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ABSTRACT. Extending recent work of others, we provide effective bounds on the fam-
ily of all elliptic curves and one-parameter families of elliptic curves modulo p (for p
prime tending to infinity) obeying the Sato-Tate Law. We present two methods of proof.
Both use the framework of Murty-Sinha [MS]; the first involves only knowledge of the
moments of the Fourier coefficients of the L-functions and combinatorics, and saves a
logarithm, while the second requires a Sato-Tate law. Our purpose is to illustrate how
the caliber of the result depends on the error terms of the inputs and what combinatorics
must be done.

1. INTRODUCTION

Recently M. Ram Murty and K. Sinha [MS] proved effective equidistribution results
showing the eigenvalues of Hecke operators on the space S(N, k) of cusp forms of
weight k and level N agree with the Sato-Tate distribution. Our goal here is to use their
framework to prove similar results for families of elliptic curves. We shall do this for
the family of all elliptic curves and for one-parameter families of elliptic curves.

We first review notation and previous results. Let E : y2 = x3 + Ax + B with
A,B ∈ ℤ be an elliptic curve over ℚ with associated L-function

L(E, s) =
∞∑
n=1

aE(n)

ns
=

∏
p

(
1− aE(p)

ps
+

Â0(p)

p2s−1

)−1

, (1.1)
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where Δ = −16(4A3 + 27B2) is the discriminant of E, Â0 is the principal character
modulo Δ, and

aE(p) = p−#{(x, y) ∈ (ℤ/pℤ)2 : y2 ≡ x3 + Ax+B mod p}
= −

∑

x mod p

(
x3 + Ax+B

p

)
. (1.2)

By Hasse’s bound we know ∣aE(p)∣ ≤ 2
√
p, so we may write aE(p) = 2

√
p cos µE(p),

where we may choose µE(p) ∈ [0, ¼]. See [Sil1, Sil2, ST] for more details and proofs
of all the needed properties of elliptic curves.

How the aE(p)’s vary is of great interest. One reason for this is that they encode
local data (the number of solutions modulo p), and are then combined to build the L-
function, whose properties give global information about E. For example, the Birch and
Swinnerton-Dyer conjecture [BS-D1, BS-D2] states the order of the group of rational
solutions of E equals the order of vanishing of L(E, s) at the central point. While we
are far from being able to prove this, the evidence for the conjecture is compelling,
especially in the case of complex multiplication and rank at most 1 [Bro, CW, GKZ,
GZ, Kol1, Kol2, Ru]. In addition there is much suggestive numerical evidence for the
conjecture; for example, for elliptic curves with modest geometric rank r, numerical
approximations of the first r−1 Taylor coefficients are consistent with these coefficients
vanishing (see for instance the families studied in [Fe1, Fe2, Mil3]).

If E has complex multiplication1 then aE(p) = 0 for half the primes; i.e., µE(p) =
¼/2. The remaining angles µE(p) are uniformly distributed in [0, ¼] (this follows from
[Deu, He1, He2]).

If E does not have complex multiplication, which is the case for most elliptic curves,
then Sato and Tate [Ta] conjectured that as we vary p, the distribution of the µE(p)’s
converges to 2 sin2 µdµ/¼. More precisely, for any interval I ⊂ [0, ¼] we have

lim
x→∞

#{p : p ≤ x : µE(p) ∈ I}
#{p : p ≤ x} =

∫

I

2 sin2 µdµ

¼
; (1.3)

we call 2 sin2 µdµ/¼ the Sato-Tate measure, and denote it by ¹ST. By recent results of
Clozel, Harris, Shepherd-Barron and Taylor [CHT, HS-BT, Tay], this is now known
for all such E that have multiplicative reduction at some prime; see also [BZ] for re-
sults on the error terms when ∣I∣ is small (these results are not for an individual curve,
but rather averaged over the family of all elliptic curves) and [B-LGG, B-LGHT] for
generalizations to other families of L-functions.

Instead of fixing an elliptic curve and letting the prime vary, we can instead fix a
prime p and study the distribution of µE(p) as we vary E. Before describing our results,
we briefly summarize related results in the literature concerning Sato-Tate behavior in

1This means the endomorphism ring is larger than the integers. For example, y2 = x3−x has complex
multiplication, as can be seen by sending (x, y) → (−x, iy). Note aE(p) = 0 if p ≡ 3 mod 4 (this can
be seen from the definition of aE(p) as a sum of Legendre symbols, sending x → −x).
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families. Serre [Ser] considered a similar question, not for elliptic curves, but rather for
S(N, k), the space of cusp forms of weight k on Γ0(N). He proved that for even k with
N + k → ∞ the eigenvalues of the normalized pth Hecke operators are equidistributed
in [−2, 2] with respect to the measure

¹p =
p+ 1

¼

√
1− x2/4 dx

(p1/2 + p−1/2)2 − x2
; (1.4)

changing variables by setting x = 2 cos µ this is equivalent to the measure ¹̃p on [0, ¼]
given by

¹̃p =
2(p+ 1)

¼

sin2 µdµ

(p1/2 + p−1/2)2 − 4 cos2 µ
. (1.5)

Note that as p → ∞, ¹̃p → ¹ST; for p large these two measures assign almost the same
probability to an interval I , differing by O(1/p). See [CDF, Sar] for other families with
a similar distribution.

Serre’s theorem was ineffective, and has recently been improved by M. R. Murty and
K. Sinha [MS]. They show that if {an(p)/p(k−1)/2}1≤i≤#S(N,k) denote the normalized
eigenvalues of the Hecke operator Tp on S(N, k), then

#{1 ≤ n ≤ N : an(p)/p
(k−1)/2 ∈ I}

#S(N, k)
=

∫

I

¹p +O

(
log p

log kN

)
, (1.6)

where #S(N, k) is the number of cusp forms of weight k and level N , and if N ≥ 61
then by Corollary 15 of [MS] we have

3Ã(N)

200
≤ #S(N, k) ≤ Ã(N)

12
+ 1, (1.7)

where Ã(N) = N
∏

p∣N
(
1 + 1

p

)
. This effective version of equidistribution allows

Murty and Sinha to derive many results, such as

∙ an effectively computable constant Bd such that if J0(N) (the Jacobian of the
modular curve X0(N)) is isogenous to a product of ℚ-simple abelian varieties
of dimensions at most d, then N ≤ Bd;

∙ the multiplicity of any given eigenvalue of the Hecke operators is ≪ s(N,k) log p
log kN

.

