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Abstract. The Katz-Sarnak philosophy predicts that the behavior of zeros near the central point in
families of L-functions agrees with that of eigenvalues near 1 of random matrix ensembles. Under GRH,
Iwaniec, Luo and Sarnak showed agreement in the one-level densities for cuspidal newforms with the
support of the Fourier transform of the test function in (−2, 2). They increased the support further under
a square-root cancellation conjecture, showing that a GL(1) estimate led to additional agreement between
number theory and random matrix theory. We formulate a two-dimensional analog and show it leads to
improvements in the two-level density. Specifically, we show that a square-root cancellation of certain
classical exponential sums over primes increases the support of the test functions such that the main terms
in the 1- and 2-level densities of cuspidal newforms averaged over bounded weight k (and fixed level 1)
converge to their random matrix theory predictions. We also conjecture a broad class of such exponential
sums where we expect improvement in the case of arbitrary n-level densities, and note that the arguments
in [ILS] yield larger support than claimed.
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1. Introduction

1.1. Background. Since the observations of Montgomery and Dyson 50 years ago, random matrix theory
has provided a guide to predicting the behavior of quantities related to the zeros and values of L-functions;
we focus on the behavior of zeros here. Initially this agreement was limited to theoretical results on the
pair correlation of zeros of the Riemann zeta function, and then extended to include the n-level correlations
of automorphic forms and numerical results on the spacings between zeros; see [Ga; Hej; Mon; RS;
Od1; Od2]. These statistics concern the behavior high up on the critical line, and are thus insensitive to
finitely many zeros. In particular, they miss the effects from zeros at the central point, which are of great
importance in a variety of number theory problems, from the Birch and Swinnerton-Dyer Conjecture and
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the ranks of the group of rational solutions of elliptic curves to bounding class numbers; see [BSD1;
BSD2; Go].

To remedy this, Katz and Sarnak [KS1; KS2] introduced new statistics, the n-level densities; there
is now an extensive literature on agreement between number theory and random matrix theory here;
see [AAILMZ; AM; C–; CI; DHKMS1; DHKMS2; DM1; DM2; ER-GR; FiM; FI; Gao; GK;
GJMMNPP; Gu; HM; HR1; HR2; ILS; LM; Mil1; MilPe; OS1; OS2; RR; Ro; Rub; ShTe; Ya;
Yo1; Yo2] and the references therein, as well as [BFMT-B; Con; FM] for more on the history of the
connections between the two subjects.

This work is a continuation of the seminal paper [ILS]; in brief, we extend their results for certain
one-level densities to two-level, and discuss how to generalize to arbitrary n. Specifically, we show that a
natural generalization of their Hypothesis S on cancellation in certain prime sums, which led to increasing
the support for the one-level density, leads to increased support where the 2-level density of certain families
of cuspidal newforms and random matrix theory agree. Such results have applications in bounding the
order of vanishing at the central point. We assume the reader is familiar with the basics of L-functions;
see for example [IK] for details. The following definitions are standard; we paraphrase from [LiM] as we
will use their framework to convert our results on increased support to estimates on weighted order of
vanishing.

A function Φ : Rn → R is Schwartz if it is infinitely differentiable and it and all of its derivatives
decay faster than any polynomial. In our setting, an even Schwartz function Φ with compactly supported
Fourier transform is called a test function. We frequently assume the Generalized Riemann Hypothesis
(GRH) holds for each L(s, f), and write the non-trivial zeros of a cuspidal newform L(s, f) of level N
and weight k by

ρ
(j)
f = 1

2 + iγ
(j)
f

for γ(j)
f ∈ R increasingly ordered and centered about zero.1 The number of zeros with |γ(j)

f | bounded
by an absolute large constant is of order log cf for some constant cf > 1; this is known as the analytic
conductor.

Definition 1.1 (n-Level Density). The n-level density of an L-function L(s, f) with respect to a test
function Φ : Rn → R with compactly supported Fourier transform is defined as

Dn(f ; Φ) :=
∑

j1,...,jn
ji ̸=±jk

Φ
( log cf

2π γ
(j1)
f , . . . ,

log cf

2π γ
(jn)
f

)
. (1.1)

Note that the existence of the n-level density does not depend on GRH.

One of the most important applications of the n-level density is to obtaining bounds on the order
of vanishing to a given order at the central point. For such results, we need Φ to be non-negative and
positive at the origin.

Unlike the n-level correlations, the sum (1.1) is hard to study for an individual f because by choice of
Φ it essentially captures only a bounded number of zeros. Thus we study averages over finite subfamilies
F(Q) := {f ∈ F : cf ∈ I(Q)} (which are parametrized by some quantity Q such that as Q tends to
infinity, the size of the subfamily tends to infinity as well), namely

E[Dn(f ; Φ), Q] := 1
#F(Q)

∑
f∈F(Q)

Dn(f ; Φ). (1.2)

Common choices are I(Q) = {Q}, {1, 2, . . . , Q} and {Q,Q+ 1, . . . , 2Q}.
The Katz-Sarnak density conjecture [KS1; KS2] asserts that the n-level density of a family of L-

functions, in the limit as the conductors tend to infinity, converges to the n-level density of eigenvalues

