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ABSTRACT. We characterize the largest point sets in the plane which define at most 1, 2, and 3 angles. For
P (k) the largest size of a point set admitting at most k angles, we prove P (2) = 5 and P (3) = 5. We also pro-
vide the general bounds of k + 2 ≤ P (k) ≤ 6k, although the upper bound may be improved pending progress
toward the Weak Dirac Conjecture. Notably, it is surprising that P (k) = Θ(k) since, in the distance setting,
the best known upper bound on the analogous quantity is quadratic and no lower bound is well-understood.
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1. INTRODUCTION

1.1. Background. In 1946, Erdős introduced the problem of finding asymptotic bounds on the minimum
number of distinct distances among sets of n points in the plane [Er]. The Erdős distance problem, as it has
become known, proved infamously difficult and was only finally (essentially) resolved by Guth and Katz in
2015 [GuKa].

The Erdős distance problem has also spawned a wide variety of related questions, including the problem
of finding maximal point sets with at most k distinct distances. Characterizing the largest possible point
sets satisfying a given property in this way is a classic problem in discrete geometry. As another example,
Erdős introduced the problem of finding maximal point sets of all isosceles triangles in 1947 [ErKe]. Ionin
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completely answers this question in Euclidean space of dimension at most 7 [Io]. Erdős and Fishburn
determine maximal planar sets with at most k distinct distances [ErFi]. Recent results by Szöllősi and
Östergård classify the maximal 3-distance sets in R4, 4-distance sets in R3, and 6-distance sets in R2 [SzOs].
In [ELMP, BrDePaSe, BrDePaSt] point sets with a low number of distinct triangles in Euclidean space are
investigated.

Along these lines, we consider the related problem of maximal planar point sets admitting at most k
distinct angles in (0, π). We ignore angles of 0 and π so as to align our convention with related research (see
[PaSha92], for example), although we provide results including the 0 angle as corollaries. We completely
answer this question for k = 2, and k = 3 and provide asymptotically tight linear bounds for k > 3. In
answering this question for k = 2 and k = 3, we consider systematically consider all possible triangles in
such configurations and then reduce to adding points in a finite number of positions by geometric casework.
We provide linear asymptotic bounds using bounds on the related problem of the minimum number of
distinct angles among n non-collinear points in the plane.

1.2. Definitions and Results. By convention, we only count angles of magnitude strictly between 0 and
π. Our computations still answer the related optimal point configuration questions including 0 angles (see
Corollaries 3.1, 4.1). We begin by introducing convenient notation:

Definition 1.1. Let P ⊂ R2. Then

A(P) := #{|∠abc| ∈ (0, π) : a, b, c distinct, a, b, c ∈ P},

Now we define the quantity we are interested in studying.

Definition 1.2.
P (k) := max{#P : P ⊆ R2, not all points in P are collinear, A(P) ≤ k}.

We first provide general linear lower and upper bounds for P (k). In particular, we have the following
theorem.

Theorem 1.3. For all k ≥ 1,

2k + 3 ≤ P (2k) ≤ 12k

2k + 3 ≤ P (2k + 1) ≤ 12k + 6.

In the distance setting, the best known upper bound on the analogous parameter is the quadratic (2 +
k)(1 + k), and no lower bound is well-understood [SzOs]. It is therefore interesting and surprising that we
find P (k) = Θ(n) in the angle setting. We prove Theorem 1.3 in Section 2.

Furthermore, we explicitly compute P (1), P (2), and P (3) and exhaustively identify all maximal point
configurations for each.

Proposition 1.4. We have P (1) = 3, and the equilateral triangle is the unique maximal configuration.

In order to have only a single angle, every triangle of three points in the configuration must be equilateral.
As this is impossible for point configurations that are not the vertices of an equilateral triangle, P (1) = 3.
P (2) and P (3) are considerably less trivial quantities. We calculate P (2), P (3) via exhaustive casework,
simultaneously characterizing all of the unique optimal point configurations up to rigid motion transforma-
tions and dilation about the center of the configuration. We proceed by first considering sets of three points
and then search for what additional points may be added without determining too many angles. We prove
Theorem 1.5 in Section 3 and Theorem 1.6 in Section 4.

Theorem 1.5. We have P (2) = 5. Moreover, the unique optimal point configuration is four vertices in a
square with a fifth point at its center (see A in Figure 1).

Theorem 1.6. We have P (3) = 5. There are 5 unique optimal configurations, shown in Figure 1.
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FIGURE 1. Optimal Two and Three Angle Configurations. α = π
5 , β = 2π

5 , γ = 3π
5 .

