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ABSTRACT
The order of appearance z(n) of a positive integer n in the Fibonacci sequence is
defined as the smallest positive integer j such that n divides the jth Fibonacci
number. We prove that for every k ≥ 0 there exist infinitely many integers that
reach a fixed point of z after applying exactly k iterations of z. In addition, we
show that, if x is a fixed point of z greater than 5, then there exist infinitely many
integers whose orbits under z reach x. We also give a new proof of the theorem
stating that every positive integer reaches a fixed point of z after a finite number
of iterations.

This paper began when the first and fourth named authors were looking through
papers of the Fibonacci Quarterly in a search for a research project for the 2023
SMALL REU at Williams College. We gratefully dedicate this article to Curtis
Cooper for his quarter century of excellent stewardship as Editor-in-Chief of the
Fibonacci Quarterly.

1. Introduction

The Fibonacci sequence {Fn}∞n=0 is defined recursively as Fn = Fn−1 + Fn−2, n ≥ 2,
with initial terms F0 = 0 and F1 = 1. The arithmetic properties of the Fibonacci
sequence modulo integers have been studied by many. Perhaps Lagrange was the first
who noticed the periodicity of the Fibonacci sequence modulo integers by realizing
that the last digit of Fn repeats with period 60 [Liv, p. 105]. Jarden showed that for
d ≥ 3 the last d digits of the Fibonacci sequence repeat with period 15 · 10d−1 [Jar,
Th. 1].

It’s straightforward to see, using the pigeonhole principle and the recurrence relation
above, that the Fibonacci sequence modulo any integer is periodic [Luc]. The smallest
period of the Fibonacci sequence modulo n is called the Pisano period, and is denoted
by π(n). Clearly, Fπ(n) = F0 = 0 (mod n), hence Fπ(n) is divisible by n. However, it’s
possible that an earlier term in the Fibonacci sequence is divisible by n.

Definition 1.1. The rank of apparition or the order of appearance of n is the smallest
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positive integer z(n) such that n|Fz(n).

We note the first few output values of the order of appearance map are

z(1) = 1, z(2) = 3, z(3) = 4, z(4) = 6, z(5) = 5, z(6) = 12.

The diagrams in Figure 1 illustrate the behavior of the order of appearance map
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Figure 1. Illustrative example of the paths from various starting points to the fixed points 12 and 60.

Wall showed that n|Fk if and only if z(n)|k. In particular, z(n)|π(n) for all integers
n [W]. A more detailed relationship between π(n) and z(n) was given by Vinson. He
showed that, for n > 2, one has π(n)/z(n) ∈ {1, 2} iff z(n) is even and π(n)/z(n) = 4
iff z(n) is odd [V]. Lucas showed that z(p)|(p−1) if p = ±1 (mod 10) and z(p)|(p+1)
if p = ±3 (mod 10) for odd primes p ̸= 5 [Luc]. Since z(2) = 3 and z(5) = 5, for any
prime p we have z(p) ≤ p+ 1. In general, one has z(n) ≤ 2n for arbitrary integers n
[Sal]; this bound is sharp, since the equality z(n) = 2n occurs for n = 6 · 5d, where
d ≥ 0. Other results on z(n) include explicit formulas for the order of appearance of
some integers related to the sums and products of Fibonacci numbers [M1, M2)], and
upper bounds in Lucas sequences [SK].

We are interested in the dynamical properties of the order of appearance map z.

Definition 1.2. Let f : N → N be a function, where N is the set of positive integers.
The f -orbit of an integer m is the smallest set containing m that is closed under the
mapping of f . In other words, the f -orbit of m is the set

Of (m) =
{
m, f(m), f2(m), f3(m), . . .

}
,

where fk denotes the composition of f with itself k times, k ≥ 0 (with f0(m) = m).
We say the integer m is a periodic point of f if there exists a positive integer t such
that fk+t(m) = fk(m) for all k ≥ 0. Finally, an integer m is called a fixed point of f
if f(m) = m.