1In many of the calculations of Bessel-Kloosterman terms, we need GRH for Dirichlet L-functions. We can often avoid
GRH for cuspidal newforms at the expense of more involved calculations, but if GRH fails while we can still formally calculate
these statistics, as the zeros are no longer on the critical line we lose the correspondence with physics.
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of a classical compact group as the matrix sizes tend to infinity. Explicitly, if F is a “good” family of
L-functions and Φ is not zero at the origin, then there exists a distribution Wn,F such that

lim
Q→∞

E[Dn(f ; Φ), Q] = 1
Φ(0, . . . , 0)

∫
Rn

Φ(x) ·Wn,F (x) dx1 · · · dxn. (1.3)

We have the following expansions for the quantities above; though for computational purposes it is
often advantageous to use an alternative expansion due to Hughes-Miller [HM], which writes the n-level
density as a sum of terms emerging as the support increases.
Theorem 1.2 (Determinant Expansion [KS1]). Let K(x) = sin πx

πx and Kϵ(x, y) = K(x − y) + ϵK(x +
y). Then the n-level densities have the following distinct closed form determinant expansions for each
corresponding symmetry group:

Wn,SO(even)(x) = det (K1(xi, xj))i,j≤n , (1.4)

Wn,SO(odd)(x) = det (K−1(xi, xj))i,j,≤n +
n∑

k=1
δ0(xk) det (K−1(xi, xj))i,j,̸=k , (1.5)

Wn,O(x) = 1
2Wn,SO(even)(x) + 1

2Wn,SO(odd)(x), (1.6)

Wn,U(x) = det (K0(xi, xj))i,j,≤n , (1.7)
Wn,Sp(x) = det (K−1(xi, xj))i,j,≤n . (1.8)

As remarked, one of the main applications of this statistic is to bound the order of vanishing of a family
of L-functions at the central point by choosing a test function which is non-negative and positive at the
origin, see [BCDMZ; DM; Fr; FrMil; LiM]. Many of these papers are concerned with trying to find
the optimal test function for a given support, but already in the work of [ILS] one sees that there may be
only a negligible improvement in bounds from using the optimal functions derived from Fredholm theory
over simple test functions. Thus, while there have been some recent advances in determining the optimal
function for a given support, it has been more productive to increase the support and the level n studied;
however, as n increases while the bounds obtained are better for the percentage of forms vanishing to
order at least r when r is large, they are worse for small r. Thus there is a balancing act, with most
of the effort devoted to finding the largest support possible, and then given that determining the best
bounds by using easy to compute test functions for each n. We concentrate on increasing the support
for certain families of cusp forms, which can then be fed into the machinery from Dutta-Miller [DuM]
to yield improved estimates.

In [ILS], the authors introduce the following hypothesis, whose implications are striking, allowing them
to break (−2, 2) for the support for certain families.
Hypothesis 1.3 (Hypothesis S). Let e(z) := e2πiz, c be a positive integer and a be an arbitrary residue
class mod c. Let H1(α,A) denote a 2-parameter family of hypotheses, where α ∈ [1/2, 3/4], A ∈ [0,∞),
each of which states that

H1(α,A) :
∑
p≤x

p≡a(c)

e

(2√
p

c

)
≪ε cAxα+ε (1.9)

holds uniformly over c > 0 and residue classes a mod c.

1.2. Previous Work. The reason why [ILS] is interested in this family of hypotheses is because they
increase the support of test functions for which the one-level density agrees with random matrix theory.
We first review their result, and then discuss our generalization.

For convenience, as is often done in the subject, we assume our test function Φ is the product of one-
dimensional test functions ϕi. Below we confine our study to cusp forms of level 1 and weight k. Following
[ILS], one is able to get better results on the support by averaging over k. This allows us to exploit some
oscillation in the Bessel function factors that emerge in application of the Petersson formula. Note that
rather than sum over all forms equally, each form f of weight k is weighted by the slowly varying factor
1/L(1, sym2(f)) [HL; I2]. There is a trade-off in studying this modification of the n-level densities; these
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harmonic weights arise naturally in the Petersson formula, and their introduction simplifies calculations
below. Unfortunately their presence means that we cannot obtain results on bounding the order of
vanishing at the central point, but instead obtain results on weighted vanishing. In many families these
weights can be removed through additional work; see [ILS].

Definition 1.4 (Agrees with Orthogonal RMT). We say that a test function Φ agrees with Orthogonal
Random Matrix Theory if

lim
K→∞

1
K

∑
k≤K

4π2

k − 1
∑

f∈Hk

1
L(1, sym2(f))Dn(f ; Φ) =

∫
Rn

Φ(x) ·Wn,O(x) dx1 · · · dxn, (1.10)

where Wn,O(x) is given by equation (1.6), and Hk = H⋆
k(1) are Hecke eigencuspforms of weight k and level

1, with normalization so that af (1) = 1. The L-function L(s, f) has coefficients λf (n) := af (n)n−(k−1)/2

so that λf (p) ∈ [−2, 2] and the L-function L(s, f) is symmetric about Re(s) = 1/2.

Remark 1.5. For the family considered above, previous results show that the underlying symmetry group
is orthogonal, hence our comparison with the orthogonal behavior. For other families we would just use
the corresponding densities from Theorem 1.2.