2. GENERAL BOUNDS

Although one may in principle calculate P (k) for any k by extensive casework (as we later calculate
P (2), P (3)), it quickly becomes overwhelming. As such, we instead provide general bounds on P (2k) and
P (2k+1). Note that the construction of a square with a point in the center is no accident in the case of P (2).
Indeed, adding a point in the center of a regular 2k-gon introduces no additional angles. This is because, in
a regular 2k-gon, the line from the center to any boundary vertex intersects an additional vertex on the other
side. As such, the only additional angles that may be added from the center point are those with the center
point as the center of the angle. For the other angles including it as an endpoint, choosing the point on the
other end of the line through the center gives an equal angle. Moreover, the angles formed with the center
point as the center of the angle are precisely iπ/k for 1 ≤ i ≤ k− 1, which are already achieved among the
other points of the regular 2k-gon.

So, using the regular (2k + 2)-gon with a point added in the center yields the following lemma.

Lemma 2.1. We have P (2k) ≥ 2k + 3.

Moreover, in the case of P (2k+ 1), the regular (2k+ 3)-gon and the projection of a regular (2k+ 3)-gon
onto a line (via a stereographic-like projection from a cap vertex) both achieve 2k + 1 angles, providing a
bound on P (2k + 1).

Lemma 2.2. We have P (2k + 1) ≥ 2k + 3.

Proposition 2.3. If we wish to also count the 0-angle, then we may not add the center to an even polygon,
and in general we reach a bound of P (k) ≥ k + 2.

We conjecture that both of these lower bounds are tight in general. Nonetheless, we provide a linear
upper bound. We achieve this bound as a corollary of a lower bound on the number of distinct angles, using
progress on the Weak Dirac Conjecture. In 1961, Erdős [Er] conjectured the following, based on an earlier,
more difficult conjecture of Dirac:

Conjecture 2.4 (Erdős, 1961). Every set P of n non-collinear points in the plane contains a point incident
to at least dn/2e lines of L(P), where L(P) is the set of lines formed by points in P .
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While Dirac’s conjecture has not been proven, significant progress has been made. Let l(n) be the largest
proven lower bound proven for Dirac’s conjecture. I.e., every set P of n non-collinear points in the plane
contains a point incident to at least l(n) lines of L(P). We have l(n) ≥ dn/3e+ 1 from [Ha]. Let A(n) be
the minimum number of distinct angles among n points in the plane. We have the following lemma.

Lemma 2.5. For n > 3, A(n) ≥ l(n)−1
2 ≥ n/6.

Proof. Fix a set P of n non-collinear points in the plane. Let p be a point in P incident to at least `(n) lines
of L(P). Fix a point q 6= p in P . It shares exactly one line with p. Note that for a fixed nonzero angle
θ < π, there are exactly two possible lines which r must be on in order for ∠qpr = θ. As such, since p is
incident to `(n)− 1 lines without q, p is the center angle of at least (`(n)− 1)/2 distinct angles. Therefore

A(n) ≥ `(n)− 1

2
.

We have `(n) ≥ dn/3e+ 1 from [Ha]. As such, we have A(n) ≥ n/6, as desired. �

Note that such a use of the Weak Dirac Conjecture is known. See [BMP], Section 6.2.

Corollary 2.6. We have P (k) ≤ 6k.

Proof. SinceA(n) ≥ n/6 by Lemma 2.5, then P (k) ≤ 6k as point configurations with at least 6k+1 points
define at least k + 1 angles. �

3. COMPUTING P (2) = 5

Proof. In any point configuration with at least three points, there are triangles. For any point configuration
with at most two angles, all triangles must be isosceles. We divide into two cases, based on whether or not
there is an equilateral triangle.

3.1. There is an equilateral triangle. We consider adding a fourth point in cases (Figure 2).

FIGURE 2. Equilateral Triangle Regions

Case 1: p ∈ A.
Then ∠acp < π/3 and ∠cap > π/3, leading to more than two angles.

Case 2: p ∈ ab.
Then ∠bcp < π/3 and one of ∠cpb and ∠apc ≥ π/2, leading to more than two angles.

Case 3: p ∈ ac~

~

to the upper-right of a.
Then ∠cbp > π/3 and ∠cpb < π/3, again leading to more than two angles.
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Case 4: p ∈ B.
In this case, ∠cbp > π/3 and ∠cpb < π/3, leading to more than two angles.

Case 5: p ∈ 4abc.
In this case, one of ∠apb,∠bpc,∠cpa ≥ 2π/3 and ∠acp < π/3, leading to more than two angles.

Up to symmetry, these cases are exhaustive. Thus if there is an equilateral triangle in the configuration,
there can only be at most three points.

