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Abstract
We study the problem of crescent configurations, posed by Erdős in 1989. A crescent
configuration is a set of n points in the plane such that: 1) no three points lie on a common
line, 2) no four points lie on a common circle, 3) for each 1 ≤ i ≤ n − 1, there exists a
distance which occurs exactly i times. Constructions of sizes n ≤ 8 have been provided by
Liu, Palásti, and Pomerance. Erdős conjectured that there exists some N for which there
do not exist crescent configurations of size n for all n ≥ N .

We extend the problem of crescent configurations to general normed spaces (R2, || ·
||) by studying strong crescent configurations in || · ||. In an arbitrary norm || · ||, we
construct a strong crescent configuration of size 4. We also construct larger strong crescent
configurations of size n ≤ 6 in the Euclidean norm and of size n ≤ 8 in the taxicab and
Chebyshev norms. When defining strong crescent configurations, we introduce the notion
of line-like configurations in || · ||. A line-like configuration in || · || is a set of points whose
distance graph is isomorphic to the distance graph of equally spaced points on a line. In a
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broad class of norms, we construct line-like configurations of arbitrary size.
Our main result is a crescent-type result about line-like configurations in the Chebyshev

norm. A line-like crescent configuration is a line-like configuration for which no three
points lie on a common line and no four points lie on a common || · || circle. We prove that
for n ≥ 7, every line-like crescent configuration of size n in the Chebyshev norm must have
a rigid structure. Specifically, it must be a perpendicular perturbation of equally spaced
points on a horizontal or vertical line.

1. Introduction

1.1. Background

The Erdős distinct distances problem is a core problem in discrete geometry. It asks the
following deceptively simple question: What is the minimum number of distinct distances
determined by n points in the plane? Erdős posed this problem in a 1946 paper [4], in
which he proved the lower bound Ω(n1/2) using a simple geometrical argument and the
upper bound O(n/

√
log n) by considering the number of distinct distances determined by

a
√
n ×
√
n square lattice. Over the subsequent decades, this lower bound was gradually

improved. In 2015, Guth and Katz [7] proved the lower bound Ω(n/ log n), solving the
problem up to a factor of

√
log n.

The Erdős distinct distances problem inspired many related questions. We study the
problem of crescent configurations, first posed by Erdős in [5]. Consider the following
question: What is the structure of a set of n points which determines n−1 distinct distances,
such that for each 1 ≤ i ≤ n − 1, the ith distance occurs exactly i times? For every n,
many such sets exist. For example, consider n equally spaced points on a line, or n equally
spaced points on a circular arc (Figure 1).1

Figure 1: Equally spaced points on a line and on a circle.

One might ask whether every such set must make use of the structure of lines or circles.
More precisely, a set of points is said to lie in general position if no three points lie on a
common line and no four points lie on a common circle. Using this notion, we define what

1Not all instances of n equally spaced points on a circle satisfy this property. For example, the set
{(0, 1), (1, 0), (−1, 0), (0,−1)} determines the distance

√
2 four times and the distance 2 two times. These

exceptions are unimportant, so we ignore them.
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it means for a set of points to form a crescent configuration.2

Definition 1.1. A set of n points in the plane is said to form a crescent configuration if the
following two conditions hold.

1. The n points lie in general position.

2. For each 1 ≤ i ≤ n−1, there exists a distance which occurs with multiplicity exactly
i.

Erdős’ question was the following: for which n does there exist a crescent configuration
of size n? Constructions of crescent configurations of size n ≤ 8 have been provided
by Liu, Palásti, and Pomerance [8, 11, 12, 5]. These constructions are non-obvious and
geometrically intricate. For example, Palásti’s crescent configuration of size 8 is depicted
in Figure 2.

Figure 2: A crescent configuration of size 8 due to Palásti [12].

The question as to whether crescent configurations of size n exist remains open for
n ≥ 9. Motivated by the observation that Palásti’s constructions lie on a triangular lattice,
Burt et al. [1] exhaustively searched a 91-point triangular lattice and showed that it does
not contain a crescent configuration of size 9. By contrast, Palásti’s crescent configuration
of size 8 is contained in a 37-point triangular lattice.

Often, studying a distance problem in a more general normed space can reveal additional
structure of the problem. A first example is the Erdős distinct distances problem. Recall
that the Erdős distinct distances problem asks for the minimum number of distinct distances
determined by n points in the plane. The current best lower bound is Ω(n/ log n) by Guth
and Katz in 2015 [7], which in particular improves upon the lower bound Ω(n1/2) by Erdős

2The term crescent configuration was first used by Burt et al. [1].
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in 1946 [4] and the lower bound Ω(n4/5) by Székely in 1993 [13]. Garibaldi [6] provided
conditions for general norms in R2 to satisfy these weaker Ω(n1/2) and Ω(n4/5) bounds,
leading to a deeper understanding of the techniques used in their proofs.

A second example is the unit distances problem, also posed by Erdős [4] in the same
1946 paper. The original unit distances problem asks for the maximum number of dis-
tances of unit length determined by n points in the plane in the Euclidean norm. It can
be generalized to arbitrary norms in R2 as follows. Let u||·||(n) denote the maximum
number of distances of unit length determined by n points in the plane in the norm || · ||.
Brass [2] proved that if || · || is not strictly convex ("not strictly convex" means that the
unit circle of || · || contains a line segment), then u||·||(n) = Θ(n2). By contrast, Valtr
[14] proved that if || · || is strictly convex, then u||·||(n) = O(n4/3) (see Definition 2.4).
Interestingly, this upper bound u||·||(n) = O(n4/3) cannot be improved without taking
into account the geometry of a strictly convex norm || · ||. Valtr [14] constructed a strictly
convex norm || · || for which u||·||(n) = Θ(n4/3). Moreover, there exist norms for which
u||·||(n) = o(n4/3). Matoušek [9] proved that “almost every” strictly convex norm || · ||
satisfies u||·||(n) = O(n log n log log n).

Previously, crescent configurations have only been studied in the Euclidean setting. We
extend the problem of crescent configurations to general normed spaces (R2, || · ||).

1.2. Overview of results

In Section 2, we define strong crescent configurations, a generalization of crescent con-
figurations to normed spaces (R2, || · ||). To do this, we introduce the concept of line-like
configurations and strong general position in || · ||.

In Section 3, we construct infinitely many line-like configurations of arbitrary size under
a broad class of norms. We say that a set of n points forms a line-like configuration in || · ||
if its distance graph, measured in || · ||, is isomorphic to the distance graph of n equally
spaced points on a line.

Theorem 1.2. Let || · || be a norm which is not strictly convex. Then for each n, there exist
infinitely many (after scaling and translating) line-like configurations of size n in || · ||.

Theorem 1.3. Let || · || be a norm whose unit circle contains an arc contained in an L2

circle centered at the origin. Then for each n, there exist infinitely many (after scaling and
translating) line-like configurations of size n in || · ||.

Let || · || be a norm which does not satisfy the conditions from Theorem 1.2 or Theorem
1.3. For all n ≥ 5, we conjecture that the only line-like configurations of size n in || · || are
equally spaced points on a line (cf. Section 6.2).

In Section 4, we prove a crescent-type result about crescent line-like configurations in
the L∞ norm. We say a line-like configuration is a line-like crescent configuration if no
three points lie on a common line and no four points lie on a common || · || circle. We
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say that P1, . . . , Pn is a perpendicular perturbation of a line ` if there exist equally spaced
points Q1, . . . , Qn on ` so that the lines

←−→
PiQi are perpendicular to ` for all 1 ≤ i ≤ n.

We now give the definition of the L∞ norm (Chebyshev norm).

Definition 1.4. Let a = (ax, ay) and b = (bx, by) be two points in the plane. The L∞

norm (Chebyshev norm) is defined by

||a− b||L∞ := max{|bx − ax|, |by − ay|}.

Theorem 1.5. Let n ≥ 7. Then every line-like crescent configuration in L∞ of size n is a
perpendicular perturbation of a horizontal or vertical line.

For n ≤ 6, there exist line-like crescent configurations in L∞ of size n which are not
perpendicular perturbations (cf. Example 4.6).

In Section 5 we provide explicit constructions of strong crescent configurations. In every
norm, we construct a strong crescent configuration of size four.

Theorem 1.6. Let || · || be any norm. Then there exists a strong crescent configuration of
size 4 in || · ||.

We also construct larger strong crescent configurations in the L2, L1, and L∞ norms.
The constructions were found by using a computer program to search a lattice, a technique
previously employed by Palásti in [12].

Definition 1.7. Let a = (ax, ay) and b = (bx, by) be two points in the plane. The L1 norm
(taxicab norm) is defined by

||a− b||L1 := |by − ay|+ |bx − ax|.

The L2 norm (Euclidean norm) is defined by

||a− b||L2 :=
√

(by − ay)2 + (bx − ax)2.

First, we provide constructions of strong crescent configurations in L2. The set of strong
crescent configurations in L2 (from Definition 2.15) is a subset of the set of crescent config-
urations (from Definition 1.1). Crescent configurations of size n ≤ 8 have been constructed
in [8, 11, 12, 5]. However, none of these constructions of sizes n = 6, 7, 8 is strong. We
provide a construction of a strong crescent configuration in L2 of size 6.

Theorem 1.8. In the L2 norm, there exist strong crescent configurations of size n ≤ 6.

Second, we provide constructions of strong crescent configurations in L1 and L∞. We
do so by first using a computer program to search a square lattice for strong crescent con-
figurations in L∞. The constructions in L∞ immediately give rise to constructions in L1,
as there is a dual relationship between sets of points in L1 and L∞. We chose to study
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those norms in particular because they are highly symmetric and easily computable. Per-
haps future research could investigate if such a duality exists between Lp and its dual space.
Given a lattice and a method to compute distances and circles in an arbitrary norm || · ||,
our algorithm would similarly be able to search for strong crescent configurations in || · ||
in a lattice.

