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Abstract. The Erdős distance problem concerns the least number of distinct
distances that can be determined by N points in the plane. The integer lattice
with N points is known as near-optimal, as it spans around O(N/

√
log(N))

distinct distances which is the lower bound for a set of N points (Erdős, 1946).
The only previous non-asymptotic work relating to the Erdős distance problem
that has been done was carried out for N ≤ 13. We take a new non-asymptotic
approach to this problem, studying the distance distribution, or in other words,
the plot of frequencies of each distance of the N × N integer lattice. In order
to fully characterize this distribution and determine its most common and least
common distances, we adapt previous number-theoretic results from Fermat
and Erdős, in order to relate the frequency of a given distance on the lattice to
the sum-of-squares formula, which determines the number of ways in which a
positive integer may be written as the sum of two squares.

In order to apply our work on the lattice to the distance problem, we study
the distance distributions of all its possible subsets; although this is a restricted
case, we find that the structure of the integer lattice allows for the existence
of subsets which can be chosen so that their distance distributions have certain
properties, such as emulating the distribution of randomly distributed sets of
points for certain small subsets, or that of the larger lattice itself. We define an
error which compares the distance distribution of a subset with that of the full
lattice. The structure of the integer lattice allows us to take subsets with certain
geometric properties in order to maximize error, by exploiting the potential for
sub-structure in the integer lattice. We show these geometric constructions
explicitly; further, we calculate explicit upper bounds for the error for when the
number of points in the subset is 4, 5, 9 or

⌈
N2/2

⌉
and prove a lower bound for

more general numbers of points.
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1. Introduction

In 1946, Paul Erdős proposed the now famous Erdős distinct distance problem:
Given n points in a plane, what is the minimum number of distinct distances,
f(n), they can determine? He accompanied this question with the first bounds on
f(n), √

n− 3

4
− 1

2
≤ f(n) ≤ cn√

log n
,

and further conjectured that the upper bound was tight—to this day, nobody
has found evidence to contradict this conjecture. However, since 1946, incidence
theory and algebraic geometry have provided a series of improvements on the
original lower bound, culminating with Guth and Katz’s seminal result in 2015,
which proved a lower bound of Ω(n/ log n).

Since Erdős’s original upper bound, coming from an estimate for the number of
distinct distances on the

√
n×
√
n integer lattice, has not been improved upon to

this day, any set with O(n/
√

log n) distinct distances is known as near-optimal.
Erdős further conjectured in 1996 that any near-optimal set would have lattice
structure, although the truth of this conjecture remains an open problem for large
values of n.

In addition to the Erdős distinct distance problem, a significant amount of work
has been published on related problems which analyze aspects of distributions of
distinct distances on planar point sets. The unit distance problem, for instance,
focuses on the number of times a single given distance—often, the unit distance—
can appear in a planar set of n points. However, most of the work done on these
subjects has been asymptotic, and previous non-asymptotic work was carried out
for n ≤ 13.

In this paper we take a novel approach and examine the whole distance distribu-
tion for the lattice and its subsets in a non-asymptotic setting. Although working
in Z2 is a simplification, our work is complicated by considering its whole distance
distribution—namely, taking into account the frequency with which each distance
appears on the lattice—rather than working asymptotically with only the number
of distinct distances. In particular, we first examine the distance distribution for
the lattice, characterizing its behavior and applying number-theoretic methods to
determine an upper bound for the frequency of its most common distance. Our
work results in a value that matches previous work on the Erdős unit distance
problem. We then turn to the distance distributions of subsets of the lattice and
compare them to the distance distribution of the lattice itself. Although they are
subsets of a highly regular set, the behavior of the distance distributions for these
sets can vary widely. Some subsets have distance distributions that highly mimic
that of the full lattice, while others have distance distributions that are similar to
that of a random set. We devise an error that measures how similar or different
a subset’s distance distribution is from that of the lattice itself; the details of this
error are given in the following section.

For the upper bounds, we were able to find specific configurations of p that
maximize the error and calculate their error. For the lower bounds, as there was
less of a discernible pattern to the subsets that maximize error, we take a more
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Figure 1. The distance distribution for the 200× 200 lattice.

theoretical approach and construct theoretical optimal distance distributions, ones
that cannot necessarily be realized by an actual subset of the lattice. We then
bound their error from below to create a lower bound.