Example 1.3. The z-orbit of m = 4273 is

4273, 2137, 1069, 89, 11, 10, 15, 20, 30, 60,
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as 60 is a fixed point of z and thus further iterations just return 60.

n z(n) z2(n) z3(n) z4(n) z5(n)
1 1
2 3 4 6 12
3 4 6 12
4 6 12
5 5
6 12
7 8 6 12
8 6 12
9 12
10 15 20 30 60
11 10 15 20 30 60
12 12

Table 1. Iterations of z on n; numbers in bold are fixed points.

Table 1 shows the z-orbits of the first 12 positive integers, which all end in a fixed
point. Every orbit of an integer map is either infinite or it reaches a periodic point.
The orbits of the order of appearance map have been well studied. The following
results on the fixed points of z and the end-behavior of z-orbits are known.

i) The fixed points of z are of the form 5d or 12 · 5d, where d ≥ 0 [Jar, M4].
ii) Given an integer n > 0, there exists an integer k ≥ 0 such that zk(n) is a fixed

point of z [LT]. In other words, all z-orbits reach a fixed point, and so there are
no infinite orbits and no periodic points of period greater than one.

We give a new proof of (ii) in Theorem 4.3. In the study of dynamical properties of
an integer map, in addition to studying the fixed points, periodic points, and the end-
behavior of orbits, one is interested in studying the fixed point order (defined below)
as well as the set of integers whose orbits reach a given fixed point.

Definition 1.4. The (Fibonacci) fixed point order of a natural number n is the small-
est positive integer k = α(n) such that zk(n) is a fixed point of z. If n itself is a fixed
point of z, we let α(n) = 0.

The fixed point order map measures how far a number n is from being a fixed point
of z: how many iterations of z are required to reach a fixed point starting from n? It
follows from (ii) above that the fixed point order of n is one less than the number of
elements in the z-orbit of n; i.e.,

α(n) = |Oz(n)| − 1,

where |A| denotes the number of elements of the set A.
To study the fixed point order map, we define two related sets of integers as follows.

Let Λk denote the set of numbers whose fixed point order is k:

Λk := {n ∈ N : α(n) = k} .
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Also, given a fixed point x, let Ωx denote the set of integers whose z-orbit reaches x:

Ωx :=
{
n ∈ N : ∃k zk(n) = x

}
.

We prove the following new results regarding Λk and Ωx.

i) We prove in Theorem 2.4 that |Λk| = ∞ for all k ≥ 0. Equivalently, there are
infinitely many numbers whose z-orbits have a given arbitrary positive length.

ii) We prove in Theorem 3.3 that |Ωx| = ∞ for all fixed points x > 5. In other
words, there are infinitely many numbers whose z-orbits reach x (for x ≤ 5, one
notes that Ω1 = {1} and Ω5 = {5}).

Several questions regarding Λk and Ωx remain unanswered. To prove that |Λk| = ∞,
we show that 5b · 22k+2 ∈ Λk for all b ≥ 0 and k ≥ 1. Is it true that for every k ≥ 1
there exist infinitely many relatively prime integers whose fixed point order is k?

It is also interesting to learn about the frequency of a fixed point appearing in a
z-orbit. To be more precise, if x is a fixed point of z, set

σ(x) := lim sup
n→∞

|Ωx ∩ [1, n]|
n

.

Are some fixed points (or some types of fixed points) more likely to appear in a
z-orbit?

Finally, since 22k+2 ∈ Λk, one has minΛk ≤ 22k+2 (see also Table 2). Are there
more efficient lower and upper bounds on the least element of Λk?

2. Infinitude of integers with a given fixed point order

We prove that, given an integer k ≥ 0, there exist infinitely many integers whose fixed
point order is k (Theorem 2.4). Table 2 lists the smallest integer n that takes exactly
k iterations of z to reach a fixed point, 1 ≤ k ≤ 10.

k Least n with α(n) = k Ending Fixed Point
0 1 1
1 6 12
2 4 12
3 3 12
4 2 12
5 11 60
6 89 60
7 1069 60
8 2137 60
9 4273 60
10 59833 60

Table 2. First n that takes k iterations to reach a fixed point.

