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ABSTRACT
This article serves as a companion to the video essay [10] by Sheafification of G
on computing large Fibonacci numbers quickly. We follow the same progression of
methods—from näıve recursion to sophisticated Fourier transforms—and elaborate
the concepts that were impractical to discuss in video format.
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1. Introduction

The president of your college makes a strange offer: you get an ‘A+’ in every class
over the course of your studies if you can find the millionth Fibonacci number by hand
in four years. Suppose that you can do three digit operations per second without ever
sleeping. Do you take the offer?

The Fibonacci sequence is defined by the recurrence relation Fn = Fn−1 + Fn−2

for n ≥ 2, with initial terms F0 and F1. This seemingly simple sequence ap-
pears throughout mathematics and nature, making efficient computation of its
terms an interesting algorithmic challenge. Unless specified otherwise, we will use
F0 = 1 and F1 = 1 throughout the article, resulting in the sequence
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, and so on. You can
continue calculating the terms of the sequence for some time, but what is your limit?
How long do you think it will take to compute, for instance, the 1, 000, 000th Fibonacci
number by hand? Let’s make quick approximations.

Each number in the Fibonacci sequence is the sum of the previous two, and since
both previous numbers are positive and growing, we expect rapid growth. But how
rapid, exactly? We can bound this growth from both sides. First, since Fn = Fn−1+
Fn−2 and Fn−2 ≤ Fn−1, we have Fn ≤ Fn−1 + Fn−1 = 2Fn−1. Similarly, 2Fn−1 ≤
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4Fn−2, and 4Fn−2 ≤ 8Fn−3 ≤ . . . ≤ 2n ·F0 = 2n. Therefore 2n is an upper bound
for the growth of Fibonacci numbers.

To find a lower bound, combining the equations for consecutive terms,

Fn = Fn−1 + Fn−2

Fn−1 = Fn−2 + Fn−3,

we get Fn = 2Fn−2 + Fn−3, implying Fn ≥ 2Fn−2, and therefore 2Fn−2 ≥ 4Fn−4 ≥
· · · ≥ 2n/2 = n

√
2. Think of it as dividing Fn by a number that is greater than 2

every two steps, with the total number of steps being n/2. We have shown

2n/2 = (
√
2)n ≤ Fn ≤ 2n.

Thus Fibonacci numbers grow exponentially fast—which is bad news for manual
calculation! But how bad exactly? The number of digits of the nth Fibonacci number,
dn, can be approximated as

log10(
√
2)n + 1 ≤ dn ≤ log10 2

n + 1

1

2
n log10 2 + 1 ≤ dn ≤ n log10 2 + 1.

Since1

999,999∑
n=1

n log10 2 =
(999, 999) (1, 000, 000)

2
log10 2 ≈ 1.5 · 1011,

we see that the number of digit operations you need to perform to get to the millionth
Fibonacci number is between approximately 7.5 · 1010 and 1.5 · 1011. (Note that it is
possible to derive a more exact growth rate of Fibonacci numbers—the point of this
exercise was to show how you could quickly estimate it by hand.)

1We use the well-known result
N∑

n=1
n =

N(N+1)
2

.
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Figure 1.1. Years needed to calculate the nth Fibonacci number by hand (log-log scale).2

If you can perform 3 single-digit additions on paper per second, and there are
60 · 60 · 24 · 365 = 31, 536, 000 seconds in a year, then it would take you at least
around 795 years to complete the task! So we strongly advise you to turn down such
an offer if you ever come across one. In fact, as seen in the graph above, one does not
have realistic chances of computing beyond the 100, 000th Fibonacci number alone.
If you can employ the whole campus, say 5, 000 people, then the task becomes more
reasonable—at most 1/3 of a year of non-stop calculations. What about the trillionth
Fibonacci number? Computing it by hand will take at least around 100, 000 years if all
of humanity unites in this effort. It is clear that we need to use computer algorithms.
In this article, we compare seven methods to find the most efficient, and build our
intuition about them from the ground up.

2. Comparison of Algorithms

Before diving into different methods, let’s define what we mean by algorithmic
efficiency.