Theorem 1.9. In the L∞ norm, there exist strong crescent configurations of sizes n ≤ 8.

Corollary 1.10. In the L1 norm, there exist strong crescent configurations of sizes n ≤ 8.

2. General position and crescent configurations in normed spaces

2.1. Preliminaries

Throughout this paper, we study the vector space R2, equipped with an arbitrary norm
|| · || : R2 → R. In this section, we recall properties of these normed spaces (R2, || · ||) that
are used in our proofs. See [10] for a comprehensive survey of the geometry of normed
spaces.

Definition 2.1. A norm on R2 is a function || · || : R2 → R satisfying the following three
properties.

1. For all x ∈ R2 we have ||x|| ≥ 0. Moreover, ||x|| = 0 if and only if x = 0.

2. For all x ∈ R2 and λ ≥ 0 we have ||λx|| = λ||x||.

3. For all x, y ∈ R2 we have ||x+ y|| ≤ ||x||+ ||y||.

Each norm || · || : R2 → R specifies a distance function (or metric) d||·|| : R2 → R, given
by

d||·||(x, y) := ||x− y||

for all (x, y) ∈ R.

A norm on R2 is uniquely determined by specifying its unit ball B.

Definition 2.2. A unit ball on R2 is a set B ⊂ R2 satisfying the following properties:

1. B is closed and bounded,

2. B has a non-empty interior,

3. B is centrally symmetric,

4. B is convex.

The corresponding unit circle is the boundary ∂B. We denote the circle of radius r centered
at p by B||·||(p, r).
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Example 2.3. For 1 ≤ p <∞, the Lp norm, denoted || · ||p, is defined by

||(x, y)||p := (|x|p + |y|p)1/p,

for all (x, y) ∈ R2. The corresponding unit ball is

B = {(x, y), |x|p + |y|p ≤ 1}.

For p =∞, the L∞ norm, denoted || · ||∞, is defined by

||(x, y)||∞ := max(|x|, |y|),

for all (x, y) ∈ R2. The corresponding unit ball is

B = {(x, y), |x|, |y| ≤ 1}.

Euclidean distance is given by the L2 norm.

Next we briefly discuss strict convexity. An in depth treatment can be found in [10] (pg.
10–15).

Definition 2.4. Let || · || be a norm with unit ball B. The following are equivalent.

1. For x, y ∈ R2, we have ||x+y|| = ||x||+ ||y|| if and only if x = λy for some λ ≥ 0.

2. The unit circle ∂B does not contain a line segment.

A norm which satisfies these properties is said to be strictly convex.

Example 2.5.

1. Lp is strictly convex for 1 < p <∞.

2. L1 and L∞ are not strictly convex.

We recall the following lemma about intersection points of circles in strictly convex
norms. A proof can be found in [10] (pg. 13–14).

Lemma 1. Let ||·|| be a strictly convex norm. Then two circlesB||·||(p1, r1) andB||·||(p2, r2)

with p1 6= p2 intersect in at most two points.

Lemma 2. The spaces (R2, || · ||∞) and (R2, || · ||1) are isometric.

Proof. Let T : (R2, || · ||∞)→ (R2, || · ||1) be the linear map given by the matrix
[
1 1
1 −1

]
.

For each (x, y) ∈ R2 we have∥∥∥∥[1 1
1 −1

] [
x
y

]∥∥∥∥
∞

= max{|x+ y|, |x− y|} = |x|+ |y| =
∥∥∥∥[xy

]∥∥∥∥
1

.

This establishes an isometric map between the L∞ unit ball and the L1 unit ball.
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2.2. Line-like configurations

We first recall the notion of general position in the Euclidean setting.

Definition 2.6. A set of points in the plane is said to lie in general position if no three
points lie on a common line and no four points lie on a common circle.

Crescent configurations were first studied by Erdős in [5], and the term “crescent con-
figuration” was coined by Burt et al. in [1]. We want to generalize the notion of crescent
configurations to a general normed space. In the Euclidean setting, n equally spaced points
on a line and n equally spaced points on a circular arc (Figure 1) satisfy crescent configura-
tion condition (2). The purpose of condition (1) is to omit these trivial configurations. The
following example demonstrates that there exist trivial constructions in other norms which
satisfy Definition 1.1. For larger classes of examples, see Sections 3.1 and 3.2.

Example 2.7. Consider the L∞ norm. For each n, there exist infinitely many sets of n
points which satisfy crescent configuration condition (2), and satisfy the property that no
three points lie on a line and no four points lie on an L∞ ball. To construct such a set, start
with n equally spaced points on a horizontal line, say

(1, 0), (2, 0), (3, 0), . . . , (n, 0).

Then perturb the points in the y direction. Specifically, pick ε1, . . . , εn ∈ R so that the
point set

(1, ε1), (2, ε2), . . . , (n, εn)

satisfies the following two properties.

1. For all i, j ∈ {1, . . . , n}, dL∞( (i, εi), (j, εj) ) = |j − i|.

2. No three points lie on a line.

For example, this can be accomplished by picking εi = 1/i. See Figure 3.

Example 2.7 demonstrates the usefulness of a stronger notion of general position. Note
that a common feature of the three trivial configurations presented in Figures 1 and 3 is
that their distance graphs are isomorphic to the distance graph of equally spaced points on
a line in the following sense.

Definition 2.8. Let S, T ⊂ R2 such that |S| = |T | = n for some n ∈ N. Let || · ||S , || · ||T
be two norms in R2. We say that the distance graphs of S in || · ||S and T in || · ||T are
isomorphic if there exists a bijection φ : S → T such that for all a, b, c, d ∈ S we have

||a− b||S = ||c− d||S ⇐⇒ ||φ(a)− φ(b)||T = ||φ(c)− φ(d)||T .
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Figure 3: A set of n = 6 points which form a weak crescent configuration in L∞. Coordi-
nates {(1, 1), (2, 1/2), (3, 1/3), (4, 1/4), (5, 1/5), (6, 1/6)}.

The choice of comparing an arbitrary distance graph to the distance graph of equally
spaced points on a line is natural because equally spaced points on a line have the same
structure in any normed space.

Lemma 3. Fix a norm || · ||. Let S = {s1, . . . , sn} ⊂ R2 be a set of n equally spaced
points on a line for some n ∈ N. In other words, s1, . . . , sn lie on a common line and

d||·||(s1, s2) = · · · = d||·||(si, si+1) = · · · = d||·||(sn−1, sn).

Then for all i, j ∈ {1, . . . , n} we have

d||·||(si, sj) = |j − i| · d||·||(s1, s2).

Proof. If i = j, clearly d||·||(si, sj) = 0. Without loss of generality, assume i < j. Because
s1, . . . , sn lie on a line, the vectors s2− s1, s3− s2, . . . , sn− sn−1 are linearly dependent.
Moreover, ||s2 − s1|| = ||s3 − s2|| = · · · = ||sn − sn−1||. By linear dependence,

||sj − si|| = ||sj − sj−1||+ ||sj−1 − sj−2||+ · · ·+ ||si+1 − si||
= |j − i| · ||s2 − s1||.

Lemma 3 immediately implies the following.

Corollary 2.9. Let S, T ⊂ R2 such that |S| = |T | = n for some n ∈ N. Suppose S and T
are sets of equally spaced points on a line. Let || · ||S , || · ||T be any two norms. Then the
distance graphs of S in || · ||S and T in || · ||T are isomorphic.
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Now we define line-like configurations. By Corollary 2.9, they are well-defined.

Definition 2.10. Fix a norm || · ||. A set of n points in the plane is said to form a line-like
configuration in || · || if its distance graph is isomorphic to the distance graph of n equally
spaced points on a line.

In the next section (Section 2.3), we use the concept of line-like configurations to de-
fine strong general position and strong general configurations. The remaining content of
this section consists of examples of line-like configurations. Line-like configurations are
studied in depth in Section 3.

First, we provide simple examples of line-like configurations of size n, for every natural
number n.

Example 2.11.

1. Trivially, in any norm, equally spaced points on a line form a line-like configuration.

2. In L2, equally spaced points on a circular arc form a line-like configuration. See
Figure 1.

3. In L∞, certain perturbations of equally spaced points on a line form a line-like con-
figuration. See Example 2.7 and Figure 3.

4. In Figure 5 we see an example of a perpendicular perturbation in a generic norm
which is not strictly convex.

5. In Theorem 1.2 and Theorem 1.3 we provide constructions of line-like configurations
in a broad class of norms. See Sections 3.1 and 3.2.

Second, we describe all line-like configurations of size 2, 3 in an arbitrary norm.

Example 2.12.

1. Any two distinct points trivially form a line-like configuration in any norm.

2. Line-like configurations of size three correspond to (possibly degenerate) isosceles
triangles. To construct a line-like configuration of size three in an arbitrary norm
|| · ||, start with distinct points A,B ∈ R2. Draw the || · || circle centered at B with
radius |AB|. Pick any point C lying on this circle such that |AC| 6= |AB|. Then
|AB| = |BC| and |AB| 6= |AC|, so A,B,C forms a line-like configuration.

Finally, we classify line-like configurations of size 4 in strictly convex norms.

Lemma 4. Let || · || be a strictly convex norm. Let A,B,C be a line-like configuration
of size three. Then there exist exactly two points D,E such that ABCD and ABCE are
line-like configurations. Moreover, at least one of ABCD and ABCE is a parallelogram.
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Proof. Let C1 beB||·||(C, |BC|) and C2 beB||·||(B, |AB|). The set of pointsX for which
ABCX is a line-like configuration is precisely the set of intersection points of the two
circles C1 and C2. Translate

−→
AC to point B and let the tip of the translated vector be D.

Then ABCD is a parallelogram with |AB| = |BC| = |CD| and |AC| = |BD|. So D lies
on both circles C1 and C2.