We need the following result by Vinson in the computation of z(n) from the values
of z on the prime power factors of n [V, Lemma 2].
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Lemma 2.1 ([V]). Let n = pα1
1 pα2

2 · · · pαr
r , where p1, . . . , pr are distinct prime num-

bers and αi ≥ 1 for all 1 ≤ i ≤ r. Then

z(n) = lcm (z(pα1
1 ), z(pα2

2 ), . . . , z(pαr
r )) . (1)

Given nonzero integers n1, n2, we write n1 ∼ n2 iff n1/n2 = 5t for some integer t. It
is readily checked that the relation ∼ is an equivalence relation on the set of positive
integers. Moreover, a positive integer n is a fixed point of z if and only if n ∼ 1, 12
[M4].

Lemma 2.2. If n1 ∼ n2, then zk(n1) ∼ zk(n2) for all k ≥ 1.

Proof. Since every congruence class of ∼ contains a number relatively prime with 5,
it is sufficient to prove the claim when n1 = n and n2 = 5a · n, where a ≥ 0 and 5 ∤ n.
First, we prove the claim for k = 1. Let n = pα1

1 · · · pαr
r be the prime factorization of

n, where αi ≥ 1 for all 1 ≤ i ≤ r. By Lemma 2.1, we have

z (5a · n) = lcm (z (5a) , z(pα1
1 ), . . . , z(pαr

r ))

= lcm (5a, lcm (z(pα1
1 ), . . . , z(pαr

r )))

= lcm (5a, z(n)) ,

and so z(5a · n) ∼ z(n), and the claim follows for k = 1.
We proceed by induction on k ≥ 1. Suppose the claim is true for k. Now, if n1 ∼ n2,

then zk(n1) ∼ zk(n2) by the inductive hypothesis, and so by the base case k = 1, we
have

zk+1 (n1) = z
(
zk (n1)

)
∼ z

(
zk (n2)

)
,

which implies that zk+1 (n1) ∼ zk+1 (n2).

In the next lemma, we find an explicit formula for zk (2α). Jarden, in his computa-
tion of z(10d), showed that if α ≥ 3, then z(2α) = 3 · 2α−2 [Jar, Th. 5], a result that
we use next.

Lemma 2.3. For all k ≥ 1 and α ≥ 2k + 2, we have zk (2α) = 3 · 2α−2k.

Proof. If k = 1, then α ≥ 3, and so z(2α) = 3 · 2α−2 [Jar]. We proceed by induction
on k ≥ 1. Suppose the claim is true for k, and suppose that α ≥ 2(k+1)+2. It follows
that α− 2k ≥ 3, and so z(2α−2k) = 3 · 2α−2k−2. Therefore, by Lemma 2.1, one has

zk+1(2α) = z
(
zk (2α)

)
= z

(
3 · 2α−2k

)
= lcm

(
z (3) , z(2α−2k)

)
= lcm

(
4, 3 · 2α−2k−2

)
= 3 · 2α−2(k+1), (2)

since α− 2k − 2 ≥ 2.

We can now prove that |Λk| = ∞ for all k ≥ 0.

Theorem 2.4. For every integer k ≥ 0, there exist infinitely many integers whose
fixed point order is k.
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Proof. If k = 0, then the claim follows from the fact that z has infinitely many fixed
points, since Λ0 = {5d, 12 · 5d : d ≥ 0}. Thus, suppose that k ≥ 1. By Lemma 2.3, we
have

zk
(
22k+2

)
= 3 · 2(2k+2)−2k = 12, (3)

which is a fixed point of z. If k = 1, then zk−1
(
22k+2

)
= 22k+2, which is not a fixed

point of z. If k ≥ 2, then

zk−1
(
22k+2

)
= 3 · 2(2k+2)−2(k−1) = 48, (4)

which is again not a fixed point of z. Therefore, 22k+2 ∈ Λk. Next, we show that
5b · 22k+2 ∈ Λk for all b ≥ 0 (hence proving that |Λk| = ∞). Since 5b · 22k+2 ∼ 22k+2,
by Lemma 2.2, we have zk(5b · 22k+2) ∼ zk(22k+2) ∼ 1, 12 and zk−1(5b · 22k+2) ∼
zk−1(22k+2) ≁ 1, 12, and so 5b · 22k+2 ∈ Λk for all b ≥ 0.

