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In this paper, we define a k-Diophantine m-tuple to be a set of m positive integers such
that the product of any k distinct positive integers is one less than a perfect square.

We study these sets in finite fields Fp for odd prime p and guarantee the existence of

a k-Diophantine m-tuple provided p is larger than some explicit lower bound. We also
give a formula for the number of 3-Diophantine triples in Fp as well as an asymptotic

formula for the number of k-Diophantine k-tuples.
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1. Introduction

The study of Diophantine m-tuples can be traced to the work of Diophantus of

Alexandria, and has caught the attention of numerous leading mathematicians

since then. In the 3rd century, Diophantus observed that the set of four numbers:{
1
16 ,

33
16 ,

17
4 ,

105
16

}
satisfy an interesting property that the product of any two elements

in the set is one less than a rational square. This is the first example of a rational

Diophantine quadruple. In the 17th century, Fermat became interested in finding

integer solutions and eventually found the Diophantine quadruple {1, 3, 8, 120}. Eu-

ler discovered that the Diophantine quadruple given by Fermat can be extended to

form a rational Diophantine quintuple, namely
{

1, 3, 8, 120, 777480
8288641

}
. These sets of

numbers studied by Diophantus, Fermat and Euler are now known as Diophantine

m-tuples, which we define below.

Definition 1.1. Let S be a set of m positive integers {a1, a2, . . . , am}. If aiaj + 1

is a perfect square for all i, j such that 1 ≤ i < j ≤ m, then S is a Diophantine

m-tuple.

Similarly, we define a rational Diophantine m-tuple as follows. If S is a set

of m positive rationals and satisfies the same condition, it is called a rational

Diophantine m-tuple. For a more in-depth overview of the history of this problem,

see [6, p. 513-519].

The first important result concerning the size of Diophantine m-tuples was given

by Baker and Davenport in 1969 [3]. They showed using Baker’s theory on lin-

ear forms in logarithms of algebraic numbers that if d is a positive integer such

that {1, 3, 8, d} is a Diophantine quadruple, then d has to be 120, implying that

{1, 3, 8, 120} cannot be extended to a Diophantine quintuple. In 1979, Arkin, Hog-

gatt and Strauss showed that any Diophantine triple can be extended to a Diophan-

tine quadruple [2]. In 2004, Dujella proved that there is no Diophantine sextuple

and that there are at most finitely many Diophantine quintuples [9]. In 2018, He,

Togbé and Ziegler showed that there does not exist a Diophantine quintuple [20].

In the case of rationals, no absolute upper bound for the size of rational Dio-

phantine m-tuples is known. Euler proved that there are infinitely many rational

Diophantine quintuples. In 1999, Gibbs found the first rational Diophantine sextu-

ple
{

11
192 ,

35
192 ,

155
27 ,

512
27 ,

1235
48 , 18087316

}
[19]. In 2017, Dujella, Kazalicki, Mikić, Szikszai

proved that there are infinitely many rational Diophantine sextuples [14]. It is not

known whether there are rational Diophantine septuples.

There are many generalizations of Diophantine m-tuples. One natural general-

ization which has been extensively studied is if we replace the number 1 in “aiaj+1”

with n. These sets are called Diophantine m-tuples with the property D(n). Recently,

Bliznac Trebješanin and Filipin proved that there is no D(4)-quintuple [4]. Dujella,

Filipin and Fuchs proved that there does not exist a D(−1)-quintuple and that

there are at most finitely many D(−1)-quadruples, all of them containing the ele-

ment 1 [12,11]. Recently, Bonciocat, Cipu and Mignotte proved the nonexistence of
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D(−1)-quadruples [5].

There is an interesting connection between Diophantine m-tuples and elliptic

curves. If {a, b, c} are assumed to form a Diophantine triple, then in order to extend

this triple to a quadruple, the task is to find an integer x such that ax+1, bx+1 and

cx+1 are all squares of integers. Finding a solution x ∈ Z to the three simultaneous

conditions implies that there exists y ∈ Z such that

y2 = (ax+ 1)(bx+ 1)(cx+ 1); (1.1)

this equation describes an elliptic curve. Hence, extending a Diophantine triple to

a Diophantine quadruple is equivalent to finding integer solutions of the mentioned

elliptic curve. However, for the rationals we have the following characterization:

Lemma 1.2 ([8]). If (x, y) is a point on the elliptic curve E : y2 = (ax+ 1)(bx+

1)(cx+ 1), then x will extend the triple {a, b, c} if and only if (x, y)− P ∈ 2E(Q),

where P = (0, 1).

A more detailed survey on Diophantine m-tuples and its connections with elliptic

curves can be found in [7] and [8].

While most of the work on Diophantine m-tuples has been done over integers and

rationals, Diophantine m-tuples may be studied over any commutative ring with

identity. Studies have been made over the ring of integers in a quadratic field ([16],

[15] and [18]) by Franušić and Soldo. In 2013, Franušić also studied Diophantine

quadruples over a cubic field [17]. Recently, Dujella and Kazalicki studied Diophan-

tine m-tuples over finite fields Fp where p is an odd prime in [13]. They proved the

existence of a Diophantine m-tuple in Fp where p is a prime and p > 22m−2m2.

Using character sums, they also derive expressions for the number of Diophantine

pairs, triples, and quadruples in Fp for given prime p, and provide an asymptotic

formula for the number of Diophantine m-tuples. In recent years, there has been a

lot of activity on Diophantine m-tuples and its generalizations. To get an extensive

list of papers on Diophantine m-tuples, we refer the interested reader to [7]

We study a generalization of Diophantine m-tuples called k-Diophantine m-

tuples.

Definition 1.3. Let S = {a1, a2, . . . , am} ⊆ R\{0} where R is a commutative ring

with unity 1. If 1+
∏ik

j=i1
aj is a perfect square for all i1, . . . , ik ∈ {1, 2, . . . ,m} such

that 1 ≤ i1 < i2 < · · · < ik ≤ m, then S is a k-Diophantine m-tuple over R.