By Lemma 1, C1 and C2 have at most two intersection points. We show that a second
intersection point exists by a monotonicity argument. Let the intersection point of line

←→
BC

with C1 which is not B be R. Let the intersection points of line
←→
BC with C2 be P and

Q so that
−−→
BQ points in the same direction as

−−→
CB and

−−→
BP points in the same direction as−−→

BC. Since || · || is strictly convex, |AC| < 2 · |AB|, which implies |CP | < |CR|. On the
other hand, because

−−→
BQ points in the same direction as

−−→
CB, |CQ| > |CB|. Thus C1 and

C2 intersect once in each upper half-plane above and below line
←→
BC. These give the two

intersection points D and E.

Figure 4: Illustrating the proof of Lemma 4. Here we use the L2 norm. Given three points
A,B,C which form a line-like configuration, there exist exactly two points D,E such that
ABCD and ABCE form a line-like configuration.

2.3. Strong general position and strong crescent configurations

Using this notion of line-like configurations, we can define strong general position in an
arbitrary norm || · ||.

Definition 2.13. A set of points in the plane is said to lie in strong general position in || · ||
if the following three conditions hold.

1. No three points lie on a common line.
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2. No four points lie on a common || · || circle.

3. No four points form a line-like configuration of size four.

Remark 2.14. The notion of L2 strong general position, as given in Definition 2.13, is
more restrictive than the standard notion of L2 general position, as given in Definition 2.6.
Specifically, strong general position additionally forbids line-like configurations of size
four. Borrowing the notation from Lemma 4, let ABCD be a line-like configuration which
is not a parallelogram. By symmetry, the perpendicular bisectors of AB, BC, and CD
meet in a common point, so A,B,C,D lie on a common circle. Thus, a set of points in
L2 general position lies in L2 strong general position if and only if it does not contain a
parallelogram ABCD with AB = BC = CD, AC = BD, AB||CD and AC||BD.

Finally, using this notion of general position in || · ||, we define strong crescent configu-
rations in || · ||.

Definition 2.15. A set of n points in the plane is said to form a strong crescent configura-
tion in || · || if the following three conditions hold.

1. The n points lie in strong general position in || · ||.

2. The n points determine n− 1 distinct distances.

3. For each 1 ≤ i ≤ n−1, there exists a distance which occurs with multiplicity exactly
i.

Below, we collect examples of strong crescent configurations under various norms.

Example 2.16.

1. In any norm, crescent configurations of size 2, 3 exist trivially. For constructions, see
Example 2.11.

2. For arbitrary || · ||, we construct a strong crescent configuration of size 4. See Section
5.1.

3. Palásti’s [11, 12] constructions of crescent configurations of size n ≤ 5 are strong.
Additionally, Durst et al. [3] construct many strong crescent configurations of size
n = 4, 5. However, known constructions of crescent configurations of size 6, 7, 8

(due to Palásti) are not strong. We construct a strong crescent configuration of size
6. See Section 5.2.

4. In L∞ (and thus in its dual norm L1), we construct strong crescent configurations of
size 4, 5, 6, 7, 8. See Section 5.3.
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3. Constructions of line-like configurations

In the previous section we defined line-like configurations (cf. Definition 2.10). Line-like
configurations of size four are used when defining strong crescent configurations in || · ||.
In this section, we provide constructions of line-like configurations of size n for n ≥ 5 in a
broad class of norms.

3.1. Line-like configurations in non-strictly convex norms

Recall that a norm is non-strictly convex if and only if its unit circle contains a line segment
(Definition 2.4). In general, when studying distinct distances problems in normed spaces, it
is not uncommon for non-strictly convex norms to have vastly different behavior compared
to strictly convex norms. For example, consider the unit distances problem. Let u||·||(n)

denote the maximum number of distances of length 1 that can be determined by n points
in R2 in the norm ||| · ||. If || · || is strictly convex, then u||·||(n) = O(n4/3) [14]. If || · || is
not strictly convex, then u||·||(n) = Θ(n2) [2].

In the following result, for any non-strictly convex norm, we construct many line-like
configurations which satisfy the property that no three points lie on a line. The key insight
behind the proof is that in non-strictly convex norms, we can have ||x+ y|| = ||x||+ ||y||
without x, y ∈ R2 being linearly dependent. Thus there exist sets of points which have the
additivity relations of equally spaced points on a line, even though the points do not lie on
a common line.

Theorem 1.2. Let || · || be a norm which is not strictly convex. Then for each n, there exist
infinitely many (after scaling and translating) line-like configurations of size n in || · ||.

Proof. See Figure 5. Let || · || be a norm which is not strictly convex. Then its unit circle
contains a line segment. Denote the (scaled and translated) copy of this line segment on a
general circle B||·||(p, r) by `p,r. Pick a point P1. For all 1 ≤ i ≤ n− 1, pick a point Pi+1

lying on `Pi,1. Then for all Pi, Pj ∈ {P1, . . . , Pn} we have ||Pj − Pi|| = |j − i|. Thus
{P1, . . . , Pn} is a line-like configuration. When picking each of the points P1, . . . , Pn,
there were infinitely many choices. Thus there are infinitely many such configurations.

Corollary 3.1. Let || · || be a norm which is not strictly convex. For each n, there exist
infinitely many (after scaling and translating) line-like configurations of size n in || · ||
which satisfy the property that no three points lie on a common line.

Proof. Repeat the proof of Theorem 1.2. When choosing the point Pi+1, pick any point
lying on `Pi,1 as like before, but now exclude any point lying on a line determined by any
two points in {P1, P2, . . . , Pi}. Infinitely many such Pi+1 exist because there are only
finitely many points on `Pi,1 which lie on a line with two points in {P1, P2, . . . , Pi}, and
there are infinitely many points on `Pi,1.
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Figure 5: Left: a non-strictly convex norm. Right: Constructing a line-like configuration in
a non-strictly convex norm. The red circles have radius 1, green circles have radius 2, the
blue circles have radius 3, and the orange circles have radius 4.

Example 3.2. Because L1 and L∞ are non-strictly convex, Theorem 1.2 and Corollary 3.1
apply. The class of examples produced by Theorem 1.2 for L∞ generalizes Example 2.7.

3.2. Line-like configurations in norms whose unit circles contain an L2 origin arc

In Section 3.1, we construct line-like configurations of any size in non-strictly convex
norms. These constructions rely on the fact that in a non-strictly convex norm, two cir-
cles can intersect in infinitely many points. By contrast, in a strictly convex norm, two
circles intersect in at most two points (Lemma 1). By this heuristic, we expect line-like
configurations in strictly convex norms to be rarer.
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For a particular class of strictly convex norms, we construct line-like configurations of
any size. Specifically, we consider norms whose unit circles contain an L2 origin arc.

Definition 3.3. Let A be an arc of positive length on an L2 circle centered at the origin.
Then we say A is an L2 origin arc.

In L2, equally spaced points along a circular arc form a line-like configuration (Figure
1). This construction can be generalized to norms whose unit circles contain an L2 origin
arc.

Theorem 1.3. Let || · || be a norm whose unit circle contains an L2 origin arc. Then for
each n, there exist infinitely many (after scaling and translating) line-like configurations of
size n in || · ||.

Proof. See Figure 6 for a unit circle of a norm whose unit circle contains an L2 origin arc.
First we introduce some terminology. Let O denote the origin. For P ∈ R2, let

cP,r(θ) := P + (r cos(θ), r sin(θ)) denote a parameterization of an L2 circle centered
at P with radius r. For points P,Q ∈ R2 with P 6= Q, let t(P,Q) denote the unique
θ ∈ [0, 2π) for which cP,|PQ| = Q.

Let n ∈ N. We are given that the unit circle of || · || contains an L2 origin arc. Let
this arc be parameterized by cO,r(θ) for θ ∈ [θ1, θ2], with 0 ≤ θ1 < θ2 ≤ π. Pick
0 < ε ≤ (θ2 − θ1)/(n − 2). Set P1 = cO,1(θ1) and Pi = cPi−1,1(θ1 + (i − 2)ε)

for i ∈ {2, 3, . . . , n}. See Figures 7 and 8. We claim that P1, . . . , Pn form a line-like
configuration in || · ||, which satisfy the property that no three points lie on a common line.
(Setting ε = 0 gives n equally spaced points on a line.)

It suffices to show the following.

1. P1, . . . , Pn form a line-like configuration in L2.

2. For all 1 ≤ i < j ≤ n, we have t(Pi, Pj) ∈ [θ1, θ2].

Proof of (1): For each i ∈ {1, 2, . . . , n−3}, note that ∠PiPi+1Pi+2 = ∠Pi+1Pi+2Pi+3 =

π−ε. Thus reflecting about the perpendicular bisector ofPi+1Pi+2 sendsPi, Pi+1, Pi+2, Pi+3

toPi, Pi+1, Pi+2, Pi+3. So the perpendicular bisectors ofPiPi+1, Pi+1Pi+2, andPi+2Pi+3

intersect in a point, which means that Pi, Pi+1, Pi+2, Pi+3 lie on a common circle (cf. Re-
mark 2.14). This implies that P1, . . . , Pn lie on a common L2 circle. Since |PiPi+1| = 1

for each i ∈ {1, 2, . . . , n− 1}, the points P1, . . . , Pn are equally spaced on their common
L2 circle.

Proof of (2): By rotational symmetry, t(Pi, Pi+k) = t(P1, Pk−1) for all 1 ≤ k ≤
n − 1. Using (1) and angle chasing, it can be shown that t(P1, Pi) ≤ t(P1, Pi+1) for
all 2 ≤ i ≤ n − 1. This implies t(Pi, Pj) ≤ t(Pi+1, j) and t(Pi, Pj) ≤ t(Pi, Pj−1)

for i, j ∈ {1, 2, . . . , n} with i + 1 < j. Thus mini,j t(Pi, Pj) = t(P1, P2) = θ1 and
maxi,j t(Pi, Pj) = t(Pn−1, n) = θ2.
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Figure 6: A norm whose unit circle intersects an L2 origin arc.