The purpose of this paper is to expand the techniques in [MS] to families of elliptic
curves. Unlike [MS, Ser], we cannot keep the prime fixed throughout the argument, as
there are only finitely many distinct reductions of elliptic curves modulo p. Instead we
fix a prime and study the angles µE(p) for one of the two families below, and then send
p → ∞. We study

(1) The family of all elliptic curves modulo p for p ≥ 5. We may write these curves
in Weierstrass form as y2 = x3 − ax− b with a, b ∈ ℤ/pℤ and 4a3 ∕= 27b2. The
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number of pairs (a, b) satisfying these conditions2 is p(p− 1).

(2) One-parameter families over ℚ(T ): let A(T ), B(T ) ∈ ℤ[T ] and consider the
family y2 = x3 + A(T )x + B(T ) with non-constant j(T ).3 We specialize T
to be a t ∈ ℤ/pℤ. The cardinality of the family is p + OA,B(1) (we lose a
few values when we specialize as we require the reduced curves to be elliptic
curves modulo p), where the error is a function of the discriminant of the family.

Notations:
∙ We let ℱp denote either family, and write Vp for its cardinality (which is p(p−1)

in the first case and p+O(1) in the second).

∙ While we may denote the angles by µE(p), µa,b(p) or µt(p), as p is fixed for no-
tational convenience and to unify the presentation we shall denote these by µn,
with 1 ≤ n ≤ Vp.

∙ We let e(x) = e2¼ix.

Normalizations:

∙ For the family of all elliptic curves, we may match the elliptic curves in pairs
(E,E ′) such that µE′(p) = ¼ − µE(p) (and each curve is in exactly one pair);
see Remark 1.1 for a proof. Thus, if we let xn = µn(p)/¼, we see that the set
{2xn}n≤Vp is symmetric about ¼. This will be very important later, as it means∑

n≤Vp
sin(2¼mxn) = 0 for any integer m.

∙ For a one-parameter family of elliptic curves, in general we cannot match the el-
liptic curves in pairs, and thus the set {2µt(p)} is not typically symmetric about
¼; see Remark 1.2 for some results about biases in the µt(p)’s. This leads to
some complications in proving equidistribution, as certain sine terms no longer
vanish. To overcome this, following other researchers we consider the techni-
cally easier situation where for each elliptic curve we include both µt(p) and
2¼ − µt(p). To unify the presentation, instead of normalizing these angles by
dividing by 2¼ (to obtain a distribution supported on [0, 1]), we first study the
angles modulo ¼ and then divide by ¼. We thus consider the normalized angles
xt = µt(p)/¼ and xt+Vp = 1 − µt(p)/¼ for 1 ≤ t ≤ Vp. Thus we study 2Vp

2If a = 0 then the only b which is eliminated is b = 0. If a is a non-zero perfect square there are two
b that fail, while if a is not a square than no b fail. Thus the number of bad pairs of (a, b) is p.

3Up to constants, j(T ) is A(T )3/(4A(T )3 + 27B(T )2).
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normalized angles in [0, 1], unlike the case of all elliptic curves where we had
Vp angles.

∙ We set Ṽp = Vp for the family of all elliptic curves, and 2Vp for a one-parameter
family of elliptic curves. We study the distribution of the normalized angles
{xn}1≤n≤Ṽp

.

Remark 1.1. To see that we may match the angles as claimed for the family of all
elliptic curves, consider the elliptic curve y2 = x3 − ax − b with 4a3 ∕= 27b2. Let c be
any non-residue modulo p, and consider the curve y2 = x3 − ac2x − bc3. Using the
Legendre sum expressions for aE(p) and aE′(p), using the automorphism x → cx we
see the second equals

(
c
p

)
times the first; as we have chosen c to be a non-residue, this

means 2
√
p cos(µE′(p)) = −2

√
p cos(µE(p)), or µE′(p) = ¼ − µE(p) as claimed.

Remark 1.2. If the one-parameter family of elliptic curves has rank r over ℚ(T ) and
satisfies Tate’s conjecture (see [Ta, RS]), then Rosen and Silverman [RS] prove a con-
jecture of Nagao [Na], which states

lim
X→∞

− 1

X

∑
p≤X

A1(p) log p

p
= r (1.8)

where A1(p) :=
∑

t mod p at(p). Tate’s conjecture is known for rational surfaces.4 This
bias has been used by S. Arms, Á. Lozano-Robledo and S. J. Miller [AL-RM] to con-
struct one-parameter families with moderate rank by finding families where A(p) is
essentially −rp. As there are about p curves modulo p, this represents a bias of about
−r on average per curve; as each at(p) is of order

√
p, we see in the limit that this bias

should be quite small per curve (though significant enough to lead to rank, it gives a
lower order contribution to the distribution for each prime, and will be dwarfed by our
other errors).

Our goal is to prove effective theorems on the rate of convergence as p → ∞ to the
Sato-Tate measure, which requires us to obtain effective estimates for∣∣∣#{n ≤ Ṽp : µn ∈ I} − ¹ST(I)Ṽp

∣∣∣ . (1.9)

Here ¹ST is the Sato-Tate measure on [0, ¼] given by

¹ST(T ) =

∫

I

2

¼
sin2 tdt I ⊂ [0, ¼], (1.10)

4An elliptic surface y2 = x3 + A(T )x + B(T ) is rational if and only if one of the following is true:
(1) 0 < max{3degA, 2degB} < 12; (2) 3degA = 2degB = 12 and ordt=0t

12Δ(t−1) = 0.
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and for n ≤ Vp, 2
√
p cos(µn) is the number of solutions modulo p of the elliptic curve

En : y2 = x3 + anx+ bn. Equivalently, using the normalization xn = µn/¼ to obtain a
distribution on [0, 1], the Sato-Tate measure become

¹st(I) =

∫

I

2 sin2(¼x)dx, I ⊂ [0, 1]. (1.11)

For a sequence of numbers xn modulo 1, a measure ¹ and an interval I ⊂ [0, 1], let

NI(Ṽp) = #{n ≤ Ṽp : xn ∈ I}
¹(I) =

∫

I

¹(t)dt. (1.12)

The discrepancy DI,Ṽp
(¹) is

DI,Ṽp
(¹) =

∣∣∣NI(Ṽp)− Ṽp¹(I)
∣∣∣ , (1.13)

and trivially DI,Ṽp
(¹) ≤ Ṽp. The goal is to obtain the best possible estimate for how

rapidly DI,Ṽp
(¹)/Ṽp tends to 0.

