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Abstract. Let a, b ∈ N be relatively prime. Previous work showed that exactly one of the two
equations ax+by = (a−1)(b−1)/2 and ax+by+1 = (a−1)(b−1)/2 has a nonnegative, integral
solution; furthermore, the solution is unique. Let Fn be the nth Fibonacci number. When
(a, b) = (Fn, Fn+1), it is known that there is an explicit formula for the unique solution (x, y).
We establish formulas to compute the solution when (a, b) = (F 2

n , F
2
n+1) and (F 3

n , F
3
n+1), giving

rise to some intriguing identities involving Fibonacci numbers. Additionally, we construct a
different pair of equations that admits a unique positive (instead of nonnegative), integral
solution.

1. Introduction

The study of Diophantine equations, particularly those associated with specific integer se-
quences, has been a topic of great interest in number theory (see [4, 8, 9, 10, 11, 13] for some
recent work on Diophantine equations that involve Fibonacci numbers). We study a pair of
Diophantine equations, first encountered by Beiter [2] in the study of cyclotomic polynomials
Φpq(x) for primes p < q. The pair was later extended by Chu [5] to relatively prime numbers.

Theorem 1.1. [5, Theorem 1.1] For relatively prime a, b ∈ N, exactly one of the following
equations has a nonnegative, integral solution

ax+ by =
(a− 1)(b− 1)

2
, (1.1)

ax+ by + 1 =
(a− 1)(b− 1)

2
. (1.2)

Furthermore, the solution is unique.

Thanks to Theorem 1.1, we can define the function Γ : {(m,n) : gcd(m,n) = 1} → {1, 2} as

Γ(m,n) =

{
1, if (1.1) has a solution when (a, b) = (m,n);

2, if (1.2) has a solution when (a, b) = (m,n).

It is well-known that two consecutive Fibonacci numbers are relatively prime. Chu [5] then
studied Γ(Fn, Fn+1), where (Fn)

∞
n=0 are the Fibonacci numbers defined as F0 = 0, F1 = 1, and

Fn = Fn−1 + Fn−2 for n ≥ 2. It turned out that for n ≥ 3, Γ(Fn, Fn+1) alternates between
1 and 2 in groups of three ([5, Theorem 1.6]). Continuing the work, Davala [6] examined
Γ(Bn, Bn+1), Γ(B2n−1, B2n+1), Γ(Cn, Cn+1), and Γ(Bn, Cn), with (Bn)

∞
n=1 and (Cn)

∞
n=1 being

the so-called nth balancing number and the nth Lucas-balancing number.1 These sequences

We thank the participants at Polymath Jr. 2024 REU for helpful discussions.
1Balancing numbers were introduced by Behera and Panda [3] to be solutions of the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) for some natural number r. The nth balancing number
is denoted by Bn, and Cn =

√
8B2

n + 1 is called the nth Lucas number [12].
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satisfy the recurrence relations B1 = 1, B2 = 6, Bn+1 = 6Bn − Bn−1 and C1 = 3, C2 =
17, Cn+1 = 6Cn − Cn−1 for n ≥ 2.

Recently, Arachchi et al. [1] provided a useful criterion on (a, b) to determine the value
of Γ(a, b). The authors then used the criterion to study Γ(an, an+1) for various sequences
(an)

∞
n=1, including the natural numbers raised to the kth power, arithmetic progressions, shifted

geometric sequences, and so on. One notable result is that for a fixed k, Γ(nk, (n + 1)k)
eventually alternates between 1 and 2.

Our main results are inspired by the identities in [5, Theorem 1.6]:

F6k−1 − 1

2
F6k +

F6k−1 − 1

2
F6k+1 =

(F6k − 1)(F6k+1 − 1)

2
,

F6k+1 − 1

2
F6k+1 +

F6k−1 − 1

2
F6k+2 =

(F6k+1 − 1)(F6k+2 − 1)

2
,

F6k+1 − 1

2
F6k+2 +

F6k+1 − 1

2
F6k+3 =

(F6k+2 − 1)(F6k+3 − 1)

2
,

1 +
F6k+2 − 1

2
F6k+3 +

F6k+2 − 1

2
F6k+4 =

(F6k+3 − 1)(F6k+4 − 1)

2
,

1 +
F6k+4 − 1

2
F6k+4 +

F6k+2 − 1

2
F6k+5 =

(F6k+4 − 1)(F6k+5 − 1)

2
,

1 +
F6k+4 − 1

2
F6k+5 +

F6k+4 − 1

2
F6k+6 =

(F6k+5 − 1)(F6k+6 − 1)

2
.

