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Abstract. For a fixed elliptic curve E without complex multiplication, ap := p + 1 −#E(Fp) is
O(

√
p) and ap/2

√
p converges to a semicircular distribution. Michel proved that for a one-parameter

family of elliptic curves y2 = x3 + A(T )x + B(T ) with A(T ), B(T ) ∈ Z[T ] and non-constant j-
invariant, the second moment of ap(t) is p2 + O(p3/2). The size and sign of the lower order terms
has applications to the distribution of zeros near the central point of Hasse-Weil L-functions and
the Birch and Swinnerton-Dyer conjecture. S. J. Miller conjectured that the highest order term of
the lower order terms of the second moment that does not average to zero is on average negative.
Previous work on the conjecture has been restricted to a small set of highly nongeneric families. We
create a database and a framework to quickly and systematically investigate biases in the second
moment of any one-parameter family. When looking at families which have so far been beyond
current theory, we find several potential violations of the conjecture for p ≤ 250, 000 and discuss
new conjectures motivated by the data.

1. Introduction

We assume the reader is familiar with elliptic curves. For detailed references, see, for example,
[Sil94; Sil09]. Let E → P1 be a non-split elliptic surface over Q with Weierstrass equation

E : y2 = x3 +A(T )x+B(T ) (1.1)

with 4A(T )3 + 27B(T )2 ̸= 0. We can take A(T ), B(T ) ∈ Z[T ] and its j-invariant is given by

j(T ) := 1728
4A(T )3

4A(T )3 + 27B(T )2
. (1.2)

If 0 ≤ max{3deg(A(T )), 2deg(B(T ))} < 12, then E is a rational surface. In addition, almost all
specializations T = t ∈ Z result in an elliptic curve Et,

Et := y2 = x3 +A(t)x+B(t), (1.3)

and we say the set of all such Et forms a one-parameter family of elliptic curves of Q. The rank
of such a family is defined to be the minimum rank r that appears infinitely often among the
curves Et in the one-parameter family. The expected value of #Et(Fp) is p + 1 and we write
at(p) := p+1−#Et(Fp) for the trace of Frobenius of Et at p. By Hasse’s theorem on elliptic curves
[Has36] we have that |at(p)| ≤ 2

√
p.

The n-th moment of the Frobenius trace of a one parameter family is defined for each prime p as

An,E(p) :=

p−1∑
t=0

at(p)
n.

Note that we do not normalize by 1/p, so this sum is always an integer. The moments of a one-
parameter family encode arithmetic properties of the family. For example, Rosen and Silverman
[RS98] proved a conjecture of Nagao [Nag97] relating the first moment to the rank of an elliptic
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surface: if Tate’s conjecture holds for the elliptic surface E (e.g., when E is a rational surface; see
[Shi72]), then

lim
X→∞

1

X

∑
p≤X

A1,E(p) log p

p
= −rankE(Q(T )). (1.4)

Therefore, the rank of such a surface is determined by its first moments, and is directly related to
negative bias in the values of at(p).

Motivated by the negative bias in the first moment and its arithmetic importance, it is natural
to ask if biases also exist in higher moments and if these biases are also arithmetically significant.
This is the impetus for our work: we build a large database of Frobenius traces for primes up to
250,000 so that we can then easily investigate any one-parameter family, by, for example, numer-
ically computing higher moments and attempting to isolate their lower order biases. Given more
computing power, the framework we establish can easily be used to generate a larger database, and
investigate higher moments.

To make our investigations precise, we recall the following asymptotic second moment expansion.

Theorem 1.1 (Michel [Mic95]). Let E be an elliptic surface with nonconstant j-invariant. Then
the second moment is of the form

A2,E(p) = p2 +O
(
p3/2

)
, (1.5)

with lower order terms of size p3/2, p, p1/2 and 1, respectively, where each has a cohomological
interpretation.