Thus in this paper we seek to highlight preliminary results on this new perspec-
tive on the Erdős distinct distances problem. We first begin with some definitions.

2. Introducing Distance Distributions

Throughout this section, we characterize the distance distribution of the N×N
integer lattice, as seen in Figure 1.

Definition 2.1. For a fixed N , we denote by LN ⊂ Z2 the N ×N integer lattice,
where

LN = {(x, y) ∈ Z2 | 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1}. (2.1)

Definition 2.2. For any d ≥ 1, denote by L√d the number of times that the

distance
√
d appears on LN .

Definition 2.3. For any d ≥ 1, denote by S√d the number of times that the

distance
√
d appears in a subset S ⊆ LN .

Lemma 2.4. For any d ≥ 1,

L√d =
∑

a2+b2=d
a≥1, b≥0

2 (N − a) (N − b) , (2.2)

where the sum is taken over all ordered pairs of integers (a, b) with a ≥ 1, b ≥ 0
which satisfy a2 + b2 = d.



4 BOLDYRIEW, KIM, MILLER, PALSSON, SOVINE, TREJOS SUÁREZ, ZHAO

Proof. We first note that each occurrence of the distance
√
d can be related

uniquely to a pair of integers (w − y) and (x− z) whose sum of squares is precisely
d.

Let (a, b) be such an ordered pair, and suppose both a, b > 0. Notice that
for any point (w, x) on the integer lattice, (w + a, x + b) is in LN if and only if
0 ≤ w ≤ N−a−1, 0 ≤ x ≤ N− b−1; hence there are (N−a)(N− b) such points
(w, x). Similarly, for a point (w, x) on the integer lattice, (w+ a, x− b) is in LN if
and only if 0 ≤ w ≤ N − a− 1, b ≤ x ≤ N − 1, and so there are (N − a)(N − b)
such points (w, x). Adding these values, there are precisely 2(N − a)(N − b) pairs
of points separated by an x-distance of a and a y-distance of b.

In the event where a 6= b > 0, we can count the ordered pairs (a, b), (b, a)
separately. This gives a total of 4(N − a)(N − b) distances characterized by the
(un-ordered) pair a, b > 0. Otherwise, if a = b, the two are synonymous, and we
have 2(N − a)(N − b) such distances.

In the case where a > b = 0, since we assumed that a = 0, we only have the
ordered pair (a, b). This gives a total of 2N(N − a) distances.

As this accounts for any possible occurrence of
√
d on LN , we are done. As a

final check, we note that the well-known identity

N−1∑
a=1

N−1∑
b=0

2(N − a)(N − b) =
N2 (N2 − 1)

2
(2.3)

confirms that we have counted all
(
N2

2

)
distances on the lattice. �

As seen in Figure 1, the frequencies of distances are arranged in distinct curves.
Clearly, which curve L√d falls on is closely tied to the distinct ways it can be
written as the sum of two squares; if d has m representations as the sum of two
squares, then L√d falls on the mth highest curve. In fact, this is a subject which
has been studied in some detail, which we summarize below.

Definition 2.5. For any n ∈ Z, let r2(n) be the number of ordered pairs (a, b) ∈ Z2

such that a2 + b2 = n.

We state the following classical result due to Fermat without proof:

Theorem 2.6 (Fermat). If d is a positive integer with prime factorization d =
2fpg11 · · · pgmm qh1

1 · · · qhn
n , where for any i, pi ≡ 1 (mod 4) and qi ≡ 3 (mod 4), then

r2(n) =

{
4 (g1 + 1) · · · (gm + 1) all the hi are even

0 otherwise.
(2.4)

Remark 1. The pairs (a, b) ∈ Z2 which are counted in the above sum may be
negative; this contradicts our original condition for ordered pairs (a, b), as in
Lemma 2.4, for which we only required a ≥ 1, b ≥ 0. This is intentional, as both
quantities are calculated through different methods, and are used for different
purposes. In particular, because of the way these are counted, we see that for a
distance

√
d on the m-th curve, r2(d) = 4m.
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We use these resuls to find the most common distance on the integer lattice,
which proves to be useful later.