Theorem 2.4 shows that, for every positive integer k, there are infinitely many
integers whose z-orbits have length k, since the length of the z-orbit of m is one
plus the fixed point order of m. Figure 2 illustrates how integers from 1 to 100 are
distributed among the Λk, 0 ≤ k ≤ 6. How are the numbers from 1 to n are distributed
approximately among the Λk, k ≥ 0?

0 1 2 3 4 5 6

0

10

20

30

40

50

5

16

39

26

11

2 1

k (the fixed point order)

|Λ
k
∩
[1
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00
]|

Figure 2. The distribution of integers from 1 to 100 among Λk, 0 ≤ k ≤ 6.

From Table 2, the first few terms of the sequence λk = minΛk, k ≥ 0, are

1, 6, 4, 3, 2, 11, 89, 1069, 2137, 4273, 59833, . . . .

It is straightforward to see that z(λk+1) ≥ λk for all k ≥ 1, and it is probably true
that z(λk+1) = λk for k large enough. As of March 3, 2025 this sequence is not in the
OEIS.
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3. Infinitely many orbits end in each fixed point

In this section, we prove that Ωx is an infinite set for all fixed points x > 5, where
Ωx denotes the set of integers whose z-orbit reaches x (Theorem 3.3). We need the
following lemma in the computation of the values of z on odd prime powers [FM, Th.
2.4].

Lemma 3.1 ([FM]). Let p be an odd prime number and α ≥ 1. Then z (pα) =
pmax(α−t,0)z(p) where t is the number of times that p divides Fz(p), t ≥ 1. In particular,

z (pα) = pβz(p) for some 0 ≤ β < α.

By a theorem of Carmichael [C, Y], if n ̸= 1, 2, 6, 12, then Fn has a primitive divisor;
i.e., there exists a prime p(n) such that p(n) | Fn but p(n) ∤ Fk for all 0 < k < n;
in other words, Fn is the first Fibonacci number that is divisible by p(n), and so
z(p(n)) = n. Recall that if n1 | n2, then Fn1

| Fn2
, a fact we use in the proof of the

next lemma.

Lemma 3.2. If b > 1, then F5b has at least b distinct odd prime factors. In particular,
F5b has at least one odd prime factor other than 5.

Proof. Since 5c | 5b for integers 1 ≤ c ≤ b, we have F5c | F5b . On the other hand,
z(p(5c)) = 5c, and so p(5c) is an odd prime factor of F5b , where 1 ≤ c ≤ b. If
c1 > c2 ≥ 1, then p(5c2)|F5c2 and 5c2 < 5c1 , which means that p(5c2) divides an
earlier Fibonacci number than F5c1 . It follows that p(5c1) ̸= p(5c2) if c1 > c2 ≥ 1.
Therefore, the prime numbers p(5), p(52), . . . , p(5b) are distinct odd prime factors of
F5b .

Theorem 3.3. Let b ≥ 0 and m be a positive integer such that 5 ∤ m and every prime
factor of m divides F5b. Let η(m) be the largest exponent appearing in the prime
factorization of m.

i) If k = η(m), then zk
(
m · 5b

)
= 5b.

ii) If a ≥ 0 and k = max {η(m), ⌈a/2⌉}, then zk
(
m · 2a · 12 · 5b

)
= 12 · 5b.