3.2. There is no equilateral triangle. Now, let a, b, and c be the vertices of an isosceles triangle with vertex
angle α, base angle β, and a the apex vertex. We reduce the number of possibilities for additional points by
partitioning the plane into regions Ai (Figure 3). Note that we may without loss of generality assume that

FIGURE 3. Isosceles Triangle Regions.

no fourth point is added within4abc as we could then choose that triangle as our initial triangle. Also note
that A1 and A′1 and A3 and A′3 are equivalent up to symmetry.

Case 1: p ∈ A1.
In this case, ∠pab > α and ∠pcb > β. So, regardless of whether α or β is greater, adding p
introduces an additional angle. So, no additional points can be in A1 or A′1.

Case 2: p ∈ A2.
In this case, ∠pcb and ∠pbc are greater than β, so both must be α to not add additional angles. But
then ∠cpb = π − 2α 6= β, in order to not add angles, implying 3α = π. But, this implies 4pcb is
an equilateral triangle. Thus no points may be added in this case.

Case 3: p ∈ A3 (or A′3 by symmetry).
In this case, ∠bap > α and ∠abp > β, so there is an additional angle added regardless and no
additional points are possible.

Case 4: p ∈ A4.
In this case, ∠cap,∠bap < α, so both must equal β. Therefore, 2β = α, which implies β = π/4
and α = π/2. Moreover, since ∠acp and ∠abp are greater than β, they must both equal α = π/2.
So, the only possibility for an addable point in this case is for p to be the fourth vertex of the square
acpb.
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Case 5: p ∈ bc~

~

.
If p is on bc~

~

between b and c, then ∠cap,∠bap < α. In order for these not to introduce additional
angles, they must both be equal to β. This implies β = π/4 and α = π/2 and p is the center of the
side bc. If p ∈ bc~

~

to the left of c (or by symmetry, right of b), ∠bap > α and thus ∠bap = β. Since
2β + α = π, β < π/2. But then ∠acp > π/2 > β > α. Thus there is exactly one point possible on
line bc~

~

, the centerpoint of the edge between b and c.
Case 6: p ∈ ac~

~

(or p ∈ ab~

~

).
If p is between a and c, then ∠cbp < β and thus ∠cbp = α. But, as before, β < π/2. Moreover,
one of ∠bpc or ∠bpa is at least π/2 > β > α. Thus there are too many angles in this case. If p is
to the bottom left of c, ∠apb < β and thus ∠apb = α. But, again, either ∠bca or ∠bcp > π/2 > β,
creating too many angles in this case. If p is on ac~

~

to the upper right of a, ∠pbc > β and thus equals
α. Then ∠pba < α and must equal β and thus 2β = α. This implies β = π/4 and α = π/2 and
4cbp is an isosceles right triangle with b the apex vertex, p on ac~

~

to the upper right of a, and a at
the center of side pc.

As such, in order to add additional points to an isosceles triangle point configuration without adding
additional angles, we must have α = π/2 and β = π/4. The four additional possible points are marked in
Figure 4.

FIGURE 4. Compatible Points with the Right Triangle.

Note that ∠x4ax1,∠x4ax2 > π/2. So, x4 cannot be in the same point configuration as x1 or x2. By
symmetry the same follows for x3. However, we may have both x1 and x2 or both x3 and x4, either of
which give the unique optimal configuration A in Figure 1. �

Corollary 3.1. One might also wish to include the trivial 0-angle in our count. In this case, P (2) = 4, and
the unique configuration is the square.

Proof. The only 5-point configuration no longer holds when we count the 0-angle. Figure 4 displays all
valid four point configurations which define only 2 angles excluding 0, as detailed in the proof of P (2). All
the shown points but x2 define a 0-angle, so the only valid 4 point configuration is the square. �
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4. COMPUTING P (3) = 5.

In this section we prove the surprising result that P (3) = 5. That is, adding an additional allowable
distinct angle from two to three does not increase the maximum number of points in an optimal point
configuration.

Proof. We divide the casework for this section into four parts based on the triangles exhibited in the point
configuration:

(1) There is a scalene triangle.
(2) All triangles are isosceles with at least one with base angle larger than vertex angle.
(3) All triangles are isosceles with the base angle at most the vertex angle with at least one non-

equilateral triangle.
(4) All triangles are equilateral.

4.1. There is a scalene triangle. Let a, b, and c be the vertices of a scalene triangle in the configuration.
We without loss of generality assume α < β < γ (Figure 5). As in the proof of Theorem 1.5, we begin by

FIGURE 5. Scalene Triangle Regions.

reducing the number of possible points to a finite number by region-based casework.
Case 1: p ∈ A1.