We are now able to state the following result from [ILS], which extends the support for the family of
level 1 cusp forms to beyond (−2, 2).

Theorem 1.6 (One-level extended support). Assume GRH. Then H1(α,A) implies that a test function
ϕ agrees with random matrix theory if supp(ϕ̂) ⊂ (−σ, σ) for σ = min{5/2, 2 + (6 − 8α)/(1 + 2A+ 4α)}.
More specifically, we show for all h ∈ C∞

0 (R+) with ĥ(0) ̸= 0 that

lim
K→∞

1
ĥ(0)K

∑
k even

4π2

k − 1 h

(
k − 1
K

) ∑
f∈Hk

1
L(1, sym2(f))D1(f ;ϕ) →

∫
R
ϕ(x) ·W1,O(x) dx. (1.11)

1.3. New Results. In their manuscript from 2000, Iwaniec, Luo and Sarnak [ILS] state and prove the
Theorem 1.6 for σ = 2 + (12 − 16α)/(5 + 4A+ 8α), which is less than 2 + (6 − 8α)(1 + 2A+ 4α); however,
a careful analysis of their arguments give more than what they claimed. In Section 2, we give a proof
of Theorem 1.6 based on Section 10 of [ILS], and discuss in Appendix A the difference in the claimed
support and what the calculation yields.

Our main theorem, Theorem 1.8, is a natural extension of Theorem 1.6, showing that square-root
cancellation hypotheses also extend to the case of the 2-level density. For ease of exposition and to
highlight the issues, we focus on the n = 2 case, though similar calculations should hold in general.

Hypothesis 1.7. Let e(z) := e2πiz, c be a positive integer, and a1, a2 be arbitrary residue classes mod c.
Let H2(α,A) denote a 2-parameter family of hypotheses, where α ∈ [1/2, 3/4], A ∈ [0,∞), each of which
states that

H2(α,A) :
∑

p1≤x1
p1≡a1(c)

∑
p2≤x2

p2≡a2(c)

e

(2√
p1p2
c

)
≪ε cA(x1x2)α+ε (1.12)

holds uniformly over c > 0 and residue classes a1, a2 mod c.

It should be noted that hypothesis H2(α,A) implies H1(α,A), because one may take x1 or x2 constant
to obtain a single sum over primes. A natural extension of Theorem 1.6 is our main theorem, proven in
Section 3.

Theorem 1.8 (Two-level extended support). Assume GRH. Then H2(α,A) implies that a test function
Φ(x) = ϕ1(x1)ϕ2(x2) agrees with random matrix theory if supp(ϕ̂i) ⊂ (−σi, σi) for
σ1 + σ2 = 2 + (6 − 8α)/(3 + 2A+ 4α). More specifically, we show for all h ∈ C∞

0 (R+) with ĥ(0) ̸= 0 that

lim
K→∞

1
ĥ(0)K

∑
k even

4π2

k − 1 h

(
k − 1
K

) ∑
f∈Hk

1
L(1, sym2(f))D2(f ; Φ) →

∫
R2

Φ(x) ·W2,O(x) dx1dx2. (1.13)
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Using the machinery from [DuM] for an orthogonal ensemble with the naive test function we obtain
the following immediately from Theorem 1.8.

Theorem 1.9. Taking ϕ to be the naive test function

ϕNaive(x) =
(sin(πvx)

πvx

)2
, (1.14)

the weighted percentage of forms vanishing to order at least r, denoted Pr(F), is bounded by

Pr(F) ≤ min
{1
r

(1
2 + 1

v1

)
,

1
3(r − 1/v2 − 1/2)2

}
. (1.15)

Here v1 and v2 denote the available support for the 1-level and 2-level density respectively, and the form
f is weighted by the factor from (1.13) (normalized so that the sum of the weights equals 1). Assuming
the strongest version of Hypothesis 1.7, we may take v1 = 2.5 and v2 = 1.2. These values yield

P1(F) ≤ 0.9000, P2(F) ≤ 0.4500, P3(F) ≤ 0.1200, P4(F) ≤ 0.0469, P5(F) ≤ 0.0248.
(1.16)

Remark 1.10. We quickly comment on the conditional nature of these results. In [ILS] there are two
places GRH is used. The first is for convenience to bound certain prime sums of cuspidal newforms, which
they remark can be bypassed by additional appeals to the Petersson formula (see the comments after their
equation (4.24)).2 The second is when one splits by sign for square-free level N tending to infinity, GRH
is needed to analyze the main term contribution and size of the error of the Bessel-Kloosterman term;
however, we only need this for Dirichlet L-functions. If we do not split by sign and consider level 1
cuspidal newforms for k up to K (appropriately weighted), then Hypothesis S, a “GL1” exponential sum,
suffices.

Remark 1.11. We expect in the limit that 50% of the forms in our family should be rank 0 and 50%
rank 1; thus (paraphrasing comments one of us heard from Iwaniec in graduate classes) for r ≥ 2 we may
interpret Theorem 1.9 as providing better upper bounds on 0.

We first review the proof for the one-level density in §2 to fix notation and then extend to the two-level
in the next section. For notational convenience we prove Theorem 1.8 in the case when ϕ1 = ϕ2; a
similar argument holds in general (see for example the arguments in [LiM], which extend the n-level
density results of [HM] from identical test functions to the more general case). We then discuss further
generalizations to larger n.

