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ABSTRACT

We present a multidimensional generalization of Zeckendorf’s Theorem (any positive
integer can be written uniquely as a sum of non-adjacent Fibonacci numbers) to a
large family of linear recurrences. This extends work of Anderson and Bicknell-
Johnson in the multi-dimensional case when the underlying recurrence is the same
as the Fibonacci one. Our extension applies to linear recurrence relations defined by
vectors € = (c1,¢2,...,ck) such that ¢1 > c2 > -+ > ¢, and where ¢, = 1. Under
these conditions, we prove that every integer vector in Z*~! admits a unique &-
satisfying representation (¢-SR) as a linear combination of vectors, (in)nez defined
for every n € Z by initially by zero and standard unit vectors and then the recursion

Xn = 01Xn71 + CZXn72 +---+ Ckin—k-

To establish this, we introduce carrying and borrowing operations that use the
defining recursion to transform any € representation into a ¢-SR while preserving
the underlying vector. Then, by establishing bijections with properties of scalar
Positive Linear Recurrence Sequences (PLRS), we prove that these multidimensional
decompositions inherit various properties, such as the number of summands exhibits
Gaussian behavior and summand minimality of -SRs over all all ¢-representations.
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1. Introduction and Preliminaries

1.1. Introduction

The Fibonacci numbers have inspired results of enduring interest for over 2000
years. An interesting recent one is Zeckendorf’s Theorem [Zeck|, which states that
every positive integer can be represented uniquely as a sum of non-consecutive Fi-
bonaccﬂ numbers (F},)> ;. Since then, Zeckendorf’s theorem has been extended to a
large family of recurrence sequences by first specifying a rule to guarantee a unique
representation and then deducing the structure of the sequence (see [AB-J,
BCCSW,, [DDKMMYV, DEFHMPP
KKMW, MWT, MW?2] and the theorems therein). We take particular interest in lin-
ear recurrence sequences (LRS’s). Given a vector (ci, ..., ¢;) € Z¥ and some proper
initial terms, a LRS, (X}, )nen, is defined by the relation

X1 = aXy+ -+ aXari—k

for all n > k. In this case, we call the underlying vector ¢ = (c¢1, ..., ¢) the
recurrence vector. Freaenkel [Fr] generalized Zeckendorf’s result to all linear recur-
rences with a weakly decreasing recurrence vector (see Definition . More recently,
Miller and Wang [MWT1, MW?2], and independently Hamlin [Ha], have generalized
Zeckendorf’s theorem to LRS’s with a nonnegative recurrence vectors ¢ with the
additional restriction that ¢; > 1. Such recurrence sequences are called Positive
Linear Recurrence Sequences or simply PLRS’s (see Definition . Furthermore,
various authors [Hal, [CEHMNT [CEFHMNPX] have provided evidence that this is the
broadest class of LRS’s for which one can expect Zeckendorf’s theorem to extend in a
simple manner. We focus on PLRS’s, for which the representation rule is the notion
of a legal decomposition that formalizes when a representation of a positive integer
over the PLRS is not able to be reduced using the underlying recurrence relationship.
The restriction to legal representations then allows for unique representations of
positive integers over linear combinations of the underlying PLRS.

In Anderson and Bicknell-Johnson transfer Zeckendorf’s Theorem into the
multidimensional setting. In particular, they define a sequence of vectors (X, )nez in

1We define the Fibonacci numbers by Fy =1,Fy =2, and Fy, = Fj,—1 + Fp,_o for n > 3.



ZF=1 and show that vectors of Z*~! can each be uniquely represented as the sum

—

of elements from (X_,)% ; where this representation does not contain k consecutive
elements of (X_n)le. We extend these results by transferring PLRS’s with weakly
decreasing recurrence vectors to the multidimensional setting. However, this multidi-
mensional extension is not a straightforward application of the techniques of [AB-J] to
general PLRS’s. In fact, Remark [1.5]illustrates that not all of these vectorized PLRS’s
will produce integer vectors while Example demonstrates that not all vectors will
have existing representations of the desired form when ¢ = (1,3,1). The restriction
to PLRS’s with weakly decreasing recurrence VectorsE| such that ¢, = 1 remedies the
issues seen in both Remark and Example as the constraint guarantees the
termination of a process that converts an arbitrary multidimensional decomposition
over a vectorized PLRS into one that generalizes legal decompositions and shows
uniqueness.

1.2. Preliminary Definitions

Throughout this paper, k > 2 is a fixed integer and ¢ = (cy,...,¢) is an integer
vector such that ¢; > 0, ¢a,...,ck—1 > 0 and ¢; = 1. In addition, we use the notation

for sequences, (a,)22, and infinite strings, ajas ..., interchangeably.

The following definition is identical to that of a Positive Linear Recurrence Sequence
(PLRS) coined and studied in [KKMW], though they do not restrict to ¢ = 1.

