
General Recurrence Multidimensional Zeckendorf
Representations

Jiarui Chenga, Steven J. Millerb Sebastian Rodriguez-Labastidac, Tianyu Shend,
Alan Sune, and Garrett Treschf

aNortheastern University, Boston, MA 02115;
bDepartment of Mathematics, Williams College, Williamstown, MA 01267;
cUniversidad Panamericana, CDMX 03920;
dShanghai University, Shanghai, China,200444;
eUniversity of Michigan, Ann Arbor, MI 48109;
fDepartment of Mathematics, Texas A&M University, College Station, TX 77840

ARTICLE HISTORY

Compiled October 8, 2025

Article type: research

ABSTRACT
We present a multidimensional generalization of Zeckendorf’s Theorem (any positive
integer can be written uniquely as a sum of non-adjacent Fibonacci numbers) to a
large family of linear recurrences. This extends work of Anderson and Bicknell-
Johnson in the multi-dimensional case when the underlying recurrence is the same
as the Fibonacci one. Our extension applies to linear recurrence relations defined by
vectors c⃗ = (c1, c2, . . . , ck) such that c1 ≥ c2 ≥ · · · ≥ ck and where ck = 1. Under
these conditions, we prove that every integer vector in Zk−1 admits a unique c⃗-

satisfying representation (⃗c-SR) as a linear combination of vectors, (X⃗n)n∈Z defined
for every n ∈ Z by initially by zero and standard unit vectors and then the recursion

X⃗n := c1X⃗n−1 + c2X⃗n−2 + · · ·+ ckX⃗n−k.

To establish this, we introduce carrying and borrowing operations that use the
defining recursion to transform any c⃗ representation into a c⃗-SR while preserving
the underlying vector. Then, by establishing bijections with properties of scalar
Positive Linear Recurrence Sequences (PLRS), we prove that these multidimensional
decompositions inherit various properties, such as the number of summands exhibits
Gaussian behavior and summand minimality of c⃗-SRs over all all c⃗-representations.
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1. Introduction and Preliminaries

1.1. Introduction

The Fibonacci numbers have inspired results of enduring interest for over 2000
years. An interesting recent one is Zeckendorf’s Theorem [Zeck], which states that
every positive integer can be represented uniquely as a sum of non-consecutive Fi-
bonacci1 numbers (Fn)

∞
n=1. Since then, Zeckendorf’s theorem has been extended to a

large family of recurrence sequences by first specifying a rule to guarantee a unique
representation and then deducing the structure of the sequence (see [AB-J, BBILMT,
BCCSW, BDEMMTTW, BILMT2, CFHMN1, DDKMMV, DFFHMPP, GTNP, Ha,
KKMW, MW1, MW2] and the theorems therein). We take particular interest in lin-
ear recurrence sequences (LRS’s). Given a vector (c1, . . . , ck) ∈ Zk and some proper
initial terms, a LRS, (Xn)n∈N, is defined by the relation

Xn+1 = c1Xn + · · ·+ ckXn+1−k

for all n ≥ k. In this case, we call the underlying vector c⃗ = (c1, . . . , ck) the
recurrence vector. Freaenkel [Fr] generalized Zeckendorf’s result to all linear recur-
rences with a weakly decreasing recurrence vector (see Definition 1.9). More recently,
Miller and Wang [MW1, MW2], and independently Hamlin [Ha], have generalized
Zeckendorf’s theorem to LRS’s with a nonnegative recurrence vectors c⃗ with the
additional restriction that c1 ≥ 1. Such recurrence sequences are called Positive
Linear Recurrence Sequences or simply PLRS’s (see Definition 1.1). Furthermore,
various authors [Ha, CFHMN1, CFHMNPX] have provided evidence that this is the
broadest class of LRS’s for which one can expect Zeckendorf’s theorem to extend in a
simple manner. We focus on PLRS’s, for which the representation rule is the notion
of a legal decomposition that formalizes when a representation of a positive integer
over the PLRS is not able to be reduced using the underlying recurrence relationship.
The restriction to legal representations then allows for unique representations of
positive integers over linear combinations of the underlying PLRS.

In [AB-J] Anderson and Bicknell-Johnson transfer Zeckendorf’s Theorem into the

multidimensional setting. In particular, they define a sequence of vectors (X⃗n)n∈Z in

1We define the Fibonacci numbers by F1 = 1, F2 = 2, and Fn = Fn−1 + Fn−2 for n ≥ 3.
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Zk−1 and show that vectors of Zk−1 can each be uniquely represented as the sum
of elements from (X⃗−n)

∞
n=1 where this representation does not contain k consecutive

elements of (X⃗−n)
∞
n=1. We extend these results by transferring PLRS’s with weakly

decreasing recurrence vectors to the multidimensional setting. However, this multidi-
mensional extension is not a straightforward application of the techniques of [AB-J] to
general PLRS’s. In fact, Remark 1.5 illustrates that not all of these vectorized PLRS’s
will produce integer vectors while Example 4.5 demonstrates that not all vectors will
have existing representations of the desired form when c⃗ = (1, 3, 1). The restriction
to PLRS’s with weakly decreasing recurrence vectors2 such that ck = 1 remedies the
issues seen in both Remark 1.5 and Example 4.5 as the constraint guarantees the
termination of a process that converts an arbitrary multidimensional decomposition
over a vectorized PLRS into one that generalizes legal decompositions and shows
uniqueness.

1.2. Preliminary Definitions

Throughout this paper, k ≥ 2 is a fixed integer and c⃗ = (c1, . . . , ck) is an integer
vector such that c1 > 0, c2, . . . , ck−1 ≥ 0 and ck = 1. In addition, we use the notation
for sequences, (an)

∞
n=1, and infinite strings, a1a2 . . ., interchangeably.

The following definition is identical to that of a Positive Linear Recurrence Sequence
(PLRS) coined and studied in [KKMW], though they do not restrict to ck = 1.

Definition 1.1. (PLRS, [KKMW]) We say (Xn)
∞
n=1 ⊆ Z is a c⃗-recursive sequence

(or c⃗-recurrence) if the following conditions hold:

(1) X1 = 1 and for all n = 2, 3, . . . , k,

Xn = c1Xn−1 + c2Xn−2 + · · ·+ cn−1X1 + 1, and

(2) when n > k, the following recurrence is satisfied:

Xn = c1Xn−1 + c2Xn−2 + · · ·+ ckXn−k.

Remark 1.2. Note that in the case that cn = 1 for all n, (Xn)
∞
n=1 exhibits the k-

bonacci recurrence (see [AB-J] where the k-bonacci sequence is defined with slightly
different initial terms). In particular, if in addition k = 2 then (Xn)

∞
n=1 is the Fi-

bonacci Sequence.