As ∠bap < α, no points may be added in A1.
Case 2: p ∈ A2.

In this case, ∠abp > β and thus must equal γ. Moreover, ∠bap > α. If ∠bap = γ, ∠bpa < α.
Thus ∠bap = β, which implies ∠bpa = α. But, ∠bpc < ∠bpa = α, so we define a fourth angle.
Therefore there cannot be points added in A2.

Case 3, Case 4: p ∈ A3 ∪A4.
As ∠bcp > γ, no points may be added in A4.

Case 5: p ∈ A5.
In this case, ∠cbp > β and thus ∠cbp = γ. Moreover, ∠cap > α and is thus β or γ (which implies
∠pab = α or β, respectively). If ∠cap = β, we have that ∠pab < β and thus is equal to α. So,
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β = 2α. Then ∠abp cannot be α because then ∠apb > γ. So, ∠abp = β. So, 2α = β and 2β = γ,
so the angles are π/7, 2π/7, and 4π/7. We then have Figure 6.

FIGURE 6. Four Point Kite Configuration. α =
π

7
, β = 2α, γ = 4α.

Alternatively, we have ∠pab = β and thus ∠cap = γ. Then γ = β+α, so ∠abp = α. γ = β+α
and α+β+γ = π implies γ = π/2. I.e., a, b, c, p are the vertices of a rectangle. As such, we reach
Figure 7.

FIGURE 7. Four Point Rectangular Configuration.

Therefore, there are exactly two possible points to add in A5, with each choice exactly deter-
mining the angles α, β, and γ.

Case 6: p ∈ A6.
As ∠acp > γ, no points may be added in A6.

Case 7: p ∈ ab~

~

.
If p is to the right of b, then ∠acp > γ.

Note that β, α < π/2. Then, if p is to the left of a, ∠pac > π/2 and must equal γ. But then α
and γ are supplementary, implying β = 0.

Finally, if p is between a and b, one of ∠cpa and ∠cpb is at least π/2. So, γ ≥ π/2. Moreover,
as neither α nor β can be supplementary to γ, we have that the supplement of γ is γ, and hence
γ = π/2. This yields a diagram like Figure 8.

So, exactly one point may be added on ab~

~

and it forces γ = π/2.
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FIGURE 8. Four Point Configuration from Case 7.

Case 8: p ∈ bc~

~

.
If p is between b and c then ∠bap < α.

Recall that β, α < π/2. Then, if p is not on bc and is closest to b, ∠abp > π/2 and thus must
equal γ. So, γ + β = π. But, this implies α = 0.

Finally, if p is not on bc and is closest to c, then ∠acp is supplementary to γ. Since neither β nor
α can supplementary to γ be without implying the other is 0, this implies γ = π/2. We then have
the configurations in Figure 9 since ∠cap = β or α.

FIGURE 9. Four Point Configurations from Case 8.

So, exactly two points can be added on bc~

~

and both force γ = π/2.
Case 9: p ∈ ac~

~

.
If p is between a and c, then one of ∠bpa and ∠bpc are at least π/2 and must thus be γ. Since neither
α nor β can be supplementary to γ, this implies γ = π/2. However, ∠abp < β and thus must be α.
This then yields 2α = π/2 from4abp, contradicting α+ β = π/2 since α 6= β.

If p is left of a, we have ∠pab > π/2 and thus must be γ. But, this implies γ and α are
supplementary.

If p is right of c, then ∠bcp is supplementary to γ. Since neither α nor β can be, this implies
γ = π/2. This leads to the allowable point configuration in Figure 10.

So, exactly one point may be added in this case, with γ = π/2 being forced.

Case 10: p in the interior of4abc.
In this case ∠pac < α, we no points may be added.
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FIGURE 10. Four Point Configuration from Case 9.

FIGURE 11. Compatible Points with the Right Triangle

It now remains to show that all six addable points are mutually incompatible. Suppose we add p ∈ A5 as
in the first case of a kite (Figure 6). As γ 6= π/2 as in all the other cases, no additional points may be added.

Where γ = π/2, we have the five point placements to consider (presented in Figure 11).
Suppose we add x1. Adding x2 yields an angle ∠x1x2b > π/2 or ∠x1x2a > π/2 (the diagonals cannot

intersect at right angles lest α = β). Adding x3 adds ∠x1ax3 > π/2, and similarly for x4. Adding x5 adds
∠x1bx5 > π/2.

Suppose we add x2. Adding x3 yields ∠x2cx3 > π/2, and similarly for x4. Adding x5 adds ∠ax2x5 >
π/2.