In his Ph.D. thesis [Mil02], S. J. Miller computed a closed form expression for the second moment
of several carefully chosen families. Based on these computations, and motivated by biases in the
first moment expansion, Miller formulated the Bias Conjecture for the second moment: the largest
lower order term in the second moment expansion which does not average to 0 is on average negative.
As an application, negative biases in the second moment expansion are related to low-lying zeros
and thus the average rank of E over Q(T ), as this latter quantity can be bounded using the density
of low-lying zeros. See [Bat+24; Mil05] for a detailed discussion to the excess rank problem.

Further results confirming the Bias Conjecture have been obtained in [Asa+23; KN21; KN22;
Mac+16; Mil02; Mil04; Mil05]. For instance, see [Bat+24] for a table of families with closed form
first and second moment expressions as obtained by [Asa+23; Mil02; Mil05]. The majority of these
calculations rely on linear and quadratic Legendre symbol identites which we briefly touch on later;
the takeaway is that these calculations are only tractable for lower degree A(T ), B(T ), although
this restriction often is still not enough. However, some results have also been obtained for specially
chosen cubics and quartics. For example [Bat+24] recently proved that for primes p ≡ 2 mod 3, the
family E : y2 = x3 + x+ T 3 has second moment p2 + p by making use of an automorphism to lower
the degree of B(T ). For primes p ≡ 1 mod 3, however, they were not able to find a closed form
expression and the data here appears random. Of note, the overall data appears generally slightly
negative; we touch more on this later. Nonetheless, this demonstrates progress towards disproving
the Bias Conjecture, as a positive density of primes have positive bias.

As such, by looking at families beyond the scope of Legendre symbol identities, we already begin
to see interesting behavior. The salient point is that all of the families for which we have a closed
form expression are specially chosen to be parameterized by low degree polynomials A(T ) and B(T ).
Hence, we do not expect them to necessarily reflect the behavior of generic families. To this end,
we computationally investigate one-parameter families defined by higher degree polynomials A(T )
and B(T ) where Legendre symbol calculations are intractable and to which the results of [KN21;
KN22] on cubic pencils do not apply. Our numerical work seeks to evaluate whether we expect the

2



Bias Conjecture to hold by investigating a more generic swath of families. To isolate the lower order
bias, we compute the following normalized second moment

B2,E(p) =
A2,E(p)− p2

p3/2
(1.6)

and take a running average over primes p. Note that if the largest lower order term which does
not average to 0 is of size p or p1/2, then isolating lower order biases is difficult due to noise from
the p3/2 term drowning out fluctuations on the order of p−1/2. Thus studying the Bias Conjecture
numerically is a challenging problem. While our investigations turn up interesting families for
further study, these techniques cannot prove or disprove the Bias Conjecture and are most useful
for determining where to best allocate time and effort for further theoretical study and motivating
the development of conjectures. Indeed, from a theoretical point of view, higher moments are
signficantly more complicated to study, yet from a computational point of view, using our database
one can compute them equally as easily. Hence, our work can be used to inform hypotheses about
lower order biases in higher moment expansions.

We expect our database to have many applications to computing other quantities related to the
traces of Frobenius of a one-parameter family and can be used to attempt to formulate analogous
Bias Conjectures for the higher moments n ≥ 3. In Section 2, we discuss the techniques used to
optimize computation and storage of the ap values to generate a database storing data for a large
number of primes. Then, in Section 3, we illustrate the utility of the database by performing an
extensive family search for polynomials A(T ) and B(T ) of degree at most 5 and some of degree
at most 10. We investigate whether these families have potential positive bias using two statistics,
an unweighted running average of the normalized second moment and a log-weighted average of
the normalized second moment. Our search found some candidates with potential positive bias
for further investigation which we also detail in this section. We also numerically explored the
distribution of the normalized second moment and we discuss our findings and a conjecture about
the variance of these distributions which our numerical work generated in Section 4. Finally, in
Section 6, we propose additional avenues for future work.