Example 1.3.
• The Tribonacci Recurrence [k = 3, c⃗ = (1, 1, 1)].

◦ Initial terms:

X1 = 1,

X2 = 1 · 1 + 1 = 2,

X3 = 1 · 2 + 1 · 1 + 1 = 4.

2These restrictions to weakly decreasing recurrence vectors can be found in many other results related to recurrence

sequences. In addition to [Fr], in [CHHMPV1, CHHMPV1] the same constraints are used to guarantee summand

minimality (see Section 3.2).
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◦ Recurrence for n > 3:

Xn = Xn−1 +Xn−2 +Xn−3.

◦ Sequence: 1, 2, 4, 7, 13, 24, 44, . . . .

• A Custom Recurrence [k = 3, c⃗ = (2, 1, 1)].

◦ Initial terms:

X1 = 1,

X2 = 2 · 1 + 1 = 3,

X3 = 2 · 3 + 1 · 1 + 1 = 8.

◦ Recurrence for n > 3:

Xn = 2Xn−1 +Xn−2 +Xn−3.

◦ Sequence: 1, 3, 8, 20, 51, 130, . . . .

We generalize the concept of a c⃗-recursive sequence to higher dimensional vectors.
To do so, we generalize the notion of k-bonnaci vectors from [AB-J].

Definition 1.4. We define the c⃗-recurrence vectors sequence, (X⃗n)n∈Z ⊆ Zk−1,
as

(1) X⃗0 := 0⃗,

(2) X⃗−i := e⃗i for all 1 ≤ i ≤ k − 1 where e⃗i is the standard basis vector, and

(3) X⃗n := c1X⃗n−1 + c2X⃗n−2 + · · ·+ ckX⃗n−k for all n ∈ Z+.

Since ck ̸= 0, we see that after rearranging terms and shifting indices that

X⃗n =
X⃗n+k −

∑k−1
i=1 ciX⃗n+k−i

ck
, (1.1)

which lets us work backwards to define vectors with negative indices. As we assume
ck = 1, Equation (1.1) can be simplified to

X⃗n = X⃗n+k −
k−1∑
i=1

ciX⃗n+k−i. (1.2)

Remark 1.5. Since Equation (1.2) lets us define X⃗−n recursively for all n ≥ k we

can guarantee that for each n ∈ Z, X⃗n is well defined as an element of Zk−1. However,
if ck ̸= 1 it is not guaranteed that for every n < 0 all terms of X⃗n are integers3.

From this point forward (X⃗n)n∈Z represents the c⃗-recurrence vector sequence.

3It is important to say that this is not necessary to restrict c1 = 1 to guarantee that all terms in the sequence are

well defined. For example, we might ask that ck | ci for all 1 ≤ i ≤ k − 1.
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Example 1.6. Here, we list several terms of the c-recurrence vector sequence with
c1 = 2, c2 = 1, c3 = 1.

X⃗0 = (0, 0)

X⃗−1 = (1, 0)

X⃗−2 = (0, 1)

X⃗−3 = (−2,−1)

X⃗−4 = (3,−1)

X⃗−5 = (1, 4)

X⃗−6 = (−9,−3)

X⃗−7 = (10,−6)

X⃗−8 = (9, 16)

X⃗−9 = (−38,−7).

Note how the recurrence X⃗n = X⃗n+k −
∑k−1

i=1 ciX⃗n+k−i from Equation (1.2)
generates these vectors backward.

Zeckendorf [Zeck] proved that any positive integer n can be written uniquely as a
sum

n =
∑
n≥2

dnFn

such that dn ∈ {0, 1} for all n, and no string of two consecutive dn’s equal 1. Equiv-
alently, for every n ∈ N there is a unique infinite string of nonnegative integers
(d2d3, . . .) with finitely many nonzero terms such that n =

∑
n≥2 dnFn, no dn exceeds

1, and no copy of 11 can be found in the string. This result was greatly extended
to the more general realm of PLRS’s in [MW1] by using similar restrictions on the
underlying string of coefficients, as well as in many different settings (for example
[AB-J], [CHHMPV2] and [KKMW]). Informally, uniqueness is ensured by restricting
both the size of each term and forbidding a copy of the defining PLRS recurrence
within this underlying string of coefficients. We exactly match these restrictions in
the vector case with the following definition.

Definition 1.7. Let v⃗ ∈ Zk−1 be any vector. We call a sequence (an)
∞
n=1 a c⃗ - sat-

isfying representation or simply a c⃗-SR of v⃗ if the following conditions hold.

(1) There exists an m ∈ N such that an = 0 for all n > m.

(2) We have v⃗ =
∑m

n=1 anX⃗−n.
(3) We have am > 0, and an ≥ 0 for all 1 ≤ n ≤ m.
(4) One of the following holds.

• We have m < k and an = cn for all 1 ≤ n ≤ m.
• There exists s ∈ {0, . . . , k} such that

a1 = c1, . . . , as−1 = cs−1 and as < cs, (1.3)
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and there exists an ℓ ≥ 0 such that as+1, . . . , as+ℓ = 0, and (as+ℓ+n)
∞
n=1 is

c⃗-SR.

We also refer to a finite sequence of nonnegative integers, (an)
m
n=1, as a c⃗-SR if the

sequence (bn)
∞
n=1 defined by

bn =

{
an, if 1 ≤ n ≤ m;

0, otherwise

is a c⃗-SR.

For example, if c⃗ = (4, 2, 1) then the finite sequence 2, 4, 2, 0, 1 is a c⃗-SR of the
induced vector while this is not the case for either of the finite sequences 2, 4, 2, 1 (this
sequence contains a copy of 4, 2, 1) or 2, 4, 3 (as the element 3 is too large).

For each k ≥ 2, let 1⃗k ∈ Zk−1 denote the (k − 1)-vector consisting of all 1’s. In
our notation, Anderson and Bicknell-Johnson show in [AB-J] that there is a unique
vectorized analogue for the k-Fibonacci Zeckendorf Theorem.

Theorem 1.8. ([AB-J], [Theorem 2 ]) Every v⃗ ∈ Zk−1 has a unique 1⃗k-satisfying
representation.

Definition 1.9. We call a vector c⃗ = (c1, c2, . . . , ck) weakly decreasing if for each
1 ≤ n ≤ k − 1 we have cn ≥ cn+1.

We are now ready to state our main result, which generalizes Theorem 1.8 to weakly
decreasing c⃗-recurrence vectors.

Theorem 1.10. If c⃗ = (c1, c2, . . . , ck) is weakly decreasing and ck = 1 then every
v⃗ ∈ Zk−1 has a unique representation of c⃗-SR.