Remark (Big O). When we say an algorithm runs in O(f(n)) time, we mean that
for sufficiently large input size n, the algorithm’s runtime is bounded above by some
constant multiple of f(n). This gives us a way to compare algorithms’ performance
as input sizes grow large.

Remark (Big Θ). We say that that the algorithm’s runtime, f(n), has a tight
bound of Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)), i.e. f(n) and g(n) have the
same order of magnitude, differing only by a constant value for sufficiently large input
size n.

Remark (Big Ω). We say that an algorithm runs in Ω(f(n)) time if, for sufficiently
large input size n, the algorithm’s runtime is bounded below by some constant multiple
of f(n). In other words, f(n) describes a guaranteed minimum growth rate of the

2This graph is based on the formulas for the upper and lower bounds derived earlier in the section. Claude Sonnet

3.7 was used to suggest the way to code a log-log scale and legend in LaTeX.
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runtime, ensuring the algorithm takes at least that much time when n is large.

Note that, for instance, both 100n and n are O(n), because 100 is a constant factor
that is negligible for sufficiently large n. In the same way, 8n3+9n+5 is Θ(n3) since the
quadratic term has by far the most “weight” when n is, say, 10 million. Thus, in most
cases, we can ignore both the constants and the lower-order terms when analyzing the
efficiency of algorithms.

Here is the graphical summary of all the methods that we will consider:
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Figure 2.1. Runtime comparisons of algorithms calculating nth Fibonacci number. Left: linear scale. Right: log-

log scale.4

4This graph is based on the original graph that could be seen in the original video [10] at 21:57. Claude Sonnet
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With the Big Θ notation in mind, let’s consider each algorithm in detail, beginning
with the most intuitive but least efficient one—näıve recursion.

3. Näıve method

If you were introduced to recursive branching in a computer science class, it’s very
likely that computing the nth Fibonacci number was used as an example.

def recursive_fibonacci(n):

if n == 1 or n == 0:

return 1

return recursive_fibonacci(n-1) + recursive_fibonacci(n-2)

Although this approach has pedagogical value, it’s hopelessly slow. Let’s take a
look at the callback tree to see why.

F4

F3

F2

F1 F0

F1

F2

F1 F0

Figure 3.1. Callback tree of recursive fibonacci(n) for n = 4.

Let T (n) denote the number of function calls made by recursive fibonacci(n).
The tree has depth of n and each of its internal nodes calls the function twice, which
suggests examining the power of 2.

The maximum number of nodes in a binary tree with depth n is 2n− 1, so T (n) =
O(2n). However, we also need to find a lower bound to claim that the algorithm
has exponential time complexity. Consider the leftmost path of recursive calls, F4

to F1 in our case. At each level k, we have T (k) = T (k − 1) + T (k − 2). Since
computing Fk−1 implies having computed Fk−2 on top of other computations, we see
that T (k) > 2T (k − 2) > 4T (k − 4) > 8T (k − 6) > · · · > 2k/2 T (0). This chain
of inequalities shows that T (n) is at least (

√
2)n, so T (n) = Ω((

√
2)n).

Remark (Relating bounds to Fibonacci). A tighter bound for the recursive algo-
rithm is connected to Fibonacci numbers themselves! Remember, we define F0 = 1
and F1 = 1, and Fn is calculated as the sum of all base cases, so the number of all
leaf nodes is Fn. Given that the number of leaf nodes in a binary tree is greater than
the number of internal nodes by 1, and that 2n = O(n), we can obtain a tighter

bound of Θ(ϕn), where ϕ = 1+
√
5

2 ; more on ϕ in the section on Binet’s Formula.

Remark (Smarter recursion via Lucas numbers). A more efficient
divide-and-conquer recursion uses the Lucas numbers, a “twin” sequence of Fi-
bonacci numbers defined through L0 = 2, L1 = 1, Lk+1 = Lk + Lk−1. Using
the identities F2k = FkLk and L2k = L2

k − 2(−1)k, which assume F0 = 0 and
F1 = 1, one halves the index and “doubles back” each step instead of the inefficient
branching from Figure 3—the details are provided in Takahashi’s paper [13].