Therefore, not only is Γ(Fn, Fn+1) periodic, but there is also a formula for the solution (x, y).
We shall examine Γ(F 2

n , F
2
n+1) and establish a formula for the solution (x, y). Let us look at

the data.
n F 2

n F 2
n+1 xn yn Γ(F 2

n , F
2
n+1)

2 1 4 0 0 1
3 4 9 3 0 1
4 9 25 5 2 2
5 25 64 20 4 1
6 64 169 51 12 1
7 169 441 83 52 2
8 441 1156 356 84 1
9 1156 3025 935 220 1
10 3025 7921 1513 934 2
11 7921 20736 6408 1512 1
12 20736 54289 16775 3960 1
13 54289 142129 27143 16776 2

Table 1. Data for Γ(F 2
n , F

2
n+1).

The data suggest that as n increases, Γ(F 2
n , F

2
n+1) repeats the pattern 1, 1, 2. Furthermore,

the unique nonnegative, integral solution (xn, yn) of the Diophantine pair

F 2
nxn + F 2

n+1yn =
(F 2

n − 1)(F 2
n+1 − 1)

2
, (1.3)

1 + F 2
nxn + F 2

n+1yn =
(F 2

n − 1)(F 2
n+1 − 1)

2
(1.4)

seems to have the property that for n ̸≡ 1 mod 3,

F 2
n − x− y = 1,
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while {
2xn − F 2

n = 1, for n ≡ 4 mod 6;

2xn − F 2
n = −3, for n ≡ 1 mod 6.

The next proposition and theorem confirm that our observations hold for all n ≥ 2:

Proposition 1.2. For n ≥ 0 with n ≡ 0 mod 3, Fn is even, while Fn+1 and Fn+2 are odd.

Theorem 1.3. For n ≥ 2, we have the following identities:(
F 2
n −

F 2
n−1 + 1

2

)
· F 2

n +
F 2
n−1 − 1

2
· F 2

n+1 =
(F 2

n − 1)(F 2
n+1 − 1)

2
; (1.5)

1 +
F 2
n − 3

2
· F 2

n +
F 2
n − F 2

n−1 − 1

2
· F 2

n+1 =
(F 2

n − 1)(F 2
n+1 − 1)

2
, if n is odd; (1.6)

1 +
F 2
n + 1

2
· F 2

n +
F 2
n − F 2

n−1 − 1

2
· F 2

n+1 =
(F 2

n − 1)(F 2
n+1 − 1)

2
, if n is even. (1.7)

Corollary 1.4. For n ≥ 2 and n ≡ 0, 2, 3, 5 mod 6,

(x, y) =

(
F 2
n −

F 2
n−1 + 1

2
,
F 2
n−1 − 1

2

)
is the unique nonnegative, integral solution of (1.3).

For n ≥ 2 and n ≡ 1 mod 6,

(x, y) =

(
F 2
n − 3

2
,
F 2
n − F 2

n−1 − 1

2

)
is the unique nonnegative, integral solution of (1.4).

For n ≥ 2 and n ≡ 4 mod 6,

(x, y) =

(
F 2
n + 1

2
,
F 2
n − F 2

n−1 − 1

2

)
is the unique nonnegative, integral solution of (1.4).