Definition 2.7. For any k ≥ 1, let
√
nk be the smallest distance on the k-th

curve, i.e., nk is the smallest positive integer such that r2(nk) = 4k.

Recalling the original lattice distance distribution as seen in Figure 1, we note
that the most common distance on each individual curve is the leftmost, i.e., the
smallest. This can be proven rigorously using methods similar to those of Fermat;
in particular, it may be shown that the frequency of distances on each curve is
strictly decreasing as the distance grows larger.

In our search for the most common distance on the lattice, we thus may narrow
our focus to the set of integers n1, n2, . . .. We determine the explicit size of the
integers in this sequence.

Lemma 2.8. Let 5 = p1 < p2 < · · · be the primes satisfying pi ≡ 1 (mod 4),
listed in increasing order. Suppose k = qa11 · · · qamm , where q1, . . . , qn are any m
distinct primes, and q1 > q2 > · · · > qm. Then nk is preciselyp1 · · · pa1︸ ︷︷ ︸

a1 primes

q1−1pa1+1 · · · pa1+a2︸ ︷︷ ︸
a2 primes

q2−1

· · ·

pa1+···+am−1+1 · · · pa1+···+pa1+···+am︸ ︷︷ ︸
am primes


qm−1

(2.5)

Proof. Omitted for brevity. �

Note that the sequence n1, n2, . . . is not strictly increasing. Evaluating some
specific values, we see that for k = 2m, nk = p1 · · · pm; additionally, for k prime,
nk = 5k−1. These may easily be seen to be the extremal values for nk, from which
we have the following corollary.

Corollary 2.9. For any k ≥ 1,

blog2(k)c∏
i=1

pi ≤ nk ≤ 5k−1. (2.6)

We wish to find a more explicit lower bound for nk, which is equivalent to
estimating the product of the first k primes p1 < · · · < pk which are congruent
to 1 (mod 4). While this quantity has never before been studied, we may adapt
existing work on bounding the product of the first k primes q1, . . . , qk of any class
(mod 4), denoted qk#.

The best general estimate is

qk# =
k∏

i=1

qi = e(1+o(1))k log k. (2.7)

We can then approximate our quantity as

k∏
i=1

pi =

(
2k∏
i=1

qi

)1/2

= e
1
2
(1+o(1))2k log 2k = e(1+o(1))k log 2k. (2.8)
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Given the equal spread of the primes in any arithmetic progression, we know this
must converge towards the real quantity; to determine the speed at which this
occurs is a more complex problem, and is outside the scope of this paper.

Using this quantity, we have a general lower bound for nk, namely

nk � e
1
2
(1+o(1)) log2(2k) log log2(2k). (2.9)

Now, given that a distance
√
d is on the k-th curve of the distance distribution,

can maximize each summand in Lemma 2.4 to find the upper bound

L√d ≤ 2kN
(
N −

√
d
)
. (2.10)

As this assumes that all k pairs of integers (a, b) with a2 + b2 = d are identically

(
√
d, 0), we know that for k > 1, it is indeed a strict upper bound for this quantity.
Putting these pieces together, we can determine

L√nk
� 2kN

(
N − e

1
4
(1+o(1)) log2(2k) log log2(2k)

)
. (2.11)

In particular, for large N , maximizing this quantity in terms of k gives us a strict
upper bound for the most common distance on the N × N lattice. Interestingly,
taken in terms of N , this maximum quantity is O(N2); this agrees with existing
work on the Erdős unit distance problem, and thus tells us that the frequency of
the most common distance of the lattice follows the same behavior as the most
common distance on any set of N2 points.

3. Error Estimates

With an understanding of the distance distribution for the lattice, one then
may ask about the behavior of the distance distributions for subsets of the lattice.
Although we know that the lattice is a near-optimal set, as previously discussed,
the behavior of the distance distributions of its subsets can vary widely. Thus, we
aim to examine how different and similar the distance distributions for subsets of
the lattice can be to that of the lattice, an analogous version of the Erdős distinct
distance problem on subsets of the lattice.

We now define our method of calculating the difference between the lattice’s
distance distribution and one of its subset. We call this difference the error, ε.