2. Creating a database of ap values

There exists an explicit formula to compute at(p) by calculating the number of solutions to
Et mod p using Legendre symbols. For a ∈ Fp, the Legendre symbol is defined as(

a

p

)
=


0 a = 0,

1 a = n2 for some n,

−1 otherwise.
(2.1)

Since at(p) = p+ 1−#Et(Fp), if Et : y
2 = x3 +A(t)x+B(t), then for p odd we have that

−at(p) =

p−1∑
x=0

(
x3 +A(t)x+B(t)

p

)
. (2.2)

Hence the second moment can be computed as

A2,E(p) =

p−1∑
t=0

p−1∑
x=0

p−1∑
w=0

(
x3 +A(t)x+B(t)

p

)(
w3 +A(t)w +B(t)

p

)
. (2.3)

For the families for which Miller was able to obtain a closed form expression, switching the order of
summation yielded a quadratic or linear Legendre sum which can be evaluated using the following
lemma. Then, for the carefully chosen families he considered, the remaining sums were easy to
evaluate.
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Lemma 2.1 (Linear and Quadratic Legendre Sums). Let p be an odd prime. If a ̸≡ 0 mod p, then

p−1∑
t=0

(
at+ b

p

)
= 0, (2.4)

and

p−1∑
t=0

(
at2 + bt+ c

p

)
=

(p− 1)
(
a
p

)
if p | (b2 − 4ac),

−
(
a
p

)
otherwise.

(2.5)

From (2.3), we compute a database of ap for elliptic curves Ea,b : y
3 = x3 + ax+ b for all values

of a, b ∈ Fp for primes p up to some prime P . This requires both efficient algorithms to cut down
computation time and efficient storage to minimize the amount of data that needs to be stored for
each prime p. Naively, we need to compute p2 values of ap, however, in our database, we need only
at most 4p+ 6 values: namely,

# of ap stored =

{
4p p ≡ 1 mod 4

2p p ≡ 3 mod 4
+

{
6 p ≡ 1 mod 3

0 p ≡ 0, 2 mod 3.
(2.6)

Using an additional optimization which we did not implement but which we detail below, one can
reduce this to 2p + θ(1) many ap for all primes p. In building the database used in this paper,
we take P to be the largest prime smaller than 250,000. However, our computation, storage, and
look-up methods and can be extended to build a database for larger values of P and extract values
of ap for any Ea,b corresponding to a pair of residues mod p for any prime p ≤ P (up to limits in
accurately storing large integers). The C++ code for computing and storing the values of ap for each
p is available at [Che+24] and is contained in the file quarticclasses.cpp. Note that we store and
compute −ap rather than ap.

2.1. Reduction to a smaller set of ap’s. We take advantage of two automorphisms and Legendre
symbol identities to reduce the number of ap we need to compute and store. Since we are working
over a field with characteristic zero, we write our elliptic curve with Weierstrass form E : y2 =
x3 + ax+ b for some a, b ∈ Q. By multiplying by an appropriate denominator, we take a, b ∈ Z.

We reduce the number of ap’s necessary by working with only certain residue classes of a through
a standard Weierstrass substitution. Specifically, for ℓ ∈ F×

p , we let y = ℓ3ỹ and x = ℓ2x̃ and we
obtain

ℓ6ỹ2 = ℓ6x̃3 + ℓ2ax̃+ b, (2.7)

so that dividing by ℓ6 we arrive at the elliptic curve Ẽ : y2 = x3 + aℓ−4x+ bℓ−6. The elliptic curves
E and Ẽ are automorphic to one another and thus have the same number of solutions. Now, if we
compute the ap for each quartic (i.e., fourth power) residue class, we can now compute the ap values
for any elliptic curve over Fp, i.e., it suffices to compute the values of ap for one a in each quartic
residue class. There are five quartic residue classes if p ≡ 1 mod 4 and three quartic residue classes
if p ≡ 3 mod 4. In each case, one quartic residue class corresponds to a = 0. In the case a = 0, we
further reduce the number of ap that need to be computed and stored.

When a = 0 and p ̸≡ 1 mod 3, then x 7→ x3 is a bijection. Hence

p−1∑
x=0

(
x3 + b

p

)
=

p−1∑
x=0

(
x+ b

p

)
= 0. (2.8)
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When a = 0 and p ≡ 1 mod 3, it suffices to store one value of ap for each sextic residue class of
b mod p, of which there are six. Hence we have reduced to the following:

#ap we need to compute and store =

{
4p if p ≡ 1 mod 4

2p if p ≡ 3 mod 4
+

{
6 if p ≡ 1 mod 3

0 otherwise.