Proof. Let F be the set of all positive integers n such that 5 ∤ n and every prime
factor of n is a prime factor of F5b . Therefore, m ∈ F and η(m) = max{α1, . . . , αr},
where m = pα1

1 · · · pαr
r , α1, . . . , αr ≥ 1, and p1, . . . , pr are distinct prime factors of F5b

(also 1 ∈ F and η(1) = 0). It follows from Lemma 3.2 that if b > 1, then F is an
infinite set.

For part (i), if m = 1, the claim follows from the fact that 5b is a fixed point of
z for all b ≥ 0. Thus, suppose that m > 1. By Lemma 3.1, there exist 0 ≤ βi < αi

such that z(pαi
i ) = pβi

i z(pi), 1 ≤ i ≤ r. Since pi|F5b , we have z(pi)|5b. It follows that
lcm

(
z(pαi

i ), 5b
)
= lcm

(
pβi

i z(pi), 5
b
)
= pβi

i · 5b for all 1 ≤ i ≤ r. Then

z(m · 5b) = z(pα1
1 · · · pαr

r · 5b) = lcm
(
z(pα1

1 ), . . . , z(pαr
r ), z(5b)

)
= lcm

(
pβ1

1 z(p1), . . . , p
βr
r z(pr), 5

b
)

= pβ1

1 · · · pβr
r · 5b

= m1 · 5b,

where m1 ∈ F and η(m1) ≤ η(m)− 1. By a finite induction, for each 1 ≤ i ≤ k there
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exists mi ∈ F such that zi(m · 5b) = mi · 5b and η(mi) ≤ η(m) − i. Therefore, with
i = k = η(m), we obtain zk(m · 5b) = 5b. This completes the proof of part (i).

For part (ii), suppose that a > 0 (the proof when a = 0 is similar and is omitted).
If m = 1, then

z
(
2a · 12 · 5b

)
= z

(
2a+2 · 3 · 5b

)
= lcm

(
z(2a+2), z(3), z(5b)

)
= lcm

(
2a · 3, 4, 5b

)
= 2max(a−2,0) · 12 · 5b,

and so repeating this argument ⌈a/2⌉ times proves the claim. If m > 1, one has

z
(
m · 2a · 12 · 5b

)
= z

(
pα1
1 · · · pαr

r · 2a+2 · 3 · 5b
)

= lcm
(
z(pα1

1 ), . . . , z(pαr
r ), z(2a+2), z(3), z(5b)

)
= lcm

(
pβ1

1 z(p1), . . . , p
βr
r z(pr), 2

a · 3, 4, 5b
)

= pβ1

1 · · · pβr
r · 2max(a−2,0) · 12 · 5b

= m1 · 2max(a−2,0) · 12 · 5b,

where m1 ∈ F and η(m1) ≤ η(m) − 1. By a finite induction, for each 1 ≤ i ≤ k,
there exists mi ∈ F such that zi(m) = mi · 2max(a−2i,0) · 12 · 5b and η(mi) ≤ η(m)− i.
Therefore, with i = k = max{η(m), ⌈a/2⌉}, we obtain zk(m) = 12 · 5b.

In Theorem 3.3, the explicit elements that we found in Ωx to prove its infinitude
are all multiples of x itself. Of course it is not necessary for an element of Ωx to be a
multiple of x. For example, the first few elements of Ω12 are

Ω12 : 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 21, . . . .

One conjectures that Ωx contains infinitely many relatively prime elements for every
fixed point x > 5.

4. All integers have finite fixed point order

We now give a new proof of Theorem 4.3: the finiteness of the fixed point order map.
Recall that if p is an odd prime other than 5, then z(p)|(p− 1) or z(p)|(p+ 1) [Luc].
In particular, either z(p) = p± 1 or z(p) ≤ (p+ 1)/2. We use this result in the proof
of the following lemma.

Lemma 4.1. Let n = 2a ·5b ·pα1
1 · · · pαr

r , r ≥ 2, where p1, . . . , pr are distinct odd prime
numbers not equal to 5. Suppose that b ≥ 0 and αi ≥ 1 for all 1 ≤ i ≤ r. Moreover,
suppose that either a = 0, or a ≥ 3, or a = 2 and 3|n. Then z(n) < n.