One motivation behind studying these sets is the relationship between k-

Diophantine k-tuples and a well-known, open problem in number theory known

as Brocard’s problem. Brocard’s problem asks for all integer solutions (n,m) to

the equation n! + 1 = m2. It can be clearly observed that if the elements of a k-

Diophantine k-tuple are consecutive natural numbers starting from 1, then it gives

a solution for Brocard’s problem. Currently, there are only three known pairs of

numbers solving Brocard’s problem: (4, 5), (5, 11), (7, 71). Erdős conjectured that

no other solutions exist. In 1993, Overholt proved that there are only finitely many
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solutions to Brocard’s problem provided that the abc conjecture is true [24]. Till

now, computations for n up to a magnitude of 1015 have been done but yielded no

further solutions for the problem.

Moreover, just as Brocard’s problem is not a trivial exercise, the same can be said

of finding k-Diophantine m-tuples. Similar to the connection between Diophantine

triples, i.e., 2-Diophantine triples, and elliptic curves, a connection can also be made

between 3-Diophantine triples and elliptic curves. Indeed, the problem of extending

a 3-Diophantine triple {a, b, c} to a 3-Diophantine quadruple {a, b, c, d} is equivalent

to finding integer solutions of the elliptic curve

y2 = (abx+ 1)(acx+ 1)(bcx+ 1). (1.2)

Hence, for even the simpler cases of k and m, finding k-Diophantine m-tuples is

already of the same complexity and importance as finding integral solutions of an

elliptic curve. As no efficient, general algorithm to find integral solutions of an

elliptic curve has been found yet, there is no algorithm to find the number of ways

to extend a 3-Diophantine triple to a 3-Diophantine quadruple. In fact, the same can

be said about the problem of extending k-Diophantine k-tuples to k-Diophantine

(k + 1)-tuples. It is worth noting that, unlike the case for Diophantine m-tuples

(see Lemma 1.2), there is no if and only if condition for the rational solutions to

Equation 1.2 because we cannot guarantee that x /∈ {a, b, c}.
Inspired by the work of Dujella and Kazalicki [13], we studied k-Diophantine

m-tuples in finite fields Fp where p is an odd prime. We show the existence of at

least one k-Diophantine m-tuple for all primes p that are sufficiently large, and give

a formula for the number of 3-Diophantine triples in Fp.

In Section 2, we provide results that we need to present the proofs of our new

results. Next, we show the following theorems.

Theorem 1.4. Let m ≥ k be an integer. If p > 4( m
k−1)+1

(
( m
k−1)
2 +m+ 1

)2

is a

prime, then there exists at least one k-Diophantine m-tuple in Fp.

Then, we prove a theorem about the number of 3-Diophantine triples over Fp.

Theorem 1.5. Let N3(p) be the number of 3-Diophantine triples in Fp. If p ≡
1 mod 3, let a be an integer such that a ≡ 2 mod 3 and p = a2 + 3b2 for some

integer b > 0. Then,

N3(p) =

{
a+1
3 +

(
p−1
3

)
/2, for p ≡ 1 (mod 3)(

p−1
3

)
/2, for p ≡ 2 (mod 3).

(1.3)

To do this, we need to show the following.

Theorem 1.6. We have

#
{

(a, b, c) ∈ F3
p : abc+ 1 ≡ 0 (mod p)

}
=

{
(p− 2)(p− 3) + 4, if p ≡ 1 (mod 3)

(p− 2)(p− 3), if p ≡ 2 (mod 3)

(1.4)
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where abc(a− b)(a− c)(b− c) 6= 0.

Finally, we prove the following asymptotic formula for the number of k-

Diophantine k-tuples in Fp holds.

Theorem 1.7. Let Nk(p) be the number of k-Diophantine k-tuples in Fp. Then

Nk(p) ∼
pk

k! · 2
+ o(pk). (1.5)

2. Preliminaries

2.1. Legendre Symbol and Their Sums

First, let us define an operation from number theory known as the Legendre symbol.

We recall that if a, p ∈ Z with p prime, gcd(a, p) = 1, then the Legendre

Symbol, denoted as
(

a
p

)
is

(
a

p

)
:=


0 if p | a
1 if a is a quadratic residue modulo p

−1 if a is a quadratic nonresidue modulo p.

(2.1)

Note: In the finite field Fp where p is an odd prime, the Legendre symbol is equiv-

alent to the quadratic character [23, p. 191].

In determining the formula for the number of 3-Diophantine triples in Fp, we

relied on two well-known sums of Legendre symbols. Consider a given polynomial

f with integer coefficients. The two well-known sums are special cases of the sum

p−1∑
x=0

(
f(x)

p

)
. (2.2)

If f is linear, then we have the following result.

Lemma 2.1. For arbitrary integers a and b, and a prime p - a, we have

p−1∑
x=0

(
ax+ b

p

)
= 0. (2.3)

Proof. See Lemma Appendix A.1.

If f is quadratic, then we have this next result.

Lemma 2.2. For arbitrary integers a, b, c, and a prime p such that p - a, then

p−1∑
x=0

(
ax2 + bx+ c

p

)
=

(p− 1)
(

a
p

)
if p | b2 − 4ac

−
(

a
p

)
otherwise.

(2.4)

Proof. See Lemma Appendix A.2.



August 17, 2022 9:52 Diophantine˙m˙tuples˙in˙finite˙fields10

6 T. Hammonds, S. Kim, S. J. Miller, A. Nigam, K. Onghai, D. Saikia, L. M. Sharma

2.2. Gauss’s Lemma

Theorem 2.3. (Gauss) Let E(Fp) : y2 = x3 + D be an elliptic curve. Then for

p ≡ 1 mod 3

#E(Fp) =


p+ 1 + 2a if D is a sextic residue mod p

p+ 1− 2a if D is cubic but not a quadratic residue mod p

p+ 1− a± 3b if D is a quadratic but not a cubic residue mod p

p+ 1 + a± 3b if D is neither quadratic nor cubic residue mod p

(2.5)

where a is an integer such that a ≡ 2 mod 3 and p = a2 + 3b2 for some integer

b > 0. For p ≡ 2 mod 3,

#E(Fp) = p+ 1. (2.6)

Proof. See [21, p. 305, Thm. 4].

2.3. Weil’s Theorem and Quadratic Character Sums

We first state Weil’s theorem for the estimation of character sums; we require this

result for the proof of Lemma 2.5.

Theorem 2.4 (Weil). Let χ be an nth order non-trivial multiplicative character in

the finite field Fq. Let f(x) be a degree d polynomial in Fq such that f(x) 6= kg(x)
n

for any polynomial g(x) and constant k in Fq. Then∣∣∣∣∣∣
∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q. (2.7)

Proof. c.f. [22, Thm. 11.23].