Recall that L√d is the frequency of a distance
√
d in the lattice and S√d is its

frequency in a particular subset S. We note that the N ×N lattice has N2(N2 −
1)/2 ≈ N4/2 total distances and a subset with p points has p(p−1)/2 ≈ p2/2 total
distances. Thus we scale up each S√d by N4/p2 to have a distance distribution
with about the same total number of frequencies as that of the lattice. Finally,
we sum

∣∣(N4/p2)S√d − L√d
∣∣ over all d

More explicitly,

ε =

√
2N∑

d=1

∣∣∣∣N4

p2
S√d − L√d

∣∣∣∣ .
In many of our calculations, instead of working with the actual distances, we

work with individual pairs (a, b) as sole representatives of the distance
√
a2 + b2.
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This gives exact values for the contribution to the error of a distance
√
d only

for distances on the first and second curves; in all other cases, this is a sim-
plification. Thus we introduce some new notation. Let La,b denote the num-

ber of times
√
a2 + b2 appears in the full lattice and let Sa,b denote the number

of times
√
a2 + b2 appears in the the subset of the lattice. Finally, let εa,b =

|(N4/p2)Sa,b − La,b|. It may be shown that counting repeat distances as distinct

either strictly increases error, or has no effect on it. If
√
a2 + b2 =

√
c2 + d2 for

{a, b} 6= {c, d}, we then see that the total contribution to error for this distance

is |N2

p2
Sa,b − La,b + N2

p2
Sc,d − Lc,d|, whereas counting them as distinct gives a total

contribution to error |N2

p2
Sa,b−La,b|+|N

2

p2
Sc,d−Lc,d|. Counting each pair as distinct

thus gives an upper bound for total error. Furthermore, these two quantities are
identical if and only if N2

p2
Sa,b − La,b and N2

p2
Sc,d − Lc,d have the same sign, which

we suspect is true of most subsets which maximize error.
Recall from the previous calculations we made on the frequency of distances on

the lattice, we know that when b = 0 or a = b, La,b = 2(N−a)(N−b). Otherwise,
La,b = 4(N − a)(N − b). For later error calculations, we need the average values
of 2(N − a)(N − b) and 4(N − a)(N − b). The average value of 2(N − a)(N − b)
is (N(5N − 1))/6 and the average value of 4(N − a)(N − b) is N(3N − 1)/3.

Additionally, we have calculated that the fraction of La,b that are of the form
2(N − a)(N − b) to be 4/N + 2 and the fraction of La,b that are of the form
4(N − a)(N − b) to be N − 2/N + 2.

Similarly to the original Erdős distinct distances problem, we are interested in
finding upper and lower bounds for the behavior we are studying. For the upper
bounds, we are able to find patterns of configurations that maximize the error.
We can then calculate the error for these specific configurations. For the lower
bound, we construct a theoretical optimal distance distributions and calculate a
lower bound on their error.

4. Upper Bounds

A configuration of p points that maximizes error needs to have as different
a distance distribution as possible from the original full lattice when scaled up.
Thus, the ratio of each distance’s frequency to the total number of distances,
including repeated distances, must be as different as possible from that in full
lattice. Specifically, we want to have a subset that has many distances that were
infrequent in the full lattice and minimal number of distances that were very
frequent in the full lattice.

For certain values of p, we know the configuration that maximizes error. See
Figures 2, 3, 4, 5, 6, 7.

For p = 4, the maximal error subset is all four corners of the lattice. To transi-
tion to p = 5, the middle point is added in. For p = 9, the maximal subset is a 3×3
lattice stretched to the size of the N×N lattice. To transition from p = 5 to p = 9,
the points that are in p = 9 but not in p = 5 are added in one by one. We then
know for p = 4(N − 1), the maximal error subset is the perimeter of the lattice,
with no other points. For p =

∑m
i=1 4(N − (2i − 1)), the maximal error subset is
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Figure 2. p = 4. Figure 3. p = 5.

Figure 4. p = 9. Figure 5. p = 4(N − 1).

Figure 6. p = 4(N −
1) + 4(N − 3).