Definition 1.1. (PLRS, [KKMW]) We say (X,,)32,; C Z is a C-recursive sequence
(or ¢-recurrence) if the following conditions hold:

(1) X1 =1 and for alln=2,3, ..., k,
X, = aXpat+teX, 9o+ -+ Xe+1, and
(2) when n > k, the following recurrence is satisfied:

X, = aXpi Xy o+ -+ Xk

Remark 1.2. Note that in the case that ¢, = 1 for all n, (X,,)02, exhibits the k-
bonacci recurrence (see [AB-J] where the k-bonacci sequence is defined with slightly
different initial terms). In particular, if in addition k = 2 then (X,)°2, is the Fi-
bonacci Sequence.

Example 1.3.
e The Tribonacci Recurrence [k =3, ¢ = (1,1,1)].

o Initial terms:

X =1,
Xo = 1141 = 2,
Xy = 1-241-1+1 = 4.

2These restrictions to weakly decreasing recurrence vectors can be found in many other results related to recurrence
sequences. In addition to [Ex], in [CHHEMPVT] [CHHMPVTI] the same constraints are used to guarantee summand
minimality (see Section [3.2)).



o Recurrence for n > 3:
Xn = X1+ X 0+ X3
o Sequence: 1,2,4,7,13,24,44, ... .
o A Custom Recurrence [k =3, ¢=(2,1,1)].
o Initial terms:

X, = 1,
X, = 2-1+1 = 3,
X; =2-3+1-1+1 = 8.

o Recurrence for n > 3:
X, = 22X, 1+ X o+ X3,

o Sequence: 1,3,8,20,51,130,... .

We generalize the concept of a ¢-recursive sequence to higher dimensional vectors.
To do so, we generalize the notion of k-bonnacti vectors from [AB-J].

Definition 1.4. We define the c-recurrence vectors sequence, (Kn)nEZ C 7+ 1,
as

—

(1) X, :=0,
(2) X_;:=8; for all 1 <i <k —1 where & is the standard basis vector, and
(3) X, i=c1Xp1+ Xy o4+ X,k for alln € Z7.

Since ¢ # 0, we see that after rearranging terms and shifting indices that

LR oyl
%, = Xtk Z’c;l e Xnhi. (1.1)

which lets us work backwards to define vectors with negative indices. As we assume
¢, = 1, Equation (|1.1)) can be simplified to

—

Xn = Xn+k: - Z Ciﬁn+k_7;. (12)

Remark 1.5. Since Equation (|1.2} . lets us define X_, recursively for all n > k we
can guarantee that for each n € 7Z, X,, is well defined as an element of ZF1 However
if ¢ # 1 it is not guaranteed that for every n < 0 all terms ofX are mteger

From this point forward (X,,),cz represents the c-recurrence vector sequence.

31t is important to say that this is not necessary to restrict ¢; = 1 to guarantee that all terms in the sequence are
well defined. For example, we might ask that ¢ | ¢; forall 1 <i <k —1.



Example 1.6. Here, we list several terms of the c-recurrence vector sequence with
Cc1 = 2,02 = 1,03 =1.

X, = (0,0)
X_; = (1,0)
X, = (0,1)
X3 = (-2,-1)
X4 = (3-1)
X 5 = (1,4)
X6 = (-9,-3)
X_; = (10,—6)
X_ 5 = (9,16)
X_ g = (—38,-7)

—

Note how the recurrence X, = Xn+k — Zf:_ll ¢iXpik—i from Equation ([1.2)
generates these vectors backward.

Zeckendorf [Zeck| proved that any positive integer n can be written uniquely as a
sum

n = Zann

n>2

such that d,, € {0,1} for all n, and no string of two consecutive d,’s equal 1. Equiv-
alently, for every n € N there is a unique infinite string of nonnegative integers
(dads, . . .) with finitely many nonzero terms such that n =) ., d,F,, no d, exceeds
1, and no copy of 11 can be found in the string. This result was greatly extended
to the more general realm of PLRS’s in [MWI] by using similar restrictions on the
underlying string of coefficients, as well as in many different settings (for example
[AB-J], [CHHMPV2|] and [KKMW]). Informally, uniqueness is ensured by restricting
both the size of each term and forbidding a copy of the defining PLRS recurrence
within this underlying string of coefficients. We exactly match these restrictions in
the vector case with the following definition.

Definition 1.7. Let v € Z*~! be any vector. We call a sequence (a,)>; a € - sat-
isfying representation or simply a ¢-SR of V if the following conditions hold.

(1) There exists an m € N such that a,, = 0 for all n > m.
(2) We have v =", a,X_,.

n=1
(3) We have a,, >0, and a,, >0 for all1 <n < m.
(4) One of the following holds.
e We have m < k and a, = ¢, for all1 <n <m.

o There exists s € {0, ..., k} such that

a1 = Cl, ..., Gs_1 = Cs_1 and a, < cs, (1.3)



and there exists an £ > 0 such that asi1, ..., aste =0, and (Qs1p1n)5 18

c-SR.

We also refer to a finite sequence of nonnegative integers, (an)n'_y, as a ¢-SR if the
sequence (b)), defined by

b — an, if1<n<m;
" 0, otherwise

18 a C-SR.