Lemma 2.5 is needed in the proof of Lemma 2.6.

Lemma 2.5 ([23, Ex. 5.63]). Let a1, . . . , ak be distinct elements of Fq, q odd, and

let ε1, . . . , εk be k given integers, each of which is 1 or -1. Let N(ε1, . . . , εk) denote

the number of c ∈ Fq with η(c + aj) = εj for 1 ≤ j ≤ k, where η is the quadratic

character of Fq. Then

N(ε1, . . . , εk) =
1

2k

∑
c∈Fq

[1 + ε1η(c+ a1)] · · · [1 + εkη(c+ ak)]−A, (2.8)

where 0 ≤ A ≤ k/2 and A ∈ R.

Proof. See Lemma Appendix A.3.
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The final result we present in this section is necessary to prove the existence of

k-Diophantine m-tuples in Subsection 3.1.

Lemma 2.6 ([23, Ex. 5.64]). We have∣∣∣N(ε1, . . . , εk)− q

2k

∣∣∣ ≤ (
k − 2

2
+

1

2k

)
q1/2 +

k

2
. (2.9)

Proof. See Lemma Appendix A.4.

We now proceed to the main results of this paper. First, we will prove that for

all sufficiently large odd primes p, there exists at least one k-Diophantine m-tuple

in Fp.

3. Proofs of the main results

3.1. Existence of k-Diophantine m-tuples

Here, we prove that k-Diophantine m-tuples exist for a large enough prime. First,

we establish the case when k = 3.

Theorem 3.1. Let m ≥ 3 be an integer. If p > 2m
2−m−2(m2 + 3m+ 4)

2
is a

prime, then there exists at least one 3-Diophantine m-tuple in Fp.

Proof. We prove this theorem by induction on m. For m = 3 and a prime p such

that

p > 23
2−3−2(32 + 3(3) + 4)

2
= 7744, (3.1)

we have the 3-Diophantine triple {2, 3, 4} in Fp. Indeed, p ≥ 5 is large enough

to guarantee the existence of this 3-Diophantine triple. Suppose that there ex-

ists at least one 3-Diophantine m-tuple in Fp. Now, we want to prove that

there exists a 3-Diophantine (m + 1)-tuple in Fp where p is a prime such that

p > 2m
2+m−2(m2 + 5m+ 8)

2
. Let us take a prime p such that

p > 2(m+1)2−(m+1)−2{(m+ 1)2 + 3(m+ 1) + 4)}2

= 2m
2+m−2(m2 + 5m+ 8)

2
.

Clearly, p > 2m
2−m−2(m2 + 3m+ 4)

2
. Thus, by the induction hypothesis, there

exists a 3-Diophantine m-tuple {a1, a2, . . . , am} in Fp. Define

g := #

{
x ∈ Fp :

(
aiajx+ 1

p

)
= 1 where i, j ∈ Z, 1 ≤ i < j ≤ m

}
= #

{
x ∈ Fp :

(
x+ aiaj

p

)
=

(
aiaj
p

)}
for all i, j such that 1 ≤ i < j ≤ m, where ai denotes the multiplicative inverse of

ai in Fp. We will prove that g − (m + 1) > 0, which guarantees that there exists
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x ∈ Fp, x 6∈ {0, a1, . . . , am} such that
(

aiajx+1
p

)
= 1 with 1 ≤ i < j ≤ m. By

choosing pairs in Fp in
(
m
2

)
ways and using Lemma 2.6,∣∣∣∣g − p

2(m
2 )

∣∣∣∣ ≤
{(

m
2

)
− 2

2
+

1

2(m
2 )

}
√
p+

(
m
2

)
2

g ≥ p

2(m
2 )
−

{(
m
2

)
− 2

2
+

1

2(m
2 )

}
√
p−

(
m
2

)
2

≥ p

2
m(m−1)

2

−
(
m(m− 1)− 4

4
+

1

2
m(m−1)

2

)
√
p− m(m− 1)

4
.

Since (
m(m− 1)

4
− 1 +

1

2
m(m−1)

2

)
√
p+

m(m− 1)

4
+m+ 1

<

(
m2 −m

4
− 1 +

1

2
m(m−1)

2

+
1

2
m(m−1)

2 +1

)
√
p

=

(
m2 −m

4
− 1 +

3

2
m(m−1)

2 +1

)
√
p

<
m(m− 1)

√
p

4
<

p

2
m(m−1)

2

,

we find, g > m+ 1. So, there exists a 3-Diophantine (m+ 1)-tuple {a1, . . . , am, x}
in Fp.

We now consider the same question for arbitrary k.

Theorem 1.4. Let m ≥ k be an integer. If p > 4( m
k−1)+1

(
( m
k−1)
2 +m+ 1

)2

is a

prime, then there exists at least one k-Diophantine m-tuple in Fp.

Proof. We first prove the existence of a k-Diophantine k tuple in Fp by using

induction on k. Then we proceed to prove the theorem by using induction on m.

The base case in the induction process of m is the case when m = k i.e the existence

of a k-Diophantine k-tuple which we would have already proved.

Now, we prove that there exists a k-Diophantine k-tuple for p > 4k(3k + 2)2.

We prove this result by induction on k ≥ 2. For p > 1024 and k = 2, we get the

Diophantine pair {1, 3} in Fp.

Assume the statement holds for k ≥ 2. We consider a prime p > 4k+1(3k + 5)2.

Since p > 4k(3k + 2)2, there exists a k-Diophantine k-tuple {a1, a2, . . . , ak} in Fp.

Let

g := #

{
x ∈ Fp :

(
a1a2 . . . akx+ 1

p

)
= 1

}
. (3.2)
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Let ai denote the multiplicative inverse of ai in Fp. By Lemma 2.6,

g = #

{
x ∈ Fp :

(
x+ a1a2 . . . ak

p

)
=

(
a1a2 . . . ak

p

)}
≥ p

2(k
k)
−

((
k
k

)
− 2

2
+

1

2(k
k)

)
√
p−

(
k
k

)
2

=
p− 1

2

> k + 1 for p > 4k+1(3k + 5)2.