Figure 7. p =
⌈
N2

2

⌉
.

the filled-in perimeter with a depth of i points. For example, Figure 6 is a filled-in
perimeter with a depth of 2 points. To transition from p =

∑m
i=1 4(N − (2i− 1))

to p =
∑m+1

i=1 4(N − (2i − 1)), the points only present in the latter configuration
are filled-in one by one. The final maximal error configuration we found is for
p = dN2/2e, where every other point is filled-in in a configuration we refer to as
a checkerboard lattice. One can note that depending on the value of N , dN2/2e,
is less than p =

∑m
i=1 4(N − (2i− 1)) for different values of m. As a result, there

is a transition between these two types of configuration and then a transition back.

We then calculate error estimates for some of these configurations. For these
calculations, we use the simplification of working with

√
a2 + b2 where 0 ≤ b ≤

N − 1 and b ≤ a ≤ N − 1, excluding a = b = 0, instead of distinct distances.
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We begin with p = 4, where the maximal error configuration is a point in each of
the corners of the lattice. We first note that the scaling constant is N4/p2 = N4/16.

We also have just two distinct distances:
√

2(N − 1) =
√

(N − 1)2 + (N − 1)2

which has LN−1,N−1 = 2 and SN−1,N−1 = 2 and N − 1 =
√

(N − 1)2 + 02 which
has LN−1,0 = 2N and SN−1,0 = 4 in the new configuration. To find εN−1,N−1 and
εN−1,0, we have to scale SN−1,N−1 and SN−1,0 by N4/16 and subtract LN−1,N−1
and LN−1,0, respectively. This is N4/8 − 2 and N4/4 − 2N. Thus the total error
contribution from these two distances is 3N4/8− 2− 2N .

Both LN−1,N−1 and LN−1,0 are of the form 2(N − a)(N − b), so we have to
update the average value of 2(N − a)(N − b) and the fraction of the time La,b is
of the form 2(N − a)(N − b), to exclude LN−1,N−1 and LN−1,0. The new average
is (5N2 + 4N + 3)/6 and the new fraction is (4N − 8)/(N2 +N − 2). The fraction
of La,b that are LN−1,N−1 and LN−1,0 is (4)/(N2 + N − 2). We note that for
{a, b} 6= {N − 1, N − 1} and 6= {N − 1, 0}, Sa,b = 0. Thus the average error
contribution for these distances is their average frequency in the lattice.

We can then put everything together to get our error estimate:

Error =
4

N2 + N − 2

(
3N4

8
− 2− 2N

)
+

4N − 8

N2 + N − 2

(
5N2 + 4N + 3

6

)
+

N − 2

N + 2

(
N(3N − 1)

3

)
=

5N2

2
− 5N

2
− 15

2(N − 1)
− 16

N + 2
+

13

2
.

This error estimate is an overestimate of the error when N is small because of
the fact that we are looking at

√
a2 + b2 instead of distinct distances. However,

the only distances that this way of estimating the error affects is the two distances
present on the lattice,

√
2(N − 1) and N − 1 . However, as N →∞, the fraction

of the total distances that these distances represent goes to zero. Thus, this error
estimate converges to the actual error.

Similarly, we can calculate the error for when p = 5. Recall, for this value of
p, that the subset configuration that maximizes error is the four corners and the
middle point of the lattice.

This configuration has 3 distinct distances: N − 1 =
√

(N − 1)2 + 02 for which

we have SN−1,0 = 4 and LN−1,0 = 2N ,
√

2(N − 1) =
√

(N − 1)2 + (N − 1)2 for

which we have SN−1,N−1 = 2 and LN−1,N−1 = 2, and
√

2(N − 1)/2√
((N − 1)/2)2 + ((N − 1)/2)2 for which we have S(N−1)/2,0 = 4 and L(N−1)/2,0 =

N + 1. To calculate εN−1,0, εN−1,N−1 and ε(N−1)/2,0, we need to multiply Sa,b by
N4

25
and subtract La,b. Thus, εN−1,0 = 4N4/25 − 2n, εN−1,N−1 = 2N4/25 − 2 and

ε(N−1)/2,0 = 4N4/25 − (N + 1). LN−1,0, LN−1,N−1 and L(N−1)/2,0 are of the form
2(N − a)(N − b), so we need to edit the average value of 2(N − a)(N − b) and the
fraction of the time La,b is of the form 2(N − a)(N − b) to no longer include the
three distances listed above.
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The new average value is (5N3− 6N62− 8N − 9)/(3(2N − 5)) and the fraction
of the time La, b is of the form 2(N − a)(N − b) is 6/(N + 2) − 2/(N − 1).
The fraction of the total distances that are the three distances listed above is
2/(N − 1)− 2/(N + 2).