To prove this result, we decompose terms of strings “close” to c⃗-SR’s into groups
and process them one by one. Thankfully, the definition of a c⃗-SR naturally groups
coefficient terms into “chunks” that can be separately examined as c⃗-SR’s themselves.
Indeed, the definition ensures that when reading the string of coefficients from left to
right one has distinct “partially completed” copies of c⃗ followed by zeros. We formalize
this notion of chunks in the next definition.

Definition 1.11. Suppose that a := (an)
∞
n=1 is a c⃗-SR and m ∈ N is the largest

coefficient such that am > 0. Let n1 := 1; this is the first element of the first
chunk of a.

As (an)
∞
n=n1

is a c⃗-SR, there exists s1 ∈ {1, . . . , k} such that

an1 = c1, . . . , an1+(s1−1)−1 = cs1−1, and an1+s1−1 < cs1 .

Let A1 := {r ≥ n1+s1 : ar ̸= 0}. If A1 is a nonempty set we define the first element
of the second chunk as n2 := minA1. Note that, by the definition of a c⃗-SR,
(an)

∞
n=n2

is a c⃗-SR as well.

Recursively define Ai := {r ≥ ni + si : ar ̸= 0}. If this is a nonempty set, the first
element of the (i+ 1)st chunk is defined by ni+1 := minAi.
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As si ≥ 1 it follows that ni+1 ≥ ni+si > ni which implies that the ni’s are distinct.
Hence, as it is clear that each ni ≤ m, we can insure that this process must terminate
and only a finite number of ni’s arise, say (ni)

ℓ
i=1.

After this process completes we define ℓ to be the number of chunks of the rep-
resentation, and we denote it by CH(a). Let nℓ+1 = m + 1, and for each 1 ≤ i ≤ ℓ
refer to the string aniani+1 . . . ani+1−1 as the ith chunk of a.

Following the ideas of [AB-J], to establish the existence of c⃗-SR for each v⃗ ∈ Zk−1

we manipulate representations built by adding 1 to a single coefficient of a c⃗-SR.

Definition 1.12. A c⃗-nearly satisfying representation (⃗c-NSR) for v⃗ ∈ Zk−1

is a sequence of nonnegative integers (an)
∞
n=1 such that v⃗ =

∑∞
n=1 anX⃗−n and where

there exists an integer i ∈ N for which the following hold.

• The sequence (an)
∞
n=1 is not a c⃗-SR.

• The sequence (bn)
∞
n=1 defined by

bn =

{
an − 1, if n = i;

an, otherwise

is a c⃗-SR.

As in the case of c⃗-SR’s we refer to finite sequences (an)
m
n=1 as a c⃗-NSR if the

sequence (bn)
∞
n=1 defined by

bn :=

{
an, if 1 ≤ n ≤ m;

0, otherwise

is a c⃗-NSR. If a = (an)
∞
n=1 is a c⃗-NSR, define

I(a) :=

{
max{j : (an)j−1

n=1 is a c⃗-SR}, if (an)
1
n=1 is a c⃗-SR;

1, otherwise

and call I(a) the first overfilled element of a. A c⃗-NSR, say (an)
m
n=1, is end

complete if (bn)
m
n=1 defined by

bn =

{
an, if 1 ≤ n ≤ m− 1;

an − 1, if n = m

is a c⃗-SR with ℓ chunks such that the ℓth chunk takes the form bnℓ
bnℓ+1 . . . bnℓ+k−1

and where

bnℓ
= c1, bnℓ+1 = c2, . . . , bnℓ+k−1 = ck − 1.
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To prove our main result we manipulate a given c⃗-NSR of a vector v⃗ using opera-
tions that, when each is performed, give a representation of v⃗.

Definition 1.13. Let v⃗ ∈ Zk−1 be any vector. We call a c⃗-representation of v⃗ a
sequence (an)

∞
n=1 such that v⃗ =

∑∞
n=1 anX⃗−n and where there exists an m ∈ N such

that an = 0 for all n > m. Given i ∈ N and a c⃗-representation of v⃗, say (an)
∞
n=1, we

define two processes for obtaining new c⃗-representation of v⃗.

• Carrying into ai gives us a new sequence (bn)
∞
n=1 defined by

bj =


aj , if j < i or j > i+ k;

ai + 1, if j = i;

aj − cl, if i < j ≤ i+ k and j = i+ l.

• Borrowing from ai gives us a new sequence {dn}∞n=1 defined by

dn =


an, if n < i or n > i+ k;

ai − 1, if i = n;

an + cl, if i < n ≤ i+ k and n = i+ l.

Note that, due to the c⃗-recurrence, in either case v⃗ =
∑∞

n=1 bnX⃗−n =
∑∞

n=1 dnX⃗−n.

More informally,

(1) carrying into ai increments ai by 1 and decrements ai+j by cj for each j =
1, 2, . . . , k; and

(2) borrowing from ai decrements ai by 1 and increments ai+j by cj for each j =
1, 2, . . . , k.

Step Operation Representation Vector

1 Initial c⃗-SR 2 · X⃗−2 + X⃗−3 (−2, 1)

2 Add X⃗−3 2 · X⃗−2 + 2 · X⃗−3 (−4, 0)

3 Borrow from c3 2 ·X⃗−2+X⃗−3+2 ·X⃗−4+X⃗−5+X⃗−6 (−4, 0)

4 Carry into c1 X⃗−1 + X⃗−4 + X⃗−5 + X⃗−6 (−4, 0)

5 Final c⃗-SR X⃗−1 + X⃗−4 + X⃗−5 + X⃗−6 (−4, 0)

Table 1.1.: Illustration of carrying/borrowing operations for v⃗ = (−2, 1) with recur-

rence X⃗n = 2X⃗n−1 + X⃗n−2 + X⃗n−3.

To avoid negative coefficients, we only carry into ai when ai+j ≥ cj for each j =
1, 2, . . . , k and we only borrow from strictly positive ai. Table 1.1 shows how carrying
and borrowing can be quite useful in going from a c⃗-NSR representation of v⃗ to a
c⃗-SR representation of v⃗.

In proving our main result we prove that a c⃗-NSR can be transformed into c⃗-SR by
a finite number of borrowing and carrying operations. In showing that our underlying
algorithm that accomplishes this eventually terminates, it is useful to define functions
that count the sum of all or of a subset of the coefficients on an eventually zero, infinite
string.
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Definition 1.14. For each sequence of nonnegative integers a := (an)
∞
n=1 where there

exists an m ∈ N such that an = 0 for all n > m, we define G(a) as the sum of elements
of a,

G(a) :=
m∑
i=1

ai, (1.4)

and for each n ∈ N define Gn(a) as the sum of every term of index less than n,

Gn(a) :=
n−1∑
i=1

ai. (1.5)

Example 1.15. Given the string a = 21012100 . . . , we have G(a) = 2 + 1 + 0 + 1 +
2 + 1 + 0 = 7 and G4(a) = 1 + 2 + 1 + 0 = 4.