So, there exists at least one x ∈ Fp such that
(

a1a2...akx+1
p

)
= 1 and hence we get

a (k + 1)-Diophantine (k + 1)-tuple {a1, a2, . . . , ak, x} in Fp. Thus, there exists a

k-Diophantine k-tuple in Fp where p > 4k(3k + 2)2 and k ≥ 2. Therefore, the base

case for the induction proof holds.

Let us now assume there exists at least one k-Diophantine m-tuple in

Fp for p > 4( m
k−1)+1

(
( m
k−1)
2 +m+ 1

)2

. Now, we want to prove that there

exists a k-Diophantine (m + 1)-tuple in Fp where p is a prime such that

p > 4(m+1
k−1)+1

(
(m+1
k−1)
2 +m+ 2

)2

. By the induction hypothesis, since p >

4( m
k−1)+1

(
( m
k−1)
2 +m+ 1

)2

, there exists a k-Diophantine m-tuple {a1, a2, . . . , am}

in Fp. Define

g := #

{
x ∈ Fp :

(
ai1ai2 . . . aik−1

x+ 1

p

)
= 1

}
(3.3)

where ai1 , ai2 , . . . , aik−1
∈ {a1, a2, . . . , am}. Let ai denote the multiplicative inverse

of ai in Fp.

By Lemma 2.6,

g = #

{
x ∈ Fp :

(
x+ ai1ai2 . . . aik−1

p

)
=

(
ai1ai2 . . . aik−1

p

)}
≥ p

2( m
k−1)

−

((
m

k−1
)
− 2

2
+

1

2( m
k−1)

)
√
p−

(
m

k−1
)

2
.

Now, we also see that p > 4( m
k−1)+1

(
( m
k−1)
2 +m+ 1

)2

gives

(
m

k−1
)

2
+m+ 1 <

√
p

2( m
k−1)+1

. (3.4)
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Using (3.4), we get ((
m

k−1
)
− 2

2
+

1

2( m
k−1)

)
√
p+

(
m

k−1
)

2
+m+ 1

<

((
m

k−1
)

2
− 1 +

1

2( m
k−1)

+
1

2( m
k−1)+1

)
√
p

=

((
m

k−1
)

2
− 1 +

3

2( m
k−1)+1

)
√
p

<

(
m

k−1
)

2

√
p <

p

2( m
k−1)

.

Hence, we have g > m + 1. Thus, there exists an x ∈ Fp, x 6∈ {0, a1, . . . , am} such

that (
ai1ai2 . . . aik−1

x+ 1

p

)
= 1

where ai1 , ai2 , . . . , aik−1
∈ {a1, a2, . . . , am}. So, there exists a k-Diophantine (m+1)-

tuple {a1, . . . , am, x} in Fp.

3.2. Counting 3-Diophantine Triples

A natural question to ask is exactly how many such k-Diophantine m-tuples exist

for a given (k,m). The following result gives an answer for a special case.

Theorem 1.5. Let N3(p) be the number of 3-Diophantine triples in Fp. If p ≡
1 mod 3, let a be an integer such that a ≡ 2 mod 3 and p = a2 + 3b2 for some

integer b > 0. Then,

N3(p) =

{
a+1
3 +

(
p−1
3

)
/2, for p ≡ 1 (mod 3)(

p−1
3

)
/2, for p ≡ 2 (mod 3).

(1.3)

Indeed, when we compare this formula with the results obtained computation-

ally, we see trends in Table 1 and Figure 1 (in Appendix B) that give us some initial

confidence in the formula’s accuracy.

However, before giving the proof, we need some other results.

3.2.1. Counting Problems

In this subsection, we provide some lemmas that are needed to prove Theorem 1.5.

Lemma 3.2. Let p be a prime and let p 6= 2. We have

#
{

(a, b) ∈ F2
p : a 6= b, ab+ 1 = 0 (mod p)

}
=

{
p− 3, if p ≡ 1 (mod 4)

p− 1, if p ≡ 3 (mod 4).

(3.5)
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Proof. First, we solve the problem without the condition that a 6= b. As Fp is a

field, for each a ∈ Fp \ {0} there exists a unique a−1 ∈ Fp such that aa−1 = 1.

Hence, for each a ∈ Fp, take b = −a−1. It follows from this definition that ab ≡ −1

(mod p). Since each b is unique for fixed a, there are exactly p− 1 pairs (a, b) ∈ F2
p

such that ab+ 1 = 0.

Now, with the condition a 6= b, notice that we need only find the odd primes p

for which -1 is a quadratic residue. In other words, we wish to find when
(
−1
p

)
= 1

where
(
a
b

)
is the Legendre symbol. By Euler’s Criterion, this is equivalent to asking

when (−1)
p−1
2 = 1. This implies that -1 is a quadratic residue modulo p if and only

if p−1
2 is even. Since p−1

2 is even when p ≡ 1 (mod 4) and odd when p ≡ 3 (mod 4),

we have

#
{

(a, b) ∈ F2
p : a 6= b, ab+ 1 = 0 (mod p)

}
=

{
p− 3, if p ≡ 1 (mod 4)

p− 1, if p ≡ 3 (mod 4).

(3.6)

Theorem 1.6. We have

#
{

(a, b, c) ∈ F3
p : abc+ 1 ≡ 0 (mod p)

}
=

{
(p− 2)(p− 3) + 4, if p ≡ 1 (mod 3)

(p− 2)(p− 3), if p ≡ 2 (mod 3)

(1.4)

where abc(a− b)(a− c)(b− c) 6= 0.

Proof. We want to find∑
l∈Fp\{0}

#
{

(a, b) ∈ F2
p : ab≡l (mod p)

abc(a−b)(a−c)(b−c)6=0}

}
.

If l is a quadratic residue modulo p, then there are two pairs (a, b) such that

ab = l and a, b are not distinct, for if a = b = x is one such pair then a = b = −x
is the other pair. So, if l is a quadratic residue, then there are p − 3 pairs. On the

other hand, if l is a quadratic non-residue modulo p, then there are p− 1 pairs such

that ab = l and a, b are distinct. Thus, we have that

#
{

(a, b) ∈ F2
p : ab ≡ l (mod p)

}
= (p− 1)

p− 1

2
+ (p− 3)

p− 1

2

= (p− 1)(p− 2).

However, the theorem statement asks a slightly different question. Now, we must

consider when c = a or c = b.