3.7 was used to suggest the way to code the graph in LaTeX.
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4. “Linear” Method

Instead of recalculating values multiple times through recursion, we can compute
Fibonacci numbers sequentially. Note that branching recursion implies calculating the
same values multiple times: F2 was calculated twice in the previous algorithm. On top
of that, the algorithm’s space complexity is O(n) as it is proportional to the tree
depth. A natural improvement then would be building Fn from the bottom up.

def linear_fibonacci(n):

i = 0

a = 1

b = 1

while i < n:

tmp = b

b = b + a

a = tmp

i = i + 1

return a

It seems that the time complexity should be linear, since we are adding numbers n
times. This would have been true if the cost of addition were constant—but Fibonacci
numbers become large very quickly: F10,000, for example, has 2090 digits. We again

use the fact that Fn ≈ ϕn/
√
5 with ϕ = (1 +

√
5)/2. Hence the number of base-10

digits of Fn is

d(Fn) = ⌊log10(Fn)⌋+ 1 ≈ n log10(ϕ),

which shows that the digit length of Fn grows linearly in n. Each addition requires
Θ(n) time, since the cost of integer addition is proportional to the number of digits,
leading to a total runtime of Θ(n2).

5. Matrix Multiplication Method

The recursive nature of the Fibonacci sequence hints at another solution that could
potentially be more efficient. The recurrence relation Fn = Fn−1 + Fn−2 is linear,
suggesting that we can express it as a matrix transformation. If we find the right
matrix, each multiplication will generate the next Fibonacci number, turning the
problem into matrix multiplication.

We thus try to improve on the algorithm by taking a linear algebra approach.
Consider the matrix equation

[
Fn

Fn−1

]
=

[
1 · Fn−1 + 1 · Fn−2

1 · Fn−1 + 0 · Fn−2

]
=

[
1 1
1 0

] [
Fn−1

Fn−2

]
.

Note that the first row computes Fn, while the second row carries forward Fn−1.
This relationship allows us to conclude:[
Fn

Fn−1

]
=

[
1 1
1 0

] [
Fn−1

Fn−2

]
=

[
1 1
1 0

] [
1 1
1 0

] [
Fn−2

Fn−3

]
= · · · =

[
1 1
1 0

]n−1 [
1
1

]
.
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Unfortunately, this algorithm performs even worse than the “Linear” one, since
multiplying 2× 2 matrices requires 4 additions of numbers that get very large. (Note
that multiplication is free since we are always multiplying by 0 or 1, e.g. 110111·0 = 0
and 110111 · 1 = 110111.)

6. Fast Matrix Exponentiation

After noticing that matrix multiplication requires too many operations with big
integers, we need a method that minimizes such operations. The key insight comes
from binary expansions.5

Consider computing A16: instead of A ·A ·A · · ·A︸ ︷︷ ︸
15 multiplications

, we can compute it in just 4

steps:

A2 = A ·A
A4 = A2 ·A2

A8 = A4 ·A4

A16 = A8 ·A8.

In the general case, for any power n, we can write it in binary: n =
∑k

i=0 bi2
i

where bi ∈ {0, 1}. For example, A11 = A8 · A2 · A1 since 11 = 10112. This means
computing and storing A1, A2, A4, A8, but only multiplying the matrices whose power
corresponds to 1’s in the binary representation.

Since Fn has Θ(n) base-10 digits, as explained in the section on the “linear” ap-
proach, a naive multiplication of two such integers costs Θ(n2) digit operations. With
a constant number of integer multiplications per 2 × 2 matrix product and Θ(log n)
squaring steps, it may appear that the total runtime would be Θ(n2 log n) – but it is
actually better.

Remark (Master Theorem). In algorithm analysis, the Master Theorem provides
a method for solving recurrence relations of the form T (n) = aT (n/b) + f(n), where
a ≥ 1 and b > 1. The theorem states:

• If f(n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a).
• If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).
• If f(n) = Ω(nlogb a+ϵ) for some constant ϵ > 0, and if af(n/b) ≤ cf(n) for some
constant c < 1 and sufficiently large n, then T (n) = Θ(f(n)).