Remark 1.16. Note that for a c⃗-representation of v⃗, say a := (an)
∞
n=1, with G(a) =

R, if b and d are the c⃗-representations of v⃗ resulting from carrying into some an
and borrowing from some an respectively, then G(b) = R −

∑m
i=1 ci + 1 and G(d) =

R+
∑k

i=1 ci − 1.

2. Proofs of Main Results

There is a natural map that transforms linear combinations of truncated c⃗-recurrence
vectors into the underlying c⃗-recurrence sequences.

Definition 2.1. For n ≥ k − 2, Sn : Zk−1 −→ [0, Xn) is the scalar product defined by

Sn(v⃗) = v⃗ · (Xn−1, . . . , Xn−k+1) (mod Xn)

where each Xn is defined as in Definition 1.1.

The following lemma follows by the same argument as in [AB-J]. For the sake of
completeness and to highlight our specific case, its proof is included below.

Lemma 2.2. We have Sn(
∑n−1

i=1 aiX⃗−i) =
∑n−1

i=1 aiXn−i.

Proof. When 1 ≤ i ≤ k − 1, we have X⃗−i = e⃗i, by definition. Therefore,

Sn(X⃗−i) = Xn−i (mod Xn) = Xn−i.
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When i = k,

Sn(X⃗−k) = X⃗−k · (Xn−1, . . . , Xn−k+1) (mod Xn)

=
X⃗0 −

∑k−1
j=1 cjX⃗−j

ck
· (Xn−1, . . . , Xn−k+1) (mod Xn)

=
0−

∑k−1
j=1 cjXn−j

ck
(mod Xn)

=
Xn −

∑k−1
j=1 cjXn−j

ck
(mod Xn)

= Xn−k (mod Xn)

= Xn−k,

and when i = k + 1,

Sn(X⃗−k−1) = X⃗−k−1 · (Xn−1, . . . , Xn−k+1) (mod Xn)

=
X⃗−1 −

∑k−1
j=1 cjX⃗−1−j

ck
· (Xn−1, . . . , Xn−k+1) (mod Xn)

=
Xn−1 −

∑k−1
j=1 cjXn−1−j

ck
(mod Xn)

= Xn−k−1 (mod Xn)

= Xn−k−1.

When k + 1 < i ≤ n − 1, according to the conditions previously obtained, it can be
concluded through induction that

Sn(X⃗−i) = Xn−i.

Therefore, it’s true for all 1 ≤ i ≤ n− 1 that Sn(X⃗−i) = Xn−i. By linearity of Sn, the
proof is complete.

Proposition 2.3. Each end complete c⃗ -NSR can be transformed into a c⃗-SR by a
finite sequence of carrying operations. Furthermore, by Remark 1.16, this process only
reduces the sum of the coefficients.

Proof. We proceed by induction over the number of chunks of the representation.
Let a := (an)

m
n=1 be an end complete c⃗-NSR with only 1 chunk and define a0 = 0.

Note that as X⃗0 = 0⃗ we can extend a to (an)
m
n=0. In this case, note that m = k and

a1 = c1, . . . , ak = ck.

Then, by carrying into a0, we obtain the sequence (bn)
m
n=0, where b0 = 1 and bi = 0

for all 1 ≤ i ≤ m. Note that that (bn)
m
n=1 is the zero vector which is, indeed, a c⃗-SR.

Suppose that all end complete c⃗-NSR’s with ℓ chunks can be transformed into a
c⃗-SR. Let (an)

m
n=1 be an end complete c⃗-NSR with ℓ+1 chunks. For each 1 ≤ i ≤ ℓ+1

denote ani as the first coefficient of the ith chunk as in Definition 1.11. By assumption
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we can carry into anℓ+1−1. Let b be the resulting sequence of such carrying operation;
then, we have exactly two cases to consider.

Case 1: b is a c⃗-SR and we are done, or

Case 2: b is an end complete c⃗-NSR and the desired result follows by induction.

Indeed, suppose that Case 1 does not hold; then by Definition 1.7 there must exist
s ∈ {1, . . . , k} such that

anℓ
= c1, . . . , anℓ−1+s−1 = cs−1, anℓ−1+s < cs

and there exists p ≥ 0 such that anℓ−1+s+i = 0, for all i ≤ p, and nℓ − 1 + s + p =
nℓ+1 − 1. Notice that, because of Remark 1.16, bq = 0 for all q ≥ nℓ+1. If p = 0 then
nℓ+1 − 1 = nℓ + s− 1, and so bnℓ−1+s ≤ cs; otherwise b is exactly

(a1, . . . , anℓ
= c1, anℓ+1 = c2, . . . , anℓ−1+s < cs, 0, . . . , 0, bnℓ+1−1 = 1)

which is clearly a c⃗-SR. Hence, the only possible way for b not to be a c⃗-SR is that
s = k and bnℓ−1+s = ck, in other words b is end complete.

We now prove that weakly decreasing c⃗-NSR’s can be transformed into satisfying
representations. We note that the algorithm utilized in the proof of this result is similar
to the algorithm from the appendix of [KKMW] that converts any decomposition of
an integer over a PLRS into a legal decomposition. However, as we define the vectors
using a backwards recursion, it is not the case that we could eventually borrow into
zero terms. In fact, it is very possible in the case where c⃗ is not weakly decreasing for
this process to never terminate (see Example 4.5).

Proposition 2.4. Every c⃗-NSR, where c⃗ is a weakly decreasing vector and ck = 1, can
be transformed into a c⃗-SR by a finite number of borrowing and carrying operations.

Proof. Recall that if c⃗ is a weakly decreasing vector then ci+1 ≤ ci for all i ∈
{1, . . . , k − 1}. Throughout this proof, the symbol ai represents the ith iteration
of a process that consists of a finite number of borrows and carries. Suppose that
a0 := (a0n)

∞
n=1 is a c⃗-NSR and let c :=

∑k
i=1 ci.

By Definition 1.12 there exist p0 ≥ 1 and 0 ≤ j0 < k such that I(a0) = np0 + j0 and
where

anp0
= c1, . . . , anp0+j0−1 = cj0 , anp0+j0 ≥ cj0+1. (2.1)

Since np0 + j0 is the first overfilled element of a, we have that (a0n)
np0+j0−1
n=1 is a

c⃗-SR. We now proceed by case analysis to define a1.

