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Abstract. We propose a random matrix model for families of elliptic curve
L-functions of finite conductor. A repulsion of the critical zeros of these L-
functions away from the center of the critical strip was observed numerically
by S. J. Miller in 2006 [50]; such behaviour deviates qualitatively from the con-
jectural limiting distribution of the zeros (for large conductors this distribution
is expected to approach the one-level density of eigenvalues of orthogonal ma-
trices after appropriate rescaling). Our purpose here is to provide a random
matrix model for Miller’s surprising discovery. We consider the family of even
quadratic twists of a given elliptic curve. The main ingredient in our model is a
calculation of the eigenvalue distribution of random orthogonal matrices whose
characteristic polynomials are larger than some given value at the symmetry
point in the spectra. We call this sub-ensemble of SO(2N) the excised orthogo-

nal ensemble. The sieving-off of matrices with small values of the characteristic
polynomial is akin to the discretization of the central values of L-functions im-
plied by the formulæ of Waldspurger and Kohnen-Zagier. The cut-off scale
appropriate to modeling elliptic curve L-functions is exponentially small rela-
tive to the matrix size N . The one-level density of the excised ensemble can
be expressed in terms of that of the well-known Jacobi ensemble, enabling the
former to be explicitly calculated. It exhibits an exponentially small (on the
scale of the mean spacing) hard gap determined by the cut-off value, followed by
soft repulsion on a much larger scale. Neither of these features is present in the
one-level density of SO(2N). When N → ∞ we recover the limiting orthogonal
behaviour. Our results agree qualitatively with Miller’s discrepancy. Choosing
the cut-off appropriately gives a model in good quantitative agreement with the
number-theoretical data.
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1. Introduction

Understanding the ranks of elliptic curves is a central problem in number the-
ory. The celebrated Birch and Swinnerton-Dyer conjecture provides an analytic
approach to studying them via the order of vanishing of the associated L-functions
at the centre of the critical strip: it states that the order of vanishing of the el-
liptic curve L-function at the central point equals the rank of the Mordell-Weil
group. On the other hand, following the Katz-Sarnak philosophy, zero statistics
of families of L-functions are conjectured to have an underlying symmetry type
associated with certain random matrix ensembles [40, 41]: in an appropriate as-
ymptotic limit, the statistics of the zeros of families of L-functions are modeled
by (a subgroup of) one of the classical compact groups U(N), O(N) or USp(2N).

If we could model the order of vanishing for families of elliptic curve L-functions
in terms of random matrices, then we would also gain information about the distri-
bution of ranks within a family of elliptic curves via the Birch and Swinnerton-Dyer
conjecture. This is the wider goal that motivates the current work.

There has been much success modelling families of L-functions with matrices
from the classical compact groups [7,8,10–19,21,22,25–35,39–43,47,52–55,57,58],
including families of elliptic curve L-functions [13, 14, 37, 38, 48, 49, 62]. This work
strongly supports the Katz-Sarnak philosophy that, in the correct asymptotic
limit, matrices from the classical compact groups accurately model the zero sta-
tistics of L-functions. Specifically, for families of elliptic curve L-functions it has
been shown for restricted test-functions that the one- and two-level densities do in-
deed show the expected symmetry of orthogonal type1, that is, of random matrices
from O(N), in the limit of large conductor [48, 49, 62].

For the Riemann zeta function, and more generally families of L-functions,
good qualitative agreement is also found, as the asymptotic limit is approached,
by modeling the L-functions with finite-sized matrices where the matrix size is
chosen so that the mean density of matrix eigenvalues matches the mean density
of zeros of the L-functions under consideration (originally proposed by Keating and
Snaith [42,43]). This finite matrix size model has been refined still further with the
incorporation of number-theoretic information, leading to extremely convincing
models for, for example, correlation functions [4, 6], spacing distributions [5], and
moments and ratios of values of L-functions [11, 12].

However, in the elliptic curve case S. J. Miller, in numerical data gathered
in [50], discovered a significant discrepancy from the scaling limit of the expected
model of orthogonal matrices. That is, for elliptic curve L-functions of finite
conductor there is a large (repulsive) deviation of the zero statistics from the
expected orthogonal symmetry that is not explained by either using finite-size
matrices or by the inclusion of arithmetical terms as in [4–6,11,12]. Miller was the
first to discover the soft repulsion of zeros of elliptic curve L-functions from the
central point, and his data is reproduced in figure 2. However, the larger data sets

1 If the family has geometric rank r, then by the Birch and Swinnerton-Dyer conjecture and
Silverman’s specialization theorem all but finitely many of the elliptic curve L-functions have
r zeros at the central point; the correct scaling limit is the limit of block diagonal orthogonal
matrices with an r × r identity matrix as the upper left block.
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of the present paper (see figure 4), along with the random matrix model, indicate
a hard gap containing no zeros.2 The specific goal of this paper is to present a
model that accurately describes the zero statistics of elliptic curve L-functions of
finite conductor.

The main ingredient in the new model is to mimic central values of elliptic curve
L-functions by the value of the characteristic polynomial at 1 for matrices from
SO(2N). The key fact about these central values, not previously incorporated
into random matrix models for the zero statistics, is that they are either zero
(for curves with rank greater than zero) or they are greater or equal to a finite
minimal size fixed by arithmetical considerations. The characteristic polynomial
of a matrix A ∈ SO(2N) is given by

ΛA(e
iθ, N) := det(I − eiθA−1) =

N∏

k=1

(1− ei(θ−θk))(1− ei(θ+θk)), (1.1)

with e±iθ1 , . . . , e±iθN the eigenvalues of A. Motivated by the arithmetical size con-
straint on the central values of the L-functions we seek to understand, we here
consider the set TX of matrices A ∈ SO(2N) whose characteristic polynomial
ΛA(1, N) is larger than some cut-off value exp(X ). We call this the excised or-
thogonal ensemble. In figure 1 we plot the distribution of the first eigenvalue of
SO(24), which shows no repulsion, as well as the distribution of the first eigenvalue
of an excised ensemble of 24×24 orthogonal matrices. Here the size of the excision
is exp(X ) ≈ 0.005 and we see the hard gap at the origin where no eigenvalues lie,
as well as the soft repulsion that interpolates between zero and the bulk of the
distribution. This is seen more clearly in the right hand figure where a region near
the origin is enlarged.

Recall that the one-level density R
G(N)
1 for a (circular) ensemble G(N) of matri-

ces whose eigenvalues are parametrized by an unordered N -tuple of eigenphases
{θn}N1 is given by

R
G(N)
1 (θ) = N

∫
. . .

∫
P (θ, θ2, . . . , θN)dθ2 . . . dθN (1.2)

where P (θ, θ2, . . . , θN ) is the joint probability density function of eigenphases3.
Helpfully, the probability density function of the one-level density RTX

1 can be
expressed in terms of the well-known Jacobi ensemble JN (see [24] for properties
of this ensemble):

Theorem 1.1. The one-level density RTX

1 for the set TX of matrices A ∈ SO(2N)
with characteristic polynomial ΛA(e

iθ, N) satisfying log |ΛA(1, N)| ≥ X is given by

RTX

1 (θ1) =
CX
2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r
RJN

1 (θ1; r − 1/2,−1/2)dr

2Subsequent to our posting this manuscript on the arXiv, Marshall [45] has developed a
rigorous theory for this hard gap.

3Note that in the case of our interest, namely the (full, or excised) ensemble of orthogonal
matrices of size 2N , there are N pairs of eigenvalues parametrized by N eigenphases.
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Figure 1. The distribution (blue, solid curve) of the first eigen-
value of SO(24), showing no repulsion, and the distribution (red
dots) of the first eigenvalue of an excised ensemble of 24×24 orthog-
onal matrices with exp(X ) ≈ 0.005. The right hand figure shows an
enlargement near the origin. The SO(24) curve is computed using
the numerical differential equation solver for Painlevé VI which is de-
veloped in [20]. For the excised ensemble, 3 000 000 random SO(24)
matrices were generated and those not satisfying ΛA(1, N) ≥ exp(X )
were discarded.

where CX is a normalization constant defined in (6.12) and

RJN
1 (θ1; r − 1/2,−1/2) = N

∫ π

0

· · ·
∫ π

0

N∏

j=1

w(r−1/2,−1/2)(cos θj)

×
∏

j<k

(cos θj − cos θk)
2dθ2 · · · dθN (1.3)

is the one-level density for the Jacobi ensemble JN with weight function

w(α,β)(cos θ) = (1− cos θ)α+1/2(1 + cos θ)β+1/2, α = r − 1/2 and β = −1/2.

Applying the method of orthogonal polynomials we evaluate RJN
1 (θ;α, β) to give

Theorem 1.2. With RTX

1 as above, we have

RTX

1 (θ) =
CX
2πi

∫ c+i∞

c−i∞

exp(−rX )

r
2N

2+2Nr−N×

×
N−1∏

j=0

Γ(2 + j)Γ(1/2 + j)Γ(r + 1/2 + j)

Γ(r +N + j)
×

× (1− cos θ)r
21−r

2N + r − 1

Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P (N, r, θ) dr

(1.4)

with normalization constant CX defined in (6.12) and P (N, r, θ) defined in terms
of Jacobi polynomials in (6.33).