Suppose we add x3. Adding x4 creates ∠ax3x4 > π/2. Adding x5 forces ∠ax3x5 = ∠bx5x3 =
∠abx5 = π/2. But ∠bax3 = β < π/2, so the angles in abx5x3 do not add to 2π.

Finally, suppose we add x4 and x5. In this case, ∠cx4x5 < ∠cx3x5 = α.
So, if there is a scalene triangle in the point configuration, there can be at most four points.

4.2. All triangles are isosceles with at least one with base angle larger than vertex angle. Let a, b, and
c be the vertices of an isosceles triangle with the base angle larger than the vertex angle (Figure 12).

Specifically, α = ∠cba < ∠abc = ∠acb = β.
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FIGURE 12. Isosceles Triangle with Small Vertex Angle.

Case 1: p ∈ A1 .
Note that ∠bcp > β > α. Let this new angle be γ. Then, since only three angles are admissible and
since ∠pca+ ∠acb = γ, then ∠pca = α or ∠pca = β.

Suppose ∠pca = β. Then ∠pcb = γ = 2β. Additionally, since ∠pbc < β, ∠pbc = α. Since
2β + α = π, then ∠bpc < γ lest the angles in4pbc be too large. Then as4pbc must be isosceles,
∠bpc = α. Thus the angles in4bpc sum to γ + 2α = 2β + 2α > 2β + α = π, a contradiction.

Thus ∠pca = α. In this case, γ = α + β. Observe that ∠pbc < β, and so ∠pbc = α. Similarly,
∠pba = α, thus giving ∠bca = β = 2α. Then γ = α + β = 3α. The angles in 4abc must add to
π, so 2β +α = 5α = π, which implies α = π/5. Moreover, as4pbc must be isosceles, ∠cpb = α.
Then as ∠bpa < ∠cpa, we have ∠bpa = α or ∠bpa = β, both of which determine ∠pac. Thus in
this case we have two points inA1 which are contenders to give acceptable four-point configurations
(Figure 13).

FIGURE 13. Configurations of Interest from Case 1.

Consider further the case where ∠bpa = α. We have pabc is a parallelogram. We have deduced
above that pb~

~

bisects ∠abc, but this is only true if abcp is a rhombus. However, this would mean that
11



4abc is equilateral, since then |ab| = |ac| = |bc|, contradicting our original assumption that α < β.
Thus this case is impossible and ∠bpa = β. So, there is exactly one point we may add in A1 (thus
forming the left configuration of Figure 13), and, by symmetry, an additional one point in A′1.

Case 2: p ∈ A2.
Note that ∠bcp > ∠bca = β, and ∠cpb < ∠cab = α. Thus no points may be added in A2.

Case 3: p ∈ A3.
If p ∈ A3, then γ = ∠abp > β. Then, as ∠pab > α, we have ∠apb < β and thus ∠apb = α so that
we may still have only three angles. But then ∠apc < ∠apb = α, yielding a fourth angle. Thus no
new angles may be added in A3 or A′3.

Case 4: p ∈ A4.
In this case, ∠pac < ∠bac = α < β = ∠bca < ∠pca. Thus there are already four angles, and no
points can be added in A4.

Case 5: p inside4abc.
In this case, ∠pab,∠pac < ∠cab = α, so let ∠pab = ∠pac = γ. As 4abp must be isosceles and
γ < α, γ cannot be the vertex angle of 4abp. Since γ < α < β, this implies the vertex angle of
4abp must be β. So, 2γ = α and 2γ + β = π. But, this is a contradiction as α + 2β = π. No
points are addable in this case.

Case 6: p ∈ bc~

~

.
First, assume p is between b and c; that is, p is located on the base of 4abc. Then, ∠pab < α and
one of ∠pba or ∠cpa ≥ π/2 > β. Thus no points can be added on the base of4abc.

Now suppose that p is not between b and c. By symmetry, we may assume that p is on the left
(i.e., it is closer to c than to b). Now, since β < π/2, ∠acp = γ > π/2. As4acp must be isosceles,
γ cannot be a base angle, and γ > α, we have ∠cpa = ∠pac = α. This implies 2α + γ = 2β + α
and α+ γ = 2β. Along with π − γ = β, this yields α = π/5, β = 2α, γ = 3α. So, two points are
addable in this case (one on either side of the edge bc). See Figure 14.

FIGURE 14. Four Point Configuration from Case 6.

