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5. k-Generational Sets

GENERALIZED MORE SUMS THAN DIFFERENCES SETS
GEOFFREY IYER, OLEG LAZAREV, STEVEN J. MILLER, AND LIYANG ZIANG

ABSTRACT. A More Sums Than Differences (MSTD, or sum-dominant) sefisite setA C Z such
that| A + A| < |A — A|. Though it was believed that the percentage of subse8,of ., n} that are
sum-dominanttends to zero, in 2006 Martin and O’'Bryant [N\d@]ved that a positive percentage are
sum-dominant. We generalize their result to the many diffeways of taking sums and differences
of a set. We prove thag; A + - - - + €, A| > |01 A+ - - - + 6 A| a positive percent of the time for all
nontrivial choices ot;, §; € {—1,1}. Previous approaches proved the existence of infinitelyyman
such sets given the existence of one; however, no methoestsconstruct such a set. We develop
a new, explicit construction for one such set, and then eiktea positive percentage of sets.

We extend these results further, finding sets that exhiffér@int behavior as more sums/differences
are taken. For example, we prove that for amyle; A+ - -+e; A|— |01 A+~ - -+, A| = m a positive
percentage of the time. We find the limiting behaviokaf = A + - -- + A for an arbitrary setd as
k — oo and an upper bound éffor such behavior to settle down. Finally, we s&ys k-generational
sum-dominantifA, A + A, ..., kA are all sum-dominant. Numerical searches were unable to find
even a 2-generational set (heuristics indicate that thbafnitity is at mostl0~?, and quite likely
significantly less). We prove that for akya positive percentage of sets d@rgenerational, and no
set can bé:-generational for alk.
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1. INTRODUCTION

Given a finite set of integerd, two natural sets to study are

A+ A = Hai+ay:ay,a9 € A}
A—A = {a;—as:aj,a € A} (1.2)

The most natural question to ask is: As we vatyover a family of sets, how often igA +

Al > |A — A| (where|X]| is the cardinality ofX)? We call such sets More Sums Than Dif-
ferences (MSTD) sets, or sum-dominant (if the two cardiresiare the same we sayis bal-
anced, and ifA — A| > |A — A| we sayA is difference-dominant). As addition is commutative
but subtraction is not, a typical pair contributes two difeces toA — A but only one sum to
A + A. While there are numerous constructions of such sets amdtenfamilies of such sets
[He, HM2, Ma, MOS, Na2, Na3, Na4, Rul, Ru2, Ru3], one expaats-dominant sets to be rare;
however, Martin and O’Bryant [MO] proved that a positive gantage of sets are sum-dominant.
They showed the percentage is at leastl0~7, which was improved by Zhao [Zh2] to at least
4.28 - 10~* (Monte Carlo simulations suggest the true answer is abéut10~%). In all these ar-
guments, each integer i, ..., n — 1} has an equal chance of being4nor not being in4, and
thus all of the2™ subsets are equally likely to be chosen. The situation is\dtizally different if
we consider a binomial model where the probability paranteteds to zero. Explicitly, for each

let p(n) € (0,1). Now assume each integer{f, ..., n — 1} is chosen with probability(n). If
p(n) decays to zero with, then Hegarty and Miller [HM1] proved that with probabiliignding to

1 arandomly chosen set is difference-dominated. See [ILidZ4 survey of results in the field.

Throughout this paper we use the following notations:

em-A={m-a:ac A}
e A+ B={a+b:acAbeB},A—-B={a—b:ac Abec B}.
e |A] is the number of elements if.

e mA=A+---4+ Aif m > 1(if m = 0 we define) A to be the empty set).
m times
o —A ={-a:ae€ A}, and ifm > 0then—mA = —(mA); note that ifm,n > 0 then
mA+nA = (m +n)A; howevermA —nA # (m —n)A.

o [a,b] ={a,a+1,....;b—1,b}.

The purpose of this article is to generalize the positive@eatage and explicit constructions of
MSTD sets. Two natural questions, which motivated much isfwork, are

(1) Given non-negative integess, di, so, ds With s; + di = so + dy > 2, can we find a setl
with |s;A — d1A| > |seA — dy A, and if so, does this occur a positive percentage of the
time?
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(2) We say a set ig-generational ifA, A+ A, ..., kA are all sum-dominant. Db-generational
sets exist, and if so, do they occur a positive percentagkeofine? Is there a set that is
k-generational for alk?