Figure 7: Constructing a line-like configuration in L2.

Corollary 3.4. Let || · || be a norm whose unit circle contains an L2 origin arc. Then, for
each n, there exist infinitely many (after scaling and translating) line-like configurations of
size n in || · ||, which satisfy the property that no three points lie on a common line.

Proof. Repeat the proof of Theorem 1.3. Because P1, . . . , Pn lie on a common L2 circle,
it follows that no three of P1, . . . , Pn lie on a common line.

3.3. Line-like configurations in Lp, 1 < p < ∞

We have numerically searched for line-like configurations inLp. Of course as we will see in
Theorem 1.6, there are line-like configurations of size n = 4. Whether these configurations
may be extended to include a 5th point is a question of intersections of three Lp balls, each
ball given by one of the three previously specified distances. Numerically searching for
such a configuration, we found no positive results for p 6= 2, with arbitrarily small error as
p→ 2. We employed two approaches in our search.
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Figure 8: Constructing a line-like configuration in a norm whose unit circle contains an L2

origin arc.

The first approach makes the ansatz that, if a line-like configuration were to exist inLp, it
would behave asL2 and consist of n equally spaced points along a unit ball. This provides a
tremendous amount of structure to the potential collections of points, and we may naturally
represent the location of n points on the Lp unit ball using n angles 0 ≤ ti < 2π for
1 ≤ i ≤ n and the map f : R → R2 defined by f(t) = {cos(t)

2
p , sin(t)

2
p }. We may

arbitrarily renumber our ti so that they correspond to the ordering induced by a line-like
configuration. Fixing a value on t1 determines the location of the first point, and specifying
t2 provides the first order distance between the points f(t1) and f(t2). From these two
values, ti for i ≥ 3 are determined; ti corresponds to the unique point on the Lp ball so
that d(f(ti), f(ti−1)) = d(f(t1), f(t2)) and ti 6= ti−2. This reduces our problem to a
numerical search on two bounded variables, t1 and t2. Once the first order distance has
determined the ti, we may check the higher order distances to see if we have obtained a
line-like configuration. This does not always produce a line-like configuration (cf. Example
3.5). Numerically, it appears that this never produces a line-like configuration, regardless
of our choice of t1, t2, for n ≥ 5 points, although the discrepancy in higher order distances
goes to 0 as p→ 2, as one might expect.

The second approach relaxes our ansatz but is computationally more intense. If we do
not assume that the points lie on an Lp ball, we may still specify the location of n points
using angles t1, . . . , tn−1 ∈ [0, 2π) and distance d > 0. Then letting x0 = {0, 0}, define
xi = xi−1 + d · f(ti). These ensure that the first order distances are correct; then we
may numerically compute the higher order distances and check for a crescent configura-
tion. This algorithm must search over n variables, and we were unsuccessful in finding
configurations.
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Example 3.5. Let 1 < p <∞. Consider the four points

x1 = (0, 1), x2 =

(
1

21/p
,

1

21/p

)
, x3 = (1, 0), x4 =

(
1

21/p
,− 1

21/p

)
.

These points lie on the Lp circle of radius 1 centered at the origin. We compute

dp(x1, x2) = dp(x2, x3) = dp(x3, x4).

Also, d(x1, x3) = 21/p and d(x2, x4) = (2p−1)1/p = 21−1/p. Thus dp(x1, x3) =

dp(x2, x4) if and only if p = 2.

4. Classification of line-like crescent configurations in L∞

In this section, we prove a structural result about line-like configurations in L∞. Specifi-
cally, we show that every line-like configuration of size n ≥ 7 in L∞ satisfies at least one
of the following three properties.

1. Three points lie on a common line.

2. Four points lie on a common L∞ circle.

3. The set of n points is a perpendicular perturbation of a horizontal or vertical line,
i.e., has very similar structure to a set of n equally spaced points on a horizontal or
vertical line.

This result is significant in that it is a “crescent-type” result. Rephrased, Erdős’ con-
jecture claims the following: There exists some N for which, for all n ≥ N , if a set of n
points satisfies the property that for each 1 ≤ i ≤ n − 1 there exists a distance which oc-
curs exactly i times, then three points lie on a common line or four points lie on a common
circle. We have proven the following: For all n ≥ 7, if a set of n points forms a line-like
configuration in the L∞ norm, then three points lie on a common line, four points lie on a
common L∞ circle, or the set of points is a perpendicular perturbation in || · ||.

4.1. Perpendicular perturbations and line-like crescent configurations

In Section 3.1, we provide constructions of infinitely many line-like configurations of arbi-
trary size under any non-strictly convex norm || · ||. Note that each of these constructions
has a simple structure—namely, it is a perpendicular perturbation in || · ||.

Definition 4.1. For each n, let P1, . . . , Pn and Q1, . . . , Qn be points in the plane.

1. We say that P1, . . . , Pn is a perpendicular perturbation of Q1, . . . , Qn if the lines←−→
PiQi are parallel for all 1 ≤ i ≤ n. (In other words, P1, . . . , Pn is a perpendicular
perturbation of Q1, . . . , Qn if there exists a line ` so that for all 1 ≤ i ≤ n, Pi and
Qi are mapped to the same point when projected onto `.)
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2. We say that P1, . . . , Pn is a perpendicular perturbation of ` if there exist equally
spaced points Q1, . . . , Qn on ` so that P1, . . . , Pn is a perpendicular perturbation of
Q1, . . . , Qn.

3. Let || · || be a non-strictly convex norm, and for some k, let `1, . . . , `k be lines which
contain each of the line segments in the unit circle of || · ||. Let `′i be a line perpendic-
ular to `i for each 1 ≤ i ≤ n. We say that P1, . . . , Pn is a perpendicular perturbation
in || · || if P1, . . . , Pn is a perpendicular perturbation of `′i for some 1 ≤ i ≤ n.

Example 4.2.

1. The set of points {(1, 1), (2, 1/2), . . . , (n, 1/n)} (cf. Example 2.7) is a perpendicular
perturbation of the set of points {(1, 0), (2, 0), . . . , (n, 0)}, a perpendicular perturba-
tion of the x-axis, and a perpendicular perturbation in L∞.

2. Let ||·|| be a non-strictly convex norm. Then every line-like configuration constructed
by Theorem 1.2 is a perpendicular perturbation in || · ||.

However, the following example shows that for all n ≥ 3, there exist line-like configu-
rations of size n in L∞ which are not perpendicular perturbations in L∞.

Example 4.3. Fix n ≥ 3. If n = 2k + 1 for k ≥ 1, consider the set of 2k + 1 points

{(0, 0), (1, a), (1 + a, 1 + a), (2 + a, 1 + 2a), (2 + 2a, 2 + 2a), . . . , (k(1 + a), k(1 + a))}

for some 0 < a < 1. If n = 2k for k ≥ 2, consider the above set with the last point
removed. The reader can check that this set of points forms a line-like configuration in L∞.
However this set of points is not a perpendicular perturbation in L∞. To be a perpendicular
perturbation in L∞, this set of points must be a perpendicular perturbation of a horizontal
or vertical line. But the x-coordinates 0, 1, 1 + a and the y-coordinates 0, a, 1 + a of the
first three points respectively are not equally spaced, because 0 < a < 1.

Even though the set from Example 4.3 is not a perpendicular perturbation, its structure is
similar to that of a perpendicular perturbation because it contains many points on a common
line. Specifically, the points

(0, 0), (1 + a, 1 + a), . . . , (b(n− 1)/2c(1 + a), b(n− 1)/2c(1 + a))

are equally spaced on a common line.
When studying crescent configurations, we require that the points lie in some notion of

general position in order to omit trivial configurations (cf. Section 2.2). Similarly, we omit
trivial examples of line-like configurations by introducing line-like crescent configurations:

Definition 4.4. Fix a norm || · ||. A set of n points is said to form a line-like crescent
configuration in || · || if the following three conditions hold.
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1. The n points form a line-like configuration in || · ||.

2. No three points lie on a common line.

3. No four points lie on a common || · || circle.

Example 4.5.

1. For each n, {(1, 1), (2, 1/2), . . . , (n, 1/n)} (cf. Example 2.7) forms a line-like cres-
cent configuration in L∞.

2. The set of points in Example 4.3 is a line-like crescent configuration of size n if and
only if n ≤ 4. When n ≥ 5, the set of points is not a line-like crescent configuration
because the points (0, 0), (1 + a, 1 + a), (2 + 2a, 2 + 2a) lie on a common line.

We claim that there are only finitely many such exceptions in the following sense.

Theorem 1.5. Let n ≥ 7. Then every line-like crescent configuration in L∞ of size n is a
perpendicular perturbation of a horizontal or vertical line.

The following example shows that the n ≥ 7 bound in the statement of Theorem 1.5 is
tight.

Example 4.6. For 3 ≤ n ≤ 6, there exist line-like crescent configurations in L∞ which
are not perpendicular perturbations in L∞, namely

{(0, 0), (1, a), (1 + a, 1 + a)}
{(0, 0), (1, a), (1 + a, 1 + a), (2 + a, 1 + 2a)}
{(0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 + a+ b), (2 + a+ b, 2 + a+ b)}
{(0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 + a+ b), (2 + 2b, 2 + a+ b), (3 + 2b, 2 + 2a+ b)}

for 0 < a < b < 1. For each (ordered) set of points, note that the differences between
consecutive points alternate between (1, c) and (c, 1), for c ∈ {a, b}. Using notation from
Section 4.2, we say that these line-like configurations are type xy, xyx, xyxy, and xyxyx
respectively (cf. Definition 4.9). See also Lemma 9, which states that a line-like crescent
configuration of size n and type xyxy · · · must satisfy n ≤ 6.