Here, a represents the number of recursive calls, b is the factor by which the sub-
problem size is reduced, and f(n) is the cost of the work done outside the recursive
calls. For more details, see the Section 4.3 of Introduction to Algorithms [3]

Let T (n) be the time complexity to compute Fn. Then,

T (n) ≤ T (n/2) + kn2,

5An iterative implementation avoids storing all A2i by maintaining a running product (initially the identity

matrix) and the current power of A (repeatedly squared). The running product is multiplied by the current A2i

only when the corresponding bit in the exponent’s binary form is 1.

(I, A)
Bit 0: 1−−−−−→ (A,A2)

Bit 1: 1−−−−−→ (A3, A4)
Bit 2: 0−−−−−→ (A3, A8)

Bit 3: 1−−−−−→ (A11, A16) =⇒ A11

7



where kn2 is the cost of the final matrix multiplication. This is a recurrence relation
that can be bounded by repeatedly expanding. Expanding the recurrence

T (n) ≤ T
(n
2

)
+ kn2

≤ T
(n
4

)
+ k

(n
2

)2
+ kn2

≤ · · ·

≤ kn2

(
1 +

1

4
+

1

16
+ · · ·

)
≤ 4kn2

3
,

where the sum in parentheses is a geometric series with the ratio of 1/4, gives us
O(n2), since 4k/3 is a constant.

Looking at the graph of the Fast Multiplication algorithm, you might be wondering
why it has “jumps” at n = 131072, 262144, 524288, etc. These are not arbitrary! They
are powers of two, namely 217, 218, 219, marking points where the binary representation
requires one more digit and thus one more matrix multiplication in our exponentiation
process.

Why do we care more about multiplications than additions? It turns out that
addition of n-digit numbers is, in theory, linear, but multiplication requires Θ(n2)
operations.

This approach works much better than the previous ones, but it still uses big integer
operations (arithmetic on numbers too large for built-in integer types), although not
as frequently as the previous ones. The most we can squeeze out of this approach is
applying the Strassen Algorithm [12] to multiply matrices more efficiently, reducing
the number of multiplications from 8 to 7. This begs a question—is there a better way
to multiply?

7. Karatsuba’s Algorithm

Having seen the limitations of regular multiplication, we need a different approach
to multiplying large numbers. The key insight comes from representing an n-digit
number as a · Bn/2 + b where B is the base (typically 10 or 232 in practice) and a, b
are n/2-digit numbers. For example, 1234 = 12 · 102 + 34.

When multiplying two such numbers,

(a ·Bn/2 + b)(c ·Bn/2 + d) = ac ·Bn + (ad+ bc) ·Bn/2 + bd,

it seems like we need four multiplications: ac, ad, bc, and bd. However, Karatsuba
discovered a very useful trick [8], which says that if we compute (a + b)(c + d) with
ac and bd, we can recover ad+ bc in the following way:

(a+ b)(c+ d) = ac+ ad+ bc+ bd

ad+ bc = (a+ b)(c+ d)− ac− bd.

Note that we only need to compute ad+ bc as a whole, not ad and bc individually.

8



This reduces the number of multiplications from four to three! The complete product
can then be computed as

ac ·Bn + [(a+ b) (c+ d)− ac− bd] ·Bn/2 + bd.

Let T (n) be the time complexity of multiplying two n-digit numbers using this
method. Each multiplication now involves three recursive calls on numbers of size
n/2, plus some linear work for additions and shifts. What if we apply this trick once
more on the numbers a, b, c, d and continue applying it until no further decomposition
is possible? The recurrence relation describing the time complexity of this procedure
is given by

T (n) ≤ 3T (n/2) + kn

≤ 9T (n/4) + 2.5kn

≤ 27T (n/8) + 4.75kn

≤ · · ·
≤ 3log2 n T (1) + ckn.

Since 3log2(n) = nlog2(3), we obtain T (n) = O(nlog2(3)), where log2 3 ≈ 1.585, which
is significantly better than the quadratic complexity of standard multiplication.