The following is not implemented in our construction of the database but can be used to further
reduce the number of ap values that need to be computed and stored. Suppose −1 is a quadratic
residue in Fp (i.e., p ≡ 1 mod 4) and let i ∈ Fp be such that i2 ≡ −1 mod p. Then, make the
substitutions y = iỹ and x = −x̃ so that

y2 = x3 + ax+ b

(iỹ)2 = −x̃3 − ax̃+ b

ỹ2 = x̃3 + ax̃− b. (2.9)

Thus, when p ≡ 1 mod 4, the curve y2 = x3+ax+b and the curve y2 = x3+ax−b are automorphic
so it suffices to compute the values of ap for 0 ≤ b < p/2. This means we now have that

#ap we need to compute and store =

{
2p+ 2 if p ≡ 1 mod 4

2p if p ≡ 3 mod 4
+

{
6 if p ≡ 1 mod 3

0 otherwise.

To retrieve the value of at(p) corresponding to Et : y2 = x3 + A(t)x + B(t), we first find the
quartic residue class of A. If A ̸≡ 0 mod p, then for a = 1, 2, . . . , we compute A(t)a−1 mod p and
check whether it is a fourth power mod p. Once we have found some a with A(t)a−1 ≡ ℓ4 mod p, we
compute the corresponding value of B(t) as B(t)ℓ−6 mod p and retrieve the ap value corresponding
to (a, b) (i.e., the automorphic curve y2 = x3 + ax + b = x3 + A(t)ℓ−4x + B(t)ℓ−6). Recall that if
p ̸≡ 1 mod 3 and A(t) is zero mod p, then ap = 0 for all values of B(t). Likewise, for all primes p, if
A(t) and B(t) are both zero mod p then ap = 0. If p ≡ 1 mod 3 and B(t) mod p is nonzero, we find
the sixth power residue class of B(t) by computing B(t)b−1 mod p for each value of b stored until
this is a sixth power residue. Once we find b such that B(t)b−1 ≡ ℓ6 mod p, we retrieve the value
of ap for the curve y2 = x3 + b.

The only non-trivial arithmetic computation which is necessary is computing square roots of
x mod p (given that x is a square). When p ≡ 3 mod 4 we have

(x
p+1
4 )2 = x

p+1
2 = x

p−1
2 x = x, (2.10)

where x
p−1
2 = 1, since x is a square. Unfortunately, when p ≡ 1 mod 4 we must apply a slightly

more complicated idea: Cipolla’s algorithm (see, for example, [Dic19] for the development of the
algorithm). We first find some a ∈ Z such that a2 − x is not a square mod p. It is unknown if this
can be done deterministically, however this can easily be done probabilistically extremely quickly.
Since a2 − x is not a square, we conclude that

Fp2
∼= Fp(

√
a2 − x). (2.11)

Now, we have(
a+

√
a2 − x

)p
= ap +

(√
a2 − x

)p
= a+

√
a2 − x

(
a2 − x

) p−1
2 = a−

√
a2 − x. (2.12)

Thus, (a+
√
a2 − x)p+1 = x, and thus ((a+

√
a2 − x)

p+1
2 )2 = x. Notably, since x is a square in Fp,

we know that (a +
√
a2 − x)

p+1
2 ∈ Fp. We note that this algorithm can be computed efficiently by

repeated squaring. An observant reader will note that when p is 3 mod 4, one can take a = 0 and
this algorithm then reduces to the previous case.
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3. Computationally Investigating the Bias Conjecture

While we expect our database to have many applications, we are initially motivated by calculating
the second moment of one-parameter families of elliptic curves. Hence, we showcase how our data-
base allows us to systematically computationally investigate the Bias Conjecture in one-parameter
families for which obtaining a closed form of the second moment through Legendre symbols is in-
tractable. The main, i.e., the most computationally expensive, inputs to calculating the second
moment of a one-parameter family up to a value P is creating a database of all of the possible
values of at(p) for all p ≤ P .