The proof of Theorem 1.5 is structured as follows. In Section 4.2, we introduce notation
used in the proof of Theorem 1.5. In Section 4.3, we state Lemmas 5, 6, 7, 8, 9, 10, 11,
12, and 13. Then we use these lemmas to prove Theorem 1.5. In Section 4.4, we prove the
lemmas stated and used in Section 4.3.

4.2. Types, realizability, m-extendability

Throughout the rest of this section, we exclusively use the L∞ norm, and omit the spec-
ification “in L∞” when referring to distances, line-like configurations, and so on. Let
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p = (px, py) and q = (qx, qy) be points in R2. In this section, we denote their distance by
d(p, q) := dL∞(p, q) = max{|px − qx|, |py − qy|}. For points p1, . . . , pn, let [p1, . . . , pn]

denote the ordered list of these points.

Definition 4.7. Let [p1, . . . , pn] be a line-like configuration. For 1 ≤ i ≤ n − 1, the ith

order distance is given by d(p1, p1+i) = d(p2, p2+i) = · · · = d(pn−i, pn). When the
line-like configuration [p1, . . . , pn] is clear, we denote its ith order distance by di.

Next we define the type of a line-like configuration.

Definition 4.8. Let p = (px, py) and q = (qx, qy) be distinct points.

1. If |px − qx| > |py − qy| and qx > px, we say that [p, q] is type x.

2. If |px − qx| > |py − qy| and px > qx, we say that [p, q] is type x′.

3. If |py − qy| > |px − qx| and qy > py , we say that [p, q] is type y.

4. If |py − qy| > |px − qx| and py > qy , we say that [p, q] is type y′.

5. If |px − qx| = |py − qy|, qx > px and qy > py , we say that [p, q] is type bxy .

6. If |px − qx| = |py − qy|, px > qx and qy > py , we say that [p, q] is type bx′y .

7. If |px − qx| = |py − qy|, px > qx and py > qy , we say that [p, q] is type bx′y′ .

8. If |px − qx| = |py − qy|, qx > px and py > qy , we say that [p, q] is type bxy′ .

We write T := {x, x′, y, y′, bxy, bx′y, bx′y′ , bxy′}.

Definition 4.9.

1. Let [p1, . . . , pn] be a line-like configuration. The type of [p1, . . . , pn] is a string
a1a2 . . . an−1, with ai ∈ T , where for all 1 ≤ i ≤ n − 1 we have that [pi, pi+1] is
type ai.

2. Let a1a2 . . . an−1 and c1c2 . . . ck−1 be types. We say that the type a1a2 . . . an−1
contains the type c1c2 . . . ck−1 if c1c2 . . . ck−1 is a substring of a1a2 . . . an−1.

3. Let a1a2 . . . an−1 be a type. We say that the type a1a2 . . . an−1 has length n− 1.

Definition 4.10. Let k ≥ 2.

1. We say that the type a1a2 . . . ak−1 is realizable if there exists a line-like crescent
configuration [p1, . . . , pk] with type a1a2 . . . ak−1.

2. Letm ≥ 1. We say that a1a2 . . . ak−1 ism-extendable if there exist ak, ak+1, . . . , ak+m−1 ∈
T so that a1a2 . . . ak−1akak+1 . . . ak+m−1 is realizable.
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We conclude with a remark crucial to the logic of the proofs in Sections 4.3 and 4.4.

Remark 4.11. Throughout the proofs of Theorem 1.5 and related lemmas, we frequently
make use of the following symmetries of L∞.

1. The following are isometries of L∞: reflection about a horizontal line, reflection
about a vertical line, reflection about a line with slope ±1.

2. A type a1a2 . . . an−1 is realizable if and only if an−1an−2 . . . a1 is realizable.

The following are simple example arguments making use of these symmetries.

• Lemma 7 states that xx′ is not 2-extendable. By symmetry (1), Lemma 7 is equiva-
lent to the statement that any one of x′x, yy′, and y′y is not 2-extendable.

• Symmetry (1) implies that type xx′ is symmetric about the x-axis in the following
sense: there exists a natural bijection between sets of points realizing xx′y and sets
of points realizing xx′y′. Thus xx′y is 1-extendable if and only if xx′y′ is.

• Lemma 7 states that xx′ is not 2-extendable. By symmetry (2), x′x is not 2-extendable.
By symmetry (1), any type which contains xx′ as a substring must be of the form
axx′b, where a, b ∈ T ∪ {ε}. (Here, ε denotes the empty string.)

In particular, when we write “a1a2 . . . an−1 (and reflections)”, we mean the collection of
types equivalent to a1a2 . . . an−1 under symmetries (1) and (2). For example, “xbxy (and
reflections)” refers to the types xbxy , xbxy′ , x′bx′y , x′bx′y′ , ybxy , ybx′y , y′bxy′ , y′bx′y′ ,
bxyx, bxy′x, bx′yx′, bx′y′x′, bxyy, bx′yy, bxy′y′, bx′y′y′.

4.3. Lemma statements and proof of Theorem 1.5

First we state the lemmas used in the proof of Theorem 1.5. Their proofs are given in
Section 4.4.

Lemma 5. The types bxybxy and bxybx′y′ (and reflections) are not realizable.

Lemma 6. The type xbx′y (and reflections) is not 2-extendable.

Lemma 7. There do not exist s, t ∈ {x, x′, y, y′} so that xx′st is realizable.

Lemma 8.

1. The type xyxy′ (and reflections) is not realizable.

2. The type xyx′y (and reflections) is not realizable.

Lemma 9. For some n, let c1c2 . . . cn−1 be a type with{
ci = x if i ≡ 1 mod 2

ci = y if i ≡ 0 mod 2

If c1c2 . . . cn−1 (or reflections) is realizable, then n ≤ 6.
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Lemma 10. For some n, let c1c2 . . . cn−1 be a type with
ci = x if i ≡ 1 mod 4

ci = y if i ≡ 2 mod 4

ci = x′ if i ≡ 3 mod 4

ci = y′ if i ≡ 0 mod 4

If c1c2 . . . cn−1 (or reflections) is realizable, then n ≤ 5.

Lemma 11. For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′} for all
1 ≤ i ≤ n− 1. Then n ≤ 4, and the only possible values of c1c2 . . . cn−1 (up to reflection)
are bxy , bxybx′y , and bxybx′ybxy .

Lemma 12. Suppose d2 = 2. For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′}
for all 1 ≤ i ≤ n− 1.

1. The type xc1c2 . . . cn−1x′ (and reflections) is not 1-extendable.

2. The type xc1c2 . . . cn−1y (and reflections) is not 1-extendable.

Lemma 13. Suppose d2 = 2. For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bxy′}
for all 1 ≤ i ≤ n− 1.

1. There does not exist a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} so that xc1c2 . . . cn−1bx′yt is
realizable.

2. There does not exist a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} so that txc1c2 . . . cn−1bx′y is
realizable.

Now we give the proof of Theorem 1.5, which is restated below.

Theorem 1.5. Let n ≥ 7. Then every line-like crescent configuration in L∞ of size n is a
perpendicular perturbation of a horizontal or vertical line.

Proof of Theorem 1.5. Let [p1, p2, . . . , pn] be a line-like crescent configuration of size n ≥
7 with type A := a1a2 . . . an−1. Without loss of generality, scale [p1, p2, . . . , pn] so that
the first order distance satisfies d1 = 1. By the triangle inequality, the second order distance
satisfies d2 ≤ 2.

Suppose d2 < 2. Suppose A contains some bxy (or reflections). Without loss of gen-
erality A must contain tbxy for some t ∈ T . The types xbxy , ybxy , bxy′bxy , bx′ybxy give
d2 = 2, a contradiction. By Lemma 5, bx′y′bxy and bxybxy are not realizable. Thus A
must contain x′bxy or y′bxy . By Lemma 6, n ≤ 5. Contradiction. Thus A only contains
{x, x′, y, y′}. Because d2 < 2, A cannot contain xx (and reflections). By Lemma 7, A
cannot contain xx′ (and reflections). Thus ai ∈ {x, x′} for even i and ai ∈ {y, y′} for odd
i, or vice versa. By Lemma 8, A must be of the form xyxy . . . or xyx′y′ . . . . Finally, by
Lemma 9 and Lemma 10, we have n ≤ 6 as desired.
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Thus d2 = 2. Suppose A contains at least two of {x, x′, y, y′}. Since d2 = 2, A cannot
contain xx′ or xy (and reflections). Thus A contains xc1c2 . . . ck−1x′ or xc1c2 . . . ck−1y
(or reflections) for k ≥ 2 and ci ∈ {bxy, bx′y, bx′y′ , bxy′} for all 1 ≤ i ≤ k−1. By Lemma
11, k ≤ 4, so by Lemma 12, A must be of the form xc1c2 . . . ck−1x

′ or xc1c2 . . . ck−1y (or
reflections). Thus n ≤ 6. Otherwise, A contains at most one of {x, x′, y, y′}, without loss
of generality x. If A does not contain x, then n ≤ 4 by Lemma 5. Suppose A contains x.
Suppose A contains bx′y or bx′y′ . Because d2 = 2, A cannot contain xbx′y or xbx′y′ . By
Lemma 11 and Lemma 13, if A contains xc1c2 . . . cn−1bx′y or xc1c2 . . . cn−1bx′y′ , then
n ≤ 5. Thus A cannot contain bx′y or bx′y′ . Thus A only contains x, bxy , and bxy′ . This
implies that A is a perpendicular perturbation of a horizontal line.

4.4. Proofs of Lemmas

This section contains the proofs of Lemmas 5, 6, 7, 8, 9, 10, 11, 12, and 13. Their state-
ments can be found in Section 4.3.

Next, we define notation used in the proofs of these lemmas.