An immediate consequence using residue calculus is the following:
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Theorem 1.3. With RTX

1 as above, we have

RTX

1 (θ) =

{
0 for d(θ,X ) < 0

R
SO(2N)
1 (θ) + CX

∑∞
k=0 bk(θ) exp((k + 1/2)X ) for d(θ,X ) ≥ 0,

(1.5)
where d(θ,X ) := (2N − 1) log 2 + log(1 − cos θ) − X and bk are coefficients aris-
ing from the residues. The normalization constant CX is defined in (6.12) and

R
SO(2N)
1 (θ) is the one-level density for SO(2N), defined by (1.2).

Thus in the limit X → −∞, θ fixed, RTX

1 (θ) → R
SO(2N)
1 (θ).

In order to compare our random matrix results with the elliptic curve data we
shall need to take −X proportional to N , i.e. the cut-off is exponentially small
in N . From Theorem 1.3, and illustrated in figure 13, one sees the existence of a
hard gap where RTX

1 (θ) vanishes, namely the interval {θ > 0 | d(θ,X ) < 0}. When
−X ∝ N the hard gap is therefore exponentially small in N . Beyond this range
the formula exhibits soft repulsion of the eigenvalues from 1 on a much larger
scale; the repulsion extends far beyond the hard gap. It is interesting that such a
‘pierced’ subset of SO(2N), where the cut-off is exponentially small on the scale
of the mean eigenvalue spacing, has such a pronounced effect on the eigenvalue
statistics over a much larger distance.

This agrees qualitatively with the discrepancy Miller observed. We go on to
discuss two ways to determine the relevant parameters which lead not just to
qualitative but also quantitative agreement.

In the following sections we give some background information on elliptic curves
(section 2.1), detail the anomalous zero statistics observed by Miller in [50] (section
2.2) and set out the new model (section 3). The model involves selecting from
SO(2N) those matrices whose characteristic polynomial at 1 is larger than some
given cut-off value (section 5.1). We apply the model with two matrix sizes: one
the standard value related to the mean density of zeros and one an effective matrix
size determined from lower-order terms of the one-level density (section 4). We
present numerical evidence for our model using the distribution of the first zero of
a family of elliptic curve L-functions (sections 5.2, 5.3) and also using the one-level
density statistic for the excised ensemble of matrices (section 6).

2. Elliptic curve L-functions

2.1. Background. An elliptic curve E can be written in Weierstrass form as

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6, ci ∈ Z. (2.1)

The L-function LE(s) associated with E is given by the Dirichlet series

LE(s) =

∞∑

n=1

λ(n)

ns
, (2.2)

where the coefficients (λ(n) = a(n)/
√
n, with a(p) = p + 1 − #E(Fp), #E(Fp)

being the number of points on E counted over Fp), have been normalized so that
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the functional equation relates s to 1− s:

LE(s) = ω(E)

(
2π√
M

)2s−1
Γ(3/2− s)

Γ(s+ 1/2)
LE(1− s). (2.3)

Here M is the conductor of the elliptic curve E; for convenience we will consider
only prime M . Also, ω(E) is +1 or −1 resulting, respectively, in an even or
odd functional equation for LE . There is a Generalized Riemann Hypothesis for
L-functions of elliptic curves, stating that the non-trivial zeros of LE(s) lie on
the critical line (with real part equal to 1/2). The even (odd) symmetry of the
functional equation implies an even (odd) symmetry of the zeros around the central
point s = 1/2, where the critical line crosses the real axis. Often when we consider
zeros statistics of a family of L-functions we are particularly interested in the zeros
close to the central point.

The family of elliptic curve L-functions for which numerical evidence is presented
in this paper is that of quadratic twists of a fixed curve E. Let LE(s, χd) denote
the L-function obtained by twisting LE(s) by a quadratic character χd. Here d is
a fundamental discriminant, i.e., d ∈ Z such that p2 ∤ d for all odd primes p and
d ≡ 1 mod 4 or d ≡ 8, 12 mod 16, and χd is the Kronecker symbol (an extension
of the Legendre symbol, taking the values 1, 0, or −1). The twisted L-function,
which is itself the L-function associated with another elliptic curve Ed, is given by

LE(s, χd) =

∞∑

n=1

λ(n)χd(n)

ns
=
∏

p

(
1− λ(p)χd(p)

ps
+
ψM(p)χd(p)

2

p2s

)−1

, (2.4)

where ψM is the principal Dirichlet character of modulus M :

ψM(p) =

{
1 if p ∤M

0 otherwise.
(2.5)

The functional equation of this L-function is, for (d,M) = 1,

LE(s, χd) = χd(−M)ω(E)

(
2π√
M |d|

)2s−1
Γ(3/2− s)

Γ(s+ 1/2)
LE(1− s, χd). (2.6)

The sign of this functional equation is χd(−M)ω(E) and it is more instructive
to restrict to the fundamental discriminants which, for a fixed E, give an even, or
alternatively an odd, functional equation for LE(s, χd). In particular, the families
we will consider in this paper will be denoted F+

E (X): those quadratic twists
of the curve E that have an even functional equation and 0 < d ≤ X (or else
−X ≤ d < 0). In the appropriate asymptotic limit, zero statistics of families of
L-functions of elliptic curves with even functional equation are believed to follow
the distribution laws of eigenvalues of the even orthogonal group SO(2N) and
those with odd functional equation are expected to show SO(2N + 1) statistics.4

The asymptotic parameter of the family F+
E (X) is X . The conductor of LE(s, χd)

is Md2, if M is the conductor of the original curve, and so d is the parameter
that orders the curves by conductor. It is expected that as X → ∞ the zero
statistics of F+

E (X) tend to the large-N limiting statistics of eigenvalues from

4If the family has rank then we must modify the random matrix ensemble as in Footnote 1.
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SO(2N) in accordance with the Katz-Sarnak philosophy. We propose a model for
the behaviour of zero statistics for finite X .

Key to this model are formulæ of Waldspurger [60], Kohnen-Zagier [44] and
Baruch-Mao [3] which show that modular L-functions can only attain discrete
values at the centre of the critical strip. In particular we have for the twists of an
elliptic curve L-function

LE(1/2, χd) = κE
cE(|d|)2
d1/2

, (2.7)

where cE(|d|) are integers and the Fourier coefficients of a weight-3/2 modular
form and κE is a constant depending on the curve E.

2.2. Unexpected repulsion. In 2006 S. J. Miller [50] investigated the statistics
of the zeros of various families of elliptic curve L-functions. Figure 2 gives an
example of what he discovered. It shows a histogram of the first zero above
the central point for rank zero elliptic curve L-functions generated by randomly
selecting the coefficients c1 up to c6 (as defined in (2.1)) for curves with conductors
in the ranges indicated in the caption. The zeros are scaled by the mean density
of low zeros of the L-functions and the plots are normalized so that they represent
the probability density function for the first zero of L-functions from this family.
Miller observes that there is clear repulsion of the first zero from the central point;
that is, the plots drop to zero at the origin, indicating a very low probability of
finding an L-function with a low first zero.
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Figure 2. First normalized zero above the central point: Left: 750
rank 0 curves from y2+a1xy+a3y = x3+a2x

2+a4x+a6, log(cond) ∈
[3.2, 12.6], median = 1.00, mean = 1.04, standard deviation about
the mean = .32. Right: 750 rank 0 curves from y2+a1xy+a3y = x3+
a2x

2 + a4x+ a6, log(cond) ∈ [12.6, 14.9], median = .85, mean = .88,
standard deviation about the mean = .27

What is surprising about these plots is that the standard way to model such
L-functions would be with matrices from SO(2N), with N chosen to be equal
to half the logarithm of the conductor of the curve. This choice of N has the
effect of equating the density of eigenvalues to the density of zeros near the crit-
ical point and there has been much work showing, for the Riemann zeta func-
tion [15, 17–19, 22, 27, 29, 31, 33, 42, 47] and for families of L-functions not neces-
sarily associated with elliptic curves [7,8,10–14,16,17,34,43,58], that this can be
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effective at modelling number-theoretic data even far from the asymptotic limit
specified by Katz and Sarnak. However, as figure 3 illustrates, even for small-size
SO(2N) matrices, the distribution of the eigenvalue closest to 1 on the unit circle
(the random matrix equivalent to the distribution of the first zero of L-functions)
shows no repulsion at the origin of the distribution —a fact of course well-known
in random matrix theory.

1.0
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2.0

0.0

0.25

1.75

1.5

s

0.75

0.5

1.81.61.41.21.00.80.60.40.20.0

Figure 3. Probability density of normalized eigenvalue closest to
1 for SO(8) (solid), SO(6) (dashed) and SO(4) (dot-dashed).

This, then, is the mystery. No one doubts that in the large-conductor limit the
distribution of the first zero of elliptic curve L-functions will tend to the large-N
limit of the distribution of the first eigenvalues of SO(2N) matrices: Miller observes
(see figure 2) that the repulsion decreases with increasing conductor. However, for
finite conductor we do not get qualitative agreement with the statistics of finite-
sized matrices, as we do in many other families of L-functions. Indeed one sees
a qualitatively unexpected phenomenon, namely, repulsion of zeros away from
the central point. In section 3 we outline an idea that successfully models the
anomalous statistical behaviour discovered by Miller.