The answer to the first question is yes, and in fact the reanlbe generalized. When+d; = 2,
the only possible sets are essentially- A andA — A, as—A — A is just the negation ofl + A.
Whens; + d; = 3, again there are essentially just two possibilitidst A + AandA + A — A,
sinceA — A— A = —(A+ A — A) and thus we might as well assume> d;. New behavior
emerges once the sum is at least 4. In that case, wedavel + A+ A, A+ A+ A— Aand
A+ A— A— A. One of our main results is that all possible orderings o$éhthiree sets happen
a positive percentage of the time. This generalizes andawngsrresults from [MOS], where large
families were found withA + A + A| > |A + A — A| and large families could be found for more
general binary comparisoifsone such set could be found.

For the second question, brute force numerical exploratamuld not find such sets. This is
not surprising, as such sets are expected to be rare (siraptestics imply that the percentage of
such sets is at mosb—?, and quite likely much less). Generalizing our construcfiar the first
problem, we find a positive percentage of setsiagenerational for any; further, no set can be
k-generational for alk.

We now state our main results and give a sketch of the proofs.

Theorem 1.1. Letsy, dy, s2, ds be non-negative integers such tHat, d; } # {s2, d>}.
(1) There exists a finite, non-empty sétof non-negative integers such that A — d,; A| >
|82A — d2A|
(2) A positive percentage of finite subsetsof non-negative integers satisfy; A — d; A| >
|se A — do Al. Explicitly, there is a constami sy, d1, s2, dz) > 0 such that the number of sub-
setsA of {0, 1,...,n—1} satisfyings; A — d; A| > |se A — dy Al is atleaste(sy, dy, s2, d2)2"
asn — oo.

Remark 1.2. Sketch of the proofThe difficulty is finding one such set; after such a set has been
found, we can modify the method of Martin and O’BryfiviO] to obtain a positive percentage.
To create such a set, we decomposd into its left and right parts, denotefl and k. We pickL
and R to be almost symmetric, but we hakieslightly longer thanZ.. Next, note that the left (resp.
right) fringe ofz A — yA is given byx L — yR (resp.yL — xR). Because of the near-symmetry of
L and R, the fringes oft A — y A will have similar structure for different values of y. However,
becauser is longer thanL, the total length of a fringe depends on the number of codiés a.

In Figures 1 and 2, we exhibit a sdtwhere|2A+2A| > |[2A—2A|. Figure 1 showsi+A+A+A,
while Figure 2 showst + A — A — A. Notice that inA + A + A + A, the right fringe intersects
with the middle, which fills in all the gaps. The left fringe, the other hand, grows too slowly to
completely intersect with the middle, and is left with onp.ga

In A+ A— A — A, the left fringe is given by. + L — R — R, which has a length between
L+ L+ L+ LandR+ R+ R+ R. This is not quite long enough to intersect with the middle.
Similarly, the right fringe is given byt + R — L — L, which is once again too short. Therefore
A+ A— A— Ais missing two elements.

Theorem 1.1 can be generalized to obtain the following.

Theorem 1.3 (Arbitrary Differences) Let a, b, ¢, d be non-negative integers such that> b, c, d
anda +b = c+d = q. If ¢ # d, then for any non-negative integers, ¢ such that! < 2m
and all sufficiently largen, there existsA C [0,n] such thatjaA — bA| = gn + 1 —m and
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0 9 18 33 56 79 89
(89-33) (89-10)

0 9 18 33 145 158 168 178
(178-33) (178-20) (178-10

00000000000000000000- 0000000/ 000 —0-——-000-00000000000000000000000

0 9 18 27 33 234 237 247 257 267
(267-30) (267-20) (267-10)

00000000000000000000000000000 000000  C00000000000000000000000000000000000

0 9 18 27 33 326 336 346 356
(356-30) (356-20) (356-10)

FIGUREL1l. A,A+ A A+ A+ A, andA+ A+ A+ A. The sawtooth means all
elements are present in that range.