Previous work has obtained a power savings in convergence to Sato-Tate for two-
parameter families of elliptic curves (such as the entire family of all elliptic curves, or
parametrizations such as y2 = x3 + f(a)x + g(b) with a and b varying in appropriate
ranges); see the papers by Banks and Shparlinski [BS, Sh1, Sh2] for saving Ṽ

1/4
p in

Sato-Tate convergence. The key step in these arguments is
1

(p− 1)2

∑
a,b mod p

4a3+27b2 ∕≡0 mod p

sin((k + 1)µa,b(p))

sin(µa,b(p)
≪ kp−1/2, k = 1, 2, . . . ; (1.14)

see Theorem 13.5.3 from [Ka] for a proof. One can obtain new and similar results
for one-parameter families of elliptic curves by appealing to a result of Michel [Mic],
which we do in §4. Our main results are the following.

Theorem 1.3 (Family of all curves). For the family of all elliptic curves modulo p, as
p → ∞ we have

DI,Ṽp
(¹st) ≤ C

Ṽp

log Ṽp

(1.15)

for some computable C. Note that in this family, Ṽp = Vp and for each curve we include
one normalized angle, xn = µn/¼ ∈ [0, 1].

Theorem 1.4 (One-parameter family of elliptic curves). For a one-parameter family of
elliptic curves over ℚ(T ) with non-constant j-invariant, we have

DI,Ṽp
(¹st) ≤ CṼ 3/4

p (1.16)

for some computable C. Note that in this family, Ṽp = 2Vp and for each curve we
include two normalized angles, xn = µn/¼ and xn+Vp = 1− µn/¼, with µn ∈ [0, ¼].
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Stronger results than Theorem 1.3 are known; as remarked above, convergence to
Sato-Tate with an error of size Ṽ

3/4
p instead of Ṽp/ log Ṽp is obtained in [BS, Sh1, Sh2].

We present these weaker arguments to highlight how one may attack these problems
possessing only knowledge of the moments, and not the functions of the angles, in
the hope that these arguments might be of use to other researchers attacking similar
questions where we only have formulas for the moments of the coefficients. We will
thus illustrate the effectiveness (in both senses of the word) of the techniques in [MS],
as well as illustrate the loss of information that comes from having to trivially bound
certain combinatorial sums. As we have not found similar effective results in the liter-
ature for one-parameter families, in order to get the best possible results we do not use
formulas for the moments but rather estimates for the analogue of (1.14). It is worth re-
marking that we can recover the results of [BS, Sh1, Sh2] by our generalization of [MS]
provided we also use (1.14) (see [Ka]) instead of results from Birch [Bi] on moments;
this shows the value of the formulation in [MS].

We summarize the key ingredients of the proofs, and discuss why the second result
has a much better error term than the first. Similar to [MS], both theorems follow
from an analysis of

∑
n≤Ṽp

e(mxn) (we use xn = µn/¼ in order to have a distribution
supported on [0, 1]). For the family of all elliptic curves, after some algebra we see this
is equivalent to understanding

∑
n≤Ṽp

cos(2mµn); using a combinatorial identity (see
[Mil4]) this is equivalent to a linear combination of sums of the form

∑
n≤Ṽp

(cos µn)
2r.

These sums are essentially the 2rth moments of the Fourier coefficients of the family of
all elliptic curves modulo p. Birch [Bi] evaluated these, and showed the answers are the
Catalan numbers5 plus lower order terms. Our equidistribution result then follows from
a combinatorial identity of a sum of weighted Catalan numbers; our error term is poor
due to the necessity of losing cancelation in bounding the contribution from the sums
of the error terms.

The proof of Theorem 1.4 is easier, as now instead of inputting results on the mo-
ments we instead use a result of Michel [Mic] for the sum over the family of symk(µn) =
sin((k + 1)µn)/ sin µn. This is easily related to our quantity of interest, cos(2mµn),
through identities of Chebyshev polynomials:

cos(2mµn) =
1

2
sym2m(µn)−

1

2
sym2m−2(µn). (1.17)

The advantage of having a formula for the quantity we want and not a related quantity
is that we avoid trivially estimating the errors in the combinatorial sums. These cal-
culations increased the size of the error significantly, and this is why Theorem 1.4 is
stronger than Theorem 1.3, though the error term in Theorem 1.3 is comparable to the

5The Catalan numbers are the moments of the semi-circle distribution, which is related to the Sato-Tate
distribution through a simple change of variables.
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error terms of the equivalent quantities in [MS] for the family of cuspidal newforms.
Michel proves his result by using a cohomological interpretation, and this results in the
error term being p−1/2 smaller than the main term; it is this savings in the quantity we
are directly interested in that leads to the superior error estimates.

The paper is organized as follows. After reviewing the needed results from Murty-
Sinha [MS] in §2, we prove Theorem 1.3 in §3 and Theorem 1.4 in §4. For completeness
the needed combinatorial identities are proved in Appendix A, and in Appendix B we
correct some errors in explicit formulas for moments in Birch’s paper [Bi] (where he
neglected to mention that his sums are normalized by dividing by p− 1).

2. EFFECTIVE EQUIDISTRIBUTION PRELIMINARIES

We quickly review some needed results from Murty-Sinha [MS]; while our setting
is similar to the problems they investigated, there are slight differences which require
generalizations of some of their results. Assume ¹ = F (−x)dx with

F (x) =
∞∑

m=−∞
cme(mx) (2.1)

where e(z) = exp(2¼iz). Theorem 8 from [MS] is

Theorem 2.1. Let {xn} be a sequence of real numbers in [0, 1] and let the notation be
as above. Assume for each m that

lim
Ṽp→∞

1

Ṽp

∑

n≤Ṽp

e(mxn) = cm and
∞∑

m=−∞
∣cm∣ < ∞. (2.2)

Let ∣∣¹∣∣ = supx∈[0,1] ∣F (x)∣ with ¹ = F (−x)dx. Then the discrepancy satisfies

DI,Ṽp
(¹) ≤ Ṽp∣∣¹∣∣

M + 1

+
∑

1≤m≤M

(
1

M + 1
+min

(
b− a,

1

¼∣m∣
)) ∣∣∣∣∣∣

Ṽp∑
n=1

e(mxn)− Ṽpcm

∣∣∣∣∣∣
(2.3)

for any natural numbers Ṽp and M .