We then put this all together to calculate the error:

Error =

(
2

N − 1
− 2

N + 2

)[(
4N4

25
− 2N

)
+

(
2N4

25
− 2

)
+

(
4N4

25
− (N + 1)

)]
+

(
6

N + 2
− 2

N − 1

)[
5N3 − 6N2 − 8N − 9

3(2N − 5)

]
+

N − 2

N + 2

[
N(3N − 1)

3

]
=

17N2

5
− 17N

5
− 6

N − 2
− 56

5(N − 1)
− 124

5(N + 2)
− 31

3(2N − 5)
+

113

15
.

Similarly to p = 4, this error estimate overestimates the error when N is small
because of the fact that we are looking at

√
a2 + b2 instead of distinct distances.

However, as N →∞, this error estimate converges to the actual error.

We can then examine what happens when p = 9. The 9 point configuration
that maximizes error is a 3 × 3 lattice that has been stretched to the size of the
N ×N lattice.

We first note that Sa,b > 0 if and only if a, b ≡ 0 mod (N − 1)/2. Thus the

fraction of Sa,b such that Sa,b 6= 0 for b 6= 0 and a > b is (2/(N − 1))2 = 4/(N−1)2

and the fraction of Sa,b such that Sa,b 6= 0 for b = 0 or a = b is 2
N−1 . The scaling

constant is N4/81. We estimate the error from above by assuming that if Sa,b 6= 0,
then Sa,b = La,b. This assumption does not increase the error estimate by an
unreasonable amount because for large enough N , the fraction of total distances
that are represented in this configuration is very low. We can then use our previous
averages of La,b to calculate error:

Error <
4

N + 2

[
2

N − 1

(
N4

81

(
N(5N − 1)

6

)
− N(5N − 1)

6

)

+

(
1− 2

N − 1

)(
N(5N − 1)

6

)]

+
N − 2

N + 2

[
4

(N − 1)2

(
N4

81

(
N(3N − 1)

3

)
− N(3N − 1)

3

)

+

(
1− 4

(N − 1)2

)(
N(3N − 1)

3

)]

=
32N4

243
− 52N3

243
+

4N2

9
− 220N

243
− 23044

2187(N − 1)
− 14000

2187(N + 2)

− 6200

729(N − 1)2
+

112

27(N − 1)3
+

32

9(N − 1)4
+

428

243
. (4.1)
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Figure 8. Computer generated data for the error of the optimal
distance distribution in the 100× 100 lattice.

Finally, we examine the error for the configuration for p = dN2/2e. This con-
figuration is the “checkerboard lattice,” a subset that is missing every other point
from the full lattice and resembles a checkerboard, as seen in Figure 7.

To provide some intuition, the checkerboard lattice is a reasonable configuration
for maximizing error because it very strongly prioritizes distances where b = 0 or
a = b. These distances have La,b = 2(N − a)(N − b), which tend to be smaller
than other frequencies where La,b = 4(N − a)(N − b). Thus this configuration has
many frequencies which are not very common in the full lattice.

In Appendix A, we calculate the frequency of some distances on the checker-
board lattice explicitly.

5. Lower Bounds

To minimize error, we want to preserve the same ratio of total distances, in-
cluding repeated distances, to frequency that appeared in the N × N lattice for
each unique distance. So to calculate a lower bound, we create an “optimal”
distribution of frequencies for p points. Clearly this optimal distribution cannot
always be achieved, as not every distance distribution is realizable by a certain
configuration. To come up with the optimal distribution, we scale each La,b by
N4/p2 and round this number to the nearest integer. We then find the error for
this optimal distribution in the same way as before. Code can easily be written
to find the optimal distance distribution and calculate the error. For example,
Figure 8 demonstrates what this error is for a 100 × 100 lattice. Note that this
figure does not include all possible values of p, rather it includes enough values to
capture to behavior of the error.
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We then construct a lower bound for this minimal error:

Error ≥

{(
N2

2

)
if p ≤ log5(N)

5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

(5.1)

We begin with discussing the first part of the piecewise function:(
N2

2

)
if p ≤ log5(N)

5

(
11− 2

√
10
)
. (5.2)

Here, we note that
(
N2

2

)
is the precise value for error for the empty subset of the

lattice, i.e., the sum of distance frequencies of the lattice itself. The idea is that
the distance distribution of a small enough subset of the lattice, after rescaling,
has a greater error than the empty subset, as its few distances are overrepresented
as to increase overall error.