Next, we investigate Γ(F 3
n , F

3
n+1) and find formulas for the unique integral solution (x, y) of

the pair

F 3
nxn + F 3

n+1yn =
(F 3

n − 1)(F 3
n+1 − 1)

2
, (1.8)

1 + F 3
nxn + F 3

n+1yn =
(F 3

n − 1)(F 3
n+1 − 1)

2
. (1.9)

Interestingly, formulas for the solution can be expressed as a (alternate) sum of Fibonacci
numbers cubed. As before, we examine the data.

n F 3
n F 3

n+1 xn yn Γ(F 3
n , F

3
n+1)

2 1 8 0 0 1
3 8 27 8 1 1
4 27 125 18 9 2
5 125 512 106 36 1
6 512 2197 405 161 2
7 2197 9261 1791 673 1
8 9261 39304 7469 2870 2

Table 2. Data for Γ(F 3
n , F

3
n+1).
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From the data, Γ(F 3
n , F

3
n+1) seems to alternate between 1 and 2, and

x4 = 33 − x3 − 1, y4 = y3 + 23,

x5 = 53 − x4 − 1, y5 = y4 + 33,

x6 = 83 − x5 − 1, y6 = y5 + 53,

which suggests that for n ≥ 4, {
xn = F 3

n − xn−1 − 1,

yn = yn−1 + F 3
n−1.

These observations are verified for all n ≥ 3 by our next theorem.

Theorem 1.5. For m ∈ N≥2, we have the following identities:(
2m−1∑
k=1

(−1)k−1F 3
k

)
F 3
2m−1 +

(
2m−2∑
k=2

F 3
k

)
F 3
2m =

(F 3
2m−1 − 1)(F 3

2m − 1)

2
, (1.10)

1 +

(
2m∑
k=1

(−1)kF 3
k − 1

)
F 3
2m +

(
2m−1∑
k=2

F 3
k

)
F 3
2m+1 =

(F 3
2m − 1)(F 3

2m+1 − 1)

2
. (1.11)

We shall prove Theorems 1.3 and 1.5 in Sections 2 and 3, respectively. In Section 4,
we construct another pair of Diophantine equations that resembles the original pair, (1.1)
and (1.2), but admits a unique positive (instead of nonnegative), integral solution and is
asymmetric in the sense that Γ(a, b) may not be equal to Γ(b, a). Finally, Section 5 is devoted
to discussing several problems for future investigation.

2. The case of Fibonacci numbers squared

The main goal of this section is to prove an analog of Theorem 1.1 for Fibonacci numbers
squared. Our proof uses Cassini’s identity and the Fibonacci recurrence relation to make
similar terms appear and cancel themselves out.

Proof of Proposition 1.2. Let k ≥ 0 such that k ≡ 0 mod 3. Assume that Fk is even, and
Fk+1 and Fk+2 are odd. By the linear recurrence,

Fk+3 = Fk+1 + Fk+2 ≡ 1 + 1 ≡ 0 mod 2,

Fk+4 = Fk+2 + Fk+3 ≡ 1 + 0 ≡ 1 mod 2,

Fk+5 = Fk+3 + Fk+4 ≡ 0 + 1 ≡ 1 mod 2.

Since F0 = 0 and F1 = F2 = 1, Proposition 1.2 holds inductively. □

Proof of Theorem 1.3. We start by proving (1.5). On the one hand, from Fn = Fn+1 − Fn−1,
we have

F 2
n = F 2

n+1 + F 2
n−1 − 2Fn+1Fn−1.

Hence,

F 2
n − F 2

n−1 − F 2
n+1 = −2Fn−1Fn+1,

and so,

F 2
n(F

2
n − F 2

n−1 − F 2
n+1) = −2F 2

nFn−1Fn+1. (2.1)

On the other hand, by Cassini’s identity,(
Fn−1Fn+1 − F 2

n

)2
= 1,
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which gives
F 4
n − 2F 2

nFn+1Fn−1 = 1− F 2
n−1F

2
n+1. (2.2)

It follows from (2.1) and (2.2) that

2F 4
n − F 2

nF
2
n−1 − F 2

nF
2
n+1 = F 4

n − 2F 2
nFn−1Fn+1

= 1− F 2
n−1F

2
n+1.