Unfortunately, Theorem 2.1 is not directly applicable in our case. The reason is that
there we have a limit as Ṽp → ∞ in the definition of the cm, where for us we fix a prime
p and have Ṽp = p(p−1) for the family of all elliptic curves curves modulo p, or p+O(1)
for a one-parameter family. Analyzing the proof of Theorem 8 from [MS], however, we
see that the claim holds for any sequence cm (obviously if Ṽ −1

p

∑
n≤Ṽp

e(mxn) is not
close to cm then the discrepancy is large). We thus obtain
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Theorem 2.2. Let {xn} be a sequence of real numbers in [0, 1] and let the notation be
as above. Let {cm} be a sequence of numbers such that

∑∞
m=−∞ ∣cm∣ < ∞ (we will

take c0 = 1, c±1 = −1/2 and all other cm’s equal to zero). Let ∣∣¹∣∣ = supx∈[0,1] ∣F (x)∣
with ¹ = F (−x)dx. Then the discrepancy satisfies

DI,Ṽp
(¹) ≤ Ṽp∣∣¹∣∣

M + 1

+
∑

1≤m≤M

(
1

M + 1
+min

(
b− a,

1

¼∣m∣
)) ∣∣∣∣∣∣

Ṽp∑
n=1

e(mxn)− Ṽpcm

∣∣∣∣∣∣
(2.4)

for any natural numbers Ṽp and M .

To simplify applying the results from [MS], we study the normalized angles xn. Un-
der our normalization, the Sato-Tate measure becomes

¹st(I) =

∫

I

2 sin2(¼x)dx, I ⊂ [0, 1]. (2.5)

The Fourier coefficients of ¹st are readily calculated.

Lemma 2.3. Let ¹st = F (−x)dx be the normalized Sato-Tate distribution on [0, 1] with
density 2 sin2(¼x). We have

F (x) = 1− 1

2
(e(x) + e(−x)) , (2.6)

which implies that the Fourier coefficients are c0 = 1, c±1 = −1/2 and cm = 0 for
∣m∣ ≥ 2.

Proof. The proof is immediate from the expansion of F as a sum of exponentials, which
follows from the identities cos(2µ) = 1 − 2 sin2(µ) and e(µ) = cos(2¼µ) + i sin(2¼µ).

□

3. PROOF OF EFFECTIVE EQUIDISTRIBUTION FOR ALL CURVES

We use Birch’s [Bi] results on the moments of the family of all elliptic curves modulo
p (there are some typos in his explicit formulas; we correct these in Appendix B); unfor-
tunately, these are results for quantities such as (2

√
p cos µn)

2R, and the quantity which
naturally arises in our investigation is e(mxn) (with xn running over the normalized
angles µa,b(p)/¼), specifically ∣∣∣∣∣∣

Ṽp∑
n=1

e(mxn)− Ṽpcm

∣∣∣∣∣∣
. (3.1)

By applying some combinatorial identities we are able to rewrite our sum in terms of
the moments, which allows us to use Birch’s results. The point of this section is not to
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obtain the best possible error term (which following [BS, Sh1, Sh2] could be obtained
by replacing Birch’s bounds with (1.14)) but rather to highlight how one may generalize
and apply the framework from [MS].

We first set some notation. Let ¾k(Tp) denote the trace of the Hecke operator Tp

acting on the space of cusp forms of dimension −2k on the full modular group. We
have ¾k+1(Tp) = O(pk+c+²), where from [Sel] we see we may take c = 3/4 (there
is no need to use the optimal c, as our final result, namely (3.17), will yield the same
order of magnitude result for c = 3/4 or c = 0). Let ℳp(2R) denote the 2Rth moment
of 2 cos(µn) = 2 cos(¼xn) (as we are concerned with the normalized values, we use
slightly different notation than in [Bi]):

ℳp(2R) =
1

Ṽp

Ṽp∑
n=1

(2 cos(¼xn))
2R . (3.2)

Lemma 3.1 (Birch). Notation as above, we have

ℳp(2R) =
1

R + 1

(
2R

R

)
+O

(
22RṼ

− 1−c−²
2

p

)
; (3.3)

we may take c = 3/4 and thus there is a power saving.6

Proof. The result follows from dividing the equation for S∗
R(p) on the bottom of page 59

of [Bi] by pR, as we are looking at the moments of the normalized Fourier coefficients
of the elliptic curves, and then using the bound ¾k+1(Tp) = O(pk+c+²), with c = 3/4

admissible by [Sel]. Recall Ṽp = p(p− 1) is the cardinality of the family. We have

ℳp(2R) =
1

R + 1

(
2R

R

)
p(p− 1)

Ṽp

+ O

Ã
R∑

k=1

2k + 1

R + k + 1

(
2R

R + k

)
p1+c+²

Ṽp

+
p

pRṼp

)

=
1

R + 1

(
2R

R

)
+O

(
22RṼ

− 1−c−²
2

p

)
(3.4)

since Ṽp = p(p− 1). □
A simple argument (see Remark 1.1) shows that the normalized angles are symmetric

about 1/2. This implies

Ṽp∑
n=1

e(mxn) =

Ṽp∑
n=1

cos(2¼mxn) + i

Ṽp∑
n=1

sin(2¼mxn) =

Ṽp∑
n=1

cos(2mµn), (3.5)

6Note 1
R+1

(
2R
R

)
is the Rth Catalan number. The Catalan numbers are the moments of the semi-circle

distribution, which is related to the Sato-Tate distribution by a simple change of variables.
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where the sine piece does not contribute as the angles are symmetric about 1/2, and we
are denoting the Ṽp non-normalized angles by µn.

Thus it suffices to show we have a power saving in
∣∣∣∣∣∣

Ṽp∑
n=1

cos(2mµn)− Ṽpcm

∣∣∣∣∣∣
. (3.6)

By symmetry, it suffices to consider m ≥ 0.

Lemma 3.2. Let c0 = 1, c±1 = −1/2 and cm = 0 otherwise. There is some c < 1 such
that ∣∣∣∣∣∣

Ṽp∑
n=1

cos(2mµn)− Ṽpcm

∣∣∣∣∣∣
≪

(
m223mṼ

− 1−c−²
2

p

)
; (3.7)

by the work of Selberg [Sel] we may take c = 3/4.