As we use a scaling factor of N4/p2, we notice that if p is such that

N4

p2
> 2L√d (5.3)

for any distance
√
d on the integer lattice, then the error of any subset of size p is

strictly greater than that of the empty subset, as for any
√
d,∣∣∣∣N4

p2
S√d − L√d

∣∣∣∣ ≥ ∣∣∣∣N4

p2
− L√nk

∣∣∣∣ ≥ L√nk
,

where, as we previously defined,
√
nk is the most common overall distance on the

N ×N lattice.
Using our earlier estimates for the frequency of nm, we may find a trivial bound

for equation 2.11 in order to determine that

p ≤ log5(N)

5

(
11− 2

√
10
)

(5.4)

is sufficient.
We then discuss the second part of the piecewise function:

N4

8p2
if p sufficiently large. (5.5)

Once La,b’s are scaled down by p2/N4, rounded, and scaled up by N4/p2, they are
a multiple of N4/p2. That means that the largest εa,b can be is N4/2p2 and the
smallest εa,b can be is 0. One might expect the average contribution to error to
be N4/4p2. However, for small p, many frequencies in the N ×N lattice are much
closer to 0 than N4/2p2 as N4/2p2 is quite large. Thus the average is smaller
than N4/4p2. For large enough p, we know that the average is at least larger than
N4/8p2.

6. Future Work

There are several ways to improve and extend our work. We have already
done some characterizations of the subsets that maximize error and how the sub-
sets transition from one configuration to another. We know we have a checker-
board configuration when p = dN2/2e and we have a filled-in perimeter when
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p =
∑m

i=1 4(N − (2i − 1)) for different values of m. However the transition be-
tween these two configurations has still yet to be characterized.

Additionally, we hope to improve our lower bound work. Work can be done to
find a characterization of the sets that minimize error. Furthermore, we hope to
refine our lower bound formula by finding a rigorous lower bound the values of p
where N4/8p2 holds.

Finally, as Erdős conjectured that all near-optimal sets have lattice structure,
it is natural to extend results to other lattice structures. We expect that the error
is similar.

Appendix A. Additional Calculations on the Lattice

In a checkerboard,
√
a2 + b2 only appears as a distance if either a and b are

both odd or both even. We note that is this causes about 1/2 of Sa,b to be zero
for a > b and b 6= 0. Additionally, we note that this causes about 1/4 of Sa,b to
be zero for a = b or b = 0. We use the simplifying assumption that Sa,b = La, b if
Sa,b 6= 0. This ultimately increases our error estimate. We then have the following
error calculation:

4

N + 2

[
3

4

(
4

(
N(5N − 1)

6

)
− N(5N − 1)

6

)
+

1

4

(
N(5N − 1)

6

)]
+
N − 2

N + 2

[
1

2

(
4

(
N(3N − 1)

3

)
− N(3N − 1)

3

)
+

1

2

(
N(3N − 1)

3

)]
= 2N2 − N

3
− 2

3(N + 2)
+

1

3
. (A.1)

If wanted, we can increase the accuracy of the error estimate for the checker-
board configuration by precisely calculating Sa,b for Sa,b 6= 0. First, we may look

at distances of the form
√
a2, i.e., those for which b = 0. We note these only

appear on the checkerboard lattice when a is even.
We count the total number of times that two points on the lattice are separated

by a horizontal distance of a—this number matches the number of pairs which are
separated by a vertical distance of a, by rotational symmetry. In the case where
N is even, each row of the lattice contains N/2 points, of which there are N

2
− a

2
pairs at a distance a. We thus see that

Sa,0 = 2N

(
N

2
− a

2

)
= N(N − a). (A.2)