Equivalently,
2F 4

n − F 2
nF

2
n−1 + F 2

n−1F
2
n+1 = 1 + F 2

nF
2
n+1,

from which we know that

2F 4
n − F 2

nF
2
n−1 + F 2

n−1F
2
n+1 + (−F 2

n − F 2
n+1) = 1 + F 2

nF
2
n+1 + (−F 2

n − F 2
n+1),

Therefore,

(2F 2
n − F 2

n−1 − 1) · F 2
n + (F 2

n−1 − 1) · F 2
n+1 = (F 2

n − 1)(F 2
n+1 − 1).

Dividing both sides by 2, we obtain(
F 2
n −

F 2
n−1 + 1

2

)
· F 2

n +
F 2
n−1 − 1

2
· F 2

n+1 =
(F 2

n − 1)(F 2
n+1 − 1)

2
,

as desired.
Next, we prove (1.6). By Cassini’s identity for odd n,

F 2
n − 1 = Fn−1Fn+1.

Hence,
F 4
n − 2F 2

n + 1 = F 2
n−1F

2
n+1,

which gives

F 4
n − 2F 2

n + 1− F 2
n+1 · F 2

n−1 + (1 + F 2
n+1 · F 2

n − F 2
n+1 − F 2

n) = (1 + F 2
n+1 · F 2

n − F 2
n+1 − F 2

n).

Therefore,

2 + (F 2
n − 3) · F 2

n + (F 2
n − F 2

n−1 − 1) · F 2
n+1 = (F 2

n+1 − 1)(F 2
n − 1).

We obtain

1 +
F 2
n − 3

2
· F 2

n +
F 2
n − F 2

n−1 − 1

2
· F 2

n+1 =
(F 2

n − 1)(F 2
n+1 − 1)

2
.

It remains to prove (1.7). We again start with Cassini’s identity for even n:

F 2
n + 1 = Fn−1Fn+1.

Hence,
F 4
n + 2F 2

n + 1 = F 2
n−1F

2
n+1,

which gives

F 4
n + F 2

n + 1− F 2
n−1F

2
n+1 + (1 + F 2

n+1F
2
n − F 2

n+1) = −F 2
n + (1 + F 2

n+1F
2
n − F 2

n+1).

The above implies that

2 + (F 2
n + 1) · F 2

n + (F 2
n − F 2

n−1 − 1) · F 2
n+1 = (F 2

n+1 − 1)(F 2
n − 1).

Dividing both sides by 2, we obtain

1 +
F 2
n + 1

2
· F 2

n +
F 2
n − F 2

n−1 − 1

2
· F 2

n+1 =
(F 2

n − 1)(F 2
n+1 − 1)

2
.

□
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3. The case of Fibonacci numbers cubed

This section proves an analog of Theorem 1.1 for Fibonacci numbers cubed. As for the case
of Fibonacci numbers squared, our proof uses Cassini’s identity and the Fibonacci recurrence
relation. Our proofs also employ the identities presented by Frontczak [7] to replace the sum
of cubes with a simpler expression and use the well-known identity F3n = 5F 3

n + 3(−1)nFn

(see [7, (2.6)]).

Theorem 3.1. [7, cf. Theorem 1] For each n ≥ 1,
n∑

k=1

F 3
k =

1

4
(F3n+3 + F3n)− F 3

n+1 − F 3
n +

1

2
, (3.1)

and
n∑

k=1

(−1)kF 3
k =

1

4

(
(−1)nF3n+3 + (−1)n+1F3n

)
− (−1)nF 3

n+1 − (−1)n+1F 3
n +

1

2
. (3.2)

Proof of (1.10). It follows from (3.1) and (3.2) that

2m−1∑
k=1

(−1)k−1F 3
k = −

2m−1∑
k=1

(−1)kF 3
k =

F6m

4
− F6m−3

4
− F 3

2m + F 3
2m−1 −

1

2
, and

2m−2∑
k=2

F 3
k = −1 +

2m−2∑
k=1

F 3
k =

F6m−3

4
+

F6m−6

4
− F 3

2m−1 − F 3
2m−2 −

1

2
.