In this paper we concentrate on developing a model for the unexpected zero
statistics of rank zero curves seen in figure 2. However, it should be noted that
Miller [50] also investigated zeros of higher rank curves and the behaviour of zeros
further from the central point, which will guide future attempts to model statistics
of L-functions associated to elliptic curves of higher rank. Briefly, the numerical
findings were the following:
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(1) The repulsion of the low-lying zeros increased with increasing rank, and
was present even for rank 0 curves.

(2) As the conductors increased, the repulsion decreased.
(3) Statistical tests failed to reject the hypothesis that, on average, the first

three zeros were all repelled equally (i. e., shifted by the same amount).

3. The model

We propose to model the zero statistics of rank-zero elliptic curve L-functions
with the subset TX of SO(2N) defined in the introduction. The justification
for employing an excised random matrix model such as this is that formula (2.7)
indicates that the L-functions themselves have a discretization at the central point.
Thus the statement

LE(1/2, χd) <
κE
d1/2

(3.1)

implies that
LE(1/2, χd) = 0. (3.2)

Hence, each LE(s, χd) ∈ F+
E associated with a rank 0 curve Ed satisfies

LE(1/2, χd) ≥
κE
d1/2

. (3.3)

Thus, since previous work [10, 13, 14, 43] shows that values of L-functions at the
central point can be characterized using characteristic polynomials evaluated at
the point 1, to model rank 0 curves we discard from our orthogonal ensemble all
matrices not satisfying (3.4) and we will propose a value of X based on (3.3). For
a start, if we are working with discriminants of size around d then equating the

density of eigenvalues, N/π, with that of zeros near the central point, 1
π
log(

√
Md
2π

),
gives us an equivalent value of N : Nstd ∼ log d. Since the L-values are discretized
on a scale of 1/

√
d, we “excise” (i. e., discard), characteristic polynomials whose

value at 1 is of the scale exp(−Nstd/2).
Thus, for certain values of N we plan to model elliptic curve zero statistics using

matrices from SO(2N) satisfying

|ΛA(1, N)| ≥ expX = c× exp(−Nstd/2), (3.4)

and we will propose a value for c in section 5.1. We present the model for the
zero statistics using two different matrix sizes. One obvious choice is N = Nstd

and we present data for this case in section 5.2. The other choice is an “effective”
matrix size, Neff , that incorporates arithmetic information and is based on an
idea of Bogomolny, Bohigas, Leboeuf and Monastra [5]. We illustrate how Neff is
calculated in section 4 and present the numerical results of the model in section 5.3.
In this paper we compare this model with numerical data from a family of twists
of one particular elliptic curve, E11.

4. lower-order terms and the effective matrix size

By the Katz-Sarnak philosophy the statistical properties of zeros of L-functions
should asymptotically behave like the scaling limits of eigenvalues of random ma-
trices drawn from one of the classical compact groups. However, for finite values of
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the asymptotic parameter we observe deviations (of number-theoretic origin) from
the limiting result. We note that for many families of L-functions these deviations,
at least over length scales on the order of the mean spacing of zeros, are slight
perturbations of the limiting results, in contrast to the elliptic curve case where
we see distinct, qualitative disagreement (the repulsion at the central point).5

In this section we adapt the method of Bogomolny, Bohigas, Leboeuf and
Monastra [5], previously used to investigate statistics of zeros of the Riemann
zeta function at a finite height on the critical line, and apply it to the family
F+

E (X) of elliptic curve L-functions.
Specifically, Bogomolny et al. use a conjectured formula for the two-point cor-

relation function of the Riemann zeros at finite height on the critical line [6] and
compare it to the finite-N form of the two point correlation function of unitary
matrices from U(N). Under the standard procedure of equating mean densities of
eigenvalues with the mean density of zeros, yielding in this case

N = log

(
T

2π

)
, (4.1)

the leading order term of these two formulæ match up, but Bogomolny et al. show
that by looking at a scaled version of the statistic and then choosing an “effective”
matrix size, related to N by multiplication by a constant of arithmetic origin, they
can match the first lower-order term in the formulæ. By scaling a further variable
they match yet another lower-order term, although this step requires that the con-
sidered Riemann zeros be high lying, a point we will return to later. The authors
illustrate with comprehensive numerical results that with each successive refine-
ment the fit of the random-matrix model to the Riemann zero data significantly
improves. What is remarkable about this is that they don’t just see good numeri-
cal agreement in the two-point correlation statistic, where good agreement is to be
expected as terms were matched by design, but also in the nearest-neighbour spac-
ing distribution. The nearest neighbour spacing statistic is the probability density
for distances between consecutive zeros, or equivalently, a normalized histogram
of gaps between consecutive zeros. The argument is that the corrections to the
asymptotics in the form of Neff and the further scaling factor is also valid for all
correlation functions, and therefore also for the nearest neighbour spacing. The
strength of this work is that using this heuristic approach the information gained
from a simpler statistic (two-point correlation) yields information for a more com-
plicated one (nearest-neighbour spacing)—the latter one being determined by all
correlation functions together.

In the following we adopt the above method and apply it to the case of F+
E (X).

In this case we have a conjectural formula for the one-level density for the scaled
zeros of F+

E (X), as derived in [37, 38]. For our purposes this is best given as the

5Random matrix theory does not see the fine arithmetic properties of the family, which surface
in the lower-order terms. Thus, while the main terms of various families of elliptic curves are
the same, the lower-order terms show differences due, for instance, to complex multiplication or
torsion points; see [51].
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following expansion for large X (equation (3.18) in [37]):

1

X∗

∑

0<d≤X
χd(−M)ωE=+1

∑

γd

g
(γdL
π

)

=

∫ ∞

−∞
g(τ)

(
1 +

sin(2πτ)

2πτ
− r1

1 + cos(2πτ)

L
− r2

πτ sin(2πτ)

L2

)
dτ +O

(
1

L3

)

(4.2)

with

L = log

(√
MX

2π

)
, (4.3)

where γd is the imaginary part of a generic zero of LE(s, χd), the sum is over
fundamental discriminants d, and X∗ is the number of fundamental discriminants
satisfying the conditions on the sum. The coefficients r1 and r2 in (4.2) are arith-
metic constants involving the Dirichlet coefficients of LE(s); see [37] for details.

As expected the result (4.2) has the form of the asymptotic random-matrix
result

R̃1(s) = 1 +

(
sin 2πs

2πs

)
(4.4)

for the even orthogonal group, plus correction terms. We compare this expansion
with the one we obtain by expanding the scaled one-level density of SO(2N) for
finite N . The unscaled one-level density of SO(2N) is (see, for example, [9])

R1(s) =
2N − 1

2π
+

sin((2N − 1)s)

2π sin s
, (4.5)

and so scaling by the mean density and expanding in powers of 1/N gives

π

N
R1

(πy
N

)
= 1 +

sin(2πy)

2πy
− 1 + cos(2πy)

2N
− πy sin(2πy)

6N2
+O

(
1

N3

)
. (4.6)

By choosing an effective matrix size

Neff =
L

2r1
(4.7)

we match the next-to-leading term in (4.2) and (4.6). Arguing as Bogomolny et
al. we conjecture that the improvement made by using matrices of size Neff also
holds for all n-point correlation or density functions. In particular we apply this
result to the distribution of the lowest zero and see significantly better agreement
in the bulk and tail of the distribution when we use Neff as opposed to the use of
the standard matrix size Nstd = L.

We illustrate the effect of Neff in figure 4. We choose the elliptic curve E11

((c1, c2, c3, c4, c6) = (0,−1, 1, 0, 0) in Weierstrass form) and find numerically that,
for this curve,

r1 ≈ 2.8600. (4.8)
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We used Rubinstein’s lcalc [56] to compute the lowest zero of the quadratic twists
LE11(s, χd) with even functional equation and with fundamental discriminants d,
0 < d ≤ X = 400,000. The standard matrix size corresponding to X = 400,000 is

Nstd = log

(√
11X

2π

)
≈ 12.26, (4.9)

whereas the effective one is

Neff =
Nstd

2r1
≈ 2.14. (4.10)

The distribution of the lowest zero (a normalized histogram of the heights of

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Figure 4. Distribution of the lowest zero for LE11(s, χd) with 0 <
d ≤ 400,000 (bar chart), distribution of the lowest eigenvalue of
SO(2N) with Neff = 2.14 (solid), standard Nstd = 12.26 (dots).

the lowest zero of each L-function in the family) is then depicted (for rank-zero
curves) as a bar chart in figure 4 whereas the distribution of the lowest eigenvalue
of SO(2N) with ‘effective’ matrix size Neff is the solid curve and the one with
‘standard’ matrix size Nstd is the dotted curve. The distribution of the lowest
eigenvalue is related to the solution of a non-linear ordinary differential equation
of Painlevé VI (see [23]). The curves for Neff and Nstd in figure 4 are computed
for these non-integral values of N by establishing a numerical differential equation
solver for Painlevé VI, which is developed in [20].

We observe from figure 4 that the distribution of the lowest eigenvalue of
SO(2Neff) mimics the distribution of the lowest zero of rank-zero curves from
F+

E (X) much better both in the bulk and in the tail of the distribution than
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SO(2Nstd). However, near the origins we still find a large discrepancy. We address
this discrepancy in the next section.

Substituting Neff into (4.6) we obtain:

π

Neff
R1

(
πy

Neff

)
=

(
1 +

sin(2πy)

2πy

)
−r1

1 + cos(2πy)

L
− 4r21

6

πy sin(2πy)

L2
+O

(
1

L3

)
.