Case 7: p ∈ ac~

~

or p ∈ ab~

~

.
By symmetry, we may assume p ∈ ac~

~

.
First, assume p is between a and c; that is, p is located on a leg of4abc. In this case, one of ∠apb

and ∠bpc ≥ π/2 > β. Let this angle be γ. As ∠cbp < β and thus must equal α, since 4cbp must
be isosceles, we have ∠bpc = β. So, ∠bpa = γ and β + γ = π. Moreover, we have γ + 2α = π.
This again implies α = π/5, β = 2α, γ = 3α. This is a legal configuration.

Next, assume that p ∈ ac~

~

is not on the triangle’s side, and that it is closer to a than to c. In this
case, ∠bap = π − α > β and ∠cpb < ∠cab = α. Thus no points may be added in this case.

Now, assume that p ∈ ac~

~

is not on the triangle’s side, and that it is closer to c than to a. Then we
have a new angle γ = ∠pba > ∠cba = β. We also have ∠pcb = π − β > β because β < π/2.
So, to maintain only three angles, we must have ∠pcb = ∠pba = γ. Then, as 4cbp must be
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isosceles and ∠bcp must be the vertex angle, ∠cbp = ∠cpb = α. As before, we conclude that
α = π/5, β = 2π/5, γ = 3π/5. This is a legal configuration.

So, in this case, all our angles are exactly determined and there are two points addable on ac~

~

,
and, by symmetry, two points addable on ab~

~

.
So there are only eight addable points in the case of there being an isosceles triangle with vertex angle

smaller than base angle (Figure 15). We examine each of these points up to symmetry and examine which
are compatible.

FIGURE 15. Compatible Points with the Isosceles Triangle with Small Vertex Angle

Combination Case 1: Including x1.
We cannot add x4 as ∠x4x1a > ∠cx1a = γ. Additionally, note that ∠bx1x′4,∠bx1x

′
2,∠ax

′
3x1 < α

and thus none of x′4, x′3, or x′2 may be added. Each of x′1, x2, and x3 are individually compatible
with x1, leading to three valid five point configurations including x1 (see B,D,E of Figure 1). By
symmetry, x′1 is then individually compatible with x1, x′2 and x′3.

Combination Case 2: Including x2.
Note that ∠x2x3c,∠x2x′3c, ax

′
4x2 < α. So none of x3, x′3, or x′4 are addable in this case. Adding

x′2 is analogous to adding both x1 and x3 to 4abc, so x′2 is addable. And x4 is addable as the
projection of a regular pentagon onto a line via one of its vertices. So, there are three valid five
point configurations including x2 (see E,D,C of Figure 1). By symmetry, x′2 is compatible with
exactly x′1, x2 and x′4.

Combination Case 3: Including x3.
In this case, ∠cx′4x3 < α, so x′4 is not addable in this case. Adding x′3 creates a projected pentagon,
and adding x4 creates the construction of a trapezoid with a point in the middle, and both are
individually compatible with x3. So, each of x1, x′3, and x4 may be individually added alongside
x3, leading to three valid five point configurations including x3 (see E,C,D of Figure 1). By
symmetry, x′3 is compatible with x′1, x3, and x′4.

Combination Case 4: Including x4. x′4 is compatible with x4. In combination with the above case-
work, we have x4 is individually compatible with exactly x2, x3, and x4. So, there are three valid
five point configurations including x4 (see C,D,E of Figure 1). By symmetry, x′4 is compatible
with exactly x′2, x

′
3, and x4.
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At this point, we have exhaustively identified all our five point configuration for this case of α < β. From
our casework, we see there are no compatible, addable points which share an additional compatible point.
Therefore, there are most five points in this case, with C,E, and F of Figure 1 as the possible five point
configurations.

4.3. All triangles are isosceles with the base angle at most the vertex angle with at least one non-
equilateral triangle. As before, we proceed by region-based casework. Fortunately, whenever we en-
counter a scalene triangle or an isosceles triangle with the vertex angle larger than the base angle, we reduce
to the previous cases. Our diagram for this section is Figure 16, where β < α.

FIGURE 16. Isosceles Triangle with Large Vertex Angle.

Case 1: p ∈ A1.
In this case, ∠bpc < α since ∠pcb and ∠pbc > β. We then have two cases.

If ∠bpc = β, then ∠pcb and ∠pbc cannot both be α (as 2α + β > π). Moreover, 4cpb must be
isosceles and neither ∠pcb nor ∠pbc can be β, so both must be γ. This implies 2γ + β = 2β + α
and β < γ < α. But, ∠bpa < β < γ, creating more than 3 angles.

If ∠bpc = γ < α, then, since ∠cpa,∠bpa < γ, both must be β. So, γ = 2β. Now, 4pcb must
be isosceles. Since α + 2β = α + γ = π, this implies both ∠pbc and ∠pcb must be γ. But, then
γ = π/3, β = π/6, and α = 2π/3 (Figure 17).