Hence, the left-hand side of (1.10) becomes

Tm :=

(
F6m

4
− F6m−3

4
− F 3

2m + F 3
2m−1 −

1

2

)
F 3
2m−1+(

F6m−3

4
+

F6m−6

4
− F 3

2m−1 − F 3
2m−2 −

1

2

)
F 3
2m

=
F6m − F6m−3

4
F 3
2m−1 + F 6

2m−1 +
F6m−3 + F6m−6

4
F 3
2m−

F 3
2m−2F

3
2m − 2F 3

2m−1F
3
2m −

F 3
2m−1 + F 3

2m

2
.

Then the identity Tm = (F 3
2m−1 − 1)(F 3

2m − 1)/2 is equivalent to

(F6m − F6m−3)F
3
2m−1 + 4F 6

2m−1 + (F6m−3 + F6m−6)F
3
2m

− 4F 3
2m−2F

3
2m − 10F 3

2m−1F
3
2m = 2. (3.3)

Since F3m = 5F 3
m + 3(−1)mFm, we write

F6m = 5F 3
2m + 3F2m, F6m−3 = 5F 3

2m−1 − 3F2m−1, and F6m−6 = 5F 3
2m−2 + 3F2m−2.

Hence,

(F6m − F6m−3)F
3
2m−1 = 5F 3

2mF 3
2m−1 + 3F2mF 3

2m−1 − 5F 6
2m−1 + 3F 4

2m−1, (3.4)

and

(F6m−3 + F6m−6)F
3
2m = 5F 3

2m−1F
3
2m − 3F2m−1F

3
2m + 5F 3

2m−2F
3
2m + 3F2m−2F

3
2m. (3.5)

Using (3.4) and (3.5), we can rewrite the left-hand side of (3.3) as

Sm := 3F2mF 3
2m−1 − F 6

2m−1 + 3F 4
2m−1 − 3F2m−1F

3
2m + F 3

2m−2F
3
2m + 3F2m−2F

3
2m.
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By Cassini’s identity,

F2m−2F2m = (−1)2m−1 + F 2
2m−1 = −1 + F 2

2m−1,

which gives

F 3
2m−2F

3
2m =

(
−1 + F 2

2m−1

)3
= −1 + 3F 2

2m−1 − 3F 4
2m−1 + F 6

2m−1,

and

3F2m−2F
3
2m = 3F 2

2m

(
−1 + F 2

2m−1

)
= −3F 2

2m + 3F 2
2mF 2

2m−1.

Therefore,

Sm = 3F2mF 3
2m−1 − 3F2m−1F

3
2m − 1 + 3F 2

2m−1 − 3F 2
2m + 3F 2

2mF 2
2m−1

= 3F2mF2m−1

(
F 2
2m−1 − F 2

2m + F2mF2m−1

)
+ 3F 2

2m−1 − 3F 2
2m − 1

= 3F2mF2m−1

(
F 2
2m−1 − F 2

2m + F2m(F2m − F2m−2)
)
+ 3F 2

2m−1 − 3F 2
2m − 1

= 3F2mF2m−1

(
F 2
2m−1 − F2mF2m−2

)
+ 3F 2

2m−1 − 3F 2
2m − 1

= 3F2mF2m−1 + 3F 2
2m−1 − 3F 2

2m − 1

= 3((F2m+1 − F2m−1)F2m−1 + F 2
2m−1 − F 2

2m)− 1

= 3(F2m+1F2m−1 − F 2
2m)− 1 = 2,

as desired. □

Proof of (1.11). Using Theorem 3.1, we can rewrite the left-hand side of (1.11) as

Tm := 1 +

(
1

4
(F6m+3 − F6m)− F 3

2m+1 + F 3
2m − 1

2

)
F 3
2m

+

(
1

4
(F6m + F6m−3)− F 3

2m − F 3
2m−1 −

1

2

)
F 3
2m+1.

Hence, Tm = (F 3
2m − 1)(F 3

2m+1 − 1)/2 is equivalent to

4F 6
2m−10F 3

2mF 3
2m+1−4F 3

2m−1F
3
2m+1+F 3

2m(F6m+3−F6m)+F 3
2m+1(F6m+F6m−3) = −2. (3.6)

We now use the identity F3m = 5F 3
m + 3(−1)mFm to write

F6m−3 = 5F 3
2m−1 − 3F2m−1, F6m = 5F 3

2m + 3F2m, and F6m+3 = 5F 3
2m+1 − 3F2m+1.