(4.11)
With the substitution N = Neff the scaled one-level density of SO(2N) now agrees
with our conjectural answer (4.2) for that of F+

E (X) in the leading and next-to-
leading order term. The method of Bogomolny et al. indicates how to proceed
to find agreement down to the next order term of order L−2. However, with our
available data for twists up to X = 400,000 we are not working with sufficiently
large X to proceed further with their method. For completeness, the details are
worked out in [36].

5. Cut-off value for the excised ensemble

5.1. Calculating the cut-off value. We now develop an argument to determine
the cut-off value c in (3.4). In [13] and [14], Conrey, Keating, Rubinstein and
Snaith developed a method using random matrix theory to conjecture the asymp-
totic order of the number of L-functions in a family such as F+

E (X) that vanish at
the central point; alternatively, this is equivalent, on the Birch and Swinnerton-
Dyer conjecture, to the asymptotic order of the number of curves of rank 2 or
higher in the associated family of elliptic curves. Numerical tests support the
prediction for the order, but the associated proportionality constant could not
be determined. We will use numerical findings in those papers and the method
introduced there to arrive at the cut-off value c.

We begin by reviewing the method of [13], modifying it to meet our current
purpose. Adjusting slightly the notation of [13] to ours, let

ME(X, s) =
1

X∗

∑

0<d≤X

LE (s,χd)∈F
+
E

(X)

LE(1/2, χd)
s, (5.1)

where X∗ = #{0 < d ≤ X | LE(s, χd) ∈ F+
E (X)} is the number of terms in the

sum above. Following the philosophy set out in [42] and [43] we expect that, for
large X and N ∼ logX ,

ME(X, s) ∼ as(E)MO(N, s), (5.2)

where

MO(N, s) =

∫

SO(2N)

ΛA(1, N)s dA (5.3)



14 DUEÑEZ, HUYNH, KEATING, MILLER, AND SNAITH

and as(E) is an arithmetical expression depending on the Dirichlet coefficients
λ(p) of the curve E:

as(E) =

[
∏

p

(
1− 1

p

)s(s−1)/2
]

×
[
∏

p∤M

p

p+ 1

(
1

p
+

1

2

[
Lp

( 1

p1/2

)s
+ Lp

( −1

p1/2

)s]
)]

×LM

(±ω(E)
M1/2

)s
.

(5.4)

This holds for prime conductor M , where ω(E) is the sign of the functional equa-
tion of LE(s). For our purposes, the ± in the last line above must actually be +,
corresponding to twists by positive fundamental discriminants 0 < d ≤ X (the −
sign corresponds to twists by negative fundamental discriminants −X ≤ d < 0).
We define

Lp(z) =

∞∑

n

λ(pn)zn = (1− λ(p)z + ψM (p)z2)−1, (5.5)

with ψM(p) given at (2.5).
In (5.2),MO(N, s) denotes the moment generating function of the values |ΛA(1, N)|

as A varies in the random matrix ensemble SO(2N) (the sth moment is the ex-
pected value of |ΛA(1, N)|s). For Re(s) > −1/2, MO(N, s) can be explicitly eval-
uated [43] as

MO(N, s) =

∫

SO(2N)

ΛA(1, N)s dA = 22Ns

N∏

j=1

Γ(N + j − 1)Γ(s+ j − 1/2)

Γ(j − 1/2)Γ(s+ j +N − 1)
. (5.6)

Thus, from (5.6), we have information about the value distribution of the charac-
teristic polynomials. More precisely, we have, for c > 0, that

PO(N, x) =
1

2πix

∫ c+i∞

c−i∞
MO(N, s)x

−sds; (5.7)

here PO(N, x) denotes the probability density for values of the characteristic poly-
nomials ΛA(1, N) with A ∈ SO(2N).

For small x > 0, the regime of our interest, the major contribution in the integral
on the right side of (5.7) comes from the simple pole at s = −1/2 in (5.6), thus

PO(N, x) ∼ x−1/2h(N) (5.8)

where

h(N) = Res
s=−1/2

MO(N, s) = 2−NΓ(N)−1
N∏

j=1

Γ(N + j − 1)Γ(j)

Γ(j − 1/2)Γ(j +N − 3/2)
. (5.9)

We also make use, for large N , of the asymptotic

h(N) ∼ 2−7/8G(1/2)π−1/4N3/8, (5.10)

where G is the Barnes G-function [2].
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Notice that PO(N, x) dx is the probability that a characteristic polynomial
ΛA(1, N) of A ∈ SO(2N) takes a value between x and x+ dx. Hence

Prob(0 ≤ ΛA(1, N) ≤ ρ) =

∫ ρ

0

PO(N, x)dx. (5.11)

With (5.8) we have for small x that

Prob(0 ≤ ΛA(1, N) ≤ ρ) ∼
∫ ρ

0

x−1/2h(N)dx = 2ρ1/2h(N). (5.12)

We now define another probability density PE(d, x). Due to (5.2), we expect that
this is in some sense a smooth approximation to the probability density for elliptic
curve L-values from F+

E (X) which have fundamental discriminants around d. We
define, in analogy with (5.7),

PE(d, x) :=
1

2πix

∫ c+i∞

c−i∞
as(E)MO(log d, s)x

−sds ∼ a−1/2(E)PO(log d, x). (5.13)

The final approximation above holds for small x; it is obtained by shifting the line
of integration left past the pole at s = −1/2 and picking up the respective residue
of the integrand.

As described in section 3, the formula of Waldspurger et al. (2.7) implies a
discretization of central L-values for elements from F+

E (X) given by

LE(1/2, χd) = 0 whenever LE(1/2, χd) <
κE√
d
. (5.14)

By calculating the probability that a random variable, Yd, with probability density
PE(d, x), takes a value less than κE/

√
d and summing over d up to X , the authors

in [13] and [14] predicted the correct order of magnitude for the number of L-
functions that vanish at the central point (see Conjecture 5.1 of [14]). However,
the constant factor could not be predicted correctly to agree with the numerical
data. Since their cut-off value κE/

√
d did not give the correct number of vanishing

L-functions, we will presently work backwards and use the numerically calculated
number of L-functions that are zero at the central point (numerical data from [14])
to deduce an “effective” cut-off δ·κE√

d
that does give the correct answer, for some

δ > 0. Thus we repeat the calculation of [13] but with the modified cut-off value.
We have

Prob

(
0 ≤ Yd ≤

δ · κE√
d

)
∼
∫ δκEd−1/2

0

a−1/2(E)x
−1/2h(log d)dx

= 2a−1/2(E)

(
δ · κE√

d

)1/2

h(log d).

(5.15)
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Now we follow [13] and conjecture that

#{LE(s, χd) ∈ F+
E (X), d prime : LE(1/2, χd) = 0} =

∑∗

d≤X
d prime

Prob

(
0 ≤ Yd ≤

δκE√
d

)

∼ 1

4 logX

⌊X⌋∑

n=1

2a−1/2(E)

(
δκE√
n

)1/2

h(logX), (5.16)

where the starred sum means that d is restricted to prime fundamental dis-
criminants for which χd(−M)ω(E) = +1 (of which, asymptotically, there are
X/(4 logX) of size at most X). Using (5.10), we get

#{LE(s, χd) ∈ F+
E (X), d prime : LE(1/2, χd) = 0}

∼ 1

4 logX
· 2 a−1/2(E)

√
κE 2−7/8G(1/2)π−1/4(logX)3/8δ1/2 · 4

3
X3/4. (5.17)

We wish to obtain a numerical value for δ. We would like to thank Michael
Rubinstein for sharing his data from [14] on the number of L-functions that vanish
at the central point. For a large number of elliptic curve families he computes the
left side of (5.17) and divides it by

1

4
a−1/2(E)

√
κEX

3/4(logX)−5/8. (5.18)

The results are plotted (see [14]) as a function of X ; the curves flatten out and
seem to approach a constant value. One such constant is:

0.2834620 for E = 11Ar (5.19)

where the nomenclature of the elliptic curve being twisted to form the family refers
to Table 3 of [14]. We will refer to this family as twists of E11.

Thus for twists of E11 we have

8
3
2−7/8G(1/2)π−1/4δ1/2 ≈ 0.2834620. (5.20)

With G(1/2) evaluated as approximately 0.603244, we have

δ ≈ 0.185116. (5.21)

For this family we have

κE = 6.346046521 and a−1/2(E) = 0.732728078. (5.22)

Thus, with δ given in (5.21) and κE in (5.22), we take the ‘effective’ cut-off to be

δ · κE = 1.17475. (5.23)

That is, when modeling the distribution of L-values with PE(d, x), as described

in [13], integrating up to the value of δκE/
√
d gives the correct number of L-

functions taking the value zero at the central point.
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5.2. Numerical evidence for the cut-off value: Standard Nstd. The proba-
bility densities PE and PO are related, for small values of x (see (5.8) and (5.13)),
by

PE(d, x) ∼ PO

(
Nstd, a

−2
−1/2(E)x

)
(5.24)

when Nstd ∼ log d. Thus a cut-off of δκE/
√
d applied to PE(d, x) scales to

cstd × exp(−Nstd/2) := a−2
−1/2(E) δ κE × exp(−Nstd/2) (5.25)

for the distribution of values of characteristic polynomials of matrices of size Nstd.
Substituting the numerical values we obtain

cstd ≈ 2.188. (5.26)

We now present data using the standard matrix size Nstd to model the zero
statistics. Although we expect that the excised orthogonal ensemble models L-
functions with discriminant around the valueX , for numerical tests we take all d ≤
X and set Nstd ∼ logX so that we have a substantial data set.