2. The One-Level Case

We follow the arguments in [ILS] to prove Theorem 1.6, but with extra care towards the step that
derives their equation (10.17), since the expression in their original manuscript differs slightly from our
estimation. This also sets the notation we need for our two-level result, as well as isolating certain
one-level results that are used again.

We begin by justifying normalizing the one-level density sum

B(K) :=
∑

k even

4π2

k − 1 h

(
k − 1
K

) ∑
f∈Hk

1
L(1, sym2(f))D1(f ;ϕ) (2.1)

by a factor of ĥ(0)K. That is, given the total weighting

B(K) :=
∑

k even

4π2

k − 1 h

(
k − 1
K

) ∑
f∈Hk

1
L(1, sym2(f)) , (2.2)

2While we need GRH to have the zeros lie on the critical line, and thus have a direct comparison to eigenvalues of Hermitian
matrices or energy levels of heavy nuclei, such an assumption is only needed for this interpretation or correspondence; the
n-level densities exist whether or not GRH holds.
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we show that B(K) = ĥ(0)K+O(1), and thus either gives the same main terms as K → ∞. This follows
from a special case of the Petersson trace formula:

B(K) =
∑

k even
2h
(
k − 1
K

)
∆k(1, 1), ∆k(1, 1) = 2π2

k − 1
∑

f∈Hk

1
L(1, sym2(f)) , (2.3)

where the so-called trace ∆k(m,n) is defined to be

∆k(m,n) :=
∑

f∈Hk

Γ(k − 1)
(4π

√
mn)k−1

af (m) af (n)
⟨f, f⟩

= 2π2

k − 1
∑

f∈Hk

λf (m)λf (n)
L(1, sym2(f)) (2.4)

where ⟨·, ·⟩ is the Petersson inner product and af are the Fourier coefficients of the cusp form f .

Proposition 2.1 (Petersson trace formula). Let δ(·, ·) be Kronecker’s delta, Jk−1 a Bessel function of
the first kind, and

S(m,n; c) :=
∑

d (mod c)

⋆ e

(
md+ nd

c

)
(2.5)

is a Kloosterman sum, where
∑ ⋆ denotes summing over primitive residue classes. Then the Petersson

formula is

∆k(m,n) = δ(m,n) + 2πik
∞∑

c=1

S(m,n; c)
c

Jk−1

(
4π

√
mn

c

)
. (2.6)

Careful estimation of the Petersson trace formula for special values as in Corollary 2.3 of [ILS] gives
∆k(1, 1) = 1 + O(2−k), and so our claim about B(K) follows by interpreting the main term H =∑

k even 2h
(

k−1
K

)
as a Riemann sum of the function 2h(x) divided by the mean spacing 2/K, hence

H = ĥ(0)K + O(1) where the implied constant depends on h, e.g. using the fact that h has bounded
derivative (though the weaker condition of h having bounded variation would suffice).

In performing asymptotic analysis, we are interested in the weighted sum of traces

B(m,n) :=
∑

k even
2h
(
k − 1
K

)
∆k(m,n). (2.7)

Inserting (B.5) into (2.1) while taking R ≍ K2 to be on order of the average conductor, we have

B(K) = ĥ(0)K
〈
ϕ,W1,O

〉
− P(ϕ) +O

(
K

log logK
logK

)
, (2.8)

where the implied constant depends on ϕ, and P(ϕ) is the weighted sum over local factors

P(ϕ) :=
∑

k even

4π2

k − 1 h

(
k − 1
K

) ∑
f∈Hk

1
L(1, sym2(f))P(f ;ϕ) =

∑
p

B(p, 1) ϕ̂
( log p

2 logK

) log p
p1/2 logK

.

(2.9)
It is at this stage the goal of the analysis becomes clear: estimate P(ϕ) by extracting a main term

and bounding the error. In the case of the one-level density, the prime sum P(ϕ) does not contribute
to the main term when supp(ϕ̂) ⊂ (−σ, σ) for some σ we would like to determine, giving us agreement
with random matrix theory. For example, without the use of Hypothesis 1.3, [ILS] immediately show
using the Petersson trace formula and Weil’s estimate that B(p, 1) = O(p1/2K−4), and so taking σ = 2
means that p runs up to P ≪ K4−δ assuming supp(ϕ̂) ⊆ [−2 + δ, 2 − δ] for some positive δ, which gives
P(ϕ) ≪ K−δ.

To increase σ, it is necessary to deal with a worse error term that cannot be absorbed into O(p1/2K−4)
when σ > 2. Namely, by applying the Petersson formula to B(m,n) and approximating the Bessel
function sums using standard techniques (see Corollary 8.2 in [ILS] and then the top of page 86 in [I1]),
one may derive the following.
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Lemma 2.2 (Lemma 10.1 in [ILS]). We have

B(m,n) = ĥ(0)Kδ(m,n) +O(δ(m,n) +
√
mnK−4) (2.10)

− π1/2(mn)−1/4K Im
(
ζ8

∞∑
c=1

c−1/2S(m,n; c) e
(

2
√
mn

c

)
ℏ
(

cK2

8π
√
mn

))
,

where the implied constant depends on h, and the function ℏ is defined to be the transform

ℏ(v) :=
∫ ∞

0

h(
√
u)√

2πu
eiuv du. (2.11)

The above lemma follows by applying the Petersson trace formula to (2.7), and then estimating the
weighted sum of Bessel functions I(x) = ∑

k even 2h
(

k−1
K

)
ikJk−1(x) (cf. the twisted character sum on

page 86 of [I1]). Crucial in the analysis is executing the sum over the weights k to exploit the oscillation
in the Bessel terms.