Proof. The proof is divided into three cases.

Case 1. Suppose that a = b = 0. By Lemma 3.1, there exist 0 ≤ βi < αi such
that z(pαi

i ) = pβi

i z(pi), 1 ≤ i ≤ r. For each 1 ≤ i ≤ r, we have z(pi) = pi ± 1 or
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z(pi) ≤ (pi + 1)/2. If z(pi) ≤ (pi + 1)/2 for all 1 ≤ i ≤ r, then z(pαi
i ) = pβi

i z(pi) ≤
pαi−1
i (pi + 1)/2 < pαi

i , and so, by Lemma 2.1, we have

z(n) = lcm (z(pα1
1 ), . . . , z(pαr

r )) ≤
r∏

i=1

z(pαi
i ) <

r∏
i=1

pαi
i ≤ n.

Thus, without loss of generality, suppose that there exists 1 ≤ k ≤ r such that
z(pi) = pi ± 1 for 1 ≤ i ≤ k and z(pi) ≤ (pi + 1)/2 for k + 1 ≤ i ≤ r. Then

z(n) = lcm (z(pα1
1 ), . . . , z(pαr

r )) ≤ lcm (z(pα1
1 ), . . . , z(pαk

k ))
r∏

i=k+1

z (pαi
i ) . (5)

Since z(pαi
i ) = pβi

i z(pi) = pβi

i (pi ± 1), each z(pαi
i ) is even, 1 ≤ i ≤ k, and so

lcm (z(pα1
1 ), . . . , z(pαk

k )) ≤ 1

2k−1

k∏
i=1

pαi−1
i (pi + 1). (6)

It follows from (5) and (6) that

z(n) ≤ 1

2k−1

k∏
i=1

pαi−1
i (pi + 1)

r∏
i=k+1

pαi−1
i

(
pi + 1

2

)
≤ 2n

r∏
i=1

(
pi + 1

2pi

)
. (7)

For 1 ≤ i ≤ r, if pi ≥ 7, then (pi+1)/(2pi) ≤ 4/7, and if pi = 3, then (pi+1)/(2pi) =
2/3. It follows that

r∏
i=1

(
pi + 1

2pi

)
≤ 2

3

(
4

7

)r−1

<
1

2
.

It then follows from (7) that z(n) < n.

Case 2. Suppose that b ≥ 0 is arbitrary and a = 0 or a ≥ 3. If a = 0, then
z(2a) = 2a. If a ≥ 3, then z(2a) = 2a−2 · 3 ≤ 2a. It follows that

z(n) = lcm
(
z(2a), z(5b), z(pα1

1 ), . . . , z(pαr
r )

)
(8)

≤ z(2a) · z(5b) · lcm (z(pα1
1 ) . . . z(pαr

r ))

≤ 2a · 5b · z (pα1
1 · · · pαr

r )

< 2a · 5b · pα1
1 · · · pαr

r ,

by Case 1, hence z(n) < n.

Case 3. Suppose that a = 2 and 3|n. Without loss of generality, we can assume that
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p1 = 3. In this case, since z(4) = 6 and z(3α1) = 3α1−1 · 4 [M3, Th. 1.1], we have

z(n) = lcm
(
z(4), z(5b), z(3α1), z(pα2

2 ), . . . , z(pαr
r )

)
≤ z(5b) · lcm

(
6, 3α1−1 · 4, z(pα2

2 ), . . . , z(pαr
r )

)
≤ z(5b) · 3 · lcm (z(3α1), z(pα1

2 ), . . . , z(pαr
r ))

≤ 5b · 3 · z (3α1pα2
2 . . . pαr

r )

< 5b · 4 · 3α1pα2
2 . . . pαr

r ,

again by Case 1, hence z(n) < n in this case as well.