However, looking at the graph, we see that Karatsuba’s algorithm is worse6 than
Fast Matrix Multiplication. The reason lies in the algorithm’s overhead: we need to
allocate additional memory for the intermediate results (a+b) and (c+d), which can be
up to one digit longer than a, b, c, d themselves. When implementing this recursively,
we need approximately 8 times as much workspace as the input size to ensure all
recursive calls have enough space. (The factor of 8 comes from needing space for both
operands in each of the three recursive calls, plus space for intermediate results.)

This brings us to an important insight: asymptotic complexity improvements do
not always translate to performance gains for typical input sizes. In our case, the
overhead of memory allocation and management outweighs the theoretical benefits
until the numbers become extremely large—well beyond the one-second time limit.
Let’s continue looking for better ways to multiply.

8. Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) is a fundamental tool in signal processing
that transforms a sequence of numbers into components of different frequencies. While
a complete treatment of DFT is beyond our scope, some excellent introductions include
[4] and the video [1]. We focus on how DFT helps us multiply large numbers more
efficiently.

To start, note that any integer can be viewed as a polynomial in some base B. For
instance, the decimal number 234 can be written as 2B2 +3B1 +4B0. More formally,

6It’s important to note that the algorithm’s subpar performance may also have been influenced by the quality of

implementation.
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we can write

x =
N−1∑
i=0

xiB
i, y =

N−1∑
j=0

yjB
j .

Their product can then be expressed as (f × g)(B) where f(B) and g(B) are the
following polynomials:

f(B) = x0 + x1B + x2B
2 + · · ·+ xN−1B

N−1

g(B) = y0 + y1B + y2B
2 + · · ·+ yN−1B

N−1.

The product polynomial (f × g)(B) has degree at most 2N − 2,

(f × g)(B) = z0 + z1B + z2B
2 + · · ·+ z2N−2B

2N−2,

where

zn =
N−1∑
m=0

xmyN−1−m

is the convolution of coefficients.

Remark (Polynomial Interpolation). A polynomial of degree less than M is
uniquely determined by its values at any M distinct inputs. This is because inter-
polating a polynomial from points leads to a system of linear equations; note that you
can’t solve it if you have fewer equations (points) than unknowns (coefficients).

Moreover, for any B, (f × g)(B) = f(B)g(B); multiplication of polynomials at a
specific input is simply a multiplication of numbers.

This suggests a three-step algorithm.

(1) Evaluate f(B) and g(B) at 2N distinct points (we need 2N points because the
product polynomial has degree 2N − 2).

(2) Multiply these values pointwise (that is, multiply corresponding values at each
point).

(3) Use the 2N resulting values to reconstruct the product polynomial.

Remark (Roots of Unity). We evaluate the functions specifically at 2Nth roots
of unity

ω−k
2N := e

2πi(−k)
2N ,

which are complex numbers on the unit circle satisfying ω2N
2N = 1 for all integers

j < 2N . These special points make the inverse transformation (step 3) particularly
efficient. For a more detailed explanation of roots of unity, see the notes [6].

This approach, while theoretically elegant, has practical drawbacks. The algorithm
is Θ(n2) due to two nested loops in the DFT computation: we are computing n
coefficients, each of which requires summing over n terms. Why has it performed
worse than other quadratic algorithms? The reasons are the following.

10



• We need to compute three polynomials: two forward transforms for f and g, and
one inverse transform to recover the coefficients.

• We need to compute exponentials to obtain complex numbers.
• We need to use pairs of double-precision floating point numbers to represent
complex numbers, increasing both memory usage and computational overhead.

This might seem like a step backward—but there is a way to fix DFT.

9. Fast Fourier Transform (FFT)

There is a clever way to reorganize the computation in DFT, known as the Fast
Fourier Transform (FFT), developed by Cooley and Tukey in 1965 [2], which signifi-
cantly improves its efficiency.

The main idea is splitting the sum based on even and odd indices. Consider the
DFT of a sequence of length M :

âk =
M−1∑
ℓ=0

aℓω
−kℓ
M .