Proof. The case m = 0 is trivial. For m = 1 we use the trigonometric identity
cos(2µn) = 2 cos2(µn)− 1. As c±1 = −1/2 we have

Ṽp∑
n=1

cos(2µn)− Ṽp

2
=

Ṽp∑
n=1

[(
2 cos2 µn − 1

)
+

1

2

]

=
1

2

Ṽp∑
n=1

(
(2 cos µn)

2 − 1
)

=
1

2

Ṽp∑
n=1

(
(2
√
p cos µn)

2

p
− 1

)
. (3.8)

Note the sum of (2
√
p cos µn)

2 is the second moment of the number of solutions modulo
p. From [Bi] we have that this is p + O(1); the explicit formula given in [Bi] for the
second moment is wrong; see Appendix B for the correct statement. Substituting yields

∣∣∣∣∣∣

Ṽp∑
n=1

cos(2µn)− Ṽp

2

∣∣∣∣∣∣
≪ O(1). (3.9)

The proof is completed by showing that
∑Ṽp

n=1 cos(2mµn) = Om(Ṽ
1/2
p ) provided

2 ≤ m ≤ M . In order to obtain the best possible results, it is important to understand
the implied constants, as M will have to grow with Ṽp (which is of size p2). While it is
possible to analyze this sum for any m by brute force, we must have M growing with
p, and thus we need an argument that works in general. As c±1 ∕= 0 but cm = 0 for
∣m∣ ≥ 2, we expect (and we will see) that the argument below does break down when
∣m∣ = 1.
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There are many possible combinatorial identities we can use to express cos(2mµn)
in terms of powers of cos(µn). We use the following (for a proof, see Definition 2 and
equation (3.1) of [Mil4]):

2 cos(2mµn) =
m∑
r=0

c2m,2r(2 cos µn)
2r, (3.10)

where c2r = (2r)!/2, c0,0 = 0, c2m,0 = (−1)m2 for m ≥ 1, and for 1 ≤ r ≤ m set

c2m,2r =
(−1)r+m

c2r

r−1∏
j=0

(m2 − j2) =
(−1)m+r

c2r

m ⋅ (m+ r − 1)!

(m− r)!
. (3.11)

We now sum (3.10) over n and divide by Ṽp, the cardinality of the family. In the
argument below, at one point we replace 22r in an error term with 2012 1

r+1

(
2r
r

) ⋅m2; this
allows us to pull the rth Catalan number, 1

r+1

(
2r
r

)
, out of the error term.7 Using Lemma

3.1 we find

1

Ṽp

Ṽp∑
n=1

2 cos(2mµn) =
m∑
r=0

c2m,2r
1

Ṽp

Ṽp∑
n=1

(2 cos µn)
2r

=
m∑
r=0

(
1

r + 1

(
2r

r

)
+O

(
22rṼ

− 1−c−²
2

p

))
c2m,2r

=
m∑
r=0

(
1

r + 1

(2r)!

r!r!

(−1)m+r2

(2r)!

m ⋅ (m+ r)!

(m− r)! ⋅ (m+ r)

)

⋅
(
1 +O

(
m2Ṽ

− 1−c−²
2

p

))

= (−1)m2m
m∑
r=0

(
(−1)r

m!

r!(m− r)!

(m+ r)!

m!r!

1

(r + 1)(m+ r)

)

⋅
(
1 +O

(
m2Ṽ

− 1−c−²
2

p

))

= (−1)m2m
m∑
r=0

(
(−1)r

(
m

r

)(
m+ r

r

)
1

(r + 1)(m+ r)

)

⋅
(
1 +O

(
m2Ṽ

− 1−c−²
2

p

))
. (3.12)

We first bound the error term. For our range of r,
(
m+r
r

) ≤ (
2m
m

) ≤ 22m. The sum of(
m
r

)
over r is 2m, and we get to divide by at least m + r ≥ m. Thus the error term is

7The reason this is valid is that the largest binomial coefficient is the middle (or the middle two when
the upper argument is odd). Thus 22r = (1 + 1)2r ≤ (2r + 1)

(
2r
r

) ≤ 2(m+ 1)
(
2r
r

)
(as m ≤ r), and the

claim follows from 2012m2

r+1 ≥ 2(m+ 1) for m ≥ 2 and 0 ≤ r ≤ m.
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bounded by

O
(
m223mṼ

− 1−c−²
2

p

)
. (3.13)

We now turn to the main term. It it just (−1)m2m times the sum in Lemma A.3, which
is shown in that lemma to equal 0 for any ∣m∣ ≥ 2. □
Remark 3.3. Without Lemma A.3, our combinatorial expansion would be useless. We
thus give several proofs in the appendix (including a brute force, hypergeometric and
an application of Zeilberger’s Fast Algorithm).

Remark 3.4. It is possible to get a better estimate for the error term by a more de-
tailed analysis of

∑
r≤m

(
m
r

)(
m+r
r

)
; however, the improved estimates only change the

constants in the discrepancy estimates, and not the savings. This is because this sum is
at least as large as the term when r ≈ m/2, and this term contributes something of the
order 33m/2/m by Stirling’s formula. We will see that any error term of size 3am for a
fixed a gives roughly the same value for the best cutoff choice for M , differing only by
constants. Thus we do not bother giving a more detailed analysis to optimize the error
here.

We now prove the first of our two main theorems.

Proof of Theorem 1.3. We must determine the optimal M to use in (2.4):

DI,Ṽp
(¹st) ≪ Ṽp

M + 1
+

∑
1≤m≤M

(
1

M + 1
+

1

m

)(
m223mṼ

− 1−c−²
2

p

)

≪ Ṽp

M
+M23M Ṽ

− 1−c−²
2

p

(3.14)

as 1
M+1

≪ 1
m

and
∑

m≤m 23m ≪ 23M . For all c > 0 we find the minimum error by
setting the two terms equal to each other, which yields

Ṽ
3−c−²

2
p = M223M ≪ e3M , (3.15)

which when equating yields8

e3M ≈ e
3−c−²

2
log Ṽp , (3.16)

which implies

M ≈ 3− c− ²

6
log Ṽp. (3.17)

We thus see that we may find a constant C such that

DI,Ṽp
(¹st) ≤ C

Ṽp

log Ṽp

. (3.18)