FIGURE 17. Four Point Configuration from Case 1.

As such, there is exactly one point addable in this case and it forces the choice of α, β, and γ.
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Case 2: p ∈ A2 (or A′2).
In this case, ∠bcp < β and ∠cap > α, so no points may be added.

Case 3: p ∈ A3.
As both ∠cap,∠bap < α, we have three cases:
(1) ∠cap = β = ∠bap
(2) ∠cap = β, ∠bap = γ 6= β (and swapping ∠cap and ∠bap by symmetry), and
(3) ∠bap,∠cap = γ 6= β

Case (1) implies α = 2β, and hence β = π/4, α = π/2. Moreover,4bcp must be isosceles and
must include one of α or β. Note 4bcp cannot be equilateral as then ∠acp = 7π/12, and we have
four angles. Note that π/2 cannot be a base angle in4bcp and β being the vertex angle reduces to
the previous casework in section 4.2. Thus the only option is ∠cbp = ∠bcp = π/4 and ∠bpc = π/2,
yielding a valid configuration, the square abpc.

Case (2) implies β + γ = α. This is illustrated in the Figure 18.

FIGURE 18. Four Point Configuration from Case 3.

First, we show that γ > β. If γ < β, then α = ∠abp > β, which implies ∠cbp = γ. We similarly
have ∠bcp = γ. But then, ∠bpc = π − 2γ > α, yielding four angles γ < β < α < π − 2γ. Thus
γ > β.

We then have two sub-subcases to consider:
(2i) ∠abp = α.

(2ii) ∠abp = γ 6= α.
In case (2i), note that ∠cbp = γ. Since4abp must be isosceles with largest angle the vertex angle,
∠apb = γ. Then, we have α+ 2γ = α+ 2β, contradicting the assumption of case (2) that γ 6= β.

In case (2ii) we have β < γ < α. Since ∠cbp < γ, it must equal β. So, γ = 2β. This implies
α = 3β. Thus β = π/5, γ = 2π/5, and α = 3π/5. Since 4acp must be isosceles with smaller
base angle, ∠apc = β. Completing 4abp, we have ∠apb = β. But then 4abp is isosceles with
smaller vertex angle. Thus this case reduces to the previous casework.

In case (3), we have 2γ = α. Now, ∠cbp cannot be γ since β + γ 6= α. As γ < α, it cannot be
α either. Thus it must be β. Since β 6= γ, we must then have 2β = γ. So, we have α = 4β. Thus
β = π/6, γ = π/3, α = 2π/3. This yields the valid point configuration in Figure 19. So, there are
exactly two addable points p ∈ A3 and each forces a choice of α, β, and γ.

Case 4: p ∈ A4 (or A′4).
In this case, ∠cap > α and ∠apc < β. Thus no points are addable in this case.

Case 5: p ∈ ac~

~

(or ab~

~

by symmetry).
If p is to the left of a, ∠pab = π − α 6= β. We then have two subcases:
(1) ∠pab = α
(2) ∠pab = γ 6= α
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FIGURE 19. Four Point Configuration from Case 3.

In case (1), ∠pab = α implies α = π/2 and β = π/4. As4pab must be isosceles, ∠bpa = ∠pba =
π/4. So, we get the valid configuration in Figure 20.

FIGURE 20. Four Point Configuration from Case 5.

In case (2), we have ∠pab = γ = π − α > β. Note 4pbc needs to be isosceles with the vertex
angle at least as large as the base angle, and that ∠pcb = β. Thus since ∠pbc > β, ∠pbc = α
and ∠bpc = β. Then ∠abp = γ, since 4pab must be isosceles and ∠pab 6= α. So, 2γ + β = π,
2β + α = π, and α + γ = π. This implies β = π/5, γ = 2π/5, and α = 3π/5. But then 4pba
has angles 2π/5, 2π/5, π/5, and so the vertex angle is smaller than the base angles. Thus this case
reduces to the previous section.

Now, if p is between a and c then γ = ∠abp = ∠cbp < β. Furthermore, ∠bpc > α, giving four
angles, so no points can be added in this subcase.

Finally, if p is to the bottom right of c then γ = ∠bcp = π− β > α. But,4bcp must be isosceles
with largest angle not repeated. Thus ∠cbp < β.

So, exactly two points are addable in this case and they exactly determine α and β (the second
by symmetry).