Hence, (3.6) becomes

−F 6
2m − 3F 4

2m − 3F2m+1F
3
2m + 3F 3

2m+1F2m + F 3
2m−1F

3
2m+1 − 3F 3

2m+1F2m−1 = −2. (3.7)

By Cassini’s identity,

F2m−1F2m+1 = F 2
2m + 1, (3.8)

so

F 3
2m+1F

3
2m−1 = F 6

2m + 3F 4
2m + 3F 2

2m + 1,

and

3F 3
2m+1F2m−1 = 3F 2

2m+1(F
2
2m + 1) = 3F 2

2mF 2
2m+1 + 3F 2

2m+1. (3.9)
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Let Sm be the left side of (3.7). By (3.8) and (3.9), we have

Sm = −3F2m+1F
3
2m + 3F 3

2m+1F2m + 3F 2
2m + 1− 3F 2

2mF 2
2m+1 − 3F 2

2m+1

= 3F2mF2m+1(F
2
2m+1 − F 2

2m − F2mF2m+1) + 3F 2
2m − 3F 2

2m+1 + 1

= 3F2mF2m+1(F
2
2m+1 − F 2

2m − (F2m+1 − F2m−1)F2m+1) + 3F 2
2m − 3F 2

2m+1 + 1

= 3F2mF2m+1(−F 2
2m + F2m−1F2m+1) + 3F 2

2m − 3F 2
2m+1 + 1

= 3F2mF2m+1 + 3F 2
2m − 3F 2

2m+1 + 1

= 3
(
(F2m+1 − F2m−1)F2m+1 + F 2

2m − F 2
2m+1

)
+ 1

= 3(F 2
2m − F2m−1F2m+1) + 1 = −2,

as desired. □

4. Another pair of Diophantine equations

Up until now, we have been working with Equations (1.1) and (1.2) given in Theorem
1.1, which admit a unique nonnegative, integral solution. We now turn our attention to the
question of the existence of a distinct set of equations that instead admits a unique positive,
integral solution. Such a system can be found trivially by shifting the equations in Theorem
1.1 by a+ b.

Proposition 4.1. For relatively prime a, b ∈ N, exactly one of the following equations has a
nonnegative, integral solution:

ax+ by =
(a− 1)(b− 1)

2
+ (a+ b), (4.1)

ax+ by + 1 =
(a− 1)(b− 1)

2
+ (a+ b). (4.2)

Furthermore, the solution is unique.

Our next theorem presents a system that is not a linear shift of the equations in Theorem
1.1.

Theorem 4.2. Let a, b ∈ N satisfy (a, b) = 1, b ≥ 2, and a is odd. Consider the two following
equations:

ax+ by =
(a+ 1)b

2
+ 1, (4.3)

ax+ by =
(a+ 1)b

2
− 1. (4.4)

Exactly one of the two equations has a positive, integral solution, and the solution is unique.

The following lemma shall be used in due course.

Lemma 4.3. For integers n, x, y, a, b with a, b positive and (a, b) = 1, we consider the equation
xa+ yb = n. If there is a solution (x, y) = (r, s) ∈ Z2 with r < b and s ≤ 0, then there are no
solutions with x, y both positive.

Proof. All integral solutions are of the form (x, y) = (r + tb, s − ta) for some t ∈ Z. To get
y > 0, we must have t < 0, but that implies x < 0. □
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Proof of Theorem 4.2. Let k = (a+1)b/2. Let 1 ≤ r1 ≤ b− 1 be chosen such that ar1 ≡ k+1
mod b and s1 := (k + 1− ar1)/b. Let 1 ≤ r2 ≤ b− 1 be chosen such that ar2 ≡ k − 1 mod b
and s2 := (k − 1− ar2)/b. Observe that

a(r1 + r2) = ar1 + ar2 ≡ 2k = (a+ 1)b ≡ 0 mod b.