Since z(p)|p ± 1 for any odd prime number p ̸= 5, either z(p) = p + 1 or z(p) < p
[Luc]. For composite numbers, z is generally non-increasing, at least on the set of
multiples of 12.

Lemma 4.2. If n is a multiple of 12, then z(n) ≤ n.

Proof. Let n = 12 · 5b · m, where b ≥ 0 and m is not divisible by 5. First, suppose
that m is odd. If m = 1, then n is a fixed point of z, and so z(n) = n in this case. If
m has any prime factors other than 3, then the claim follows from Lemma 4.1. Thus,
suppose that m = 3c, where c ≥ 1, and so n = 4 · 5b · 3c+1. Since z(3c+1) = 3c · 4 [M3,
Th. 1.1], by Lemma 2.1, we have

z(n) = z
(
4 · 5b · 3c+1

)
= lcm

(
z(4) · z

(
5b
)
· z

(
3c+1

))
= lcm

(
6, 5b, 3c · 4

)
= 4 · 5b · 3c < n.

Next, suppose that m is even and let m = 2a · m′, where a ≥ 1 and m′ is odd.
Therefore, we have n = 2a+2 · 5b ·m′. If m′ has any prime factors other than 3, the
claim follows from Lemma 4.1. Thus, suppose that m′ = 3c, c ≥ 1. Then

z(n) = z(2a+2 · 5b · 3c) = lcm
(
z
(
2a+2

)
, z

(
5b
)
, z (3c)

)
= lcm

(
2a · 3, 5b, 3c−1 · 4

)
≤ 2a+1 · 5b · 3c < n,

and the lemma follows.

We are now ready to prove the finiteness of the fixed point order map.

Theorem 4.3. All positive integers n have finite fixed point order.

Proof. We first prove the claim for even integers n. If n is even, then z(n) is divisible
by z(2) = 3, and so z2(n) is divisible by z(3) = 4. Then z3(n) is divisible by z(4) = 6
and z4(n) is divisible by z(6) = 12. Consequently, zk(n) is divisible by 12 for all k ≥ 4.
It then follows from Lemma 4.2 that zk+1(n) ≤ zk(n) for all k ≥ 4. In other words,
the sequence z4(n), z5(n), . . . is a non-increasing sequence of positive integers, and so
there must exist k ≥ 0 such that zk+1(n) = zk(n), hence zk(n) is a fixed point of z.

To prove the claim for odd numbers, let n be the smallest odd counterexample to
the statement of the theorem. In particular, zk(n) is odd for all k ≥ 1; otherwise,
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if zk(n) is even for some k ≥ 1, a contradiction arises from the even case we just
discussed (as we showed every even number has an iterate which is a fixed point).

It follows from Lemma 4.1 that n has at most one prime factor other than 5. If not
then z(n) < n as n has at least two odd factors not equal to 5. By assumption z(n) is
odd, and if it iterates to a fixed point then so too does n, but as we are assuming n
is the smallest odd integer not iterating to a fixed point we obtain a contradiction as
z(n) is a smaller such odd number. Therefore there is an odd prime p ̸= 5 such that
n = 5b ·pα, where b ≥ 0, α > 0 (if α = 0 then n iterates to a fixed point as it is a power
of 5). By Lemma 3.1, there exists 0 ≤ β < α such that z (pα) = pβz(p) ≤ pα−1z(p). If
z(p) ̸= p± 1, then z(p) ≤ (p+ 1)/2, hence

z(n) = lcm
(
z(5b), z(pα)

)
≤ z

(
5b
)
z (pα)

≤ 5b · pα−1(p+ 1)/2 < n.

Since z(n) is odd and n is the least counterexample, we arrive at a contradiction. On
the other hand, if z(p) = p±1, then z(n) = lcm

(
z(5b), pα(p± 1)

)
is even. This is also

a contradiction (from our argument for the even case), and the theorem follows.
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[Sal] H. J. A. Sallé, A Maximum value for the rank of apparition of integers in
recursive sequences, Fibonacci Quarterly 13 (1975), no. 2, 159–161.
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