For example, if ¢ = (4,2,1) then the finite sequence 2,4,2,0,1 is a ¢-SR of the
induced vector while this is not the case for either of the finite sequences 2,4, 2, 1 (this
sequence contains a copy of 4,2,1) or 2,4,3 (as the element 3 is too large).

For each k > 2, let 1, € Z*! denote the (k — 1)-vector consisting of all 1’s. In
our notation, Anderson and Bicknell-Johnson show in [AB-J| that there is a unique
vectorized analogue for the k-Fibonacci Zeckendorf Theorem.

Theorem 1.8. ([AB-J|, [Theorem 2]) Every v € Z*~' has a unique 1,-satisfying
representation.

Definition 1.9. We call a vector € = (c1,¢a, ..., c) weakly decreasing if for each
1<n<k—1 we have ¢, > cpi1.

We are now ready to state our main result, which generalizes Theorem [1.8|to weakly
decreasing ¢-recurrence vectors.

Theorem 1.10. If ¢ = (¢1,¢2, ..., c) is weakly decreasing and cp = 1 then every
Vv € ZF1 has a unique representation of ¢-SR.

To prove this result, we decompose terms of strings “close” to ¢-SR’s into groups
and process them one by one. Thankfully, the definition of a ¢-SR naturally groups
coefficient terms into “chunks” that can be separately examined as ¢-SR’s themselves.
Indeed, the definition ensures that when reading the string of coefficients from left to
right one has distinct “partially completed” copies of € followed by zeros. We formalize
this notion of chunks in the next definition.

Definition 1.11. Suppose that a = (ay,)32; is a ¢-SR and m € N is the largest
coefficient such that a,, > 0. Let ny := 1; this is the first element of the first
chunk of a.

As (an)i2,,, is a C-SR, there exists s1 € {1, ..., k} such that

n=ni
Upy = Cly «+vy Qpiy(si—1)—1 = Cs;—1, AN Apyys;—1 < Cgy-

Let Ay :={r > n1+s1: a, # 0}. If Ay is a nonempty set we define the first element
of the second chunk as ns := min A;. Note that, by the definition of a c¢-SR,
(an)ply, is a €-SR as well.

Recursively define A; := {r > n; +s; : a, # 0}. If this is a nonempty set, the first
element of the (i + 1)* chunk is defined by n;1 := min A;.



As s; > 1 it follows that n; 1 > n; +s; > n; which implies that the n;’s are distinct.
Hence, as it is clear that each n; < m, we can insure that this process must terminate

and only a finite number of n;’s arise, say (n;)t_,.

After this process completes we define £ to be the number of chunks of the rep-

resentation, and we denote it by CH(a). Let ngy1 = m+ 1, and for each 1 < i < {
refer to the string an,Gn,41 ... Gn,,,—1 a8 the ith chunk of a.

Following the ideas of [AB-J], to establish the existence of &-SR for each ¥ € ZF~1
we manipulate representations built by adding 1 to a single coefficient of a ¢-SR.

Definition 1.12. A &-nearly satisfying representation (¢-NSR) for v € ZF~1

—

is a sequence of nonnegative integers (a,)°2, such that v.= > >"  a,X_, and where

n=1
there exists an integer i € N for which the following hold.

o The sequence (ay)2, is not a ¢-SR.
o The sequence (b)), defined by

I a, —1, ifn=r;
" ) an, otherwise
is a ¢-SR.

As in the case of ¢-SR’s we refer to finite sequences (a,)"; as a ¢-NSR if the
sequence (b,,)7 ; defined by

I an, if1<n<m;
" 10, otherwise

is a ¢-NSR. If a = (a,)52; is a ¢-NSR, define

max{j : (a,)’_} is a &SR}, if (a,)._; is a E&SR;
I(a) = .
1, otherwise
and call I(a) the first overfilled element of a. A ¢-NSR, say (an)j-,, is end
complete if (b,)"_, defined by

b, =

an, if1<n<m-1;
a, —1, ifn=m

is a ¢-SR with ¢ chunks such that the ¢*" chunk takes the form b, byt - bnyrk—1
and where

bp, = c1, byyp1 = c2, ..., bpyyr—1 = ¢ — 1.



To prove our main result we manipulate a given ¢-NSR of a vector V using opera-
tions that, when each is performed, give a representation of V.

Definition 1.13. Let v € Z*! be any vector. We call a c-representation of v a
sequence (an)5; such that V.=, anX_p, and where there exists an m € N such
that a,, = 0 for all n > m. Given i € N and a C-representation of V, say (a,)5;, we
define two processes for obtaining new C-representation of V.

n=1’
e Carrying into a; gives us a new sequence (b,)> | defined by
aj, ifj<iorj>i+k;
bj = qa;+1, ifj=r1;
aj—c, ifi<j<i+kandj=i+I.

e Borrowing from a; gives us a new sequence {d,}5°, defined by

Qn, ifn<iorn>i+k;
dy, = Sa;,—1, ifi=n;
an+c, ifi<n<i+kandn=1+1

Note that, due to the E-recurrence, in either case V.= | b, X _, = S d,X_,,.