As mentioned in section 4, and illustrated in figure 4, eigenvalues of SO(2N)
matrices with N ∼ logX do not give particularly good agreement with the sta-
tistics of zeros of L-functions from F+

E (X). The procedure of excising matrices
with small values of |ΛA(1, N)| from the ensemble does not substantially change
the bulk of the distribution. However, for E11, we illustrate in figure 5 how we can
scale the mean of the distribution of the first eigenvalue to obtain better agree-
ment. The distribution of the first zero of even quadratic twists of LE11(s) by
prime discriminants between 0 and 400,000 has a mean of 0.4081. The distribu-
tion of the first eigenvalue of 3×106 matrices from SO(2Nstd) conditioned to have
ΛA(1, Nstd) ≥ 2.188 × exp(−Nstd/2), with Nstd = 12 (≈ log(

√
11 400,000/2π))

was found to be 0.365; deviation from the distribution of the first critical zero of
the quadratic twists is quite visible, as illustrated in the left graphic of figure 5.
Rescaling the random-matrix mean to match that of the L-function zeros gives
the graphic on the right side of figure 5, showing much better agreement. The
cumulative plot of the scaled distribution is shown in figure 6.

Working with the mean-scaled RMT results for N = Nstd, we test various values
of c in (3.4). We measure the agreement with the zero distribution by averaging the
absolute value of the difference between the cumulative distribution of the zeros
and the cumulative distribution of the eigenvalues at a set of evenly spaced points
(the blue crosses on figure 6). The plot of the difference between the cumulative
distributions versus the cut-off parameter is shown in figure 7, where c varies along
the horizontal axis. We see a minimum at cstd = 2.188; this is the value predicted
in section 5.1 and is marked with a dotted vertical line.

Initially we thought that an equally plausible way to calculate a cut-off value
would be to equate not the probability densities, as in (5.24), but rather the prob-
ability of finding an L-value of zero with the probability of discarding a random
matrix on the basis of the condition (3.4). Equating probabilities would lead to a
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Figure 5. Probability density of the first eigenvalue from 3 × 106

numerically generated matrices A ∈ SO(2Nstd) with |ΛA(1, Nstd)| ≥
2.188 × exp(−Nstd/2) and Nstd = 12 (red dots) compared with the
first zero of even quadratic twists LE11(s, χd) with prime fundamen-
tal discriminants 0 < d ≤ 400,000 (blue crosses). In the left picture
the random matrix data is not scaled, in the picture on the right
the mean of the distribution is scaled to match that of the zero data.
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Figure 6. Cumulative probability density of the first eigenvalue
from 3 × 106 numerically generated matrices A ∈ SO(2Nstd) with
|ΛA(1, Nstd)| ≥ 2.188× exp(−Nstd/2) and Nstd = 12 (red dots) com-
pared with the first zero of even quadratic twists LE11(s, χd) with
prime fundamental discriminants 0 < d ≤ 400,000 (blue crosses).
The random matrix data is scaled so that the means of the two
distributions agree.

calculation such as
∫ δκE/

√
d

0

PE(d, x)dx ∼
∫ δκE/

√
d

0

a−1/2(E)x
−1/2h(log d) dx

=

∫ a2
−1/2

(E)δκE/
√
d

0

y−1/2h(Nstd) dy

∼
∫ a2

−1/2
(E)δκE/

√
d

0

PO(Nstd, y) dy,

(5.27)
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Figure 7. A measure of the difference between the mean-scaled
cumulative distribution of the first eigenvalue of the excised random
matrix model (5.26) with Nstd = 12 for various values of c and the
cumulative distribution of the first zero of even quadratic twists
LE11(s, χd) with prime fundamental discriminants 0 < d ≤ 400,000.
The values cstd = 2.188 is marked with a vertical line.

implying a cut-off of

a2−1/2(E)δκE exp(−Nstd/2) ≈ 0.6307 exp(−Nstd/2). (5.28)

From figure 7 we see that c = 0.6307 certainly does not minimize the error between
the excised random matrix model and the zero statistics.

It is noteworthy that matching probability densities, rather than probabilities,
appears to be the correct model. Taking the cut-off value cstd that best models
the zero data (as calculated at the beginning of this section by matching densities)
means that the proportion of the matrices that are being excluded by the condition
(3.4) is not the same as the proportion of L-functions from our family of quadratic
twists that are excluded from the zero statistics because they have rank higher than
zero. The reason for this, and whether the excluded matrices might potentially
model the L-functions associated with the higher-rank curves, are topics for future
investigation.

5.3. Numerical evidence for the cut-off value: Neff . The excised model can
be applied using orthogonal matrices of any even size 2N . We will presently use a
method identical to that in the previous section; however, now we find the cut-off
for matrices of size N = Neff (which was calculated in section 4). We recall the
shape of PO(N, x) for small x and large N , equations (5.8) and (5.10), and see

PE(d, x) ∼ a−1/2x
−1/2h(log d) ∼ a−1/2x

−1/2h(2r1Neff)

∼ a−1/2x
−1/2(2r1)

3/8h(Neff)

∼ PO

(
Neff , a

−2
−1/2(E) (2r1)

−3/4x
)
.

(5.29)

Thus a cut-off of δκE/
√
d applied to PE(d, x) scales to

ceff × exp(−Nstd/2) := a−2
−1/2(E)(2r1)

−3/4 δ κE × exp(−r1Neff) (5.30)
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for the distribution of values of characteristic polynomials of matrices of size Neff .
Plugging in the numerical values we obtain, with r1 = 2.8600 for E11 (given at
(4.8))

ceff ≈ 0.5916. (5.31)

For this matrix size we use the cut-off value c = ceff in (3.4).
We now compare data for zeros of elliptic curve L-functions to matrices of

size Neff .
We note here that, although the most accurate description of our expectation is

that the excised orthogonal ensemble models L-functions with discriminant around
the value d when Neff ∼ log d/(2r1), for numerical tests we take all d in an interval
such as 0 < d ≤ X and set Neff ∼ logX/(2r1). This is the most effective way to
acquire enough data to have good resolution in the plots.

For E11 we have computed zeros of even twists LE11(s, χd) for prime d between 0
and 400,000 which do not vanish at the central point. We compare the distribution
of the first zero above the critical point of these L-functions with the numerically
generated distribution of first eigenvalues of 3 × 106 matrices from the excised
ensemble SO(4) (in section 4 we computed Neff = 2.14) for various values of the
cut-off c. Figure 8 shows the probability density and the cumulative probability
density of first zeros and eigenvalues for ceff = 0.5916. In contrast to modeling with
matrices of size Nstd, here we do not scale the mean of the distribution; however,
for those interested, we note that the probability density of the zeros has mean
0.4081 and the probability density of the eigenvalues has mean 0.4234.
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Figure 8. Probability density (left) and cumulative probability
density (right) of the first eigenvalue from 3 × 106 numerically
generated matrices A ∈ SO(2Neff) with |ΛA(1, Neff)| ≥ 0.5916 ×
exp(−r1Neff) and Neff = 2 (red dots) compared with the first zero of
rank zero even quadratic twists LE11(s, χd) with prime fundamental
discriminants 0 < d ≤ 400,000 (blue crosses).

In figure 9 we plot a measure of the difference between the first zero distribution
and the distribution of the first eigenvalue for various values of the cut-off c. Here
the error is calculated by summing the absolute value of the difference between
the cumulative distribution of the zeros and the cumulative distribution of the
eigenvalues at a set of evenly spaced points (the positions of the blue crosses in
figure 8) and dividing by the number of points. We see a minimum at ceff = 0.5916;
this is the value predicted in section 5.1 and is marked with a dotted vertical line.
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Figure 9. A measure of the difference between the cumulative dis-
tribution of the first eigenvalue of the excised random matrix model
(3.4), as c varies along the horizontal axis, and the cumulative distri-
bution of the first zero of rank zero even quadratic twists LE11(s, χd)
of with prime fundamental discriminants 0 < d ≤ 400,000. The
value ceff = 0.5916 is marked with a vertical line.

As in the previous section, another possible model is to equate probabilities
rather than probability densities. For Neff this leads to

c = (2r1)
3/4a2−1/2(E)δκE ≈ 2.3328. (5.32)

Again, from figure 9 we see that this does not come close to minimizing the error.