We can separate this into even and odd indexed terms:

âk =

M
2
−1∑

ℓ=0

a2ℓ ω
−2kℓ
M +

M
2
−1∑

ℓ=0

a2ℓ+1 ω
−k(2ℓ+1)
M

=

M
2
−1∑

ℓ=0

a2ℓ ω
−kℓ
M/2︸ ︷︷ ︸

DFT of even terms

+ ω−k
M

M
2
−1∑

ℓ=0

a2ℓ+1 ω
−kℓ
M/2︸ ︷︷ ︸

DFT of odd terms

.

Note that

ω−2kℓ
M = (ω2

M )−kℓ = ω−kℓ
M
2

,

where ωM/2 is a (M/2)th root of unity. This allows us to rewrite

âk = Ek + ω−k
M Ok,

where Ek and Ok are the DFTs of the even and odd subsequences, each of length
M/2.

Another crucial property of the Mth root of unity is that ω
k+M/2
M = −ωk

M . This
means

âk+M
2

= Ek − ω−k
M Ok.

This symmetry property shows us that once we compute Ek and Ok for k < M/2,
we already know the other values. The computational savings are substantial: instead
of doing M computations, we only need to do M/2 computations at each level.

11



The time complexity follows a beautiful recursive pattern. Let T (M) be the time
complexity of FFT with M inputs,

T (M) ≤ 2T

(
M

2

)
+ kM,

where kM represents the combining step at each level. Expanding the recurrence
bounds the runtime

T (M) ≤ 4T (M/4) + kM + 2k(M/2)

≤ 8T (M/8) + kM + 2k(M/2) + 4k(M/4)

...

≤ kM log2M.

The final sum follows because we have log2M levels, and at each level we do work
proportional toM . This results in the complexity of O(n log n), a substantial improve-
ment that makes large-scale multiplication practical, which is reflected in the graph
of this algorithm as compared to others.7

10. Binet’s Formula

While FFT improved the matrix multiplication, there is another approach that fun-
damentally changes how we handle the transition matrix. A matrix is diagonalizable
if it can be written as PDP−1 where D is a diagonal matrix and P is an invertible
matrix. This is useful for us since it allows for easier computation of matrix powers.
However, not all matrices can be diagonalized—it can be done if and only if the matrix
has n linearly independent eigenvectors, with n being the dimension of the matrix.
This happens, in particular, if we have n distinct eigenvalues because distinct eigen-
values result in linearly independent eigenvectors. For more details on diagonalization
see the notes [5]. Let’s diagonalize our matrix:

[
0 1
1 1

]
= P

[
λ1 0
0 λ2

]
P−1,

P =

[
1 1

1+
√
5

2
1−

√
5

2

]
, λ1 =

1 +
√
5

2
, λ2 =

1−
√
5

2
.

The 2×2 Fibonacci transition matrix has two distinct eigenvalues, λ1 = ϕ = 1+
√
5

2

7The O(n logn) time complexity for FFT-based integer multiplication is only valid for operations on fixed-precision

values. As the input size grows, the actual complexity becomes more nuanced, which will be elaborated on the section

of the limitations of FFT.
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(the golden ratio) and λ2 = ψ = 1−
√
5

2 (its conjugate), allowing us to diagonalize it:[
Fn

Fn+1

]
=

[
0 1
1 1

]n [
0
1

]
= P

[
ϕn 0
0 ψn

]
P−1

[
0
1

]
=

[
1 1
ϕ ψ

] [
ϕn 0
0 ψn

] [
1 1
ϕ ψ

]−1 [
0
1

]
=

1

ψ − ϕ

[
−ϕn + ψn

−ϕn+1 + ψn+1

] [
0
1

]
.

Note that the approach above uses the convention F0 = 0, F1 = 1. This gives us
Binet’s formula:

Fn =
ϕn − ψn

√
5

=
(1 +

√
5)n

2n
√
5

− (1−
√
5)n

2n
√
5

.