More informally,

(1) carrying into a; increments a; by 1 and decrements a;y; by ¢; for each j =

1,2, ..., k; and
(2) borrowing from a; decrements a; by 1 and increments a;y; by ¢; for each j =
1,2, ..., k.
Step Operation Representatlon Vector
1 Tnitial &-SR 2- X +X (—2,1)
2 Add X_; 2-X_,+2-X_4 (— 4,0)
3 Borrow from ¢z | 2. X 5+ X _3+2-X_4+X_5+X_¢ | (—4,0)
4 Carry into ¢ X 1 +X 4 +X 5+X ¢ (—4,0)
5 Final ¢-SR X 1 +X 4 +X 5+X g (—4,0)

Table 1.1.: Hlustration of carrymg/borrowmg operations for v = (—2,1) with recur-
rence X, = 2X,,_1 + Xp_o + X 3.

To avoid negative coefficients, we only carry into a; when a;y; > ¢; for each j =
1,2, ..., k and we only borrow from strictly positive a;. Table shows how carrying
and borrowing can be quite useful in going from a ¢-NSR representation of v to a
c-SR representation of V.

In proving our main result we prove that a ¢-NSR can be transformed into ¢-SR by
a finite number of borrowing and carrying operations. In showing that our underlying
algorithm that accomplishes this eventually terminates, it is useful to define functions
that count the sum of all or of a subset of the coefficients on an eventually zero, infinite
string.



Definition 1.14. For each sequence of nonnegative integers a := (ay)>2; where there
exists anm € N such that a,, = 0 for alln > m, we define G(a) as the sum of elements

of a,
G(a) := Zai, (1.4)

and for each n € N define G, (a) as the sum of every term of index less than n,

n—1
Gn(a) == ) ai. (1.5)
i=1
Example 1.15. Given the string a = 21012100. .., we have G(a) =2+ 14+0+1+
211+0=7andGyla)=1+2+1+0=4.

Remark 1.16. Note that for a C-representation of V, say a := (a,)%, with G(a) =

n=1’
R, if b and d are the C-representations of V resulting from carrying into some a,
and borrowing from some a, respectively, then G(b) = R —>"", ¢; + 1 and G(d) =

R+Zf:16i_ 1.

2. Proofs of Main Results

There is a natural map that transforms linear combinations of truncated ¢-recurrence
vectors into the underlying ¢-recurrence sequences.

Definition 2.1. Forn >k —2,S, : Z*"' — [0, X,,) is the scalar product defined by
Sn(\_") = V- (Xn—h ceey Xn—k—i—l) (mod Xn)

where each X, is defined as in Definition 1.1.

The following lemma follows by the same argument as in [AB-J]. For the sake of
completeness and to highlight our specific case, its proof is included below.

Lemma 2.2. We have Sn(Z?;f aii_i) = Z?;ll a; Xp—i.

Proof. When 1 <i <k —1, we have X_i = €;, by definition. Therefore,

S.(X) = X, (mod X,,) = X,_..



When ¢ =k,

Sp(X_gp) = X+ (Xn1, -y Xp_ps1) (mod X,,)
Xo— Yl eX
= ékl d z. (Xn—la LR Xn—k+1) (mOd X’I’L)
0-Srlei X,
= 2]71 / ! (mod X,,)
Ck
X, - e X,
= 2171 d d (mod X,,)
Ck
= X,—r (mod X,)
= Xn—ka
and when i = k + 1,
Sp(X p1) = kafl'(Xn 1 ooy Xpnogg1) (mod Xy)
X_l — Z C; X_l
= = kl T (X, ooy Xockn) (mod X,)
Xpo1 =S e X, 4
= VS = (mod X,,)
Cr
= Xn—k—l (HlOd Xn)
= Xp—k-1-

When £+ 1 < i <n—1, according to the conditions previously obtained, it can be
concluded through induction that

Sn (X—z) = X,

Therefore, it’s true for all 1 < i < n — 1 that Sn(ﬁ_i) = X,_;. By linearity of S,,, the
proof is complete. O

Proposition 2.3. Fach end complete € -NSR can be transformed into a ¢-SR by a
finite sequence of carrying operations. Furthermore, by Remark[1.16], this process only
reduces the sum of the coefficients.

Proof. We proceed by induction over the number of chunks of the representation.
Let a := (an)n 1 be an end complete ¢-NSR with only 1 chunk and define ap = 0.

Note that as Xo = 0 we can extend a to (an)ro- In this case, note that m = k and
a = C1y ..., A = Cg.

Then, by carrying into ag, we obtain the sequence (b,)"_,, where by = 1 and b; = 0
for all 1 < ¢ < m. Note that that (b,)"_, is the zero vector which is, indeed, a c-SR.

Suppose that all end complete ¢-NSR’s with ¢ chunks can be transformed into a

¢-SR. Let (a,); be an end complete ¢-NSR with £+ 1 chunks. For each 1 <1i < /41
denote a,, as the first coefficient of the i*" chunk as in Definition By assumption

10



we can carry into a,, , 1. Let b be the resulting sequence of such carrying operation;
then, we have exactly two cases to consider.

Case 1: b is a ¢-SR and we are done, or

Case 2: b is an end complete ¢-NSR and the desired result follows by induction.