Using this expression for B(p, 1) to estimate (2.9), we obtain by a simple triangle inequality
P(ϕ) ≪h PK−4 (2.12)

+
∣∣∣∣∣∑

p

K Im
(
ζ8

∞∑
c=1

c−1/2S(p, 1; c) e
(2√

p

c

)
ℏ
(
cK2

8π√
p

)
ϕ̂

( log p
2 logK

) log p
p3/4 logK

)∣∣∣∣∣ ,
where P is the largest prime such that log P

2 log K is greater than the support of ϕ̂. Notice that we use a crude
estimate such as ∑p≤P 1 ≪ P because logarithmic factors will not increase the support (as our results
are for open and not closed intervals). We moved ϕ̂

(
log p

2 log K

)
and log p

p3/4 log K
into the imaginary component,

since they are both real.
Our next step is to interchange summing over p versus c, and we replace |Im(·)| by the full complex

modulus | · | (we do not expect the real part to be significantly larger than the imaginary part, so this
should not lead to a decrease in support).

P(ϕ) ≪ PK−4 +K
∞∑

c=1
c−1/2

∣∣∣∣∣∑
p

S(p, 1; c)e
(2√

p

c

)
ℏ
(
cK2

8π√
p

)
ϕ̂

( log p
2 logK

) log p
p3/4 logK

∣∣∣∣∣
≪ PK−4 +K

∞∑
c=1

c−1/2 ∑
a (mod c)

⋆

∣∣∣∣∣∣
∑

p≡a(c)
S(p, 1; c)e

(2√
p

c

)
ℏ
(
cK2

8π√
p

)
ϕ̂

( log p
2 logK

) log p
p3/4 logK

∣∣∣∣∣∣
= PK−4 +K

∞∑
c=1

c−1/2 ∑
a (mod c)

⋆ |S(a, 1; c)|

∣∣∣∣∣∣
∑

p≡a(c)
e

(2√
p

c

)
ℏ
(
cK2

8π√
p

)
ϕ̂

( log p
2 logK

) log p
p3/4 logK

∣∣∣∣∣∣ .
(2.13)

We only sum over primitive residue classes mod c, each of which contains infinitely many primes, whereas
the non-primitive classes consist of primes p dividing c. Because ℏ is rapidly decaying, only large primes
p ≫ c2K4 contribute, and so the non-primitive residue classes are absorbed into the Vinogradov notation.

We now perform summation by parts. For each sum over primes in a residue class, we put ψc(x) =
ℏ
(

cK2

8π
√

x

)
ϕ̂
(

log x
2 log K

)
log x

x3/4 log K
which is smooth and supported for primes p < P . By Abel summation, we

obtain ∑
2 ≤ n ≤ P

e

(
2
√
n

c

)
1n∈{p≡a(c)} ψc(n) = −

∫ P

2
E1(x)ψ′

c(x) dx, (2.14)

where
E1(x) :=

∑
p≡a(c)

p≤x

e

(2√
p

c

)
. (2.15)

Thus we see a natural opportunity to use Hypothesis 1.3 in our estimate for the local factors arising from
the explicit formula applied to the weighted average of the one-level density D1(f ;ϕ).
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From now on let us assume hypothesis H1(α,A) found in (1.9). We estimate ψ′
c(x) as

ψ′
c(x) = ℏ′

(
cK2

8π
√
x

)
·O

(
cK2

x9/4

)
+ ℏ

(
cK2

8π
√
x

)
·O

( 1
x7/4

)
, (2.16)

where the implied constant depends on ϕ. We treat ψ′
c(x) as O(1) for small c and as rapidly decaying for

large c. The exact transition region for c is governed by the argument of the rapidly decaying function
ℏ, i.e., cK2/

√
P = θ(1). Thus, we truncate our sum over c in (2.13) at the value C = P 1/2Kε−2. Indeed,

applying Weil’s estimate and equation (2.16) with ℏ′(x), ℏ(x) = OΩ(x−Ω) for Ω > 0 large, we bound the
tail of (2.13) by

K
∑

c ≥ C

c

∫ P

2
E1(x)ψ′

c(x) dx ≪h,Ω,ε K
∑

c ≥ C

cA+1
∫ P

2
xα+ε

(
cK2
√
x

)−Ω

·
(
cK2

x9/4 + 1
x7/4

)
dx (2.17)

≪ Pα+ε+Ω/2K1−2ΩCA+3−Ω

= KO(1)−εΩ.

Thus we have a balancing act, where we let ε → 0 while O(1) − εΩ < 0 to maximize the extension of
support obtained by this method. This shows that we may neglect these terms for further computation,
i.e., they are absorbed into the Vinogradov notation.