5.4. Excised model and the one-level density. In section 4 we provided evi-
dence that the lower-order terms of the one-level density of F+

E (X) determine an
effective matrix size Neff such that the distribution of first eigenvalues of SO(2Neff)
models the bulk and tail of the distribution of first zeros of F+

E (X). In sections 5.1–
5.3 we discussed how to obtain an appropriate cut-off value for the characteristic
polynomial ΛA at 1 with A ∈ SO(2N) so that the distribution of first eigenvalues
of this subset of SO(2N) models the region at and near the origin of the distribu-
tion of first zeros of F+

E (X). Here the matrix size is either the effective one, i.e.,
N = Neff or the standard one, i.e., N = Nstd. In the first case no further scaling
is undertaken whereas in the latter one we match mean densities of SO(2Nstd) to
F+

E (X) to achieve qualitative and quantitative agreement throughout the origin,
bulk and tail between the cumulative distribution of first eigenvalues of SO(2N)
and cumulative distribution of first zeros of F+

E (X). In this section we explore
to what extent the values for the matrix size and the cut-off value on the char-
acteristic polynomial used for the distribution of first eigenvalues (to model the
distribution of first zeros) can be applied to the one-level density of eigenvalues
(to model the one-level density of zeros). We compare zero data of the fam-
ily F+

E (X) of quadratic twists LE11(s, χd) with prime fundamental discriminants
0 < d < X = 400, 000 to eigenvalue statistics of random matrices from SO(2N)
for two values of N . Figure 10 depicts as a red solid line the one-level density of
matrices A from SO(2Nstd) with characteristic polynomials constrained to obey
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Figure 10. Red solid line: One-level density of 9.12× 106 numeri-
cally generated matrices from SO(2Nstd) and cut-off |ΛA(1, Nstd)| ≥
2.188 × exp(−Nstd/2) = 0.005424, scaled so that the mean of the
first eigenvalue matches that of the first zero. Black dotted line:
One-level density of 9.8 × 106 numerically generated matrices from
SO(2Neff) and cut-off |ΛA(1, Neff)| ≥ 0.5916 × exp(−Nstd/2) =
0.001466. Blue crosses: One-level density for zeros of even quadratic
twists LE11(s, χd) with prime fundamental discriminant between 0
and 400,000.

|ΛA(1, Nstd)| ≥ 2.188 × exp(−Nstd/2) = 0.005424 with Nstd = 12. We obtained
this by generating 9.12× 106 matrices from SO(24). This one-level density on the
random matrix theory (RMT) side has been scaled, in the horizontal direction,
with the scaling factor 0.4081/0.365 = 1.118 which we obtained numerically when
comparing with the distribution of the first zeros in section 5.2. The one-level
density of matrices A from SO(2Neff) with Neff = 2 where the characteristic poly-
nomials are constrained to obey |ΛA(1, Neff)| ≥ 0.5916×exp(−Nstd/2) = 0.001466
is depicted as a dotted line. We obtained this by generating 9.8 × 106 matrices
from SO(4). No scaling of means has been undertaken in this case. The one-level
density for zeros of rank-zero, even quadratic twists of E11 with prime discrimi-
nant between 0 and 400 000 is depicted as blue crosses. In the Nstd case we find
correlation with the zero data over a wide range whereas in the Neff case we only
find some agreement up to the first unit mean spacing. Thereafter we see a clear
discrepancy.

In figure 11 we consider the associated cumulative distributions from figure 10.
Here we observe that the distributions of Nstd (red line) and the zero data (blue
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Figure 11. Cumulative distributions of one-level densities from
figure 10. Red solid line: numerically generated matrices from
SO(2Nstd), with scaling; dotted line: numerically generated matri-
ces from SO(2Neff); blue crosses: zeros of even quadratic twists
LE11(s, χd) with prime fundamental discriminants between 0 and
400,000.

crosses) track each other over a wide range, whereas the distributions of Neff

(dotted line) and the zero data (blue crosses) track each other only up to the first
unit spacing. Thereafter the behaviour of the zeros is not captured.
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Figure 12. Magnification of figure 11, i.e., cumulative distribu-
tions of one-level densities from figure 10. Red solid line: numeri-
cally generated matrices from SO(2Nstd), with scaling; dotted line:
numerically generated matrices from SO(2Neff); blue crosses: zeros
of even quadratic twists LE11(s, χd) with prime conductor between
0 and 400,000.

Figure 12 is a magnification of figure 11. Here we observe that also the slope of
the zero data near the origin is nicely captured by the excised RMT model with
standard matrix size Nstd. This feature is not so clear in the Neff case.

In summary, to answer the question to what extent the values for the matrix
size and the cut-off value of the characteristic polynomial used to model the dis-
tribution of first zeros by the distribution of first eigenvalues can be applied to
the one-level density, we find that we achieve better agreement when choosing
the excised ensemble with standard matrix size (with the data scaled so that the
mean value of the first eigenvalue matches that of the first zero) than choosing
the excised ensemble with effective matrix size. In the latter case we only obtain
agreement up to the first unit mean spacing and in the former we get agreement
over a wide range. It should be noted here that we only require our model to
give useful predictions over a distance of one mean spacing, because further from
the origin we know from [37] that the one level density is strongly dominated by
arithmetic contributions that are accurately modelled by methods directly incor-
porating number theoretical information.
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6. One-level density for the excised random matrix model

In the previous sections we provided evidence that we can use eigenvalue statis-
tics of random matrices from the excised orthogonal ensemble to model the zero
statistics for the family F+

E (X) of even quadratic twists of a fixed elliptic curve

L-function. Our goal in this section is to compute the one-level density RTX

1 for
TX , the ensemble defined in the introduction. The main results are contained in
the three theorems set out in the introduction. We prove those theorems in this
section.

6.1. Proof of Theorem 1.1.

Proof. Consider

RTX

1 (θ1) := CX ·N
∫ π

0

· · ·
∫ π

0

H(log |ΛA(1, N)| − X )×

×
∏

j<k

(cos θj − cos θk)
2dθ2 · · · dθN , (6.1)

which is the one-level density for the set TX . Here H(x) denotes the Heaviside
function

H(x) =

{
1 for x > 0

0 for x < 0,
(6.2)

and CX is a normalization constant (which we discuss later). Next, we replace
in (6.1) the Heaviside function with its integral representation

H(x) =
1

2πi

∫ c+i∞

c−i∞

exp(rx)

r
dr, (6.3)

where c > 0, and observe that

ΛA(1, N) = ΛA(exp(iθ), N)

∣∣∣∣
θ=0

=
N∏

j=1

(1− exp(iθj))(1− exp(−iθj))

= 2N
N∏

j=1

(1− cos θj).

(6.4)

Thus, we have

H(log |ΛA(1, N)| − X ) =
1

2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r

N∏

j=1

(1− cos θj)
rdr. (6.5)

Substituting (6.5) into (6.1) gives

RTX

1 (θ1) =
CX
2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r
N

∫ π

0

· · ·
∫ π

0

N∏

j=1

(1− cos θj)
r×

×
∏

j<k

(cos θj − cos θk)
2dθ2 · · · dθN dr. (6.6)
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Now, observe that in (6.6) we have

N

∫ π

0

· · ·
∫ π

0

N∏

j=1

(1− cos θj)
r
∏

j<k

(cos θj − cos θk)
2dθ2 · · · dθN

= N

∫ π

0

· · ·
∫ π

0

N∏

j=1

w(r−1/2,−1/2)(cos θj)
∏

j<k

(cos θj − cos θk)
2dθ2 · · · dθN (6.7)

where w(α,β)(cos θ) = (1− cos θ)α+1/2(1+ cos θ)β+1/2 is the weight function for the
Jacobi ensemble of random matrices [24]. We now observe that

RJN
1 (θ1;α, β) =

∫ π

0

· · ·
∫ π

0

N∏

j=1

w(r−1/2,−1/2)(cos θj)
∏

j<k

(cos θj − cos θk)
2dθ2 · · · dθN

(6.8)
is the one-level density for the Jacobi ensemble JN . This completes the proof. �

6.2. Computation of the normalization constant CX . Recall that when in-
tegrating over SO(2N) with respect to the normalized Haar measure using Weyl’s
integration formula [61] the normalization constant CSO(2N) is determined by

1 =

∫

SO(2N)

dA = CSO(2N)

∫

[0,π]N

∏

j<k

(cos θj − cos θk)
2dθ1 · · · dθN . (6.9)

Selberg’s integral formula states that for integral N and complex r, s with Re(r),
Re(s) > −1/2

∫ π

0

dφ1 · · ·
∫ π

0

dφN

N∏

l=1

(1− cosφl)
r(1 + cosφl)

s
∏

1≤j<k≤N

(cosφj − cosφk)
2

= 2N(N+r+s−1) ×
N−1∏

j=0

Γ(2 + j)Γ(s+ 1/2 + j)Γ(r + 1/2 + j)

Γ(s+ r +N + j)
. (6.10)

Using (6.10) the normalization constant has the explicit form

CSO(2N) = 2−N(N−1)

N−1∏

j=0

Γ(N + j)

Γ(2 + j)Γ(1/2 + j)2
. (6.11)

Likewise, the normalization constant CX is determined by

1 = CX

∫

[0,π]N
H(log ΛA(1, N)− X )

∏

j<k

(cos θj − cos θk)
2dθ1 · · · dθN . (6.12)

Using (6.5) yields

CSO(2N)

CX
=
CSO(2N)

2πi

∫ c+i∞

c−i∞

∫

[0,π]N
dθ1 · · · dθNdα×

× 2Nα exp(−αX )

α

N∏

j=1

(1− cos θj)
α
∏

j<k

(cos θj − cos θk)
2. (6.13)
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Substituting (6.11) into (6.13) and applying Selberg’s integral formula (6.10) we
obtain

CSO(2N)

CX
=

1

2πi

∫ c+i∞

c−i∞

exp(−αX )

α
22Nα

N−1∏

j=0

Γ(N + j)Γ(α + 1/2 + j)

Γ(α +N + j)Γ(1/2 + j)
dα. (6.14)

The evaluation of (6.14) boils down to closing the contour to the left and to
computing the residues associated to the poles at α = 0 and the negative half
integers coming from the Γ(α + 1/2 + j)-term. The residue at the simple pole
α = 0 is 1 and the residue at the simple pole at α = −1/2 is

− 2 exp(X /2)2−N Γ(N)

Γ(N − 1/2)Γ(1/2)

N−1∏

j=1

Γ(N + j)Γ(j)

Γ(N + j − 1/2)Γ(1/2 + j)
. (6.15)

We denote the contribution to (6.14) from residues of higher order poles at αk =
−1−2k

2
with k = 1, 2, 3, . . . by

∑

k≥1

ak exp((k + 1/2)χ). (6.16)

Thus, we obtain

CSO(2N)

CX
= 1− exp(X /2)

2N−1

Γ(N)

Γ(N − 1/2)Γ(1/2)

N−1∏

j=1

Γ(N + j)Γ(j)

Γ(N + j − 1/2)Γ(1/2 + j)

+
∑

k≥1

ak exp((k + 1/2)χ).

