vp∑
n=1

cos(2�n)− Vp
2

=

Vp∑
n=1

[(
2 cos2 �n − 1

)
+

1

2

]

=
1

2

Vp∑
n=1

(
(2 cos �n)2 − 1

)
=

1

2

Vp∑
n=1

(
(2
√
p cos �n)2

p
− 1

)
. (3.13)

Note the sum of (2
√
p cos �n)2 is the second moment of the number of solutions modulo

p. From [Bi] we have that this is p + O(1); the explicit formula given in [Bi] for the
second moment is wrong; see [MM] for the correct statement. Substituting yields∣∣∣∣∣

Vp∑
n=1

cos(2�n)− Vp
2

∣∣∣∣∣ ≪ O(1). (3.14)

The proof is completed by showing that
∑Vp

n=1 cos(2m�n) = Om(V
1/2
p ) provided

2 ≤ m ≤ M . In order to obtain the best possible results, it is important to understand
the implied constants, as M will have to grow with Vp (which is of size p2). While it is
possible to analyze this sum for any m by brute force, we must have M growing with
p, and thus we need an argument that works in general. As c±1 ∕= 0 but cm = 0 for
∣m∣ ≥ 2, we expect (and we will see) that the argument below does break down when
∣m∣ = 1.

There are many possible combinatorial identities we can use to express cos(2m�n)
in terms of powers of cos(�n). We use the following (for a proof, see Definition 2 and
equation (3.1) of [Mil]):

2 cos(2m�n) =
m∑
r=0

c2m,2r(2 cos �n)2r, (3.15)

where c2r = (2r)!/2, c0,0 = 0, c2m,0 = (−1)m2 for m ≥ 1, and for 1 ≤ r ≤ m set

c2m,2r =
(−1)r+m

c2r

r−1∏
j=0

(m2 − j2) =
(−1)m+r

c2r

m ⋅ (m+ r − 1)!

(m− r)!
. (3.16)

We now sum (3.15) over n and divide by Vp, the cardinality of the family. In the
argument below, at one point we replace 22r in an error term with 2012 1

r+1

(
2r
r

)
⋅m2; this
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allows us to pull the rth Catalan number, 1
r+1

(
2r
r

)
, out of the error term.4 Using Lemma

3.2 we find

1

Vp

Vp∑
n=1

2 cos(2m�n) =
m∑
r=0

c2m,2r
1

Vp

Vp∑
n=1

(2 cos �n)2r

=
m∑
r=0

(
1

r + 1

(
2r

r

)
+O

(
22rV

− 1−c−�
2

p

))
c2m,2r

=
m∑
r=0

(
1

r + 1

(2r)!

r!r!

(−1)m+r2

(2r)!

m ⋅ (m+ r)!

(m− r)! ⋅ (m+ r)

)
⋅
(

1 +O
(
m2V

− 1−c−�
2

p

))
= (−1)m2m

m∑
r=0

(
(−1)r

m!

r!(m− r)!
(m+ r)!

m!r!

1

(r + 1)(m+ r)

)
⋅
(

1 +O
(
m2V

− 1−c−�
2

p

))
= (−1)m2m

m∑
r=0

(
(−1)r

(
m

r

)(
m+ r

r

)
1

(r + 1)(m+ r)

)
⋅
(

1 +O
(
m2V

− 1−c−�
2

p

))
. (3.17)

We first bound the error term. For our range of r,
(
m+r
r

)
≤
(
2m
m

)
≤ 22m. The sum of(

m
r

)
over r is 2m, and we get to divide by at least m + r ≥ m. Thus the error term is

bounded by

O
(
m223mV

− 1−c−�
2

p

)
. (3.18)

We now turn to the main term. It it just (−1)m2m times the sum in Theorem 1.1, which
is shown in that theorem to equal 0 for any ∣m∣ ≥ 2. Note that without Theorem 1.1,
our combinatorial expansion would be useless. □

Remark 3.4. It is possible to get a better estimate for the error term by a more de-
tailed analysis of

∑
r≤m

(
m
r

)(
m+r
r

)
; however, the improved estimates only change the

constants in the discrepancy estimates, and not the savings. This is because this sum is
at least as large as the term when r ≈ m/2, and this term contributes something of the
order 33m/2/m by Stirling’s formula. We will see that any error term of size 3am for a
fixed a gives roughly the same value for the best cutoff choice for M , differing only by
constants. Thus we do not bother giving a more detailed analysis to optimize the error
here.

4The reason this is valid is that the largest binomial coefficient is the middle (or the middle two when
the upper argument is odd). Thus 22r = (1 + 1)2r ≤ (2r + 1)

(
2r
r

)
≤ 2(m+ 1)

(
2r
r

)
(as m ≤ r), and the

claim follows from 2012m2

r+1 ≥ 2(m+ 1) for m ≥ 2 and 0 ≤ r ≤ m.
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We now prove effective equidistribution for the family of all elliptic curves.

Theorem 3.5. For the family of all elliptic curves modulo p, as p→∞ we have

DI,Vp(�st) ≤ C
Vp

log Vp
(3.19)

for some computable C.

Proof. We must determine the optimal M to use in (3.3):

DI,Vp(�st) ≪ Vp
M + 1

+
∑

1≤m≤M

(
1

M + 1
+

1

m

)(
m223mV

− 1−c−�
2

p

)
≪ Vp

M
+M23MV

− 1−c−�
2

p

(3.20)

as 1
M+1

≪ 1
m

and
∑

m≤m 23m ≪ 23M . For all c > 0 we find the minimum error by
setting the two terms equal to each other, which yields

V
3−c−�

2
p = M223M . (3.21)

For ease of exposition we replace M223M with e3M ; this worsens our constant slightly,
but does not qualitatively change the result. Equating these errors means we are looking
for M such that

e3M = e
3−c−�

2
log Vp , (3.22)

which implies

M =
3− c− �

6
log Vp. (3.23)

We thus see that we may find a constant C such that

DI,Vp(�st) ≤ C
Vp

log Vp
. (3.24)

This yields a logarithm savings in the discrepancy, and proves effective equidistribution.
□
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