Definition 4.12. Let a1a2 . . . an−1 be a realizable type. Suppose there are k symbols ai for
which ai ∈ {x, x′, y, y′} and n− 1− k symbols ai for which ai ∈ {bxy, bx′y, bx′y′ , bxy′}.
Let i1, i2, . . . , ik be the subsequence of indices {1, . . . , n−1} for which aij ∈ {x, x′, y, y′}
and let f1, . . . , fk ∈ R so that |fi| < 1 for each 1 ≤ i ≤ k.

We define a list [p1, p2, . . . , pn] of n points as follows. Set p1 = (0, 0). For all 1 ≤ i ≤
n− 1 we have the following.

• If ai = x, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (1, fj).

• If ai = x′, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (−1, fj).

• If ai = y, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (fj , 1).

• If ai = y′, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (fj ,−1).

• If ai = bxy , then set pi+1 := pi + (1, 1).

• If ai = bx′y , then set pi+1 := pi + (−1, 1).

• If ai = bx′y′ , then set pi+1 := pi + (−1,−1).

• If ai = bxy′ , then set pi+1 := pi + (1,−1).

We say that the type a1a2 . . . an−1 has coordinates [p1 . . . , pn]f1,...fk . The f1, . . . , fk are
called the free variables of a1a2 . . . an−1. When the f1, . . . , fk are clear, we write that
a1a2 . . . an−1 has coordinates [p1, p2, . . . , pn], or that [p1, p2, . . . , pn] are the coordinates
of a1a2 . . . an−1.
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Let s1, s2, . . . , sn be a line-like crescent configuration with type a1a2 . . . an−1. Say
a1a2 . . . an−1 has coordinates [p1, p2, . . . , pn]. Then, up to translation, there exist free
variables f1, . . . , fk for which [s1, s2, . . . , sn] = [p1, p2, . . . , pn]f1,...,fk .

Example 4.13. The type xyxy has coordinates

[(0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 + a+ c), (2 + b+ d, 2 + a+ c)]

for free variables |a|, |b|, |c|, |d| < 1. If, for example, we show that there exist no |a|, |b|, |c|, |d| <
1 so that

[(0, 0), (1, a), (1+ b, 1+a), (2+ b, 1+a+ c), (2+ b+d, 2+a+ c), (1+ b+d, 3+a+ c)],

then it follows that xyxybx′y is not realizable.

Definition 4.14. Let a1a2 . . . an−1 be a realizable type with coordinates [p1, p2, . . . , pn]f1,...,fk .
Because a1a2 . . . an−1 is realizable, there exist f1, f2, . . . , fk for which [p1, p2, . . . , pn]f1,...,fk
is a line-like crescent configuration. For these choices of f1, . . . , fk, we notate the ith order
distance of [p1, p2, . . . , pn]f1,...,fk as

Di,f1,...,fk(a1a2 . . . an−1) := di = d(p1, p1+i) = · · · = d(pn−i, pn).

When the value ofDi,f1,...,fk(a1a2 . . . an−1) is independent of f1, . . . , fk, we writeDi(a1a2 . . . an−1).

Remark 4.15. We typically use Definition 4.14 when the value of Di(a1a2 . . . an−1) is
independent of the free variables f1, . . . , fk. For example, consider the type xxy. It has
coordinates [p1, p2, p3, p4] = [(0, 0), (1, a), (2, a + b), (2 + c, 1 + a + b)]. We have
d(p1, p3) = max{2, |a+ b|} and d(p2, p4) = {1 + c, 1 + b}. Because |a|, |b|, |c| < 1, this
implies d(p1, p3) = 2 and d(p2, p4) < 2. Thus, independent of free variables, we have
D2(xx) = 2 and D2(xy) < 2. In particular, this shows that D2(xxy) is undefined. In
other words, xxy is not realizable.

Finally, we prove Lemmas 5, 6, 7, 8, 9, 10, 11, 12, and 13. Their statements can be
found in Section 4.3. Throughout these proofs, we assume the first order distance d1 = 1.
Additionally, a, b, c, d denote free variables of a type. In other words, a, b, c, d ∈ R with
|a|, |b|, |c|, |d| < 1.

Proof of Lemma 5. The type bxybxy has coordinates (0, 0), (1, 1), (2, 2). This is not re-
alizable because these points lie on a common line. The type bxybx′y′ has coordinates
(0, 0), (1, 1), (0, 0). This is not realizable because the points are not distinct.

Proof of Lemma 6. Since D2(xbx′y) < 2, we have d2 < 2. The types xbx′yt for t ∈
{x′, y, bxy, bx′y′} are not realizable because d2 < 2. The types xbx′yt for t ∈ {bx′y, bxy′}
are not realizable by Lemma 5. It suffices to show that xbx′yx and xbx′yy

′ are not 1-
extendable.
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The type xbx′yx has coordinates (0, 0), (1, a), (0, 1 + a), (1, 1 + a + b). Considering
second order distances, we have 1 + a = 1 + b, so a = b. Thus xbx′yx has coordinates
(0, 0), (1, a), (0, 1 + a), (1, 1 + 2a). Since d2 < 2, the types xbx′yxt for t ∈ {x, bxy, bxy′}
are not realizable. Additionally, xbx′yxt with t ∈ {bx′y, bx′y′} are not realizable, because
the coordinates of these types have three points on a common line (three points with x-
coordinate 0). Thus xbx′yxt is only realizable if t ∈ {y, y′}.

• The coordinates of xbx′yxy are (0, 0), (1, a), (0, 1 + a), (1, 1 + 2a), (1 + b, 2 + 2a).
Considering third order distances, we have max{1, 1 + a} = max{|b|, 2 + a}. This
is impossible because 2 + a > 1 and 2 + a > 1 + a. Thus xbx′yxy is not realizable.

• The coordinates of xbx′yxy′ are (0, 0), (1, a), (0, 1 + a), (1, 1 + 2a), (1 + b, 2a).
Considering third order distances, we have max{1, 1 + 2a} = max{|b|, |a|}. This is
impossible because 1 > |b| and 1 > |a|. Thus xbx′yxy′ is not realizable.

The type xbx′yy′ has coordinates (0, 0), (1, a), (0, 1 + a), (b, a). Considering second
order distances, we have 1 + a = 1 − b, so b = −a. Thus xbx′yy′ has coordinates
(0, 0), (1, a), (0, 1+a), (−a, a). If a > 0, these points lie on the circle with corners (−a, 0)

and (1, 1 + a). If a < 0, these points lie on the circle with corners (0, a) and (1, 1 + a).
Contradiction. Thus xbx′yy′ is not realizable.

Proof of Lemma 7. It suffices to show that xx′xy, xx′y′y, xx′yx, and xx′yx are not real-
izable.

The type xx′xy has coordinates (0, 0), (1, a), (0, a+b), (1, a+b+c), (1+d, 1+a+b+c).
Considering third order distances, max{1, |a+ b+ c|} = max{|d|, |1 + b+ c|}. Because
d3 6= d1 = 1, this implies |a + b + c| = |1 + b + c| > 1. Suppose 1 + b + c < 0. Then
1 + b+ c < −1, which implies b+ c < −2, a contradiction. Thus 1 + b+ c > 1. Suppose
a + b + c < 0. Then a + b + c < −1, and since 1 + b + c > 1, this implies a < −1, a
contradiction. Thus a+ b+ c > 1. But then a+ b+ c = 1 + b+ c, which implies a = 1, a
contradiction. Thus xx′xy is not realizable.

The type xx′y′y has coordinates (0, 0), (1, a), (0, a+ b), (c,−1 + a+ b), (c+ d, a+ b).
If |a+ b| ≤ 1, then four points lie on a circle.

• If c > 0, then (0, 0), (1, a), (0, a+ b), (c,−1 + a+ b) lie on a circle.

• If c+ d > 0, then (0, 0), (1, a), (0, a+ b), (c+ d, a+ b) lie on a circle.

• Otherwise, c ≤ 0 and c+ d < 0. In this case, (0, 0), (0, a+ b), (c,−1 + a+ b), (c+

d, a+ b) lie on a circle.

Thus |a+b| > 1. Considering second order distances, |a+b| = max{1−c, 1−b} = |c+d|.
If a + b < 0, then −a − b ≥ 1 − b, which implies a ≤ −1, a contradiction. Similarly, if
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c + d < 0, then −c− d ≥ 1 − c, which implies c ≤ −1, a contradiction. Thus a + b > 0

and c + d > 0. Since |a + b| = |c + d| > 1, this implies a, b > 0 and c, d > 0. But
max{1 − c, 1 − b} > 1 implies b < 0 or c < 0. Contradiction. Thus xx′y′y is not
realizable.

The type xx′y′x has coordinates (0, 0), (1, a), (0, a+b), (c,−1+a+b), (1+c,−1+a+

b+d). Considering second order distances, |a+b| = max{1−c, 1+b} = max{1+c, 1+d}.
Since d2 ≥ 1−c, d2 ≥ 1+c, and d2 6= d1 = 1, we have d2 > 1. If a+b > 0, then a+b ≥
1+b, so a ≥ 1, a contradiction. Thus a+b < 0, and since |a+b| > 1, we have a+b < −1.
Considering third order distances, max{|c|, | − 1 + a + b|} = max{|c|, | − 1 + b + d|}.
Because a + b < −1, we have | − 1 + a + b| > 2, so d3 = 1 − a − b = | − 1 + b + d|.
Since a + b < −1, we have a, b < 0. So max{1 − c, 1 + b} > 1 implies c < 0, and
max{1 + c, 1 + d} > 1 therefore implies d > 0. Since b < 0 and d > 0, we have
−1 + b + d < 0. Since c < 0 and d > 0, we have |a + b| = 1 + d, which implies
2 + d = 1− b− d. Rearranging gives 1 + 2d = −b. Since d > 0, we have 1 + 2d > 1, but
−b < 1. Contradiction. Thus xx′y′x is not realizable.