8We could obtain a slightly better constant below with a little more work; however, as it will not affect
the quality of our result we prefer to give the simpler argument with a slightly worse constant.
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□

4. PROOF OF EFFECTIVE EQUIDISTRIBUTION FOR ONE-PARAMETER FAMILIES

Instead of studying the family of all elliptic curves, we can also investigate one-
parameter families overℚ(T ). Thus, consider the family ℰ : y2 = x3+A(T )x+B(T ),
where A(T ) and B(T ) are in ℤ(T ). We assume that j(T ) is not constant for the family.
Michel [Mic] proved a Sato-Tate law for such families. In particular, he proved

Theorem 4.1 (Michel [Mic]). Consider a one-parameter family of elliptic curves over
ℚ(T ) with non-constant j-invariant. Let cΔ denote the number of complex zeros of
Δ(z) = 0 (where Δ is the discriminant), Ãp an additive character (and set ±Ãp = 0 if
this character is trivial and 1 otherwise), and write at,p as 2

√
p cos µt,p with µt,p ∈ [0, ¼].

Let

symk(µ) =
sin((k + 1)µ)

sin µ
. (4.1)

Then ∣∣∣∣∣∣∣
1

p

∑
t mod p
Δ(t) ∕=0

symkµt,p

∣∣∣∣∣∣∣
≤ (k + 1)(cΔ − ±Ãp − 1)√

p
. (4.2)

Additionally, we have ∣∣∣∣∣∣∣
1

p

∑
t mod p
Δ(t) ∕=0

cos µt,p

∣∣∣∣∣∣∣
≤ C√

p
(4.3)

for some C depending on the family. Finally, we may drop the additive character and
drop the restriction that Δ(t) ∕= 0 at the cost of a bounded number of summands, each
of which is at most (k+1),9 which implies these relations still hold provided we multiply
the bounds on the right hand side by some constant C ′.

Remark 4.2. Miller [Mil2] showed that the error term in Theorem 4.1 is sharp. Specif-
ically, the second moment of the family y2 = x3 + Tx2 +1 of elliptic curves over ℚ(T )
for p > 2 is

A2(p) :=
∑

t mod p

at(p)
2 = p2 − n3,2,pp− 1 + p

∑

x mod p

(
4x3 + 1

p

)
, (4.4)

where n3,2,p denotes the number of cube roots of 2 modulo p. For any [a, b] ⊂ [−2, 2]
there are infinitely many primes p ≡ 1 mod 3 such that

A2(p)−
(
p2 − n3,2,pp− 1

) ∈ [a ⋅ p3/2, b ⋅ p3/2]. (4.5)

9This is readily seen by writing sin((k + 1)µ) = sin(µ) cos(kµ) + cos(µ) sin(kµ) and proceeding by
induction.
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Theorem 4.1 is used by Michel to obtain good estimates for the average rank in these
families, as well as (of course) proving Sato-Tate laws. Using our techniques above, we
can convert Michel’s bounds to a quantified equidistribution law.

We recall the notation for Theorem 1.4. Consider a one-parameter family of elliptic
curves over ℚ(T ) with non-constant j(T ). Let there be Vp = p + O(1) reduced curves
modulo p, and set Ṽp = 2Vp. For each curve Et consider the angles µt,p and ¼ − µt,p,
with µt,p ∈ [0, 1], and the normalized angles xn = µt,p/¼ and xn+Vp = 1 − µt,p/¼ (for
1 ≤ n ≤ Vp).

Proof of Theorem 1.4. We must show DI,Ṽp
(¹st) ≪ Ṽ

3/4
p (where Ṽp ≈ 2p). As in the

proof of Theorem 1.3, it suffices to show
∣∣∣∣∣
∑

t mod p

cos(2mµt,p)− cmp

∣∣∣∣∣ , (4.6)

with c0 = 1, c1 = −1/2 and all other cm = 0. This is because we have enlarged our
set of normalized angles to be symmetric about 1/2. Thus when we study e(mxn) =
cos(2¼mxn) + i sin(2¼mxn), the sine sum vanishes. We are therefore left with the
cosine sum, with the normalized angles xn and xn+Vp contributing equally. Thus we
may replace the sum of the cosine piece over n with a sum over the angles µt,p, so long
as we remember to multiply by 2 when computing the discrepancy later. While we
should subtract cmVp and not cmp, as Vp = p + O(1) the error in doing this is dwarfed
by the error of the piece we are studying.

The case of 2m = 0 is trivial. If 2m = 2, then we are studying cos 2µt,p = −1
2
+

1
2
sym2(µ). By Theorem 4.1, we thus find that

∣∣∣∣∣
∑

t mod p

cos(2µt,p) +
p

2

∣∣∣∣∣ =

∣∣∣∣∣
∑

t mod p

1

2
sym2(µ)

∣∣∣∣∣ ≤ C√
p
. (4.7)

For higher m, we use Chebyshev polynomials (see [Wi]). The Chebyshev polynomials
of the first kind are given by Tℓ(cos µ) = cos(ℓµ); the Chebyshev polynomials of the
second kind are Uℓ(cos µ) = symℓ+1(µ). These polynomials are related by

Tℓ(cos µ) =
Uℓ(cos µ)− Uℓ−2(cos µ)

2
=

symℓ(µ)− symℓ−2(µ)

2
; (4.8)

we use this with ℓ = 2m ≥ 4. Using Theorem 4.1 we see that for m ≥ 2,
∣∣∣∣∣
∑

t mod p

cos(2mµt,p)

∣∣∣∣∣ ≤ Cm
√
p. (4.9)
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From (2.4), the discrepancy satisfies
1

2
DI,Ṽp

(¹st) ≤ p∣∣¹∣∣
M + 1

+
∑

1≤m≤M

(
1

M + 1
+min

(
b− a,

1

¼∣m∣
)) ∣∣∣∣∣

p∑
t=1

e(mxn)− cmp

∣∣∣∣∣ .

(4.10)

Using our bounds, we have

DI,p(¹) ≪ p∣∣¹∣∣
M + 1

+
M∑

m=1

Cm
√
p

m
≪ p

M
+M

√
p. (4.11)

The two error terms are of the same order of magnitude when M2 =
√
p, or M = p1/4.

This leads to
DI,p(¹) ≪ p3/4. (4.12)

□
Remark 4.3. Note we could have used the Chebyshev identities to handle the m = 1
case as well, as in fact we implicitly did when we rewrote cos 2µ; we prefer to break the
analysis into two cases as the m = 1 case has cm ∕= 0.