Focusing now on the small values of c, we estimate ψ′
c(x) = Oh(Kεx−7/4) for x ≥ c2K4−2ε, handling

the smaller values of x using rapid decay estimates similar to above. This gives

K
∑

c ≤ C

c

∫ P

c2K4−2ε
E1(x)ψ′

c(x) dx ≪h,ε K1+ε
∑

c ≤ C

cA+1
∫ P

c2K4−2ε
xα−7/4+ε dx

≪ Pα+A/2+1/4K−2A−3+O(ε). (2.18)

We usually write O(ε) as ε, as this can be done by changing our definition of ε. Thus, we have derived

P(ϕ) ≪ϕ,h,ε PK−4 + Pα+A/2+1/4K−2A−3+ε. (2.19)

To understand an account of the various estimates for (2.19), see Appendix A.
Since P = K2σ′ where σ′ = log P

2 log K tends to the maximum of supp(ϕ̂), and so σ′ < σ for all large K.
Since we have agreement with random matrix theory only if P(ϕ) = o(K), each term in (2.19) gives us
an upper bound on our method for obtaining σ in Theorem 1.6. Namely, PK−4 = o(K) gives σ ≤ 5/2,
and Pα+A/2+1/4K−2A−3+ε as ε → 0 gives σ ≤ 2 + (6 − 8α)/(1 + 2A + 4α). This concludes our proof of
Theorem 1.6.

The best support we could expect would be using hypothesis H1(1
2 , 0), which gives an increased support

of supp(ϕ̂) ⊂ (−5/2, 5/2); see Appendix A for a history of this derivation. Notice that σ = 5/2 can also
be achieved using H1 with respect to any (α,A) along the linear interpolation of (0.5, 0.5) and (0.55, 0).

3. The Two-Level Case

The starting point is the explicit formula, and inclusion-exclusion to express the two-level density in
terms of prime sums. The calculation is standard (see Section B) and yields equation (B.7), which we
restate below (recall P(f ;ϕ) is defined in (2.9)):

D2(f ;ϕ) = ϕ̂(0)2
( log k

logK

)2
− 3

4ϕ(0)2 + ϕ̂(0)ϕ(0) log k
logK − 2ϕ̂2(0) log k

logK +Oϕ

( log log k
logK

)
+ P(f ;ϕ)2 + 2P(f ;ϕ2) −

(
2ϕ̂(0) log k

logK + ϕ(0) +Oϕ

( log log k
logK

))
P(f ;ϕ). (3.1)

From Section 2, we know that the averages of P(f ;ϕ2) and P(f ;ϕ) are o(K) when the support
supp(ϕ̂) ⊂ (−σ̃/2, σ̃/2), where σ̃ is σ(α,A) given in Theorem 1.6 and we assume hypothesis H1(α,A).
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We now proceed to extracting the diagonal sum from P(f ;ϕ)2 since it contributes. We have

P(f ;ϕ)2 =
∑
p,q

λf (p)λf (q)
√
pq

ϕ̂

( log p
logR

)
ϕ̂

( log q
logR

) 4 log p log q
(logR)2 (3.2)

where p, q run over the primes. When we average over f we get

P2(ϕ) :=
∑

k even

4π2

k − 1h
(
k − 1
K

) ∑
f∈Hk

1
L(1, sym2(f))P(f ;ϕ)2

=
∑
p,q

ϕ̂

( log p
logR

)
ϕ̂

( log q
logR

) 4 log p log q
√
pq(logR)2 B(p, q), (3.3)

where B(p, q) was defined in (2.7). Applying Lemma 2.2, we have

P2(ϕ) = (ĥ(0)K +O(1))
∑

p

1
p
ϕ̂

( log p
logR

)2 (2 log p
logR

)2
+Oϕ,h(P 2K−4)

− π1/2K
∑
p,q

1
p3/4q3/4 ϕ̂

( log p
logR

)
ϕ̂

( log q
logR

) 4 log p log q
(logR)2

× Im
(
ζ8

∞∑
c=1

c−1/2S(p, q; c) e
(2√

pq

c

)
ℏ
(

cK2

8π√
pq

))
. (3.4)

The diagonal sum yields∑
p

1
p
ϕ̂

( log p
logR

)2 (2 log p
logR

)2
=
∫ ∞

2
ϕ̂

( log x
logR

)2 4 log2 x

x log2R
dπ(x)

=
∫ ∞

2
ϕ̂

( log x
logR

)2 4 log2 x

x log2R

(
dx

log x +O

(
log2 x√

x

)
dx

)

=
∫ ∞

0
ϕ̂(u)24u du+O

( 1
logR

)
+O

(
η + logR

Rη

)
. (3.5)

Taking η = A log logR/ logR with A ≥ 2 a constant yields an error of size O(log logR/ logR), where we
have used the Riemann hypothesis for ζ(s) for a good error term in the integration.

We now analyze the non-diagonal component of P2(ϕ), denoted P
(nd)
2 (ϕ), similar to our treatment of

P(ϕ) beginning at (2.13). We take R ≍ K2.