Case 1: j0 = k − 1. Then (a0n)
np0+j0
n=1 is end complete and so by applying Proposition

2.3, a finite sequence of carries transforms (a0n)
np0+j0
n=1 into a c⃗-SR say (b0n)

np0+j0
n=1 . Define

a1 by

a1n =

{
b0n, 1 ≤ n ≤ np0 + j0;

a0n, otherwise.

11



In this case we have that G(a1) ≤ G(a0)− (c− 1).

Case 2: 0 ≤ j0 < k−1. Note that in this case, anp0+j0 > cj0+1. Borrow from a0np0+j0

to define d0. In particular, define

d0n =


a0n + ci, if n = np0 + j0 + i for some 1 ≤ i ≤ k;

a0n − 1, if n = np0 + j0;

a0n otherwise.

Since c⃗ is weakly decreasing, then for all 1 ≤ i ≤ k − j0 − 1

d0np0+j0+i ≥ ci ≥ cj0+i+1

and, thus,

d0np0+j ≥ cj+1 for each 0 ≤ j ≤ k − 1. (2.2)

Moreover, if we define (e0n)
np0+k−1
n=1 by

e0n =

{
d0n, if 1 ≤ n < np0 + j0 or np0 + k ≤ n;

ci+1, if n = np0 + i for some j0 ≤ i ≤ k − 1,

then (e0n)
np0+k−1
n=1 is end complete and so by applying Proposition 2.3, a finite sequence

of carries transforms (e0n)
np0+k−1
n=1 into a c⃗-SR, say f0 := (f0

n)
np0+k−1
n=1 . Define a1 by

a1n =


f0
n, 1 ≤ n < np0 + j0;

d0n − ci+1, if n = np0 + i for some j0 ≤ i ≤ k − 1;

d0n, otherwise.

In particular, a1 is obtained from a0 by a single borrow and then at least one carry.
By Remark 1.16 this implies that G(a1) ≤ G(d)− (c− 1) = G(a0).

If a1 is defined in either case is a c⃗-SR, then we are done. If not, then as above
there exist p1 ≥ 1 and 0 ≤ j1 < k such that I(a1) = np1 + j1 and where

anp1
= c1, . . . , anp1+j1−1 = cj1 , anp1+j1 > cj1+1. (2.3)

There are two important properties we prove.

Claim 1: We have that np1 ≥ np0 and if G(a1) = G(a0) then Gnp1
(a1) ≥ Gnp0

(a0)+1.

Proof of Claim 1. If a1 is constructed through Case 1 then a1np0+k−1 =

a0np0+k−1 − ck = 0 and so the claim follows from the fact that (b0n)
np0+j0
n=1 = (a1n)

np0+j0
n=1

12



is a c⃗-SR. Note that in Case 1, we have G(a0) ̸= G(a1).

Suppose instead that a1 is constructed through Case 2. It is immediate that np1 ≥
np0 in the case where np0 = 1 and so we may suppose further that np0 ≥ 2. If j0 = 0

then np1 ≥ np0 follows from the fact that (fn)
np0−1
n=1 = (a1n)

np0−1
n=1 is a c⃗-SR. If j0 ̸= 0

then np1 ≥ np0 follows from the fact that a1np0+j0−1 = a0np0+j0−1 − cj0 = 0 and since

(fn)
np0+j0
n=1 = (a1n)

np0+j0
n=1 is a c⃗-SR.

Note that by Remark 1.16, if G(a1) = G(a2) then a1 is obtained from a0 by exactly
one borrow from a0np0

and then one carry into a0np0−1 where np0 − 1 ≥ 1. Thus, as

single borrow from a0np0
does not effect Gnp0

and a single carry into a0np0−1 increases
Gnp0

by 1, we have that

Gnp1
(a1) ≥ Gnp0

(a1) = Gnp0
(a0) + 1

as desired.

Since np1 + j1 is the first overfilled element of a1, we have that (a1n)
np1+j1−1
n=1 is a

c⃗-SR.
Inductively, if aℓ is a c⃗-NSR and is defined for some ℓ ≥ 1, then we may define

npℓ and jℓ such that npℓ + jℓ is the first overfilled element of aℓ. Then we have that

(aℓn)
npℓ

+jℓ−1
n=1 is a c⃗-SR and employ the same case analysis as above to construct aℓ+1.

If aℓ+1 is a c⃗-SR then we are done. Otherwise, we may define npℓ+1
and jℓ+1 such

that npℓ+1 + jℓ+1 is the first overfilled element of aℓ and have that (aℓn)
npℓ

+jℓ−1
n=1 is a

c⃗-SR. Furthermore, by applying Claim 1, npℓ+1
≥ npℓ and either G(aℓ+1) < G(aℓ) or

Gnpℓ+1
(aℓ+1) > Gnpℓ

(aℓ).

Claim 2: There exists a q ∈ N such that aq is a c⃗-SR.

Proof of Claim 2. Suppose not. Let α = G(a0), β := ⌈ α
c−1⌉, and Z := {i ∈ N :

G(ai) < G(ai−1)}. Note that |Z| ≤ β. Indeed, if |Z| > β then there exists a subset
{z1, . . . , zβ+1} ⊂ Z where zj < zj+1 for each 1 ≤ j ≤ β. Then

G(azβ+1) ≤ G(azβ)− (c− 1) ≤ G(azβ−1)− 2(c− 1) ≤ · · · ≤ G(az1)− β(c− 1)

≤ α− (β + 1)(c− 1) < 0.

Let z := max{i ∈ N : i ∈ Z} and define γ := G(az). Note that for all j > z it
must be the case that G(aj) = G(aj−1) and Gnpj

(aj) ≥ Gnpj−1
(aj−1) + 1. However, if

we examine q = z + γ then

γ < Gnz(a
z) + γ ≤ Gnpq

(aq) ≤ G(aq) ≤ G(az) = γ.

Hence, we have the desired contradiction.

The proof is complete as Claim 2 establishes that process must terminate in a finite
number of iterations to a c⃗− SR.

13



We now prove our main result.

Proof of Theorem 1.10. We need to show both existence and uniqueness of the
desired representations.

Existence: By definition, 0⃗ ∈ Zk−1 has a c⃗-satisfying representation. By induction
we need only to show that if v⃗ has a c⃗-satisfying representation then so does v⃗ + e⃗i
for any 1 ≤ i ≤ k. Indeed, all positive vectors can be obtained by adding linear com-
binations of the basis vectors X⃗i = e⃗i for 1 ≤ i ≤ k−1 and then as X⃗k =

∑k−1
i=1 −cie⃗i,

adding multiples of X⃗k reaches all possible vectors. These inductive steps involve
increasing a coefficient in a c⃗-satisfying representation by one. Either the resulting
representation is already a c⃗-satisfying representation and we are done or it is a
c⃗NSR. Hence, existence follows from Proposition 2.4.