Remark 4.4. Rosen and Silverman [RS] proved a conjecture of Nagao [Na] relating
the distribution of the aE(p)’s and the rank. Unfortunately the known lower order term
due to the rank of the family is of size p1/2, which is significantly smaller than the error
terms of size p3/4 analyzed above. As noted in Remark 4.2, the error term is sharp and
cannot be improved for all families.

APPENDIX A. COMBINATORIAL IDENTITIES

We first state some needed properties of the binomial coefficients. For n, r non-
negative integers we set

(
n
k

)
= n!

k!(n−k)!
. We generalize to real n and k a positive integer

by setting (
n

k

)
=

n(n− 1) ⋅ ⋅ ⋅ (n− (k − 1))

k!
, (A.1)

which clearly agrees with our original definition for n a positive integer. Finally, we set(
n
0

)
= 1 and

(
n
k

)
= 0 if k is a negative integer.

To prove our main result we need the following two lemmas; we follow the proofs in
[Ward].

Lemma A.1 (Vandermonde’s Convolution Lemma). Let r, s be any two real numbers
and k,m, n integers. Then

∑

k

(
r

m+ k

)(
s

n− k

)
=

(
r + s

m+ n

)
. (A.2)
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Proof. It suffices to prove the claim when r, s are integers. The reason is that both sides
are polynomials, and if the polynomials agree for an infinitude of integers then they
must be identical. It suffices to consider the special case m = 0, in which case we are
reduced to showing

(
r

k

)(
s

n− k

)
=

(
r + s

n

)
. (A.3)

Consider the polynomial

(x+ y)r(x+ y)s = (x+ y)r+s. (A.4)

If we use the binomial theorem to expand the left hand side of (A.4), we get the coeffi-
cient of the xnyr+s−n is the left hand side of (A.3), while if we use the binomial theorem
to find the coefficient of xnyr+s−n on the right hand side of (A.4) we get (A.3), which
completes the proof. □

Lemma A.2. Let ℓ,m, s be non-negative integers. Then

∑

k

(−1)k
(

ℓ

m+ k

)(
s+ k

n

)
= (−1)ℓ+m

(
s−m

n− ℓ

)
. (A.5)

Proof. Using
(
a
b

)
=

(
a

a−b

)
, we rewrite

(
s+k
n

)
as

(
s+k

s+k−n

)
, and we then rewrite

(
s+k

s+k−n

)
as

(−1)s+k−n
( −n−1
s+k−n

)
by using the extension of the binomial coefficient, where we have

pulled out all the negative signs in the numerators. The advantage of this simplification
is that the summation index is now only in the denominator; further, the power of −1 is
now independent of k. Factoring out the sign, our quantity is equivalent to

(−1)s−n
∑

k

(
ℓ

m+ k

)( −n− 1

s+ k − n

)

= (−1)s−n
∑

k

(
ℓ

ℓ−m− k

)( −n− 1

s+ k − n

)
, (A.6)

where we again use
(
a
b

)
=

(
a

a−b

)
. By Vandermonde’s Convolution, this equals (−1)s−n

(
ℓ−n−1

ℓ−m−n+s

)
. Using

(
s−m

ℓ−m−n+s

)
=

(
s−m
n−ℓ

)
and collecting powers of −1 completes the proof

(note (−1)ℓ−m = (−1)ℓ+m). □

Lemma A.3. Let m be an integer greater than or equal to 1. Then

m∑
r=0

(−1)r
(
m

r

)(
m+ r

r

)
1

(r + 1)(m+ r)
=

{
1/2 if m = 1

0 if m ≥ 2.
(A.7)
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Proof. The case m = 1 follows by direct evaluation. Consider now m ≥ 2. We have

Sm =
m∑
r=0

(−1)r
(
m

r

)(
m+ r

r

)
1

(r + 1)(m+ r)

=
m∑
r=0

(−1)r
(
m

r

)
m+ 1

m+ 1

(
m+ r

r

)
1

(r + 1)(m+ r)

=
m∑
r=0

(−1)r
m!(m+ 1)

(r + 1) ⋅ r!m!

1

m+ 1

(m+ r)(m+ r − 1)!

r!m ⋅ (m− 1 + r)!

1

m+ r

=
m∑
r=0

(−1)r
(
m+ 1

r + 1

)(
m− 1 + r

r

)
1

m(m+ 1)

=
1

m(m+ 1)

m∑
r=0

(−1)r
(
m+ 1

r + 1

)(
m− 1 + r

m− 1

)
. (A.8)

We change variables and set u = r + 1; as r runs from 0 to m, u runs from 1 to m+ 1.
To have a complete sum, we want u to start at 0; thus we add in the u = 0 term, which
is
(
m−2
m−1

)
. As m ≥ 2, this is 0 from the extension of the binomial coefficient (this is the

first of two places where we use m ≥ 2). Our sum Sm thus equals

Sm = − 1

m(m+ 1)

m+1∑
u=0

(−1)u
(
m+ 1

u

)(
m− 2 + u

m− 1

)
. (A.9)

We now use Lemma A.2 with k = u, m = 0, ℓ = m+1, s = m−2 and n = m−1; note
the conditions of that lemma require s to be a non-negative integer, which translates to
our m ≥ 2. We thus find

Sm = − 1

m(m+ 1)
(−1)m+1

(
m− 2

−2

)
= 0, (A.10)

which completes the proof. □

We give another proof of Lemma A.3 below using hypergeometric functions; we
thank Frederick Strauch for showing us this approach.

Remark A.4. We present an alternative proof of Lemma A.3 using the hypergeometric
function

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1dt

(1− tz)a
. (A.11)

The following identity for the normalization constant of the Beta function is crucial in
the expansions:

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
. (A.12)
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We can use the geometric series formula to expand (A.11) as a power series in z in-
volving Gamma factors. Rewriting

(
m
r

)
as (−1)r

(
r−m−1

r

)
, after some algebra we find

Sm =
Γ(m)2F1(−m,m, 2; 1)

Γ(2)Γ(1 +m)
=

Γ(m)

Γ(1 +m)Γ(2 +m)Γ(2−m)
(A.13)

(our summation over r in the definition of Sm has become the series expansion of
2F1(−m,m, 2; 1)), where the last step uses

2F1(a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(A.14)

which follows from the normalization constant of the Beta function. Note that the right
hand side of (A.13) is 1/2 when m = 1 and 0 for m ≥ 2 because for such m, 1/Γ(2−
m) = 0 due to the pole of Γ(2−m).