P
(nd)
2 (ϕ)

≪ P 2K−4 +K
∞∑

c=1
c−1/2

∣∣∣∣∣∑
p,q

S(p, q; c)e
(2√

pq

c

)
ℏ
(

cK2

8π√
pq

)
ϕ̂

( log p
2 logK

)
ϕ̂

( log q
2 logK

) log p log q
p3/4q3/4(logK)2

∣∣∣∣∣
≪ P 2K−4 +K

∞∑
c=1

c−1/2

×
∑

a,b (mod c)

⋆ |S(a, b; c)|

∣∣∣∣∣∣∣∣∣
∑

p≡a(c)
q ≡ b(c)

e

(2√
pq

c

)
ℏ
(

cK2

8π√
pq

)
ϕ̂

( log p
2 logK

)
ϕ̂

( log q
2 logK

) log p log q
p3/4q3/4(logK)2

∣∣∣∣∣∣∣∣∣ .
(3.6)

We now perform summation by parts on our double sum over primes in residue classes. We let

ψc(x, y) := ℏ
(

cK2

8π√
xy

)
ϕ̂

( log x
2 logK

)
ϕ̂

( log y
2 logK

) log x log y
x3/4y3/4(logK)2 (3.7)
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and sum by parts. We have∑
p≡a(c)

q ≡ b(c)

e

(2√
pq

c

)
ψc(pq) =

∫ P

2

∫ P

2
E2(x, y) ∂

2ψc

∂x∂y
(x, y) dx dy, (3.8)

where

E2(x, y) :=
∑

p ≡ a(c)
q ≡ b(c)

e

(2√
pq

c

)
. (3.9)

We now assume hypothesis H2(α,A), found in (1.12).
As was illustrated by estimates in Section 2, it suffices to only integrate over the region xy ≥ c2K4−2ε;

we may also truncate our sum at c ≤ C = PKε−2. Allowing this reduction along with Weil’s estimate
and ∂2

xyψc(x, y) = O(Kε(xy)−7/4), we obtain

P
(nd)
2 (ϕ) ≪ϕ,h,ε P 2K−4 +K1+ε

∑
c ≤ C

c2
∫∫

xy ≥ c2K4−2ε
cA(xy)α−7/4+ε dxdy

≪ P 2K−4 + P 3/2+A+2αK−6−2A+O(ε). (3.10)

This gives an increased support of supp(ϕ̂) ⊂ (−σ/2, σ/2) where σ = 2 + 6−8α
3+2A+4α .

This concludes our proof of Theorem 1.8, since equation (B.7) for the 2-level expansion yields the main
term ⟨Φ,W2,O⟩ plus an error term that is controlled by the family averages of P(f ;ϕ2) and P

(nd)
2 (ϕ).

Indeed, our main term is

2
∫ ∞

−∞
|u|ϕ̂(u)2 du+ ϕ̂(0)2 − 3

4ϕ(0)2 + ϕ̂(0)ϕ(0) − 2ϕ̂2(0), (3.11)

and it is a standard calculation (see [HM; C–]) that this is equal to ⟨Φ,W2,O⟩ (it is straightforward
combinatorics to pass between n-level densities and nth centered moments).

By Hypotheses H1(α,A) and H2(α,A) the error does not contribute as K → ∞ for

2σ ≤ min
{5

2 , 2 + 6 − 8α
1 + 2A+ 4α, 2 + 6 − 8α

3 + 2A+ 4α

}
= 2 + 6 − 8α

3 + 2A+ 4α. (3.12)

This is because the rest of the calculation for the two-level support consists of cross terms that already
appear in the one-level case, and these terms are negligible assuming H1(α,A) and 2σ in the above range
by following the proof of Theorem 1.6 in Section 2.

4. An n-Level Conjecture

Based on our calculations in Sections 2 and 3, we notice that the fundamental sums arising from local
factors which may contribute have a predictable analysis. The natural generalization of cancellation in
such sums lead to the following conjecture on extending support.

Conjecture 4.1 (n-level Hypothesis). Assume GRH. Let Φ : Rn → R be a test function given by
Φ(x) = ∏n

i=1 ϕ(xi). Assume the following square-root cancellation hypothesis holds:

Hn(α,A) :
∑

p1 ≤ x1
p1 ≡ a1 (c)

· · ·
∑

p2 ≤ xn

pn ≡ an (c)

e

(2√
p1· · · pn

c

)
≪ε cA(x1· · ·xn)α+ε, (4.1)

where the implied constant is uniform over c and the residue classes a1, . . . , an. Then Φ agrees with
random matrix theory whenever supp(ϕ̂) ⊂ (−σ, σ), and σ is given by

nσ = min
{5

2 , 2 + 6 − 8α
1 + 2A+ 4α, . . . , 2 + 6 − 8α

2n− 1 + 2A+ 4α

}
= 2 + 6 − 8α

2n− 1 + 2A+ 4α. (4.2)
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Expansions of the nth centered moments or n-level densities have been calculated for related families
where we split by sign and let the level N → ∞ through the primes; see [C–] for families of such cuspidal
newforms, with the resulting agreement holding for supp(ϕ̂) ⊂ (−2/n, 2/n). A good future project3 would
be to apply their combinatorial arguments in the level 1 setting, in particular seeing whether or not these
are the only terms that restricted the support to 2/n.