Uniqueness: Similar to the case of [AB-J], Lemma 2.2 implies that Sn is one-to-

one in representations satisfying c⃗ of the form
∑n−1

i=1 aiX⃗−i. Hence, uniqueness follows
from the uniqueness of a legal decomposition for a PLRS (see [KKMW], Theorem 1.3).

3. Inherited Properties From the Scalar Case

We extend the probabilistic analysis of Zeckendorf decompositions to the multidimen-
sional setting. By establishing a bijection between vector-valued decompositions and
their scalar counterparts, we inherit various probabilistic properties for c⃗-SR’s.

Definition 3.1. Let n ∈ N; we define

Rc⃗
n := S−1

n

[
[Xn, Xn+1)

]
,

where Xn is defined as in Definition 1.1, and Sn is as in Definition 2.1.

This definition serves as the natural way of generalizing the interval [Xn, Xn+1)
to higher dimensions; using Remark 4.3, in Figure 4.2 we illustrate Rc⃗

1 to Rc⃗
10 for

c⃗ = (2, 1, 1). As expected, many properties that hold for decompositions of elements
in [Xn, Xn+1) also hold in the multidimensional analogue.

For clarity, we provide two concrete examples of properties that our multidi-
mensional Zeckendorf representations inherit through the the map Sn. There are
many more statistical and probabilistic properties than those mentioned (for example
[BBILMT], [BILMT1] and [BBGILM]).

3.1. Gaussian Convergence

Definition 3.2. (Associated Probability Space to a Positive Linear Recurrence Se-
quence) [MW1]. Let (Hn)

∞
n=1 be a PLRS. For each n, consider the discrete outcome

space

Ωn := {Hn, Hn + 1, . . . , Hn+1 − 1}

14



with probability measure

Pn(A) :=
∑
ω∈A

1

Hn+1 −Hn
, A ⊂ Ωn.

In addition, define the random variable Kn by setting Kn(ω) equal to the number of
summands of ω ∈ Ωn.

This definition is extended naturally to higher dimensions in the following way.

Definition 3.3. (Inherited Probability Space to a Positive Linear Recurrence Vector
Sequence). Let c⃗ be a weakly decreasing vector and ck = 1. Consider the discrete
outcome space

Ωc⃗
n := Rc⃗

n,

with probability measure

Pc⃗
n(B) := Pn(Sn[B]), B ⊂ Ωc⃗

n;

where Sn is defined in Definition 2.1. We define the random variable K c⃗
n by setting

K c⃗
n(ω) equal to the number of summands of ω ∈ Ωc⃗

n; equivalently K c⃗
n(ω) = G(a), where

a is the unique c⃗-SR of ω.

Lemma 3.4. The map Sn↾Rc⃗
n

: Rc⃗
n → [Xn, Xn+1) is a bijection and K c⃗

n(w) =
Kn(Sn(w)).

Proof. By Definition 3.1 we have that Sn↾Rc⃗
n
is surjective. Suppose that v⃗1, v⃗2 ∈ Rc⃗

n

are such that Sn↾Rc⃗
n
(v⃗1) = Sn↾Rc⃗

n
(v⃗2). Let a = (an)

m1
n=1 and b = (bn)

m2
n=1 the unique

representations for v⃗1 and v⃗2 respectively, that is

v⃗1 =

m1∑
n=1

anX⃗−n and v⃗2 =

m2∑
n=1

bnX⃗−n.

Then, due to Lemma 2.2, we have that

Sn↾Rc⃗
n
(v⃗1) =

m1∑
n=1

anXm1−n and Sn↾Rc⃗
n
(v⃗2) =

m2∑
n=1

anXm2−n.

Notice that (Xn)
∞
n=1 is a PLRS and both

∑m1

n=1 anXm1−n and
∑m2

n=1 anXm2−n are
satisfying representations. Thus, by the uniqueness of a PLRS representation ([MW1],
[Theorem 1.1 ]) we have that m1 = m2 and an = bn for all n ≤ m1. In other words,
a = b, which proves that the function is indeed injective. With this we have proven
that Sn↾Rc⃗

n
is bijective. Lastly, let v⃗ ∈ Rn and a be its unique c⃗-SR. We have

K c⃗
n(v⃗) = G(a) =

∞∑
n=1

an,

which is exactly the number of summands of Sn(v⃗).
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In the 1950s, Lekkerkerker [Lekk] answered the question: On average, how many
summands are needed in the Zeckendorf decomposition? 4 He later proved that for ev-
ery m ∈ [Fn, Fn+1), as n → ∞ the average number of summands needed is n/(ϕ2 +1)

, where ϕ = 1+
√
5

2 is the golden ratio. Since Zeckendorf’s theorem has been generalized
one can naturally ask if Lekkerkerker’s theorem still holds for these various general-
izations. In [MW1] it was proved that the Gaussian convergence is a property that
holds in general for a PLRS. More specifically, E[Kn] and Var(Kn) are of order n, and
as n → ∞, Kn converges to a Gaussian (see [KKMW], [BILMT1] and [Lekk]). This
result is generalized as follows.

Theorem 3.5. Let {X⃗n}n∈Z be a c⃗-recurrence for a weakly decreasing vector c⃗ where
ck = 1. Then E[K c⃗

n] and Var(K c⃗
n) are of order n, and as n → ∞, K c⃗

n converges to a
Gaussian.

Proof. This follows immediately from Lemma 3.4.

3.2. Summand Minimality

We call a representation of v⃗ summand minimal if no other representations of v⃗ uses
fewer summands. We say that a Positive Linear Recurrence Vector X⃗ is summand
minimal if its c⃗−SR is summand minimal for all v⃗. In [CHHMPV1] it is proved that
a PLRS is summand minimal if and only if its recurrence vector is weakly decreasing.
This result is now naturally generalizes as follows.

Theorem 3.6. A c⃗-recurrence with recurrence vector (c1, . . . , ck) is summand min-
imal if and only if c1 ≥ c2 ≥ · · · ≥ ck; i.e., c⃗ is weakly increasing.

Proof. This follows directly from [CHHMPV1], Theorem 1.1. Indeed, all of the c⃗-SR
translate into legal representations in Z, where the theorem holds.

4. Illustrations and Further Research

Throughout this section c⃗ ∈ Z3 denotes an arbitrary vector and (X⃗n)n∈Z the corre-
sponding c⃗-recursive vector sequence as in Definition 1.4.

Definition 4.1. We define

Dn =

{
v⃗ ∈ Z2 | v⃗ =

n∑
i=1

aiX⃗−i

}
.

Remark 4.2. By this definition, Dn = ∪n
i=1Ri and the number of points in Dn is

|Dn| = Xn+1.