Case 1. p ≡ 2 (mod 3) We want to show that there are p+1
2 residues l for which

there are p − 3 distinct triples (a, b, c) and p−3
2 residues l for which there
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are p−5 distinct triples (a, b, c). This would imply that, for p ≡ 2 (mod 3),

#
{

(a, b, c) ∈ F3
p : abc+ 1 ≡ 0 (mod p)

}
= (p− 3)

p+ 1

2
+ (p− 5)

p− 3

2

= (p− 2)(p− 3).

The residues for which there are p − 5 solutions satisfy ab ≡ a2 ≡ l

(mod p) but not abc ≡ a3 ≡ −1 (mod p). In this case, there are two pairs

such that a = b and ab ≡ l (mod p), i.e., (a, a) and (−a,−a), and two

pairs such that either b = c and abc ≡ ab2 ≡ −1 (mod p) or a = c and

abc ≡ a2b ≡ −1. Hence, we have p−1−4 = p−5 solutions. We know there

are p−3
2 such residues by Euler’s Criterion.

The residues, l, for which there are p − 3 solutions either do not sat-

isfy ab ≡ a2 ≡ l (mod p) or contain a pair that forms a solution of

abc ≡ a3 ≡ −1 (mod p) when extended by c. First, we restrict ourselves

to the quadratic non-residues. There exist pairs (a, c) or (b, c), a 6= b such

that either b = c and abc ≡ −1 (mod p) or a = c and abc ≡ −1. Since l

is a quadratic non-residue, a 6= b. We know there are p−1
2 such quadratic

non-residues. Now, for the cubic residues of −1, there are q = gcd(3, p− 1)

solutions to the congruence x3 ≡ −1 (mod p) by Euler’s criterion. For p ≡ 2

(mod 3), q = 1. Thus, there are p−1
2 +1 = p+1

2 residues with p−3 solutions

to abc+ 1 ≡ 0 (mod p).

Case 2. p ≡ 1 (mod 3) In this case, instead of there being exactly 1 solution to

x3 ≡ −1 (mod p), there are q = gcd(3, p − 1) = 3 solutions. So, there

are p−1
2 + 3 = p+5

2 residues for which there are p − 3 triples satisfying

abc+ 1 ≡ 0 (mod p), and p−1
2 − 3 = p−7

2 residues for which there are p− 5

triples satisfying abc+ 1 ≡ 0 (mod p). Thus,

#
{

(a, b, c) ∈ F3
p : abc+ 1 ≡ 0 (mod p)

}
= (p− 3)

p+ 5

2
+ (p− 5)

p− 7

2

= (p− 2)(p− 3) + 4.

Now we present the proof of Theorem 1.5.

Proof. We have

12N3(p) =
∑(

1 +

(
abc+ 1

p

)′)
(3.7)

where the sum is evaluated over non-zero and distinct a, b, c, and we have defined(
a
p

)′
=
(

a
p

)
for a 6= 0 and

(
a
p

)′
= 1 for a = 0. Hence

12N3(p) =
∑
c6=0

∑
b 6=0,c

∑
a6=0,b,c

1

+
∑
c6=0

∑
b6=0,c

∑
a6=0,b,c

(
abc+ 1

p

)
+ #

{
(a, b, c) ∈ F3

p : abc+ 1 ≡ 0 (mod p)
}
.
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The first summand will just be (p− 1)(p− 2)(p− 3), and by Lemma 1.6 we already

have the solution for the final summand. We use Lemmas 2.1 and 2.2 to evaluate

the middle sum:∑
c 6=0

∑
b6=0,c

∑
a6=0,b,c

(
abc+ 1

p

)
= −

∑
c6=0

∑
b6=0,c

(
1

p

)
+

(
b2c+ 1

p

)
+

(
bc2 + 1

p

)
. (3.8)

This gives

−
∑
c 6=0

∑
b6=0,c

1 +

(
b2c+ 1

p

)
+

(
bc2 + 1

p

)
= −

∑
c6=0

(p− 4)− 2

(
c3 + 1

p

)

= −(p− 1)(p− 4) + 2
∑
c 6=0

(
c3 + 1

p

)
.

Using Theorem 2.3, we can evaluate the sum
∑

c6=0

(
c3+1
p

)
. In particular we get

∑
c 6=0

(
c3 + 1

p

)
=

{
2a− 1 for p ≡ 1 (mod 3)

−1 for p ≡ 2 (mod 3)

=⇒
∑
c 6=0

∑
b 6=0,c

∑
a 6=0,b,c

(
abc+ 1

p

)
=

{
−(p− 2)(p− 3) + 4a for p ≡ 1 (mod 3)

−(p− 2)(p− 3) for p ≡ 2 (mod 3).

Combining this with the result from Theorem 1.6 we get the claim.

As one might imagine, counting k-Diophantine k-tuples for a general k is not

that simple due to the complexity of the following problem:

What are the total number of k-tuples {a1, a2, . . . , ak} such that ai are all distinct,

non-zero and

k∏
i=1

ai + 1 ≡ 0 mod p? (3.9)

3.3. Asymptotic Formula

While a general formula of the number of k-Diophantine k-tuples is difficult, an

asymptotic formula is well within reach. We describe the formula in the following

result.

Theorem 1.7. Let Nk(p) be the number of k-Diophantine k-tuples in Fp. Then

Nk(p) ∼
pk

k! · 2
+ o(pk). (1.5)

Proof. We know that

k! · 2 ·Nk(p) =
∑(

1 +

(
1 + a1a2 . . . ak

p

)′)
(3.10)
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where the sum is taken over distinct and non-zero a1, a2, . . . , ak and we have defined(
a
p

)′
=
(

a
p

)
for a 6= 0 and

(
a
p

)′
= 1 for a = 0 as before. The main term is∑

1 = (p− 1)(p− 2) . . . (p− k) = pk + o(pk). Now∑(
1 + a1a2 . . . ak

p

)′
=
∑(

1 + a1a2 . . . ak
p

)
+ #

{
(a1, a2, . . . , ak) ∈ Fk

p :

k∏
i=1

ai + 1 ≡ 0 (mod p)

}
.

Using Weil’s estimate for character sums (Theorem 2.4), we note that∑(
1 + a1a2 . . . ak

p

)
≤ pk−1

√
p. (3.11)

We also note that

#

{
(a1, a2, . . . , ak) ∈ Fk

p :

k∏
i=1

ai + 1 ≡ 0 (mod p)

}
≤ (p− 1)k−1. (3.12)

Hence ∑(
1 + a1a2 . . . ak

p

)′
= o(pk). (3.13)

The result follows.