It was mentioned above that using this formula directly would not work, as we
would be raising irrational numbers to large powers, accumulating rounding errors
rapidly. There is a trick—we can operate in terms of numbers of the form a + b

√
5

where a, b are integers, forming what is called the ring Z[
√
5]. Number Rings [11] has

more information on such algebraic structures.

Remark (Working in Z[
√
5]). We can encode elements of Z[

√
5] as pairs of inte-

gers (a, b) representing a+ b
√
5. The arithmetic operations are

(a, b) + (a′, b′) = (a+ a′, b+ b′)

(a, b)× (a′, b′) = (aa′ + 5bb′, ab′ + a′b).

These rules come from the usual algebra of a + b
√
5, keeping track of rational and

irrational parts separately.

Since |ψ| < 1, we have ψn → 0 as n → ∞, allowing us to approximate the nth
Fibonacci number:

Fn ≈ ϕn√
5

=
(1 +

√
5)n

2n
√
5

=
1

2n−1
[coefficient of

√
5 in (1 +

√
5)n].

While this algorithm still requires multiplying large numbers, we are only dealing
with pairs of numbers rather than 2 × 2 matrices. Using FFT for the multiplication
operations gives us O(n log n) complexity, but with better constant factors than the
matrix multiplication methods since we are operating on less data.

11. Practical Limitations of FFT

The fundamental issue lies in how computers represent complex numbers. In our im-
plementation, each complex number is encoded as a pair of double-precision floating-
point numbers (for real and imaginary parts). These doubles follow the standard that
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provides a 52-bit mantissa (the significant digits of a number) [14], plus one implicit
bit, plus potentially one bit for rounding. This gives us effectively 54 bits of precision.

Remark (Floating-Point Representation). A floating-point number is stored as
±m × 2e where m is the mantissa (a binary fraction, meaning a fraction where the
denominator is a power of 2, such as 0.1012 = 1·2−1+0·2−2+1·2−3 = 0.5+0+0.125 =
0.62510) and e is the exponent. The mantissa determines how many significant digits
we can represent accurately.

What does that mean for FFT? When we transform an N -byte number (where each
byte represents a base-256 digit), here is what happens.

(1) Each input digit requires 8 bits (one byte) of precision.
(2) The position of each digit contributes log2N additional bits.
(3) Therefore, transforming one number needs (8 + log2N) bits.
(4) When multiplying two such numbers, intermediate results can require twice the

precision.

This leads to our precision requirement:

16 + 2 log2N ≤ 54

log2N ≤ 19.

This means N , the byte-length of our numbers, is bounded by approximately 219.
Since each byte represents a base-256 digit, the upper limit will be around F6,000,000.
Beyond this point, the accumulation of rounding errors in the floating-point arithmetic
would make the results unreliable.

For readers interested in better understanding the methods described in this paper
and related topics, we recommend the following playlist [9], which includes videos
essays on poor implementation choices in C++, the benefits of a bottom-up approach
to fast exponentiation, and the Number Theoretic Transform (NTT).

12. Conclusion

Let’s return to the president’s offer and think what would change if you could use
your computer. What if it was F100? Accept on the spot, even if it is to be done by
hand. The millionth Fibonacci number? It can be done, but make sure to select an
efficient algorithm to finish it in a reasonable amount of time. The trillionth Fibonacci
number? Even with the best algorithms, you would run into the problem of operating
on numbers with hundreds of billions of digits, so it would be wise to pass on the offer.

Building intuition for different algorithms for computing Fibonacci numbers showed
us several things. The progression from exponential to quadratic to n log n complexity
demonstrates the power of mathematical approaches in computational problems. We
have seen how each improvement—from recursion to matrix multiplication to Fourier
transforms—showcases a different way of thinking about the same problem. Yet even
our most sophisticated methods eventually hit limits, whether from floating point
precision or the sheer size of numbers, serving as a reminder of the importance of
hardware constraints.

Speaking of hardware constraints—the discussed runtimes are not set guaranteed
to be set in stone. For example, if quantum computing is actually implemented, there
is already theoretical work [7] on how to make Karatsuba’s algorithm O(n), linear!
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