(6.17)

Notice that when X → −∞ we have CX → CSO(2N), as expected. The regime
of interest for us is when X < 0. From (6.16) we see that the contributions of
residues of higher poles decrease exponentially for X < 0. The computation of
residues of higher order poles is easily done with a computer algebra system (we
used Mathematica). We find that for reasonable X we have good convergence
using about 10 poles. When using only the K rightmost poles the error term is
O(exp(−cKX )) with αK+1 < cK < αK . We refer to section 6.4 for the relevant
details. There we will also discuss the convergence of a series similar to (6.16).
We are then left to show that the contribution from closing the contour is 0. This
is indeed the case for exp(X ) < 22N = max[ΛA(1, N)] but we skip the calculation

here and instead also refer to section 6.4 as we do a similar computation for RTX

1

there.

6.3. Proof of Theorem 1.2.

Proof. We rewrite (6.6) so we can apply standard methods in the theory of or-
thogonal polynomials. First we consider the general Jacobi ensemble with weight
function (1− x)α(1 + x)β and then specialize to our setting with α = r− 1/2 and
β = −1/2. Notice that the weight function here differs slightly from the one in
section 1.
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Following Szegő [59] we define the Jacobi polynomials P
(α,β)
n (x), α, β > −1,

which satisfy
∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1 − x)α(1 + x)βdx = δnmh
(α,β)
n , (6.18)

where

h(α,β)n =
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α + β + 1)
. (6.19)

Changing to angular variables, (6.18) takes the equivalent form
∫ π

0

P (α,β)
n (cos θ)P (α,β)

m (cos θ)(1− cos θ)α+1/2(1+cos θ)β+1/2dθ = δnmh
(α,β)
n . (6.20)

Using the Vandermonde determinant and further matrix row and column oper-
ations we have

∏

j<k

(cos θk − cos θj) =

∣∣∣∣∣∣∣∣

1 cos θ1 cos2 θ1 . . . cosN−1 θ1
1 cos θ2 cos2 θ2 . . . cosN−1 θ2
...

...
...

. . .
...

1 cos θN cos2 θN . . . cosN−1 θN

∣∣∣∣∣∣∣∣

=
N−1∏

j=0

(h
(α,β)
j )1/2

ℓ
(α,β)
j

×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
√

h
(α,β)
0

P
(α,β)
0 (cos θ1)

1
√

h
(α,β)
1

P
(α,β)
1 (cos θ1) . . . 1

√

h
(α,β)
N−1

P
(α,β)
N−1 (cos θ1)

1
√

h
(α,β)
0

P
(α,β)
0 (cos θ2)

1
√

h
(α,β)
1

P
(α,β)
1 (cos θ2) . . . 1

√

h
(α,β)
N−1

P
(α,β)
N−1 (cos θ2)

...
...

. . .
...

1
√

h
(α,β)
0

P
(α,β)
0 (cos θN )

1
√

h
(α,β)
1

P
(α,β)
1 (cos θN ) . . . 1

√

h
(α,β)
N−1

P
(α,β)
N−1 (cos θN)

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(6.21)

where ℓ
(α,β)
j is the leading coefficient of the polynomial P

(α,β)
j :

ℓ
(α,β)
j = 2−j

(
2j + α + β

j

)
. (6.22)

Thus we have the following determinantal expression
∏

j<k

(cos θk − cos θj)
2

=

N−1∏

j=0

h
(α,β)
j

(ℓ
(α,β)
j )2

det

(
N∑

n=1

(h
(α,β)
n−1 )

−1P
(α,β)
n−1 (cos θj)P

(α,β)
n−1 (cos θk)

)

j,k=1,...,N

. (6.23)

Setting

Cs,r := 2−N(N+r+s−1)

N−1∏

j=0

Γ(s+ r +N + j)

Γ(2 + j)Γ(s+ 1/2 + j)Γ(r + 1/2 + j)
, (6.24)
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the normalized measure is

Cs,r

N∏

j=1

(1− cos θj)
r(1 + cos θj)

s
∏

j<k

(cos θk − cos θj)
2

=
1

N !
det
(( N∑

n=1

(h
(r−1/2,s−1/2)
n−1 )−1P

(r−1/2,s−1/2)
n−1 (cos θj)P

(r−1/2,s−1/2)
n−1 (cos θk)

)
×

× (1 + cos θj)
s/2(1− cos θj)

r/2(1 + cos θk)
s/2(1− cos θk)

r/2
)
j,k=1,...,N

=
1

N !
det
(
f
(r−1/2,s−1/2)
N (θj , θk)

)
j,k=1,...,N

,

(6.25)

where f
(r−1/2,s−1/2)
N (θj , θk) is implicitly defined as the expression inside ‘det(·)’ in

the middle term above.
Observe that this determinantal kernel fN satisfies the hypotheses of Gaudin’s

Lemma (see e.g. Theorem 5.2.1 in [46]), namely

∫ π

0

f
(r−1/2,s−1/2)
N (θ, θ)dθ = N (6.26)

and ∫ π

0

fN (x, θ)fN(θ, y)dθ = fN(x, y). (6.27)

By Gaudin’s Lemma we then have

∫ π

0

det(f(θj , θk))j,k=1,...,NdθN = (N − (N − 1)) det(f(θj , θk))j,k=1,...,N−1. (6.28)

Applying (6.28) N −n times, together with (6.25), gives the following formula for
the n-level density:

Rn(θ1, · · · , θn) =
N !

(N − n)!

∫ π

0

· · ·
∫ π

0

1

N !
det(fN(θj , θk))N×Ndθn+1 · · · dθN

=
1

(N − n)!
(N − (N − 1))(N − (N − 2)) · · · (N − (n+ 1− 1)) det(fN (θj, θk))n×n

= det(fN (θj, θk))n×n.

(6.29)

So, using (6.29) in (6.6), we arrive at

RTX

1 (θ) =
CX
2πi

∫ c+i∞

c−i∞

2Nr

C0,r

exp(−rX )

r
f
(r−1/2,−1/2)
N (θ, θ) dr (6.30)

with C0,r given in (6.24).
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With the Christoffel-Darboux formula (see equation (4.5.2) in [59]) we have

f
(r−1/2,s−1/2)
N (θj , θk) =

2−r−s+1

2(N − 1) + r + s+ 1

Γ(N + 1)Γ(N + r + s)

Γ(N + r − 1/2)Γ(N + s− 1/2)
×

× (1 + cos θj)
s/2(1− cos θj)

r/2(1 + cos θk)
s/2(1− cos θk)

r/2

cos θj − cos θk
×

×
[
P

(r−1/2,s−1/2)
N (cos θj)P

(r−1/2,s−1/2)
N−1 (cos θk)

− P
(r−1/2,s−1/2)
N−1 (cos θj)P

(r−1/2,s−1/2)
N (cos θk)

]
. (6.31)

Thus f(θ, θ) in (6.30) reduces, with the Christoffel-Darboux formula (6.31), to

f
(r−1/2,−1/2)
N (θ, θ) = (1− cos θ)r

21−r

2N + r − 1

Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
×

×
[[ d

d cos θ
P

(r−1/2,−1/2)
N (cos θ)

]
P

(r−1/2,−1/2)
N−1 (cos θ)

− P
(r−1/2,−1/2)
N (cos θ)

d

d cos θ
P

(r−1/2,−1/2)
N−1 (cos θ)

]

= (1− cos θ)r
21−r

2N + r − 1

Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P (N, r, θ), (6.32)

where we define

P (N, r, θ) :=
[ d

d cos θ
P

(r−1/2,−1/2)
N (cos θ)

]
P

(r−1/2,−1/2)
N−1 (cos θ)

− P
(r−1/2,−1/2)
N (cos θ)

d

d cos θ
P

(r−1/2,−1/2)
N−1 (cos θ). (6.33)

With (6.32) in (6.30) we arrive at

RTX

1 (θ) =
CX
2πi

∫ c+i∞

c−i∞

exp(−rX )

r
2N

2+2Nr−N×

×
N−1∏

j=0

Γ(2 + j)Γ(1/2 + j)Γ(r + 1/2 + j)

Γ(r +N + j)
×

× (1− cos θ)r
21−r

2N + r − 1

Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P (N, r, θ) dr. (6.34)

�

6.4. Proof of Theorem 1.3.

Proof. We consider (6.34) (that is the form of RTX

1 given in Theorem 1.2). First, we

observe that by [59], pages 63–64, the Jacobi polynomial P
(α,β)
N (x) is a polynomial

in α, β and x for arbitrary complex values of α and β. Hence P (N, r, θ) is a
polynomial in r.
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The poles arising from Γ(N + r) at negative integers ≤ −N are cancelled by
the zeros of the term 1/Γ(r + N + j) for j = 0. The pole at r = 1 − 2N of
1/(2N + r−1) is cancelled by the zero of 1/Γ(N + r+ j) when j = N−1. We now
discuss under which conditions we can close the contour to the left. For this, it
is helpful to analyze the integrand of (6.34) when |r| is large. Our main reference
for various identities and formulæ in the following is [1].