4. Concluding remarks

In this paper, we attempted to answer two fundamental questions about k-

Diophantine m-tuples:

(1) Given a sufficiently large prime p, is there always a k-Diophantine m-tuple in

Fp?

(2) Can we count the number of k-Diophantine m-tuples in Fp for a given prime p?

We give complete answer to (1) in Theorem 1.4. While we were unable to answer (2)

for an arbitrary pair (k,m), we were able to come up with an asymptotic formula

for the number of k-Diophantine k-tuples for any k (Theorem 1.7) and an explicit

formula for (k,m) = (3, 3) (Theorem 1.5).

Some questions asked for the usual Diophantine m-tuples can be asked for k-

Diophantine m-tuples as well. For instance,

(1) Can we find a formula that, for a given n, allows us to count the number of

k-Diophantine m-tuples with property D(n), i.e. the set where k-wise products

of distinct elements is n less than a perfect square? What about about n less

than the t-th power?

(2) What can be said about the existence of such tuples in other commutative

rings with unity, like Gaussian integers, integers, p-adic integers, polynomial

rings etc?
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Appendix A. Proofs from the Preliminaries

For completeness we include proofs of some standard results about sums of Legendre

symbols.

Lemma Appendix A.1. For arbitrary integers a and b, and a prime p - a, we

have

p−1∑
x=0

(
ax+ b

p

)
= 0.. (A.1)

Proof. As p - a, ax + b forms a complete set of residues modulo p as x runs

through the integers 0 to p− 1. Every such set contains p−1
2 quadratic residues and

p−1
2 quadratic non-residues. Hence,

p−1∑
x=0

(
ax+ b

p

)
=

p− 1

2
− p− 1

2
= 0. (A.2)

Lemma Appendix A.2. For arbitrary integers a, b, c, and a prime p such that

p - a, then

p−1∑
x=0

(
ax2 + bx+ c

p

)
=

(p− 1)
(

a
p

)
if p | b2 − 4ac

−
(

a
p

)
otherwise.

(A.3)

Proof. Notice that this sum is equivalently written as(
4a

p

) p−1∑
x=0

(
4a2x2 + 4abx+ 4ac

p

)
=

(
a

p

) p−1∑
x=0

(
(2ax+ b)

2 − (b2 − 4ac)

p

)

=

(
a

p

)
S,

where S =
∑p−1

x=0

(
(2ax+b)2−(b2−4ac)

p

)
.
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Since the numbers ax+ b form a complete set of residues modulo p as x varies

from 0 to p− 1, we have

S =

p−1∑
l=0

(
l2 − (b2 − 4ac)

p

)
. (A.4)

It is well known that S ≡ −1 (mod p) and |S| ≤ p [1, Ex. 10.10]. From this, we

obtain S = −1, p− 1. If S = p− 1, then p− 1 terms in S must take the value 1 and

there is exactly one term, i.e., when l = l′, that equals 0. As this l′ must satisfy both

p | l′2− (b2− 4ac) and p | (−l′)2− (b2− 4ac), it follows that l′ = 0 and p | b2− 4ac.

Conversely, if p | b2 − 4ac, then

S =

p−1∑
l=0

(
l2

p

)
= 0 + 1 · p− 1 = p− 1. (A.5)

Hence, S = −1 if and only if p - b2 − 4ac. Thus,

p−1∑
x=0

(
ax2 + bx+ c

p

)
=

(p− 1)
(

a
p

)
if p | b2 − 4ac

−
(

a
p

)
otherwise.

(A.6)

Lemma Appendix A.3 ([23, Ex. 5.63]). Let a1, . . . , ak be distinct elements

of Fq, q odd, and let ε1, . . . , εk be k given integers, each of which is 1 or -1. Let

N(ε1, . . . , εk) denote the number of c ∈ Fq with η(c+ aj) = εj for 1 ≤ j ≤ k, where

η is the quadratic character of Fq. Then

N(ε1, . . . , εk) =
1

2k

∑
c∈Fq

[1 + ε1η(c+ a1)] · · · [1 + εkη(c+ ak)]−A, (A.7)

where 0 ≤ A ≤ k/2 and A ∈ R.

Proof. Notice that, for fixed c, if η(c + aj) = εj , then εjη(c + aj) = 1; otherwise,

εjη(c+ aj) = −1 for c+ aj 6= 0 or η(c+ aj) = 0. This implies that, if η(c+ aj) = εj
for all j ∈ N such that 1 ≤ j ≤ k and c fixed, then

[1 + ε1η(c+ a1)] · · · [1 + εkη(c+ ak)] = 2k. (A.8)

Otherwise,

[1 + ε1η(c+ a1)] · · · [1 + εkη(c+ ak)] = 0 (A.9)

if εiη(c+ ai) = −1 for some i ∈ N such that 1 ≤ i ≤ k, or

[1 + ε1η(c+ a1)] · · · [1 + εkη(c+ ak)] = 2k−1 (A.10)
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if εiη(c + ai) = 0 for some i ∈ N and η(c + aj) = 1 for all j 6= i. Note that there

is at most one ai with the property that η(c+ ai) = 0 since a1, . . . , ak are distinct

and c is constant. Thus, we have

N(ε1, . . . , εk) =
1

2k

∑
c∈Fq

[1 + ε1η(c+ a1)] · · · [1 + εkη(c+ ak)]−A, (A.11)

where 0 ≤ A ≤ k/2.

Lemma Appendix A.4 ([23, Ex. 5.64]). We have∣∣∣N(ε1, . . . , εk)− q

2k

∣∣∣ ≤ (
k − 2

2
+

1

2k

)
q1/2 +

k

2
. (A.12)

Proof. First, we expand the product in the expression for N(ε1, . . . , εk) given

above.

[1+ε1η(c+a1)] · · · [1+εkη(c+ak)] = 1+

k∑
i=1

εiη(c+ai)+

k∑
j 6=i

k∑
i=1

εiεjη(c+ai)η(c+aj)

+ · · ·+ ε1ε2 · · · εkη(c+ a1)η(c+ a2) · · · η(c+ ak). (A.13)

By the multiplicative nature of the quadratic character, A.13 is equivalent to

1 +

k∑
i=1

εiη(c+ ai)

+

k∑
j 6=i

k∑
i=1

εiεjη[(c+ ai)(c+ aj)] + · · ·+ ε1ε2 · · · εkη[(c+ a1)(c+ a2) · · · (c+ ak)].