Since a one-parameter family is parameterized by A(t) and B(t), to compute the second moment,
we need to look up at(p), the ap value for each curve Et : y

2 = x3 + A(t)x + B(t) resulting from
specializing T = t, i.e., for the pair (a, b) = (A(t), B(t)), and then sum over t as t ranges over all
possible residues mod p. To isolate and study the bias in the lower order terms, we compute the
normalized second moment B2,E(p) = (A2,E(p) − p2)/p3/2 for each prime p. We take P to be the
largest prime smaller than 250, 000 and we compute the running average

1

π(P )− 1

∑
2<p≤P

B2,E(p), (3.1)

where π(P ) is the prime-counting function. We also introduce the log-weighted running average of
the normalized second moment:

1

Nw(P )

∑
2<p≤P

B2,E(p) log p, (3.2)

where Nw(P ) :=
∑

2<p≤P log p ∼ P . This is desirable since as can be seen in the graphs that follow,
the running average for smaller primes is not representative of the long-term behavior.

Remark 3.1. Since Nw(P ) and π(P ) both go to infinity, we can safely ignore any finite number
of primes in the limit. Indeed, we may want to ignore the finite number of additional primes that
divide the j-invariant, A(T ), or B(T ) or perhaps where some ramification occurs. Further study is
required to deduce what is optimal.

3.1. Potential positive bias families. We conducted an exhaustive family search for a potential
positive bias family by looking at one parameter families defined by all possible combinations of
polynomials A(T ), B(T ) of degree ≤ 5 with coefficients in {0, 1}. We computed the second moment
for each of the resulting families for primes up to 1, 000 and noted those families whose running
average of the normalized second moment was positive more than 95% of the time.1 We then
computed the second moment for those families which passed this initial filtering for primes up to
250, 000 and calculated the graphs of the running averages (see Figures 2, 3, 4, 5, 6, 7). As a point
of comparison, we computed the second moment of the family y2 = x3 + x + T 3 for primes up to
250, 000 (see Figure 1). Although the running average appears to stabilize after 200, 000, looking at
the oscillations in the running average up to 200, 000 it is clear that one should still be concerned
whether going out to 250, 000 is far enough to see the long range behavior of the running average.
Hence, while it would also be beneficial to compute the ap values for a larger number of primes,
this highlights the limitations of a computational approach. Our numerical investigations generate
hypotheses and directions for future investigation but cannot prove or disprove the Bias Conjecture.

It is instructive to compare the graphs of the running averages of the families our family search
found to the family y2 = x3 + x + T 3 for which [Bat+24] proved that for half of the primes,
the second moment of this family has positive bias. While the graph of the running averages for

1Future work could focus on developing better measures of whether a family should be suspected of having positive
bias and hence investigated further. For example, excluding primes p ≤ Pmin.
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Figure 1. Running averages of the family investigated by [Bat+24].

Figure 2. Running averages of y2 = x3 + (T 5 + T 3 + T )x+ T 3 + T 2 + T + 1.

Figure 3. Running averages of y2 = x3 + (T 5 + T 4 + T 3 + T + 1)x+ T 5 + T .

y2 = x3 + x + T 3 is negative most of the time but seems to tend to zero at 250, 000, the graphs
in Figures 2, 3, 4, 5, 6, 7 remain positive up to 250, 000 and seem to stabilize for primes beyond
100, 000. Therefore, with the above caveats in mind, we have reason to suspect these families may
have positive bias.

Remark 3.2. When splitting up these familes based on the primes residue class mod 12, we often
see extremely different behavior in the resulting 4 residue classes. Specifically, if p is such that
A(T ) and B(T ) split completely, the bias tends to be significantly higher. Because our polynomials’
coefficients are either 0 or 1, being 1 mod 12 tends to result in splitting.
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Figure 4. Running averages of y2 = x3 + (T 5 + T + 1)x+ T 4 + T 3 + T 2 + T + 1.