In the case where N is odd, we assume that the checkerboard lattice is chosen
in such a way that the four corners are included. In this case, we see that N+1

2
of

the rows contain N+1
2

points, whereas N−1
2

rows contain N−1
2

points. Thus,

Sa,0 = 2

(
N + 1

2

(
N + 1

2
− a

2

)
+

N − 1

2

(
N − 1

2
− a

2

))
= N(N−a)+1. (A.3)

We now look at distances of the form
√

2a2, i.e., those formed by values a = b.
We assume N is odd.
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In the case where N is odd, we notice that on the N×N checkerboard lattices, all
diagonals at 45◦ contain an odd number of points. Moreover, for any 1 ≤ n ≤ N−1

2
,

there are four diagonals with 2n− 1 points; additionally, there are two diagonals
with N points. Finally, the distance

√
2a2 =

√
2a appears on a diagonal with

2n− 1 points precisely 2n− 1− a times; in the case where n ≤ a, the distance is
not present.

In the case where a is odd, we see
√

2a is present on all diagonals with at least
a + 2 points. We have

Sa,a = 4 ((a + 2)− a + (a + 4)− a + · · ·+ (N − 2)− a) + 2(N − a)

= 4 (2 + 4 + · · ·+ N − a− 2) + 2 (N − a)

= 8

(
1 + · · ·+ N − a− 2

2

)
+ 2(N − a)

= 8

(
N−a−2

2
N−a
2

2

)
+ 2(N − a)

= (N − a− 2)(N − a) + 2(N − a)

= (N − a)2.

In the case where a is even, we see
√

2a is present on all diagonals with at least
a + 1 points. Thus,

Ca,a = 4 ((a + 1)− a + (a + 3)− a + · · ·+ (N − 2)− a) + 2(N − a)

= 4 (1 + 3 + · · ·+ N − 2− a) + 2 (N − a)

= 4 (2 + 4 + · · ·+ N − 1− a)− 4

(
N − a− 1

2

)
+ 2(N − a)

= 8

(
N−a−1

2
N−a+1

2

2

)
− 2(N − a− 1) + 2(N − a)

= (N − a− 1)(N − a + 1) + 2

= (N − a)2 − 1 + 2

= (N − a)2 + 1.

In the case where N is even, the calculation is slightly more complicated, as
the only possible arrangement of N2/2 points in a checkerboard pattern results in
a loss of 4-fold rotational symmetry. Without loss of generality, we see that the
bottom-left to top-right diagonals each contain an even number of points, whereas
the top-left to bottom-right diagonals each contain an odd number of points. In
particular, the cardinalities of the bottom-left to top-right diagonals are

2, 4, 6, . . . , N − 2, N, N − 2, . . . , 6, 4, 2.

The top-left to bottom-right diagonals instead have cardinalities

1, 3, 5, . . . , N − 3, N − 1, N − 1, N − 3, , . . . , 5, 3, 1.



TINKERING WITH LATTICES: A NEW TAKE ON THE ERDOS DISTANCE PROBLEM 15

For a even, the distance
√

2a is on any diagonal with cardinality n > a, with
frequency n− a. Thus we calculate

Sa,a = 2

(N−2)/2∑
n=a/2

(2n + 1− a) + 2

(N−2)/2∑
n=1+a/2

(2n− a) + (N − a)

= 2 (1 + 3 + · · ·+ N − 1− a) + 2 (2 + 4 + · · ·+ N − 2− a) + N − a

= 2

(
(N − a− 1) (N − a)

2

)
+ N − a

= (N − a− 1) (N − a) + N − a

= (N − a)2 .

For a odd, the calculation is nearly identical, although a + 1 becomes the first
even diagonal cardinality on which a distance a appears, and a + 2 the first odd
diagonal cardinality. Hence we see

Sa,a = 2

(N−2)/2∑
n=(a+1)/2

(2n + 1− a) + 2

(N−2)/2∑
n=(a+1)/2

(2n− a) + (N − a)

= 2 (2 + 4 + · · ·+ N − 1− a) + 2 (1 + 3 + · · ·+ N − 2− a) + N − a

= 2

(
(N − a− 1) (N − a)

2

)
+ N − a

= (N − a− 1) (N − a) + N − a

= (N − a)2 .
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