Indeed, suppose that Case 1 does not hold; then by Definition there must exist
se€ {1, ..., k} such that

Any, = Cly «vvy Qpy—14s—1 = Cs—1, Any—14s < Cs

and there exists p > 0 such that a,,—14s4; = 0, for all i <p,and ny —1+s+p =
ngr1 — 1. Notice that, because of Remark b, = 0 for all ¢ > nyqy1. If p= 0 then
negy1 —1=ny,+s—1, and so by,,_145 < cs; otherwise b is exactly

(ab cevy Qpy, = C1y Gpyp1 = €25 «vvy Apy—1+4s < 68707 AR 07 bnu_lfl :1)

which is clearly a ¢-SR. Hence, the only possible way for b not to be a ¢&-SR is that
s =k and b,,_14+s = c, in other words b is end complete. ]

We now prove that weakly decreasing ¢-NSR’s can be transformed into satisfying
representations. We note that the algorithm utilized in the proof of this result is similar
to the algorithm from the appendix of [KKMW] that converts any decomposition of
an integer over a PLRS into a legal decomposition. However, as we define the vectors
using a backwards recursion, it is not the case that we could eventually borrow into
zero terms. In fact, it is very possible in the case where C is not weakly decreasing for
this process to never terminate (see Example .

Proposition 2.4. Fvery c-NSR, where € is a weakly decreasing vector and ¢, = 1, can
be transformed into a €-SR by a finite number of borrowing and carrying operations.

Proof. Recall that if € is a weakly decreasing vector then ¢;11 < ¢; for all i €
{1, ..., k — 1}. Throughout this proof, the symbol a’ represents the i'" iteration
of a process that consists of a finite number of borrows and carries. Suppose that
a® = (a%)2, is a &-NSR and let ¢ := 327 ¢;.

By Definition there exist pg > 1 and 0 < jo < k such that I(a®) = n,, + jo and
where

An,y = Cly - Qnyo+jo—1 = Cjos Anyy+jo > Cjo+1- (21>

npg+jo—1 .

Since n,, + jo is the first overfilled element of a, we have that (a),” is a

&-SR. We now proceed by case analysis to define a'.

Case 1: jo = k — 1. Then (ag)Zi’lﬂo is end complete and so by applying Proposition
a finite sequence of carries transforms (ag)Z”:Olﬂ ? into a ¢-SR say (b%)zp:(’lﬂo. Define
a by

a otherwise.

mn’

1 {bgn ].STZ S npo +]05
4n = 9 0

11



In this case we have that G(a') < G(a®) — (c — 1).

Case 2: 0 < jo < k—1. Note that in this case, an, +j, > Cj,+1. Borrow from a,%poﬂ»o

to define d°. In particular, define

ad +¢;, if n=mny, + jo+i for some 1 <i < k;
dﬁ: al —1, if n=mny + jo;

0

n

otherwise.

Since € is weakly decreasing, then for all 1 <i <k — jo — 1

0

Appotjori = Ci 2 Cjotitl

and, thus,

d(r)tpoﬂ' > cjpq foreach 0 < j <k -1 (2.2)

0 )npo +k—1 by

Moreover, if we define (e;)),,”,

60_{(19” if1<n<mny +jo or ny, +k<m
0 =

Cit1, ifn=mny,, +1¢ for some jo <i<k—1,

then (eg)zpj’“‘l is end complete and so by applying Proposition a finite sequence
of carries transforms (eg)Z";l*k‘l into a ¢-SR, say f° := (f2)22)1+k_1. Define a'! by
0 1 <n < np, + Jo;
al = d? —ciy1, ifn=ny +i for some jo <i <k —1;
d°, otherwise.

In particular, a' is obtained from a® by a single borrow and then at least one carry.
By Remark this implies that G(a') < G(d) — (¢ — 1) = G(a").

If a' is defined in either case is a ¢-SR, then we are done. If not, then as above
there exist p; > 1 and 0 < j; < k such that I(a') = n,, + ji and where

Op,, = Cly «vvy Qny 4ji—1 = Cjiy Qny 45 > Cjy41- (23)
There are two important properties we prove.

Claim 1: We have that n,, > n,, and if G(a') = G(a") then G,,, (a') > G, (a")+1.

Tpy Tpg

Proof of Claim 1. If a' is constructed through Case 1 then a;po the1 =

a?LPO +x—1 — ¢ = 0 and so the claim follows from the fact that (bg)zgﬂo = (aﬂl)zpzolﬂo

12



is a ¢-SR. Note that in Case 1, we have G(a°) # G(al).

Suppose instead that a'! is constructed through Case 2. It is immediate that Np, >
Ny, in the case where n,, = 1 and so we may suppose further that n,, > 2. If jo =0

then n,, > n,, follows from the fact that (fn)n”0 t = (a}L)Zp:Ol_l is a ¢-SR. If jo # 0
then n,, > n,, follows from the fact that a — ¢j, = 0 and since

(Fu)lmo 70 = (a2)"70 7 is a &-SR.