Figure 5. Running averages of y2 = (T 4 + T 2 + 1)x+ T 3 + T + 1.

Figure 6. Running averages of y2 = x3 + (T 5 + T 4 + T 2 + 1)x+ T 4 + T 2.

Remark 3.3. One may worry that positive graphs of the running averages the families we have
chosen out of 210 families explored are the result of random fluctuations rather than underlying
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Figure 7. Running averages of y2 = x3 + (T 3 + T + 1)x+ T 4 + T 2.

structure in the one-parameter family which may yield positive bias in the lower order terms of the
second moment. However, when factoring A(T ) and B(T ) which appear in the above families, A(T )
is either irreducible or has a factor of T 2 − T + 1, T 2 + T + 1, or T 2 + 1 and the same is true for
B(T ). This leads us to suspect that the positive graphs of these families are due to more than just
the random chance.

When looking at polynomials of degree at most 10, we found the family y2 = x3+T 10x+T 8+T 2,
which is our most promising candidate for having positive bias (see Figure 8). At the largest prime
smaller than 250, 000, the running average of the normalized second moment for this family is
approximately 0.0287 and the log-weighted running average is approximately 0.0283, or a 4.2 σ
deviation. Note that the polynomial B(T ) has a factor of T 2 + 1.

Figure 8. Running averages of y2 = x3 + T 10x+ T 8 + T 2

4. Distribution of the Normalized Second Moment B2,E(p)

Motivated by the Sato-Tate Conjecture, we study the distribution of the normalized second mo-
ment of a one-parameter family. It is natural to ask what determines the variance of the distribution
of the normalized second moment of a one-parameter family. Based on our numerical computations,
we formulate the following conjecture.

Conjecture 4.1. The variance of the distribution of B2,E(p) always converges to a positive integer.
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Indeed there seems to be a deeper connection between the polynomials A(T ) and B(T ) and
the conjectured integer the variance converges too. Indeed, the one parameter family given by
y2 = x3 + A(Tn)x+ B(Tn) seems to be an integral multiple of y2 = x3 + A(T )x+ B(T ) based on
the prime factorization of n, A and B.

The following figures have binned the data between the maximum and the minimum over all
primes less than 250, 000 and then split into 100 equal sized buckets.

Figure 9. A Family with vari-
ance 1.015

Figure 10. A Family with
variance 1.005.

Figure 11. A family with
variance 1.991.

Figure 12. A family with
variance 0.994.

Our generic case seems to be variance converging to 1 (see Figures 9, 10, and 12). In this generic
case, the distribution of B2,E(p) seems to exhibit Gaussian-like behavior. We found one family
E : y2 = x3 + (T 5 + T 2 + 1)x+ 1 whose variance seems to be converging to 2 (see Figure 11).

Additionally, when restricting the data to ignore the first 10, 000 primes, we net a family with the
similar variance and distribution. Indeed, the only difference seems to be that the data is slightly
more random, which is expected given that there are fewer data points.

Thus, a natural next question is what distribution the normalized second moment of a one-
parameter family converges to in our seemingly generic case of variance 1 Gaussian-like behavior
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Figure 13. The graph of the variance of a family over primes ≤ p.

Figure 14. Fitting a truncated normal to the variance 1 family in Figure 12

and what is our generic case, i.e., what restrictions can we impose on our one-parameter family to
ensure we are in the generic case?

These distributions look like normal distributions, however they cannot be as they must be
bounded due to Theorem 1.1. This led us to investigate whether a truncated normal distribution
with the same mean and variance as the family was a good fit to the data. When comparing the
fit of a truncated normal distribution for a generic family to the variance 2 family, the truncated
normal is a better fit for the variance 1 family while for the variance 2 family, there is too much
mass around zero (see Figures 14 and 15).

Our numerics motivate the study of the distribution of the second moment of a one-parameter
family. Further, the database allows for efficient computation of higher moments of one-parameter
families.

5. Higher moments

Calculating higher moments is difficult because it measures a more subtle distribution of ap
values. However, numerically calculating higher moments is no different than the second moment.
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Figure 15. Fitting a truncated normal to the variance 2 family.