Using equation (22.5.42) in [1] we write the Jacobi polynomials as

P
(r−1/2,−1/2)
N (cos θ) =

(
N + r − 1/2

N

)
F (−N,N + r; r + 1/2; 1−cos θ

2
), (6.35)

where F is a hypergeometric function. This representation allows us to calculate
the derivative of the Jacobi polynomial that appears in P (N, r, θ) using (15.2.1
in [1])

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z). (6.36)

Combining the last identity with (6.35) gives

d

d cos θ
P

(r−1/2,−1/2)
N (cos θ)

= −1

2

(
N + r − 1/2

N

)
d

dz
F (−N,N + r; r + 1/2; z)

∣∣∣∣
z=

1−cos θ
2

= −1

2

(
N + r − 1/2

N

)
(−N)(N + r)

r + 1/2
F (−N + 1, N + r + 1; r + 3/2; 1−cos θ

2
).

(6.37)

Substituting (6.35) and (6.37) into (6.33) yields

P (N, r, θ) = − 1

2(r + 1/2)

(
N + r − 1/2

N

)(
N + r − 3/2

N

)
×

×
[
(−N)(N + r)F (−N + 1, N − 1 + r; r + 1/2; 1−cos θ

2
)×

× F (−N + 1, N + r + 1; r + 3/2; 1−cos θ
2

)

− (−N + 1)(N − 1 + r)F (−N,N + r; r + 1/2; 1−cos θ
2

)×

× F (−N + 2, N + r; r + 3/2; 1−cos θ
2

)
]
.

(6.38)

We want the asymptotics for large |r|, and this is easier when r appears only
in one argument of the hypergeometric function. For this, we use identity 15.3.4
from [1]:

F (a, b; c; z) = (1− z)−aF (a, c− b; c; z
z−1

), (6.39)
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and so we obtain

P (N, r, θ) = − 1

2(r + 1/2)

(
N + r − 1/2

N

)(
N + r − 3/2

N

)(1 + cos θ

2

)2N−2

×

×
[
(−N)(N + r)F (−N + 1,−N + 3/2; r + 1/2; cos θ−1

cos θ+1
)×

× F (−N + 1, 1/2−N ; r + 3/2; cos θ−1
cos θ+1

)

− (−N + 1)(N − 1 + r)F (−N, 1/2−N ; r + 1/2; cos θ−1
cos θ+1

)×

× F (−N + 2, 3/2−N ; r + 3/2; cos θ−1
cos θ+1

)
]
.

(6.40)

Recalling equation 15.7.1 from [1],

F (a, b; c; z) =

m∑

n=0

Γ(a+ n)Γ(b+ n)Γ(c)

Γ(a)Γ(b)Γ(c + n)

zn

n!
+O(|c|−m−1), (6.41)

which holds for fixed a,b and z and large |c| we get

F
(
−N + 1,−N + 3/2; r + 1/2; cos θ−1

cos θ+1

)
= 1 +O

(
|r|−1

)
, (6.42)

and similarly for the other hypergeometric functions. Concentrating on the inte-
grand of RTX

1 (θ), in (6.34), and neglecting factors not depending on r, we find,
using (6.42), that the growth-dependence of the integrand on r is

22Nr(1− cos θ)r
N−1∏

j=0

Γ(r + 1/2 + j)

Γ(r +N + j)

exp(−rX )

r

2−r

2N + r − 1

Γ(N + r)

Γ(N + r − 1/2)
×

× Γ(N + r + 1/2)Γ(N + r − 1/2)

Γ(r + 1/2)Γ(r − 1/2)

[
1 +O

(
|r|−1

)]
. (6.43)

Upon simplification, and replacing the products of Gamma functions with Barnes
double Gamma functions, the growth-dependence on large |r| is

22Nr−r

r(2N + r − 1)
exp(r(log(1− cos θ)−X ))

G(r + 1/2 +N)

G(r + 3/2)

G(r +N + 1)

G(r + 2N)
×

× Γ(N + r + 1/2)

Γ(r − 1/2)

[
1 +O

(
|r|−1

)]
. (6.44)

Recall the asymptotic formula for G(z) for large |z|:
logG(z + 1) ∼ z2(1

2
log z − 3

4
) + 1

2
z log(2π)− 1

12
log z + ζ ′(−1) +O(z−1). (6.45)

Applying (6.45) and Stirling’s formula we conclude that the integrand in (6.34)
grows like

1

|r|2 exp(r(2N log 2− log 2 + log(1− cos θ)−X ))
[
1 +O

(
|r|−1

)]
(6.46)

for large |r|.
From (6.46) we deduce that if (2N−1) log 2+log(1−cos θ)−X > 0 then we can

close the contour in the left half of the complex plane, thus enclosing the poles at
zero and the negative half integers. If, on the other hand, (2N − 1) log 2+ log(1−
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cos θ) − X < 0 then we must close the contour in the right half-plane, implying
that the integral (6.34) is zero.

Finally, we compute the residues when moving the contour to the left. There is
a simple pole at r = 0 with residue

2N
2−N

N−1∏

j=0

Γ(2 + j)Γ(1/2 + j)Γ(1/2 + j)

Γ(N + j)

2

2N − 1

Γ(N + 1)Γ(N)

Γ(N − 1/2)Γ(N − 1/2)
×

× P (N, 0, θ). (6.47)

Note that when r = 0 the expression for P (N, r, θ) reduces to that corresponding
to SO(2N).

There is also a simple pole at r = −1/2 with residue

− 2 exp(X /2)2N2−2N+3/2 (1− cos θ)−1/2

2N − 3/2

Γ(N + 1)Γ(1/2)

Γ(N − 1)Γ(N − 1/2)
×

×
N−1∏

j=1

Γ(2 + j)Γ(1/2 + j)Γ(j)

Γ(N + j − 1/2)
P (N,−1/2, θ). (6.48)

Similarly to (6.17), where we determined the normalization constant CX , the
contribution from the residues of the higher order poles at αk = −1−2k

2
with

k = 1, 2, 3, . . . is
∞∑

k≥1

bk exp((k + 1/2)X ) (6.49)

where the coefficients bk come from the residues. �

To show convergence we may write the series (6.49) as

∑

1≤k≤K

bk exp((k + 1/2)X ) +

∫ cK+i∞

cK−i∞
exp(−rX )f(r)dr (6.50)

where exp(−rX )f(r) is the integrand in (6.34) and αK+1 < cK < αK . By (6.46),
f(r) ≪ exp(−rX) for large |r| and X < 0. Thus,
∫ cK+i∞

cK−i∞
exp(−rX )f(r)dr = exp(−cKX )i

∫ ∞

−∞
exp(−itX )f(cK + it)dt

= O(exp(−cKX )).

(6.51)

Hence, the contributions of residues of higher poles decrease exponentially fast for
X < 0 and using only theK right-most poles gives an error that is O(exp(−cKX )).
The computation of residues of higher order poles can be carried out by computer
algebra. We find that for reasonable X we have good convergence using about 10
poles.

Remark 6.1. The hard gap reflected in Theorem 1.3 may be understood as fol-
lows. Recalling that ΛA(1, N) = 2N

∏N
n=1(1−cos θn) it follows that log ΛA(1, N) =

(2N −1) log 2+ log(1− cos θ) for the matrix A ∈ SO(2N) having 2N −2 eigenval-
ues at −1 (i. e., θ2, . . . , θN = π) and a symmetric pair of eigenvalues at e±iθ (i. e.,
θ1 = θ). Plainly, such matrix A maximizes log ΛA(1, N) subject to the condition
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that a pair of eigenvalues lie at e±iθ. Therefore, for any fixed X , the condition
log ΛA(1, N) > X implies X < (2N −1) log 2+ log(1− cos θ): if the latter inequal-
ity does not hold, there are no matrices A with log ΛA(1, N) > X . In particular,
for fixed N and X there is a lower bound for all eigenphases θ of any matrix A
with log ΛA(1, N) > X , namely θ > θinf := cos−1(1 − 2−(2N−1)eX ): the excised
one-level density is identically zero in the excluded spectral interval (“hard gap”)
θ ≤ θinf. Note that the hard gap shrinks to zero exponentially fast as N → ∞ and
also as X → −∞.

6.5. Formula vs. data. For illustration and as a consistency test, in figure 13 we
compare our formula for the one-level density with data obtained by generating
random matrices from the excised ensemble SO(2N).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6

R_1: formula
R_1: data

Figure 13. One-level density of excised SO(2N), N = 2 with cut-
off |ΛA(1, N)| ≥ 0.1. The red curve uses our formulæ from The-
orems 1.2 and 1.3. The blue crosses give the empirical one-level
density of 200,000 numerically generated matrices.
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