Remark A.5. It is also possible to prove this lemma through symbolic manipulations.
Using the results from [PS, PSR], one may input this into a Mathematica package, which
outputs a proof.

APPENDIX B. MOMENTS FOR THE FAMILY OF ALL CURVES

Birch [Bi] claims the following: Let

SR(p) =
∑

a mod p

∑

b mod p

[ ∑

x mod p

(
x3 − ax− b

p

)]2R

. (B.1)

Then for p ≥ 5,

S1(p) = p2

S2(p) = 2p3 − 3p

S3(p) = 5p4 − 9p2 − 5p. (B.2)

There are obviously typos here. We know the Legendre sum is at most 2
√
p in absolute

value, thus we expect SR(p) to be on the order of p2 ⋅(√p)2R = pR+2; note the powers of
p are too low (and they are too high for dividing SR(p) by the cardinality of the family).

Assuming SR(p) is a polynomial in p, from exploring the results for small p we are
led to

S1(p) = p3 − p2

S2(p) = 2p4 − 2p3 − 3p2 + 3p

S3(p) = 5p5 − 5p4 − 9p3 + 4p2 + 5p. (B.3)

Note these are exactly the results from Birch multiplied by p − 1; we thank Andrew
Granville for pointing this out to us. In other words, the formulas in Birch are what
remains after dividing by the trivial multiplicative factor p− 1.
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Let S ′
R(p) denote the same sum as SR(p), but with the additional restriction that

4a3 ∕= 27b2. It is readily seen that S ′
R(p) = SR(p) + (p − 1); the reason is that if

the discriminant equals zero, then x3 − ax − b = (x − c)2(x − d) for some c, d, and
the sum of these Legendre symbols over all x modulo p is ±1 (the sum is the same as∑

x ∕≡c mod p

(
x−d
p

)
= −(

c−d
p

)
= ±1). Explicitly, we find

S1(p) = p3 − p2 − p+ 1

S2(p) = 2p4 − 2p3 − 3p2 + 2p+ 1

S3(p) = 5p5 − 5p4 − 9p3 + 4p2 + 4p+ 1. (B.4)

As the evaluation of these sums is central to this and other investigations, we provide
two proofs of the formula for S1(p) in the hopes that these arguments will be of use to
other researchers studying similar questions.

We first give the proof in [Mil1]. We have the following expansion of
(
x
p

)
:

(
x

p

)
= G−1

p

p∑
c=1

(
c

p

)
e

(
cx

p

)
, (B.5)

where e
(
a
p

)
= exp(2¼ia/p) and Gp =

∑
a(p)

(
a
p

)
e
(
a
p

)
, which equals

√
p for p ≡ 1(4)

and i
√
p for p ≡ 3(4). See, for example, [BEW].

For the curve y2 = fE(x) = x3 − ax− b, aE(p) = −∑
x(p)

(
fE(x)

p

)
. We use (B.5) to

rewrite aE(p) as

aE(p) = −G−1
p

∑

x(p)

p∑
c=1

(
c

p

)
e

(
cfE(x)

p

)
. (B.6)

We take the complex conjugate, which on the RHS introduces a minus sign into the
exponential and sends Gp to Gp, and has no effect on the LHS (which is real). The sum
becomes

S = (GpGp)
−1

p−1∑
a=0

p−1∑

b=0

2∏
i=1

p−1∑
xi=0

p−1∑
ci=0

(
ci
p

)
e

(
(−1)i+1(cix

3
i − ciaxi − cib)

p

)

=
1

p

p−1∑
x1,c1=0

p−1∑
x2,c2=0

(
c1c2
p

)
e

(
c1x

3
1 − c2x

3
2

p

) p−1∑
a=0

e

(−(c1x1 − c2x2)a

p

)

⋅
p−1∑

b=0

e

(−(c1 − c2)b

p

)
. (B.7)

The b-sum vanishes unless p∣(c1 − c2), which only happens if c1 = c2 = c. The a-
sum vanishes unless p∣(cx1 − cx2). As c ∕≡ 0(p) (we have the factor

(
c
p

)
) this forces

x1 = x2 = x. As c is non-zero,
(
c2

p

)
= 1, the first exponential factor is 1, and the sums
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collapse to

S =
1

p

p−1∑
c=1

1

p−1∑
x=0

1

p−1∑
a=0

1

p−1∑

b=0

1

=
1

p
(p− 1) ⋅ p ⋅ p ⋅ p = p3 − p2. (B.8)

Remark B.1. We sketch an alternate proof for S1(R). We have

S1(R) =
∑

a mod p

∑

b mod p

∑

x mod p

∑

y mod p

(
x3 − ax− b

p

)(
y3 − ay − b

p

)
. (B.9)

We use the following result:

ℛ =
∑

n mod p

(
n+ c1

p

)(
n+ c2

p

)

=
∑

n mod p

(
n2 + n(c2 − c1)

p

)

=
∑

n mod p

(
n2 + ®n(c2 − c1)

p

)
(B.10)

for any ® ∕≡ 0 mod p. Thus

(p− 1)ℛ =
∑

® ∕≡0 mod p

∑

n mod p

(
n2 + ®n(c2 − c1)

p

)
= −(p− 1), (B.11)

so ℛ = −1. Thus

∑

n mod p

(
n+ c1

p

)(
n+ c2

p

)
=

{
p− 1 if c1 ≡ c2 mod p

−1 otherwise.
(B.12)

We rewrite our sum (replacing a with −a and b with −b) as

S1(R) =
∑

a mod p

∑

x mod p

∑

y mod p

[ ∑

b mod p

(
b+ (x3 + ax)

p

)(
b+ (y3 + ay)

p

)]
. (B.13)

When is x3 + ax ≡ y3 + ay mod p? This is always true if x = y and a is arbitrary,
which gives a contribution of p ⋅ p ⋅ (p − 1). If x ∕= y (which happens p2 − p times),
there is a unique value of a that works, namely −(x3 − y3)/(x − y). For this special
a the contribution is (p2 − p) ⋅ 1 ⋅ (p − 1), and for the other a the contribution is
(p2 − p) ⋅ (p− 1) ⋅ (−1). Adding yields p3 − p2.
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