Note that by Remark- 1.16] if G(a') = G(a?) then a' is obtained from a” by exactly
one borrow from a2 v and then one carry into a2p0,1 where n,, —1 > 1. Thus, as

0

_ 0
po+io—1 = Anyo+jo—1

single borrow from a,,

does not effect G, and a single carry into agpo_l increases
Ghr,, by 1, we have that

Gy, (@) > Gy, (a') = G

(a®) +1

Npg

as desired. O

)npl +j1—1 .

Since n,, + ji is the first overfilled element of a', we have that (al),"} is a

c-SR.

Inductively, if a’ is a ¢-NSR and is defined for some ¢ > 1, then we may define
ny, and jy such that n,, + j¢ is the first overfilled element of a‘. Then we have that
(afl)zp:ﬁfm is a &SR and employ the same case analysis as above to construct a‘*!.

If a**! is a &-SR then we are done. Otherwise, we may define n,, , and j,41 such

that n,,41 + jes1 is the first overfilled element of o’ and have that (a%).™ Zlﬂfl is a

c-SR. Furthermore, by applying Claim 1, n,,,, > n,, and either G(a ”1) < G(a*) or
G £+1) > ane( )

Mppy (
Claim 2: There exists a ¢ € N such that a? is a ¢-SR.

Proof of Claim 2. Suppose not. Let o = G(a"), § := [;%;], and Z := {i € N
G(a') < G(a"™1)}. Note that |Z| < B. Indeed, if |Z] > 8 then there exists a subset
{#1,..., 23841} C Z where z; < zj4; for each 1 < j < 5. Then

G(a®t) < G(a®)—(c—1) < G(a*)—2(c—1) - < Ga™) - Ble—1)

<
< a-(B+1)(c—1) < o.

Let z := max{i € N : i
must be the case that G(a’)
we examine ¢ = z 4+« then

€ Z} and define v := G(a®). Note that for all j > 2 it
= G(a’"1) and G, (a?) > Gn, _ (a’"') 4 1. However, if

7 < Gn(@®)+y < G, (af) < G(a7) < G(@7) = 7.

Hence, we have the desired contradiction.
O

The proof is complete as Claim 2 establishes that process must terminate in a finite
number of iterations to a ¢ — SR.
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We now prove our main result.

Proof of Theorem [1.10. We need to show both existence and uniqueness of the
desired representations.

Existence: By definition, 0 € Z¥~! has a E-satisfying representation. By induction
we need only to show that if V has a c-satisfying representation then so does v + €;
for any 1 <14 < k. Indeed, all positive vectors can be obtained by adding linear com-
binations of the basis vectors X =¢;for 1 <i< k-1 and then as Xk = Zf_ll —;€;,
adding multiples of X, reaches all possible vectors. These inductive steps involve
increasing a coefficient in a c-satisfying representation by one. Either the resulting
representation is already a c-satisfying representation and we are done or it is a
CcNSR. Hence, existence follows from Proposition

Uniqueness: Similar to the case of [AB-]], Lemma implies that S,, is one-to-

one in representations satisfying ¢ of the form ) "} ! 4;X_;. Hence, uniqueness follows
from the uniqueness of a legal decomposition for a PLRS (see [KKMW], Theorem 1.3).
O

3. Inherited Properties From the Scalar Case

We extend the probabilistic analysis of Zeckendorf decompositions to the multidimen-
sional setting. By establishing a bijection between vector-valued decompositions and
their scalar counterparts, we inherit various probabilistic properties for ¢-SR’s.

Definition 3.1. Let n € N; we define
Ri = Sgl [[Xan+l)}a

where X, is defined as in Definition[I.1, and S,, is as in Definition [2.1]

This definition serves as the natural way of generalizing the interval [X,,, X, 1)
to higher dimensions; using Remark in Figure we illustrate RS to Rfo for
¢ = (2,1,1). As expected, many properties that hold for decompositions of elements
in [X,,, X,,+1) also hold in the multidimensional analogue.

For clarity, we provide two concrete examples of properties that our multidi-
mensional Zeckendorf representations inherit through the the map S,,. There are
many more statistical and probabilistic properties than those mentioned (for example
[BBILMT], [BILMTI] and [BBGILM]).

3.1. Gaussian Convergence

Definition 3.2. (Associated Probability Space to a Positive Linear Recurrence Se-
quence) [MWI|. Let (H,), be a PLRS. For each n, consider the discrete outcome
space

Q, = {H,, Hy+1, ..., Hy1 — 1}

14



with probability measure

1
Py (A) = S —— AcQ,
( ) weA Hn+1 B Hn

In addition, define the random variable K, by setting K, (w) equal to the number of
summands of w € .
This definition is extended naturally to higher dimensions in the following way.

Definition 3.3. (Inherited Probability Space to a Positive Linear Recurrence Vector
Sequence). Let ¢ be a weakly decreasing vector and ¢, = 1. Consider the discrete
outcome space

QF = RS,
with probability measure
PS(B) = P,(S.[B]), B C Q;

where S, is defined in Definition . We define the random variable KE by setting
KE(w) equal to the number of summands of w € QF ; equivalently KE(w) = G(a), where
a is the unique ¢-SR of w.