Case 6: p ∈ bc~

~

.
In this case, left of b is equivalent to right of c by symmetry. So, we without loss of generality
consider p left of b. In this case, ∠pba = π − β > α. Then, 4pba must be isosceles with largest
angle non-repeated. So, ∠pab < β. So, no points are addable in this subcase.

It remains to consider p between b and c. In this case, 4acp and 4abp are isosceles triangles
including β. However, β cannot be the vertex angle, so another of their angles must be β and the
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third α. Since ∠cap, ∠pab < α, we must then have 2β = α. Thus we have β = π/4 and α = π/2.
The resulting valid point configuration is displayed in Figure 21.

FIGURE 21. Four Point Configuration from Case 6.

So, there is a single addable point in this case and it forces the choice of α and β.
Case 7: p in the interior of4abc.

In this case, ∠pbc, ∠pcb < β and thus ∠cpb is greater than α. Thus no points are addable in this
case.

Combinations: Adding more than one point.
Now we determine which of the six addable points are mutually compatible. As exactly two force
α = 2π/3, β = π/6, and γ = π/3, those two (from Case 1 and Case 3) are at most compatible with
each other. This is displayed in Figure 22.

FIGURE 22. Attempting to Combine Cases 1 and 3.

However, this adds an additional angle, ∠qcp = 3β = π/2.
So, we only consider the addable points which force α = π/2 and β = π/4. Such addable points

are shown in Figure 23.
Both pairs x1, x2 and x3, x4 are compatible, and both yield a square with a point in the center

(see A of Figure 1).
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FIGURE 23. Compatible Points with the Right Triangle

However, x3 is not compatible with either of x1, x2. For x1, then 4x1x3b is not isosceles, and
similarly for x2.

Also, x4 is not compatible with either of x1, x2 as then we have angles α, β, α+ β,∠bx1x4 < β
(or ∠bx2x4 < β).

Therefore, the only 5-point configurations are {a, b, c, x1, x2}, {a, b, c, x3, x4}. Therefore, only
5 points are allowed in this case, and the only acceptable 5-point configuration of the square with its
center (see A in Figure 1).

4.4. There are only equilateral triangles. Since an equilateral triangle has all equal side lengths, every
distance between two points in the configuration must be equal. That is, we need a 1-distance set. The
largest 1-distance set in the plane is the equilateral triangle. Thus no configuration of four or more points
can exist defining only equilateral triangles. The maximal number of points in this case is thus three.

Then across all cases, we find that the largest configurations of points on the plane which define at most
three angles contain exactly five points. As such, P (3) = 5, and the complete list of configurations is shown
in Figure 1. �

Corollary 4.1. One might also wish to include the trivial 0-angle in our count. In this case, P (3) = 5, but
the square with the center-point and the pentagon are now the only valid configurations.

Proof. The set of valid five-point configurations when we count the 0-angle must be a subset of the valid
five-point configurations we identified above. By direct inspection, the square with the center-point and the
pentagon are the only of the five in Figure 1 which define only three angles. All the others define three
angles greater than zero and also the 0-angle by collinearity. �

5. FUTURE WORK

While it seems possible to compute P (k) by exhaustive casework for higher values of k, the casework
quickly becomes overwhelming. Additionally, while it is potentially possible to repeat such methods in
higher dimensions, the visualization of the proofs played a crucial role in this analysis. In combination with
the added degrees of freedom from adding dimensions, this would make this method of computation quickly
intolerable.
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Future work may tighten our upper bound on P (k). However, we make the following conjecture.

Conjecture 5.1. The lower bound on P (k) in Theorem 1.3 is tight. Namely, P (2k) = 2k + 3 and P (2k +
1) = 2k + 3 for all k ≥ 1.

Therefore, we believe that future work should improve the upper bound of P (n) ≤ 6n, either via progress
towards the Weak Dirac Conjecture (which would still fall short of our conjecture) or by some other means.
Alternatively, future research may find a more efficient method of constructing viable point sets without the
need for the exhaustive search we perform.

We propose the related problem of characterizing optimal point sets in higher dimensions with a low
number of solid angles.

Definition 5.2 (Solid Angles). Given d+1 points in Rd, fix one of the points p. Let S be a unit d-dimensional
hypersphere about p. Project the remaining d points onto the surface of the sphere along the lines connecting
them to p. The solid angle formed by the d+ 1 points with center p is the surface area of S enclosed by the
projections of the other points onto S and connected via geodesics.

Solid angles have applications to physics and have not been extensively studied in the context of discrete
geometry. They provide an exciting new avenue for angle-related problems.

They also motivate the following problem. For a fixed d ≥ 3, what is the maximum number of non-
coplanar points in a configuration yielding at most k solid angles?
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