Remark 4.3. In general5, for all n ∈ N, we have that Rc⃗
n = Dn \Dn−1.

4Sometimes it takes a while for papers to be widely seen, for example Lekkerkerker’s theorem on the number of

summands in Zeckendorf decompositions was published 20 years before Zeckendorf’s paper!
5Definition 4.1 is naturally extended to higher dimensions.
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Figures 4.1 and 4.2 demonstrate how, in the case where c⃗ = (2, 1, 1), each region,
Dn, is recursively constructed from Dn−1 and spirals away from 0⃗.

Figure 4.1.: Regions D1, . . . , D6 for c⃗ = (2, 1, 1). The black square indicates 0⃗ ∈ Z2.

Figure 4.2.: Region D10 and regions R1, . . . , R10 for c⃗ = (2, 1, 1) respectively.

However, in many case where c⃗ is not weakly decreasing the sets,Dn, display similar
behavior. For example, if c⃗ = (1, 2, 1) then Figures 4.3 and 4.4 also seem to be slowly
expanding outword in a spiral seem and eventually encompass all of Z2. This leads us
to our first question.

Question 4.4. Which conditions on the vector c⃗ characterize when the algorithm in
the proof of Theorem 1.10 terminates?

In the case where at least some of the terms of a vector c⃗ are increasing, the
algorithm utilized in the proof of Proposition 2.4 can fail to terminate.

Example 4.5. Let c⃗ = (1, 3, 1). The string 2 is a c⃗-NSR as the string 1 is a c⃗-SR.
We follow the first few steps in the proof of Proposition 2.4.

(1) We borrow once from 2 to obtain the string 1131. Note that when reading this
string from left to right, the first issue that disallows 1131 from being a c⃗-SR is
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Figure 4.3.: Regions D1, . . . , D6 for c⃗ = (1, 2, 1). The black square indicates 0⃗ ∈ Z2.

Figure 4.4.: Region D10 and regions R1, . . . , R10 for c⃗ = (1, 2, 1) respectively.

the digit 3. Note how in the case where some of the terms of c⃗ increase, it is not
necessarily so that a carry can always follow a borrow.

(2) As 11 forms a chunk (1 ≤ 1 and 1 < 3) the first digit that presents a problem
is 3 which at most can be 1. We borrow twice from 3 into the lower digit. This
converts 1131 to 111362. Then we can carry on with the third term and turn
111362 into 120052.

(3) As in the previous step 1200 forms a chunk and 5 is the first digit that presents
a problem since 5 > 1. We borrow 4 times from 5 and obtain 120016(12)4 and
carry once into the fourth term to obtain 120103(11)4 and then carry 3 times
into the fifth term to obtain 12013021.

(4) From left to right we have the chunks 120 and 130 and then the first digit to
present a problem is the seventh term as 2 < 1. We borrow 1 time from the
seventh term to obtain 1201301231.

(5) From left to right we have the chunks 120, 130, and 12 and then the first digit
to present a problem is the ninth term as 3 > 1. We borrow twice from the ninth
term to obtain 120130121362 and carry once into the eighth term to obtain
120130130052.
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Examining the conversion of the digits 052 from step (2) to (5) we see that the
string 052 is replaced by 130130052. Hence, this process never terminates.

Nevertheless, it seems that, if c⃗ = (c1, c2, c3), c3 = 1 and cj+1 ≤ cj + 1 for all
1 ≤ j < 3, then the algorithm terminates. However, for vectors of length k ≥ 4 this
no longer appears to be the case. From this we make the following conjecture.

Conjecture 4.6. If k = 3 the algorithm in the proof of Theorem 1.10 terminates if
c⃗ = (c1, c2, c3) is such that ci ≥ 0 for all 1 ≤ i < 3, ci+1 − ci ≤ 1 for all 1 ≤ i ≤ k− 1,
and ck = 1. Furthermore, if there exists 1 ≤ i < 3 such that ci+1 − ci ≥ 2, then there
is a c⃗-representation for which the algorithm fails to terminate. If k ≥ 4 the algorithm
in the proof of Theorem 1.10 terminates iff c⃗ is weakly decreasing.

It may be the case that Theorem 1.10 holds when some of the ci’s are 0.

Remark 4.7. Even in the case where c⃗ = (c1, c2, . . . , ck−1, 1) and where the first
k− 1 terms are arbitrary nonnegative entries, most of the major portions of the Main
Theorem still hold.

(1) Since the proof of uniqueness follows from the map Sn being bijective into PLRS’s
any c⃗-SR is unique.

(2) A finite number of the c⃗-recurrence vectors still span Zk−1. In particular, if we
suppose that z is the maximum number of consecutive zeroes in c⃗, then for any
v⃗ ∈ Zk−1 we can find nonnegative integers (an)

k+z
n=1 such that

v⃗ =

k+z∑
n=1

anX⃗−n.

Proof. Indeed, within the proof of existence for the Main Theorem, this
amounts to showing that if cj ̸= 0 then the jth element of X⃗−k is negative and
if cj = 0 and it is a pth consecutive zero in c⃗ (cj−i = 0 for each 1 ≤ i ≤ p− 1 but

cj−p ̸= 0) for some 1 ≤ p ≤ z then the jth element of X⃗−k−p is negative. The first

of these desired results follows from the fact that X⃗−k = (−c1,−c2, . . . , −ck−1).
Now fix a 1 ≤ p ≤ z and suppose that cj = 0 and it is the pth consecutive zero
in c⃗.

We first show that in this case the jth digits of each vector
X⃗−k, X⃗−k−1, . . . , X⃗−k−p+1 is zero. Indeed, we may proceed by induction where

the base case, X⃗−k has been shown above. Suppose this result has been shown
for some 0 ≤ q < p− 1. Now

X⃗−k−q−1 = X⃗−q−1 −
k−1∑
i=1

ciX⃗−q−1−i

and the jth digit of X⃗−q−1−i is zero unless i = j− (q+1). However, cj−(q+1) = 0

since cj is a pth consecutive zero. The desired result now follows by induction.

Lastly, we note that
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X⃗−k−p = X⃗−p −
k−1∑
i=1

ciX⃗−p−i.

Now the jth digit of X⃗−p−i is zero unless i = j − p, where it is 1 for X⃗−j .
However, cj−p ̸= 0 and so we see that the jth coefficient of X−k−p is −cj−p ̸= 0
as desired.

For those c⃗ where a c⃗-SR exists for each v⃗ ∈ Zk−1, it would be interesting find
a rate of expansion outward from 0⃗ that is somehow dependent upon c⃗. One such
approach would involve attacking the following question.