The type xx′y′x′ has coordinates (0, 0), (1, a), (0, a+b), (c,−1+a+b), (−1+c,−1+

a+b+d). Considering second order distances, |a+b| = max{1−c, 1−b} = max{1−c, 1−
d}. If a+b < 0, then−a−b ≥ 1−b, which implies a ≤ −1, a contradiction. Thus a+b >

0. Considering third order distances, max{|c|, |−1+a+b|} = max{2−c, |−1+b+d|}.
Since a + b > 0 (and a + b < 2), we have | − 1 + a + b| < 1. Since |c| < 1 and
| − 1 + a+ b| < 1, we have max{|c|, | − 1 + a+ b|} < 1. But 2− c > 1. Contradiction.
Thus xx′y′x′ is not realizable.

Proof of Lemma 8.
Proof of (1): The type xyxy′ has coordinates (0, 0), (1, a), (1+b, 1+a), (2+b, 1+a+c),

(2 + b+ d, a+ c). Considering third order distances, max{2 + b, |1 +a+ c|} = max{|1 +

b+ d|, |c|}. This is impossible because 2 + b > |c| and 2 + b > |1 + b+ d|. Thus xyxy′ is
not realizable.

Proof of (2): The type xyx′y has coordinates (0, 0) (1, a) (1 + b, 1 + a), (b, 1 + a+ c),
(b+ d, 2 + a+ c). Considering third order distances, max{|b|, |1 + a+ c|} = max{|1−
b− d|, 2 + c}. This is impossible because 2 + c > |b| and 2 + c > |1 + a+ c|. Thus xyxy′

is not realizable.

Proof of Lemma 9. The type xyxy has coordinates (0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 +

a+ c), (2 + b+d, 2 +a+ c). Considering third order distances, max{2 + b, |1 +a+ c|} =

max{|1 + b+ d|, 2 + c}. Because 2 + b > |1 + b+ d| and 2 + c > |1 + a+ c|, it follows
that 2 + b = 2 + c is the third order distance. Thus b = c.

Now consider the type xyxyxy. Note that it contains xyxy (and its reflection yxyx)
three times. Thus it has coordinates (0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 + a + b),
(2+2b, 2+a+b), (3+2b, 2+a+2b), (3+2b+c, 3+a+2b). But (1, a), (2+b, 1+a+b),
and (3 + 2b, 2 + a + 2b) lie on a common line. Thus xyxyxy is not realizable. So such a
type c1c2 . . . cn−1 can only be realizable if n ≤ 6.
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Proof of Lemma 10. The type xyx′y′ has coordinates (0, 0), (1, a), (1 + b, 1 + a), (b, 1 +

a+ c), (b+ d, a+ c). Considering second order distances,

d2 = max{1 + b, 1 + a} = max{1− b, 1 + c} = max{1− d, 1− c}.

Considering third order distances,

d3 = max{|b|, |1 + a+ c|} = max{| − 1 + b+ d|, |c|}.

Because d2 6= 1, there are four cases.

1. Case 1 + b = 1 + c = 1− d > 1, so b = c = −d > 0. Then | − 1 + b+ d| = 1, so
d3 = max{| − 1 + b+ d|, |c|} = 1, a contradiction.

2. Case 1 + a = 1 − b = 1 − c > 1, so a = −b = −c > 0. Then |1 + a + c| = 1, so
d3 = max{|b|, |1 + a+ c|} = 1, a contradiction.

3. Case 1 + a = 1 − b = 1 − d, so a = −b = −d > 0. Then | − 1 + b + d| > 1, so
1 + a + c = 1 − b − d, so a + c = −b − d, and since a = −b = −d, this implies
a = c = −b = −d > 0.

4. Case 1 + a = 1 + c = 1 − d, so a = c = −d > 0. Then |1 + a + c| > 1, so
1 + a + c = 1 − b − d, so a + c = −b − d, and since a = c = −d, this implies
a = c = −b = −d > 0.

Thus in any possible case, a = c = −b = −d. This means that xyx′y′ has coordinates
(0, 0), (1, a), (1− a, 1 + a), (−a, 1 + 2a), (−2a, 2a).

Now consider the type xyx′y′x. By applying the above argument to xyx′y′ and yx′y′x,
xyx′y′x has coordinates (0, 0), (1, a), (1−a, 1+a), (−a, 1+2a), (−2a, 2a), (1−2a, 3a).
But the points (1−a, 1+a), (−a, 1+2a), (1−2a, 3a) lie on a common line. Thus xyx′y′x
is not realizable. So such a type c1c2 . . . cn−1 can only be realizable if n ≤ 5.

Proof of Lemma 11. Let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′}. Without
loss of generality, let c1 = bxy . By Lemma 5, c2 ∈ {bx′y, bxy′}, so without loss of
generality c2 = bx′y . By Lemma 5, c3 ∈ {bxy, bx′y′}. The coordinates of bxybx′ybx′y′ are
(0, 0), (1, 1), (0, 2), (−1, 1), which lie on a circle with corners (−1, 1) and (1, 1). Thus
c3 = bxy . Finally, we claim that c1c2c3 = bxybx′ybxy is not 1-extendable. By Lemma 5,
c4 ∈ {bx′y, bxy′}.

• The type c1c2c3c4 = bxybx′ybxybx′y has coordinates (0, 0), (1, 1), (0, 2), (1, 3),
(0, 4). This is not realizable because (0, 0), (0, 2), (0, 4) lie on a common line.

• The type c1c2c3c4 = bxybx′ybxybxy′ has coordinates (0, 0), (1, 1), (0, 2), (1, 3),
(2, 2). This is not realizable because (1, 1), (2, 2), (1, 3), (2, 2) lie on a common
circle with corners (0, 1) and (2, 3).



INTEGERS: 20 (2020) 29

Proof of Lemma 12.
Proof of (1): For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′} for

all 1 ≤ i ≤ n − 1. Consider xc1c2 . . . cn−1x′. Because d2 = 2, we have c1 ∈ {bxy, bxy′}
and cn−1 ∈ {bx′y, bx′y′}. Thus n ≥ 3. By Lemma 11, n ≤ 4. If n = 4, then by Lemma
11, c1 = c3 = cn−1. This is a contradiction, thus n = 3.

When n = 3, we have xc1c2 . . . cn−1x′ = xc1c2x
′ for c1 ∈ {bxy, bxy′} and c2 ∈

{bx′y, bx′y′}. By Lemma 5, c1c2 = bxybx′y or c1c2 = bxy′bx′y′ . Without loss of generality
(reflection about the x-axis), we can assume c1c2 = bxybx′y . Then D3(xbxybx′yx

′) < 3.
We claim that xbxybx′yx′ is not 1-extendable. Suppose xbxybx′yx′t is realizable for

some t ∈ T . Because d2 = 2, t ∈ {x′, bx′y, bx′y′}. But D3(bx′yx
′t) ≥ 3, which contra-

dicts d3 < 3. Thus xbxybx′yx′ is not 1-extendable.

Proof of (2): For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′}
for all 1 ≤ i ≤ n. Consider xc1c2 . . . cn−1y. Because d2 = 2, we have c1 ∈ {bxy, bxy′}
and cn−1 ∈ {bxy, bx′y}. By Lemma 11, n ≤ 4. If n = 2, then c1 = bxy . If n = 3,
then by Lemma 5, c1c2 = bxybx′y or c1c2 = bxy′bxy . If n = 4, then by Lemma 11,
c1c2c3 = bxybx′ybxy or c1c2c3 = bxybxy′bxy . We treat each of these cases individually to
show that xc1c2 . . . cn−1y is not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxyy. Suppose xbxyyt is realizable for some t ∈ T . Since
d2 = 2, t ∈ {y, bxy, bx′y}. Then D3(xbxyy) < 3 but D3(bxyyt) = 3. Contradiction,
thus xbxyy is not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxybx′yy. Then D3(xbxybx′y) < 3 but D3(bxybx′yy) =

3. Contradiction, thus xbxybx′yy is not even realizable, and in particular not 1-
extendable.

• Case xc1c2 . . . cn−1y = xbxy′bxyy. Then D3(xbxy′bxy) = 3 but D3(bxy′bxyy) <

3. Contradiction, thus xbxy′bxyy is not even realizable, and in particular not 1-
extendable.

• Case xc1c2 . . . cn−1y = xbxybx′ybxyy. Suppose xbxybx′ybxyyt is realizable for
some t ∈ T . Since d2 = 2, t ∈ {y, bxy, bx′y}. Then D3(xbxybx′y) < 3, but
D3(bxyyt) = 3. Contradiction, thus xbxybx′ybxyy is not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxybxy′bxyy. ThenD4(xbxybxy′bxy) = 4 butD4(bxybxy′bxyy) <

4. Contradiction, thus xbxybxy′bxyy is not even realizable, and in particular not 1-
extendable.

Proof of Lemma 13. For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bxy′} for all
1 ≤ i ≤ n − 1. If xc1c2 . . . cn−1bx′y is realizable, by Lemma 11, we have n ≤ 3. If
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n = 3, then c1 = bx′y . If n = 2, then xc1c2 · · · cn−1bx′y = xc1bx′y , and by Lemma
5, c1 = {bxy, bx′y′}. We show that two of these three cases give types which are not
realizable.

• Case n = 3 and c1 = bx′y . The type is xbx′yc2bx′y . We are given d2 = 2, but
D2(xbx′y) < 2. Contradiction. Thus xbx′yc2bx′y is not realizable.

• Case n = 2 and c1 = bx′y′ . The type is xbx′y′bx′y . We are given d2 = 2, but
D3(xbx′y′) < 2. Contradiction. Thus xbx′y′bx′y is not realizable.

Thus xc1c2 . . . cn−1bx′y is realizable only if n = 2 and c1 = bxy . Now we prove (1) and
(2).

Proof of (1): Suppose there exists a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} for which xbxybx′yt
is realizable. By Lemma 11, t = bxy . Then D3(xbxybx′y) < 3 but D3(bxybx′ybxy) = 3.
Contradiction. Thus xbxybx′yt is not realizable.