We see that the product expands into a sum of quadratic characters of functions

in c of various degrees. More specifically, we find that there are
(
k
i

)
functions of

degree i where 1 ≤ i ≤ k. By Theorem 2.4, we can show that∣∣∣∣∣∣
∑
c∈Fq

k∑
d=1

η(fd(x))

∣∣∣∣∣∣ ≤
k∑

d=1

(
k

d

)
(d− 1)

√
q

=
√
q

(
k∑

d=1

(
k

d

)
d−

k∑
d=1

(
k

d

))
=
(
k2k−1 − 2k−1

)√
q,

where fd are all the functions of degree d for which the quadratic character is

evaluated. It follows that∣∣∣N(ε1, . . . , εk)− q

2k

∣∣∣ ≤ (k − 2

2
+

1

2k

)
q1/2 +

k

2
. (A.14)
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Appendix B. Tables and Graphs

The tables and graphs shown are shown here to offer some computational verifica-

tion of the formula presented in Theorem 1.5 and demonstrate what the program

we used is capable of. As the formula predicts, we see in Table 1 and Figure 1 a

positive quadratic trend in the number of 3-Diophantine triples against the size of

Fp. The reason we decided not to plot values of p past 200 was the computational

cost of doing so and that one can see this trend for p < 300. The program was not

only able to give the number of k-Diophantine m-tuples in Fp, but also the explicit

m-tuples themselves, as seen in Table 2.

Table 1: Number of 3-Diophantine triples in Fp for various primes p.

p p ≡ 1, 2 (mod 3) N3(p) a (if p ≡ 1 (mod 3)) Error term (a+ 1)/3

5 2 2 - -

7 1 11 2 1

11 2 60 - -

13 1 110 -1 0

17 2 280 - -

19 1 407 -4 -1

23 2 770 - -

29 2 1638 - -

31 1 2031 2 1

37 1 3572 5 2

41 2 4940 - -

43 1 5739 -4 -1

101 2 80850 - -

229 1 97472 11 4
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Fig. 1: Graph of number of 3-Diophantine triples in Fp for various p.
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Fig. 2: Semi-log graph of Number of 3-Diophantine triples in Fp for various p.
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Fig. 3: Log-log graph of number of 3-Diophantine triples in Fp for various p.
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Table 2: List of all 3-Diophantine Quadruples in F23.

(1, 2, 4, 6) (1, 2, 4, 20) (1, 2, 6, 14) (1, 2, 11, 12) (1, 2, 13, 15)

(1, 2, 13, 19) (1, 2, 15, 20) (1, 2, 17, 19) (1, 2, 19, 20) (1, 3, 4, 10)

(1, 3, 4, 21) (1, 3, 5, 8) (1, 3, 8, 15) (1, 3, 15, 18) (1, 3, 16, 19)

(1, 3, 17, 19) (1, 3, 19, 21) (1, 4, 6, 12) (1, 4, 7, 20) (1, 4, 10, 21)

(1, 4, 17, 18) (1, 4, 17, 21) (1, 4, 19, 20) (1, 5, 6, 9) (1, 5, 6, 20)

(1, 5, 8, 9) (1, 5, 16, 19) (1, 6, 8, 20) (1, 6, 9, 21) (1, 6, 12, 21)

(1, 6, 19, 20) (1, 6, 19, 21) (1, 6, 21, 22) (1, 7, 9, 11) (1, 7, 9, 18)

(1, 7, 10, 12) (1, 7, 11, 13) (1, 7, 13, 20) (1, 8, 9, 21) (1, 8, 10, 13)

(1, 8, 10, 21) (1, 8, 15, 20) (1, 8, 20, 22) (1, 9, 11, 13) (1, 9, 14, 17)

(1, 9, 17, 18) (1, 10, 12, 14) (1, 10, 12, 16) (1, 10, 14, 15) (1, 11, 12, 21)

(1, 11, 13, 16) (1, 11, 13, 19) (1, 11, 16, 22) (1, 11, 17, 19) (1, 11, 17, 21)

(1, 11, 21, 22) (1, 12, 16, 22) (1, 12, 21, 22) (1, 14, 15, 17) (1, 14, 15, 18)

(1, 14, 16, 18) (1, 15, 20, 22) (1, 16, 18, 22) (1, 18, 20, 22) (2, 3, 4, 21)

(2, 3, 4, 22) (2, 3, 5, 8) (2, 3, 5, 14) (2, 3, 8, 12) (2, 3, 8, 22)

(2, 3, 9, 20) (2, 3, 14, 20) (2, 3, 19, 22) (2, 4, 5, 13) (2, 4, 5, 15)

(2, 4, 6, 22) (2, 4, 9, 15) (2, 4, 9, 20) (2, 4, 10, 15) (2, 4, 13, 21)

(2, 4, 20, 21) (2, 5, 7, 10) (2, 5, 7, 14) (2, 5, 7, 16) (2, 5, 8, 14)

(2, 5, 12, 15) (2, 5, 13, 16) (2, 5, 13, 21) (2, 5, 16, 21) (2, 6, 7, 16)

(2, 6, 11, 22) (2, 6, 16, 21) (2, 7, 9, 14) (2, 7, 9, 15) (2, 7, 9, 18)

(2, 7, 10, 15) (2, 7, 12, 17) (2, 7, 16, 18) (2, 8, 10, 13) (2, 8, 10, 19)

(2, 8, 10, 22) (2, 8, 11, 16) (2, 8, 13, 16) (2, 8, 14, 19) (2, 8, 18, 19)

(2, 9, 14, 16) (2, 9, 15, 18) (2, 9, 17, 22) (2, 10, 13, 18) (2, 10, 19, 22)

(2, 11, 12, 15) (2, 11, 15, 18) (2, 11, 15, 20) (2, 11, 16, 18) (2, 12, 17, 22)

(2, 13, 16, 17) (2, 13, 18, 19) (2, 14, 19, 20) (2, 16, 17, 21) (2, 17, 19, 22)