It follows from (a, b) = 1 that b | (r1+r2). Since 2 ≤ r1+r2 ≤ 2b−2, we know that r1+r2 = b.
Hence,

s1 + s2 =
(k + 1− ar1) + (k − 1− ar2)

b
=

2k − a(r1 + r2)

b
=

(a+ 1)b− ab

b
= 1.

Thus, exactly one of s1, s2 is positive. By definition, r1a+ s1b = k + 1 and r2a+ s2b = k − 1.
Suppose, without loss of generality, that (4.3) has a positive solution. We know that (4.4) has
no positive solution due to Lemma 4.3.

It remains to show that (4.3) has at most one positive solution. Let (x1, y1) and (x2, y2) be
two positive solutions of (4.3). Observe that

x1, x2 ≤ (a+ 1)b

2
− 1,

which gives

x1, x2 ≤ b

2
+

b

2a
− 1

a
< b.

Hence, 1 ≤ x1, x2 ≤ b − 1, and so, |x1 − x2| ≤ b − 2. Furthermore, x1a + y1b = x2a + y2b
implies that

(x1 − x2)a = −(y1 − y2)b.

Since (a, b) = 1, b divides x1 − x2, which, in combination with |x1 − x2| ≤ b− 2, implies that
x1 = x2. As a result, (x1, y1) = (x2, y2). Therefore, (4.3) has at most one positive solution. □

5. Problems for further investigation

A natural question would be, for every fixed i ≥ 4, whether there is a formula (similar to
the ones in [5, Theorem 1.6] and Theorems 1.3 and 1.5) for the unique nonnegative, integral
solution (x, y) of the pair

F i
nxn + F i

n+1yn =
(F i

n − 1)(F i
n+1 − 1)

2
, (5.1)

1 + F i
nxn + F i

n+1yn =
(F i

n − 1)(F i
n+1 − 1)

2
. (5.2)

We can follow the same process that we use to obtain Theorems 1.3 and 1.5: collecting data
and then looking for any pattern. The drawback is that when i is big, collecting data for
Γ(F i

n, F
i
n+1) becomes more difficult, which limits our ability to observe a pattern (if any) for

Γ(F i
n, F

i
n+1). For instance, in collecting data for Γ(F 4

n , F
4
n+1), we face a memory error at

Γ(F 4
12, F

4
13). While there are some patterns in Table 3 that may hint at a possible formula for

the solution (xn, yn) such as

y4 − x3 = 1, y5 − x4 = −1, y7 − x6 = 1, y8 − x7 = −1, y10 − x9 = 1, y11 − x10 = −1,

there is no clear periodicity for Γ(F 4
n , F

4
n+1), at least from the first 10 values in Table 3.
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n F 4
n F 4

n+1 xn yn Γ(F 4
n , F

4
n+1)

2 1 16 0 0 1
3 16 81 2 7 2
4 81 625 285 3 1
5 625 4096 183 284 2
6 4096 28561 1286 1863 2
7 28561 194481 88473 1287 1
8 194481 1336336 60247 88472 2
9 1336336 9150625 412554 607919 2
10 9150625 62742241 28542389 412555 1
11 62742241 429981696 19385711 28542388 1

Table 3. Data for Γ(F 4
n , F

4
n+1).

Another unexpected feature of Table 3 is the non-monotonicity of xn and yn, unlike what we
have in Tables 1 and 2.

A more general problem is to find a formula for the solution of Γ(F i
n, F

j
n+1) for arbitrary i

and j. As an example, we collect the data for Γ(F 2
n , F

3
n+1):

n F 2
n F 3

n+1 xn yn Γ(F 2
n , F

3
n+1)

2 1 8 0 0 1
3 4 27 3 1 1
4 9 125 55 0 2
5 25 512 20 11 1
6 64 2197 51 30 1
7 169 9261 4493 2 2
8 441 39304 356 216 1
9 1156 166375 935 571 1
10 3025 704969 350037 10 2

Table 4. Data for Γ(F 2
n , F

3
n+1).

Table 4 suggests that Γ(F 2
n , F

3
n+1) follows the same pattern as Γ(F 2

n , F
2
n).

Finally, all of the above questions can be asked for the pair in Theorem 4.2.
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