Question 4.8. For each v⃗ ∈ Zk−1 and r ∈ N, define B∞
r by

B∞
r (v⃗) := {w⃗ ∈ Zk−1 : max

1≤i≤k−1
{|wi − vi|} ≤ r }.

Given a c⃗ such that the algorithm in the proof of Theorem 1.10 terminates and an
r ∈ N, what is the minimum n ∈ N such that B∞

r (0⃗) ⊂ Dn?

Lastly, there are many other generalizations of Zeckendorf’s Theorem that could be
explored in the multidimensional case. One such generalization are f-decompositions
introduced by [DDKMMV].

Definition 4.9. Given a function f : N0 → N0 and a sequence of integers
(an)

∞
n=1, a sum m =

∑k
i=0 ani of terms of (an)

∞
n=1 is an f-decomposition of m

using (an)
∞
n=1 if for every ani in the f -decomposition, the previous f(ni) terms

(ani−f(ni), ani−f(ni)+1, . . . , ani − 1) are not in the f -decomposition.

Question 4.10. For some family of functions, can one apply a similar strategy as in
Theorem 1.10 to generate multidimensional f decompositions?

Acknowledgments

We thank our colleagues from the 2025 Polymath Jr program. This work was sup-
ported by NSF Grant DMS2341670. It is a pleasure to dedicate this paper to Pe-
ter Anderson and Marjorie Bicknell-Johnson, both for their work which inspired this
project as part of the 2025 Polymath Jr program, and for their service to the Fibonacci
Association.

References

[AB-J] P. Anderson and M. Bicknell-Johnson, Multidimensional Zeckendorf
Representations, Fibonacci Quarterly. 49 (2011), no. 1, 4–9.

[BBILMT] I. Ben-Ari, A. Bower, R. Insoft, S. Li, S.J. Miller and P. Tosteson, Gaps
between summands in generalized Zeckendorf decompositions, Journal
of Combinatorial Theory, Series A. 135 (2015), 130–160

20



[BBGILM] O. Beckwith, A. Bower, L. Gaudet, R. Insoft, S. Li, S. J. Miller, and
P. Tosteson, The Average Gap Distribution for Generalized Zeckendorf
Decompositions, the Fibonacci Quarterly. 51 (2013), 13–27

[BCCSW] E. Burger, D. C. Clyde, C. H. Colbert, G. H. Shin and Z. Wang, A Gen-
eralization of a Theorem of Lekkerkerker to Ostrowski’s Decomposition
of Natural Numbers, Acta Arith. 153 (2012), 217–249.

[BDEMMTTW] A. Best, P. Dynes, X. Edelsbrunner, B. McDonald, S. J. Miller, K.
Tor, C. Turnage-Butterbaugh, M. Weinstein, Gaussian Distribution of
Number Summands in Zeckendorf Decompositions in Small Intervals,
Fibonacci Quarterly. 52 (2014), no. 5, 47–53.

[BILMT1] A. Bower, R. Insoft, S. Li, S. J. Miller, and P. Tosteson, The Distribution
of Gaps Between Summands in Generalized Zeckendorf Decompositions,
Fibonacci Quarterly. 51 (2013), no. 5, 28–40.

[BILMT2] A. Bower, R. Insoft, S. Li, S. J. Miller and P. Tosteson, The Distribution
of Gaps between Summands in Generalized Zeckendorf Decompositions
(and an appendix on Extensions to Initial Segments with Iddo Ben-Ari),
Journal of Combinatorial Theory, Series A 135 (2015), 130–160.

[CFHMN1] M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson,Generalizing
Zeckendorf’s Theorem: The Kentucky Sequence, Fibonacci Quarterly.
52 (2014), no. 5, 68–90).

[CFHMNPX] M. Catral, P. Ford, P.E. Harris, S. J. Miller, and D. Nelson, Legal De-
compositions Arising from Non-Positive Linear Recurrences, preprint
http://arxiv.org/pdf/1606.09312.

[CHHMPV1] K. Cordwell, M. Hlavacek, C. Huynh, S. J. Miller, C. Peterson, and Y. N.
Vu, Summand Minimality and Asymptotic Convergence of Generalized
Zeckendorf Decompositions, Research in Number Theory. 4 (2018), no.
43, https://doi.org/10.1007/s40993-018-0137-7.

[CHHMPV2] K. Cordwell, M. Hlavacek, C. Huynh, S. J. Miller, C. Peter-
son, and Y. N. Vu, On Summand Minimality of Generalized Zeck-
endorf Decompositions, Research in Number Theory. 4 (2018), no. 43,
https://doi.org/10.1007/s40993-018-0137-7

[DDKMMV] P. Demontigny, T. Do, A. Kulkarni, S. J. Miller, D. Moon,
and U. Varma, Generalizing Zeckendorf’s Theorem to f-
decompositions, Journal of Number Theory. 141 (2014), 136–158,
https://doi.org/10.1016/j.jnt.2014.01.018.

[DFFHMPP] R. Dorward, P. Ford, E. Fourakis, P. E. Harris, S. J. Miller, E. Palsson
and H. Paugh, A Generalization of Zeckendorf’s Theorem via Circum-
scribed m-gons, to appear in Involve, http://arxiv.org/abs/1508.07531.

[Fr] A. S. Fraenkel, Systems of enumeration, The American Mathematical
Monthly 92.2 (1985), pages 105-114.

[GTNP] P. J. Grabner, R. F. Tichy, I. Nemes, and A. Pethö, Generalized Zeck-
endorf expansions, Appl. Math. Lett. 7 (1994), no. 2, 25–28.

[Ha] N. Hamlin, Representing Positive Integers as a Sum of Linear Recur-
rence Sequences, Fibonacci Quarterly. 50 (2012), no. 2, 99–105.

[KKMW] M. Kologlu, G.S. Kopp, S. J. Miller, Y. Wang, On the Number of Sum-
mands in Zeckendorf Decompositions, Fibonacci Quarterly. 49 (2011),
no. 2, 116–130.

[Lekk] C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som
van getallen van Fibonacci, Simon Stevin. 29 (1951-1952), 190–195.

[MW1] S. J. Miller and Y. Wang, From Fibonacci Numbers to Central Limit

21



Type Theorems, Journal of Combinatorial Theory, Series A. 119 (2012),
no. 7, 1398–1413, https://web.williams.edu/...

[MW2] S. J. Miller and Y. Wang, Gaussian Behavior in Generalized Zeckendorf
Decompositions, Combinatorial and Additive Number Theory, CANT
2011 and 2012 (Melvyn B. Nathanson, editor), Springer Proceedings in
Mathematics and Statistics (2014), 159–173.

[Zeck] E. Zeckendorf, Représentation des nombres naturels par une somme de
nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci.
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