(3, 4, 6, 7) (3, 4, 6, 22) (3, 4, 10, 11) (3, 4, 14, 16) (3, 4, 14, 21)

(3, 5, 10, 18) (3, 5, 10, 20) (3, 5, 14, 17) (3, 5, 18, 22) (3, 6, 7, 17)

(3, 6, 9, 20) (3, 6, 14, 17) (3, 6, 14, 20) (3, 6, 15, 22) (3, 6, 16, 17)

(3, 6, 16, 20) (3, 6, 18, 22) (3, 7, 8, 12) (3, 7, 9, 19) (3, 7, 10, 11)

(3, 7, 10, 12) (3, 7, 17, 19) (3, 7, 19, 22) (3, 9, 10, 12) (3, 9, 12, 19)

(3, 9, 17, 20) (3, 9, 19, 21) (3, 10, 12, 20) (3, 10, 13, 18) (3, 10, 18, 20)

(3, 11, 12, 15) (3, 11, 13, 14) (3, 11, 13, 16) (3, 11, 14, 16) (3, 11, 15, 21)

(3, 12, 13, 16) (3, 12, 15, 16) (3, 12, 15, 20) (3, 12, 16, 20) (3, 14, 17, 20)

(3, 15, 18, 21) (3, 16, 17, 20) (4, 5, 6, 7) (4, 5, 8, 18) (4, 5, 18, 19)

(4, 6, 8, 11) (4, 6, 8, 17) (4, 6, 11, 22) (4, 6, 12, 15) (4, 6, 12, 17)

(4, 6, 15, 17) (4, 7, 8, 14) (4, 7, 9, 19) (4, 7, 19, 20) (4, 8, 11, 17)

(4, 8, 13, 14) (4, 8, 13, 21) (4, 8, 18, 21) (4, 9, 10, 11) (4, 9, 10, 19)

(4, 9, 13, 19) (4, 9, 13, 20) (4, 9, 16, 20) (4, 10, 14, 15) (4, 10, 18, 21)

(4, 11, 12, 19) (4, 12, 13, 14) (4, 12, 13, 20) (4, 12, 15, 17) (4, 13, 21, 22)

(4, 14, 15, 16) (4, 16, 17, 20) (4, 16, 20, 22) (4, 17, 20, 22) (4, 17, 21, 22)
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(4, 20, 21, 22) (5, 6, 7, 11) (5, 6, 9, 20) (5, 6, 10, 12) (5, 6, 10, 18)

(5, 6, 11, 13) (5, 6, 11, 18) (5, 6, 12, 18) (5, 7, 11, 21) (5, 7, 14, 22)

(5, 7, 16, 22) (5, 8, 9, 15) (5, 8, 9, 18) (5, 8, 9, 21) (5, 8, 11, 21)

(5, 8, 14, 15) (5, 8, 15, 19) (5, 8, 18, 19) (5, 9, 11, 18) (5, 9, 12, 16)

(5, 9, 12, 18) (5, 9, 15, 22) (5, 9, 16, 21) (5, 9, 16, 22) (5, 9, 18, 22)

(5, 9, 20, 21) (5, 10, 17, 18) (5, 10, 19, 21) (5, 11, 17, 18) (5, 12, 17, 18)

(5, 13, 16, 17) (5, 14, 17, 22) (5, 15, 19, 21) (5, 15, 20, 22) (6, 7, 11, 13)

(6, 7, 13, 21) (6, 7, 17, 21) (6, 8, 11, 13) (6, 8, 12, 17) (6, 8, 12, 19)

(6, 8, 13, 14) (6, 8, 15, 19) (6, 9, 15, 22) (6, 10, 12, 16) (6, 10, 14, 17)

(6, 10, 16, 18) (6, 11, 15, 19) (6, 12, 15, 17) (6, 12, 16, 21) (6, 13, 14, 17)

(6, 14, 18, 22) (6, 16, 17, 21) (6, 16, 19, 20) (6, 18, 19, 22) (6, 19, 21, 22)

(7, 8, 10, 12) (7, 8, 13, 16) (7, 8, 13, 21) (7, 8, 15, 16) (7, 9, 14, 19)

(7, 9, 14, 21) (7, 9, 15, 19) (7, 10, 11, 15) (7, 10, 11, 22) (7, 11, 13, 20)

(7, 11, 15, 20) (7, 12, 13, 18) (7, 12, 13, 20) (7, 12, 13, 22) (7, 12, 14, 20)

(7, 12, 17, 18) (7, 13, 15, 16) (7, 13, 16, 22) (7, 13, 18, 21) (7, 14, 19, 20)

(7, 16, 18, 22) (7, 18, 19, 22) (8, 9, 10, 17) (8, 9, 10, 19) (8, 9, 15, 19)

(8, 9, 16, 19) (8, 10, 12, 19) (8, 10, 13, 22) (8, 11, 13, 16) (8, 11, 16, 20)

(8, 12, 17, 19) (8, 12, 18, 21) (8, 12, 20, 21) (8, 13, 14, 22) (8, 14, 15, 19)

(8, 14, 18, 22) (8, 18, 20, 22) (9, 10, 12, 19) (9, 11, 12, 18) (9, 11, 13, 20)

(9, 12, 13, 14) (9, 12, 16, 22) (9, 13, 14, 17) (9, 13, 14, 19) (9, 13, 15, 19)

(9, 14, 16, 19) (9, 14, 16, 21) (9, 14, 17, 22) (10, 11, 16, 18) (10, 11, 16, 20)

(10, 11, 16, 22) (10, 11, 17, 18) (10, 12, 14, 20) (10, 12, 16, 20) (10, 13, 14, 17)

(10, 13, 17, 18) (10, 13, 18, 20) (10, 14, 19, 20) (10, 15, 16, 21) (10, 16, 18, 21)

(10, 16, 20, 22) (10, 19, 20, 22) (11, 12, 14, 18) (11, 12, 15, 21) (11, 13, 14, 19)

(11, 14, 16, 18) (11, 15, 17, 19) (12, 13, 15, 16) (12, 13, 15, 17) (12, 13, 16, 22)

(12, 13, 17, 18) (12, 15, 16, 21) (12, 17, 19, 22) (13, 15, 19, 21) (13, 15, 21, 22)

(14, 15, 16, 21) (14, 15, 18, 21) (14, 16, 18, 21) (14, 17, 21, 22) (19, 20, 21, 22)
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