Indeed, one can calculate the second through tenth moments all at once nearly as quickly as just
the second moment.

To highlight some applications of our database, we calculate higher moments of a one-parameter
family. Without the closed form for ap values we computed above, this method would not be
possible. By Theorem 1 of [Bir68],

A2n,E(p) = Cnp
n+1 +O

(
pn+1/2

)
(5.1)

where Cn = (2n)!
n!(n+1)! denotes the nth Catalan number. Like before, we investigate

B2n,E(p) :=
(A2n,E(p)/Cn)− pn+1

pn+1/2
. (5.2)

The (unweighted) running averages B2n,E for a generic family are shown below.

Figure 16. Normalized 2nd through 10th moments

We recall from above that in the second moment case, our variance converges to an integer, and
the data is very similar to a normal distribution. We consider how these properties change for
higher moments. Initially, the distribution of B4,E and B6,E look like normal distributions. There
are a couple of notable differences.
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Figure 17. Normalized 2nd through 10th moments

Figure 18. Normalized 4th through 10th moments, split into 100 buckets from -7 to 7

First, the distribution of B2n,E values seem to be spreading out as n increases. This is equivalent
to the variances increasing, and indeed the data seem to support this. One potential reason is that
a small bias in ap values will result in higher deviations from the expectation in higher moments.

Second, the variances no longer seem to be an integer. Perhaps this is because the correct way
to normalize the A2n,E values is by

B′
2n,E(p) :=

A2n,E(p)− Cnp
n+1

pn+1/2
. (5.3)

However, under this normalization, we do not have enough data to conclude that B′ values either
converge or do not converge to an integer.
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Remark 5.1. The difference between these two normalizations is that the second one multiplies the
variance by (Cn)

2.

Third, as n increases, the distribution seems to stray further and further away from a smooth
distribution. This suggests that convergence occurs at a slower rate for higher moments.

Finally, the higher moments do not seem to have a generic behavior of positive or negative
bias: some families seem to have positive bias while others seem to have negative bias. Further
investigation is warranted to understand how the polynomials A(T ) and B(T ) determine the value
to which the higher moments converge.

6. Future work

To compute moments up to a fixed number X, we first need to compute approximately 2X2/ logX
many ap values, and then do a comparable amount of work to compute moments.

However, computing ap values using the naive algorithm described above requires O(p) compu-
tations. This algorithm’s advantage is that due to summing over all of Fp in some cases we can
extract cancellation. However, if one simply wishes to compute ap values, one can employ Schoof’s
algorithm. See, for instance, [Dew98] for a discussion of this algorithm which allows for com-
putation of ap in O(log6(p)) times (assuming arithmetic operations are O(1)). Indeed, taking our
p = 3, 5, 7, 11, 13 one can compute ap values for primes less than 14, 000, 000, which is approximately
50 times as many primes as we computed.

Computing significantly more ap values should provide computation evidence for Conjecture 4.1,
allow for further testing of the bias conjecture, and probing higher moments, potentially even over
certain residue classes mod p. One can consider certain classes of primes, for instance, those which
split, split completely, ramify etc. over a certain number field, to investigate how A(T ) and B(T )
may influence the behavior of the higher moments.

For potentially easier things to study, how does the variance, second moment, and distribution
of second moments of y2 = x3 +A(Tn)x+B(Tn) relate to y2 = x3 +A(T )x+B(T )? Additionally,
what happens for primes where A(T ) and B(T ) both factor completely? Or perhaps, what happens
when both A(T ) and B(T ) are irreducible. These questions dicussing behavior in these restricted
environments provide fertile ground for explorations. We note that we have been splitting our data
into 100 buckets. One can explore how a different number of buckets changes how good the p-values
from the KS test nets, and use this to work towards determining the distribution.

Other potential areas of study include exploring higher moments, using techniques from algebraic
geometry to study a threefold that holds second (or higher) moment information, finding the dis-
tribution that the second moment converges to, proving Conjecture 4.1, proving Remark 3.2, and
determining the integer that the second moment converges to based on the polynomials A(T ) and
B(T ).
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