Lemma 3.4. The map Sylg: : RS — [X,, X,11) is a bijection and KE(w) =
K, (S, (w)).

Proof. By Definition [3.1| we have that S, [ rz 1s surjective. Suppose that ¥y, v, € RS
are such that S, ng( 1) = Snlpz (2). Let a = (an);2; and b = (by);2; the unique
representations for ¢ and v respectively, that is

ZanX_n and U, = Eb X_n

Then, due to Lemma we have that

=

SnrRi Zan mi—n and S RC Zan mo—mn-:
n=1
Notice that (X,)22, is a PLRS and both > "', ap Xy, —n and Y 2 an Xy, —pn are

satisfying representations. Thus, by the uniqueness of a PLRS representa‘mon (IMW1],
[Theorem 1.1]) we have that m; = mg and a,, = b, for all n < m;. In other words,
a = b, which proves that the function is indeed injective. With this we have proven
that S, [pz is bijective. Lastly, let v € R,, and a be its unique ¢-SR. We have

K@) = Gla) =Y an,

which is exactly the number of summands of S,, ().

15



In the 1950s, Lekkerkerker [Lekk| answered the question: On average, how many
summands are needed in the Zeckendorf decomposition?ﬁ He later proved that for ev-
ery m € [F,, F,11), as n — oo the average number of summands needed is n/(¢? + 1)
, Where ¢ = % is the golden ratio. Since Zeckendorf’s theorem has been generalized
one can naturally ask if Lekkerkerker’s theorem still holds for these various general-
izations. In [MWT] it was proved that the Gaussian convergence is a property that
holds in general for a PLRS. More specifically, E[K,,] and Var(K,) are of order n, and
as n — 0o, K, converges to a Gaussian (see [KKMW], [BILMTI] and [Lekk]). This

result is generalized as follows.

Theorem 3.5. Let {Xn}nez be a c-recurrence for a weakly decreasing vector ¢ where
¢, = 1. Then E[KE] and Var(K£) are of order n, and as n — oo, Kt converges to a
Gaussian.

Proof. This follows immediately from Lemma 0

3.2. Summand Minimality

We call a representation of 7 summand minimal if no other representations of ¥ uses
fewer summands. We say that a Positive Linear Recurrence Vector X is summand
minimal if its ¢— SR is summand minimal for all ¥. In [CHHMPVT] it is proved that
a PLRS is summand minimal if and only if its recurrence vector is weakly decreasing.
This result is now naturally generalizes as follows.

Theorem 3.6. A c-recurrence with recurrence vector (ci, ..., ck) is summand min-
mmal if and only if ¢y > ¢ > -+ > ¢i; i.e., C is weakly increasing.

Proof. This follows directly from [CHHMPVT], Theorem 1.1. Indeed, all of the ¢-SR
translate into legal representations in Z, where the theorem holds.
O

4. Tllustrations and Further Research

Throughout this section & € Z* denotes an arbitrary vector and (Xn)nEZ the corre-
sponding C-recursive vector sequence as in Definition

Definition 4.1. We define

D, = {\7622 | V:Zazi_l}
=1

Remark 4.2. By this definition, D, = U} R; and the number of points in D, is
’Dn’ = Xnt1-

Remark 4.3. In genem for all n € N, we have that RS = D,, \ D,,_;.

4Sometimes it takes a while for papers to be widely seen, for example Lekkerkerker’s theorem on the number of
summands in Zeckendorf decompositions was published 20 years before Zeckendorf’s paper!
5Definition is naturally extended to higher dimensions.
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Figures and demonstrate how, in the case where ¢ = (2,1, 1), each region,
D,,, is recursively constructed from D,,_; and spirals away from 0.

:H—‘:H
Iﬂ -+
£ b o aezaa
am : ; ‘ =,
e e
HH THH Eoasn ! | s
ERERERER R
Figure 4.1.: Regions Dy, ..., Dg for € = (2,1,1). The black square indicates 0 € Z>2.
Figure 4.2.: Region Djg and regions Ry, ..., Ry for ¢ = (2,1,1) respectively.

However, in many case where € is not weakly decreasing the sets, D,,, display similar
behavior. For example, if ¢ = (1,2,1) then Figures and also seem to be slowly
expanding outword in a spiral seem and eventually encompass all of Z2. This leads us
to our first question.

Question 4.4. Which conditions on the vector € characterize when the algorithm in
the proof of Theorem terminates?

In the case where at least some of the terms of a vector € are increasing, the
algorithm utilized in the proof of Proposition [2.4] can fail to terminate.

Example 4.5. Let ¢ = (1,3,1). The string 2 is a ¢-NSR as the string 1 is a ¢-SR.
We follow the first few steps in the proof of Proposition [2.7).

(1) We borrow once from 2 to obtain the string 1131. Note that when reading this
string from left to right, the first issue that disallows 1131 from being a -SR is
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Figure 4.3.: Regions Dy, ..., Dg for ¢ = (1,2,1). The black square indicates 0 e 72

Figure 4.4.: Region D1g and regions Ry, ..., Ry for ¢ = (1,2,1) respectively.