Appendix A. Theorem 1.6 in the Literature

We provide some brief remarks on the support improvements from Hypothesis S.
Let us suppose that α = 1/2 and A = 0 for hypothesis H1(α,A), i.e., the exponential sums satisfy

true square-cancellation. Theorem 1.6 says that we may take σ = 5/2. In their 1999 pre-print, Iwaniec,
Luo and Sarnak perform the correct integration by parts technique, but their estimate of a sum of Bessel
functions is non-sharp; they write

∑
k even

2h
(
k − 1
K

)
ikJk−1(x) = Main Term +Oh

(
x

K4 + x2

K6

)
, (A.1)

see Proposition 1 of Section 2 in their paper. It is this extra error of Oh(x/K6) that affects the final
result, giving σ = 7/3 instead of σ = 5/2. In their 2000 publication, the error term in (A.1) is corrected to
Oh(x/K4), which leads to the correct estimate in Corollary 8.2 of [ILS]. However, [ILS] derives σ = 22/9
instead of σ = 5/2; this is because although their Bessel sum estimate is correct, they derive

P(ϕ) ≪ϕ,h,ε PK−4 + Pα+A/2+5/8K−2A−9/2+ε. (A.2)

It is unclear how they did this; following their integration by parts technique in the 1999 preprint, it
seems that with the correction to (A.1) found in their 2000 publication, they would have derived equation
(2.19) as we present it today.

Appendix B. Explicit Formulae For The Densities

We order the zeros of L(s, f) by 0 ≤ γ(1) ≤ γ(2) ≤ · · · including multiplicity, and γ(−j) = −γ(j), giving
us a zero γ(j) for each j ∈ Z − {0}. We recall the one-level density of L(s, f) with respect to a test
function ϕ to be

D1(f ;ϕ) :=
∑
j ̸=0

ϕ

( log cf

2π γ(j)
)
, (B.1)

where cf = k2N is the analytic conductor of a form f with weight k and level N . Throughout this paper,
we exclusively deal with level 1 modular forms, so log cf = 2 log k for f ∈ Hk.

Similarly, the two-level density with respect to a one-dimensional test function ϕ : R → R (so
Φ(x1, x2) = ϕ(x1)ϕ(x2)) is

D2(f ;ϕ) :=
∑

j,ℓ̸=0
j ̸=±ℓ

ϕ

( log cf

2π γ(j)
)
ϕ

( log cf

2π γ(ℓ)
)
. (B.2)

Straightforward inclusion-exclusion yields that this two-level density simplifies as

D2(f ;ϕ) = D1(f ;ϕ)2 − 2D1(f ;ϕ2), (B.3)

with similar expansions for the n-level densities as a degree n polynomial expression in terms of the
one-level densities of powers of ϕ.

In Section 4 of [ILS], they derive the following expansion.

3It is likely that this will be investigated in the 2023 SMALL REU.
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Lemma B.1 (Lemma 4.1 of [ILS]). Let ϕ be even Schwartz and ϕ̂ compactly supported. Then for
f ∈ H⋆

k(N), we have

D1(f ;ϕ) = ϕ̂(0) log k2N

logR + 1
2ϕ(0) −

∑
p

λf (p)ϕ̂
( log p

logR

) 2 log p
√
p logR

−
∑

p

λf (p2)ϕ̂
(2 log p

logR

) 2 log p
p logR +O

( log log 3N
logR

)
(B.4)

where R > 1 is an arbitrary parameter and the implied constant depends only on ϕ.

[ILS] remark that, by assuming the Riemann hypothesis for L(s, sym2(f)), the second sum over primes
above is a small error of size O

(
log log kN

log R

)
which depends on ϕ, and very crucially does not depend on f

(cf. equation (4.23) of [ILS]). They also remark that one can achieve a similar error size on average via
unconditional means, which is described in Appendix B of [ILS]. Thus, assuming GRH, we have

D1(f ;ϕ) = ϕ̂(0) log k2N

logR + 1
2ϕ(0) −

∑
p

λf (p)ϕ̂
( log p

logR

) 2 log p
√
p logR +Oϕ

( log log kN
logR

)
. (B.5)

Let P(f ;ϕ) denote the sum over primes which may contribute to the density.

P(f ;ϕ) :=
∑

p

λf (p)
√
p
ϕ̂

( log p
logR

) 2 log p
logR . (B.6)

We drop the parameter R from the notation of P(f ;ϕ), since we often take R as the analytic conductor
cf = k2N or the average conductor over the family, i.e., R ≍ K2N .

We now consider the two-level density for ϕ. By applying (B.5) to (B.3) with f ∈ Hk = H⋆
k(1) and

R ≍ K2, we obtain

D2(f ;ϕ) = ϕ̂(0)2
( log k

logK

)2
− 3

4ϕ(0)2 + ϕ̂(0)ϕ(0) log k
logK − 2ϕ̂2(0) log k

logK +Oϕ

( log log k
logK

)
+ P(f ;ϕ)2 + 2P(f ;ϕ2) −

(
2ϕ̂(0) log k

logK + ϕ(0) +Oϕ

( log log k
logK

))
P(f ;ϕ). (B.7)

As we observe in Section 3, the only prime sum which contributes to random matrix theory agreement
is P(f ;ϕ)2: the terms involving P(f ;ϕ2) and P(f ;ϕ) become negligible under the support conditions for
Φ(x) = ϕ2(x1)ϕ2(x2) given by Theorem 1.6 assuming Hypothesis 1.3.
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