Proof of (2): Suppose there exists a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} for which txbxybx′y is
realizable. Since d2 = 2, t ∈ {x, bxy, bxy′}. Then D3(xbxybx′y) < 3, but D3(txbxy) = 3.
Contradiction. Thus txbxybx′y is not realizable.

5. Constructions of strong crescent configurations

In this section, we provide constructions of strong crescent configurations. For an overview
of known constructions, see Example 2.16. In Section 5.1, we construct a strong crescent
configuration of size 4 in any norm || · ||. In Section 5.2, we construct a strong crescent
configuration of size 6 in L2. In Section 5.3, we construct strong crescent configurations
of sizes n ≤ 8 in L1 and L∞.

5.1. Strong crescent configuration of size n = 4 in any norm

Theorem 1.6. Let || · || be any norm. Then there exists a strong crescent configuration of
size 4 in || · ||.

Proof. There are two cases, depending on whether the unit circle of || · || is a union of line
segments.

Case 1: The unit circle of || · || is not a union of line segments. Then pick a point D.
Draw a unit circle centered atD, and pick pointsA, B, C on this unit circle so thatA,B,C
do not lie on a common line, |AB| = |BC|, and |AD| > |AC| > |AB|. See Figure 9.

Case 2: The unit circle of || · || is a union of line segments. Then pick a point D. Draw a
unit circle centered atD. This circle contains at least one corner, i.e. a point where two line
segments of different slopes meet. Let B be a corner point. Let A and C each lie on one of
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the two line segments which meet atB, such that |AB| = |BC| and |AD| > |AC| > |AB|.
See Figure 10.

In either case, we have the following: the distance |AD| = |BD| = |CD| occurs three
times, |AB| = |BC| occurs two times, and |AC| occurs once. Moreover, no three points
of A,B,C,D lie on a line, and the points A,B,C,D do not form a line-like configuration.
Thus A,B,C,D form a strong crescent configuration.

Figure 9: Left: a unit ball which is not a union of line segments. Right: a strong crescent
configuration of size four in this norm.

Figure 10: Left: a unit ball which is a union of line segments. Right: a strong crescent
configuration of size four in this norm.

5.2. Strong crescent configurations in L2

For n ≤ 5, there exist known constructions of crescent configurations in L2 which are
also strong crescent configurations. However, Palásti’s [11, 12] constructions of crescent
configurations of sizes 6, 7, 8 are not strong. We construct a strong crescent configuration
of size 6 and conjecture that strong crescent configurations of sizes exceeding 6 do not
exist.
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Theorem 1.8. In the L2 norm, there exist strong crescent configurations of size n ≤ 6.

Proof. For constructions of sizes n ≤ 5, see [8, 11, 12, 5].
We constructed a strong crescent configuration of size 6 by searching a triangular lattice

was using a backtracking algorithm.3 The following are coordinates of a strong configura-
tion of size 6 produced by our code:{(
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The distance graph is depicted in Figure 11.

Figure 11: Strong crescent configuration of size 6 in L2.

Remark 5.1. We exhaustively searched a 10 × 10 triangular lattice and showed that it
does not contain a strong crescent configuration of size 7 or 8 in L2. The search was
conducted using a desktop computer with an Intel i7-6700K processor and 16GB RAM,
and the duration was roughly 400 hours.

5.3. Strong crescent configurations in L∞

Theorem 1.9. In the L∞ norm, there exist strong crescent configurations of sizes n ≤ 8.

Proof. A square lattice was searched using a backtracking algorithm.4 In the following
table, we list a strong crescent configuration of size n produced by our code for 4 ≤ n ≤ 8:

3Our code can be found at https://github.com/the-set-of-sets/nin.
4Our code can be found at https://github.com/the-set-of-sets/l1_linfty.

https://github.com/the-set-of-sets/nin
https://github.com/the-set-of-sets/l1_linfty
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n Strong crescent configuration of size n, in L∞

4 {(0, 0), (0, 1), (1, 1), (1, 3)}
5 {(0, 0), (0, 1), (1, 1), (1, 3), (2, 4)}
6 {(0, 0), (0, 1), (1, 3), (2, 1), (2, 4), (4, 5)}
7 {(0, 0), (0, 4), (1, 2), (2, 3), (3, 1), (5, 4), (6, 6)}
8 {(0, 0), (0, 6), (1, 3), (2, 4), (3, 2), (4, 1), (5, 5), (6, 7)}

The distance graphs are depicted in Figures 12 and 13.

Figure 12: Strong crescent configurations of size 4, 5, 6 in L∞.

Figure 13: Strong crescent configurations of size 7, 8 in L∞.
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Remark 5.2. We exhaustively searched a 9× 9 lattice and showed that it does not contain
a strong crescent configuration of size 9 in L∞. The search was conducted using a desktop
computer with an Intel i3-7100 processor and 16GB RAM, and the duration was roughly
11 hours. For large n and m, our algorithm for exhausting all possible strong crescent
configurations of n points on a m-point lattice must, up to constants (such as savings from
fixing the first point), consider all

(
m
n

)
possible configurations. These are order mn, and

our observed runtimes followed insurmountable growth rate.

By Lemma 2, L1 and L∞ are dual norms in R2. This gives a correspondence between
strong crescent configurations in L1 and L∞. Let P be a set of points in L∞. Let P ′ be
the set consisting of every point in P rotated by 45◦ counterclockwise. Then P is a strong
crescent configuration if and only if P ′ is a strong crescent configuration.

Corollary 1.10. In the L1 norm, there exist strong crescent configurations of sizes n ≤ 8.

6. Future work

6.1. Disproving the existence of large (strong) crescent configurations

The main open question about crescent configurations is the following: for which n do
there exist crescent configurations of size n? The only known constructions of crescent
configurations are of sizes n ≤ 8 [8, 11, 12, 5]. Attempts to find larger crescent configura-
tions via computer search have been unsuccessful [1]. Erdős [5] conjectured the following.

Conjecture 6.1 (Erdős, 1989). For sufficiently large N , there do not exist crescent config-
urations of size n.

The same question can also be posed about strong crescent configurations. Given a norm
|| · ||, for which n do there exist strong crescent configurations of size n in || · ||? In Section
5, we provide explicit constructions of strong crescent configurations of sizes n ≤ 8 in
L1 and L∞, and of sizes n ≤ 6 in L2. Moreover, we performed computer searches and
showed that certain lattice regions do not contain larger strong crescent configurations in
L∞ and L2 (cf. Remarks 5.1, 5.2). Extending Conjecture 6.1, we conjecture the following.

Conjecture 6.2. Fix a norm ||·||. For sufficiently largeN , there do not exist strong crescent
configurations of size n in || · ||.

We also pose a strengthening of Conjecture 6.2 for strictly convex norms. By Corollary
4, given three points A,B,C which form a line-like configuration of size three in || · ||,
there exist exactly two pointsD,E so thatABCD andABCE are line-like configurations
in ||·||. In particular, at least one ofABCD andABCE is a parallelogram. We can modify
condition (3) of the definition of strong general position (Definition 2.13) so that instead of
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forbidding all line-like configurations of size four, we forbid line-like configurations of size
four which are not non-rectangular parallelograms. Call the sets of points which satisfy the
corresponding Definition 2.15 weak crescent configurations.

Conjecture 6.3. In any strictly convex norm || · ||, we conjecture that for sufficiently large
N , there do not exist weak crescent configurations of size n in || · ||.

In L2, the weak crescent configurations are precisely the crescent configurations (cf.
Remark 2.14). When || · || is the L2 norm, Conjecture 6.3 is equivalent to Conjecture 6.1.

6.2. Disproving the existence of large line-like configurations in most norms

By Theorem 1.2 and Theorem 1.3, if the unit circle of || · || contains a line segment or an
arc contained in an L2 circle centered at the origin, then there exist infinitely many (after
scaling and translating) line-like configurations of size n in || · ||. These constructions are
generalizations of the two line-like configurations in L2: equally spaced points on a line
and on a circle (cf. Figure 1). An interesting question is whether there exist arbitrarily large
line-like configurations which do not rely on the structure of a straight line or L2 arc. We
conjecture that this is not the case.

Conjecture 6.4. Let || · || be a norm whose unit circle does not contain a line segment or
an arc contained in an L2 circle centered at the origin. Then for sufficiently large N , the
only line-like configurations of size n ≥ N in || · || are n equally spaced points on a line.

In Section 3.3, we provide numerical evidence toward this conjecture for the special
case of the Lp norm.

6.3. Classifying line-like crescent configurations in non-strictly convex norms

In Theorem 1.5, we prove that every line-like crescent configuration of size n ≥ 7 in the
L∞ norm must be a perpendicular perturbation in L∞. We are particularly interested in
generalizing our result to other norms.

Conjecture 6.5. Let || · || be a norm which is non-strictly convex. Then there exists some
N for which every line-like crescent configuration of size n ≥ N in || · || is a perpendicular
perturbation in || · ||.

For the definition of line-like crescent configurations, see Definition 4.4. For the defini-
tion of perpendicular perturbations, see Definition 4.1.

6.4. Extensions to higher dimensions

In this paper, we only consider normed spaces (R2, || · ||). Burt et al. [1] considered a
generalization of the problem of Euclidean crescent configurations to higher dimensions.
They provided constructions of crescent configurations of size n in Rn−2 for all n ≥ 3.
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Can the notion of higher dimensional crescent configurations be appropriately generalized
to arbitrary norms || · || : Rn → R?
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[9] J. Matoušek, The number of unit distances is almost linear for most norms, Adv. Math. 226, no. 3 (2011),
2618-2628.

[10] H. Martini, K. Swanepoel, G. Weiß, The geometry of Minkowski spaces – a survey, part I, Expo. Math. 19,
no. 2 (2001), 97-142.

[11] I. Palásti, On the seven points problem of P. Erdős, Stud. Sci. Math. Hungar. 22 (1987), 447-448.
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