(2)

(3)

(4)

(5)

the digit 3. Note how in the case where some of the terms of € increase, it is not
necessarily so that a carry can always follow a borrow.

As 11 forms a chunk (1 <1 and 1 < 3) the first digit that presents a problem
18 3 which at most can be 1. We borrow twice from 3 into the lower digit. This
converts 1131 to 111362. Then we can carry on with the third term and turn
111362 into 120052.

As in the previous step 1200 forms a chunk and 5 is the first digit that presents
a problem since 5 > 1. We borrow 4 times from 5 and obtain 120016(12)4 and
carry once into the fourth term to obtain 120103(11)4 and then carry 3 times
into the fifth term to obtain 12013021.

From left to right we have the chunks 120 and 130 and then the first digit to
present a problem is the seventh term as 2 < 1. We borrow 1 time from the
seventh term to obtain 1201301231.

From left to right we have the chunks 120, 130, and 12 and then the first digit
to present a problem is the ninth term as 3 > 1. We borrow twice from the ninth
term to obtain 120130121362 and carry once into the eighth term to obtain
120130130052.

18



Ezamining the conversion of the digits 052 from step (2) to (5) we see that the
string 052 s replaced by 130130052. Hence, this process never terminates.

Nevertheless, it seems that, if ¢ = (¢1,¢2,¢3), c3 = 1 and ¢j41 < ¢; + 1 for all
1 < j < 3, then the algorithm terminates. However, for vectors of length k > 4 this
no longer appears to be the case. From this we make the following conjecture.

Conjecture 4.6. If k = 3 the algorithm in the proof of Theorem terminates if
C = (c1,c9,¢3) s such that ¢; > 0 for all 1 <i <3, ¢iy1—¢; <1 foralll <i<k-—1,
and ¢ = 1. Furthermore, if there exists 1 <1 < 3 such that c;y1 — ¢; > 2, then there
is a C-representation for which the algorithm fails to terminate. If k > 4 the algorithm

in the proof of Theorem [I.10] terminates iff € is weakly decreasing.
It may be the case that Theorem holds when some of the ¢;’s are 0.

Remark 4.7. Fven in the case where ¢ = (c1,¢2, ..., cx—1,1) and where the first
k —1 terms are arbitrary nonnegative entries, most of the major portions of the Main
Theorem still hold.

(1) Since the proof of uniqueness follows from the map S,, being bijective into PLRS’s
any €-SR is unique.

(2) A finite number of the €-recurrence vectors still span Z*~'. In particular, if we
suppose that z is the mazimum number of consecutive zeroes in €, then for any

V € ZF1 we can find nonnegative integers (an)ﬁz such that

vV = E anX_p.
n=1

Proof. Indeed, within the proof of existence for the Main Theorem, this
amounts to showing that if ¢; # 0 then the j™ element of X_j is negative and
ifc; =0anditisa p*™ consecutive zero in ¢ (¢j—i =0foreach 1 <i<p—1 but
cj—p # 0) for some 1 < p < z then the 7™ element of )_{,k,p is negative. The first

of these desired results follows from the fact that X_j = (—c1,—Cay ooy —Cl—1).
Now fix a 1 < p < z and suppose that ¢; = 0 and it is the p™ consecutive zero
in C.

_ We_ first show_ that in this case the g™ digits of each vector
X i, X_g—1, ---; X_g—pt1 is zero. Indeed, we may proceed by induction where

the base case, X,k has been shown above. Suppose this result has been shown
for some 0 < g < p— 1. Now

k-1
X kg1 = X g1— g X _g-1-i

i=1

and the 7% digit of X_,_1_; is zero unless i = j — (¢+ 1). However, Cj—(q+1) =0
since ¢; is a p consecutive zero. The desired result now follows by induction.

Lastly, we note that
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Now the ;' digit of X_p_i is zero unless ¢ = j — p, where it is 1 for )_i_j.
However, c¢;_, # 0 and so we see that the § coefficient of X_j_,, is —Cj—p # 0
as desired. 0

For those ¢ where a ¢-SR exists for each ¥ € Z*~!, it would be interesting find
a rate of expansion outward from O that is somehow dependent upon €. One such
approach would involve attacking the following question.

Question 4.8. For each vV € Z¥~! and r € N, define B by

(V) = {w =L — vl <r}.
B (V) {weZ 1£1§a1§1{|w1 v} <r}

Given a € such that the algorithm in the proof of Theorem terminates and an
r € N, what is the minimum n € N such that B>°(0) C D,, ?

Lastly, there are many other generalizations of Zeckendorf’s Theorem that could be
explored in the multidimensional case. One such generalization are f-decompositions
introduced by [DDKMMV].

Definition 4.9. Given a function f : Ny — Ny and a sequence of integers
(@)%, a sum m = S.F_ an, of terms of (a,), is an f-decomposition of m
using (a,)5>, if for every a,, in the f-decomposition, the previous f(n;) terms
(@ns—f(ni)s Oni—f(ni)+1> - -5 An;, — 1) are not in the f-decomposition.

Question 4.10. For some family of functions, can one apply a similar strategy as in
Theorem [1.10] to generate multidimensional f decompositions?
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