0 9 18 33 56 79 89
(89-33) (89-10)

0 9 18 33 145 158 168 178
(178-33) (178-20) (178-10

$00000000000000000000- 0000000/ 0000 —000--0000000000000000000000

-89 -80 -71 -62 -56 145 148 158 168 178
(~89+9) (-89+18) (~89+27) (~89+33) (178-30) (178-20) (178-10

0000000000000000000000000000000 0000 0000 0000000000000000000000000000000

-178 -169 -160 -151 -145 148 158 168 178
(-178+9) (-178+18) (-178+27) (-178+33) (178-30) (178-20) (178-10)

FIGURE2. A, A+ A A+A—-A andA+A4—-A— A.

cA—dA| =qgqn+1— (. If c = d, then the statement holds with the additional conditiort tha
even.

The next theorem constructs chains of Generalized MSTD ¥é&sstart atc = 2 below as there

is essentially only one possibility whén= 1 (namely the setsl and — A, which must have the
same cardinality).

Theorem 1.4 (Chains of Generalized MSTD Setd)et z;, y;, w;, z; be finite sequences of non-
negative integers of length such thatz; + v; = w; + 2; = j, and {z;,y;} # {wj,z;} for
every2 < j < k. A positive percentage of setssatisfy|z;A — y;A| > |w,;A — z;A| for every
2<j <k

Theorem 1.5 (Simultaneous Comparisongpiven finite, non-negative sequences of lengtk
|| + 1 calleds;, d; such thats; + d; = kforall 1 < j < kand{s;,d;} # {s;,d;} whenever
j # 1, there exists a set such thats, A — d,A| > -+ > |s1A — di 4|
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Remark 1.6. The bound: < ng + 1 in the above theorem is completely artificial, as the conditi
{s;,d;} # {s:,d;} isimpossible for > [£] + 1.

Remark 1.7. It is possible to combine Theorems 1.4 and 1.5 to obtain adsttat satisfies the
criteria in Theorem 1.5 over many iterations of sums/déffees.

From Theorem 1.4 we deduce

Corollary 1.8 (k-Generational Sets)

(1) For eachk, there exists &-generational set. That is, for eadh there exists a set such
that|cA + cA| > |cA —cAlforall 1 < ¢ < k.

(2) For eachk, a positive percentage of sets argenerational.

(3) There is no set which is-generational for all.

The paper is organized as follows. In 82 we explicitly comstione set with the properties in
Theorem 1.1, obtaining only existence and not a positivegregage. For completeness we provide
most of the verifications; the reader willing to accept tleistence can move on to 83, where we
generalize the method of Martin and O’Bryant to improve @saults from the existence of one set
to a positive percentage, completing the proof of TheoreimAs the proof of arbitrary differences
(Theorem 1.3) is not needed for the remaining results anohiew/hat long and technical, we give
it in Appendix A.

Section 4 contains a few lemmas required to construct tieeisdtheorems 1.4 and 1.5. Once
again, a reader uninterested in technical constructiorysskip this section and proceed to 85. We
discussk-generational sets (and related problems) in 85, provingpoiiégm 1.4 and Corollary 1.8
as well as results about the limiting behaviorbfl| and|kA — kA| ask grows, improving earlier
results of Nathanson [Nal]. We conclude in Section 6 withapof Theorem 1.5.

2. GENERALIZED MSTD SETS

The goal of this section is, givenc N and integers withy; + d; = sy + dy = k and{s;,d;} #
{s9, ds}, to explicitly construct a set such thats; A — d; A| = |s; A — dy A| + 1. The existence of
these sets is the key ingredient in the proof of Theorem helptoof of that theorem requires us
to generalize these constructions slightly, and then madg arguments of Martin and O’Bryant
to obtain a positive percentage by showing a positive péagenof middles may be added to our
set. The reader uninterested in the technical construstionld skim the sketch of the method in
Remark 1.2 and then continue in §3.

Let/ = 2k + 1, r = 2k + 2, and consider the sets

L = {0,1,3,4,....k—1,kk+1,2k+1}
= {0,0—-2k1—2k—2,0—-2k—-3,... 0—k—1,(—Fk [}
= [0, 0\ ({2} U [k +2,2k)
= [0,/\({2}U[l—k+1,0—1])
R = {0,1,2,4,5,...,k,k+ 1,k +2,2k + 2}
= [0,7]\ ({3} U[k+3,2k+1]). (2.1)
We begin with a technical lemma. This lemma states that fgprran € N, the basic structure of
xL + yR is the same as that of the original sets. Basically+ yR is always missing the first

elements below the maximum, as well as the singleton elegient1 away from the maximum.
Even more, it is missing no other elements.
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Lemma2.l. Forall z,y € N,
eL+yR = (0,2l +yr)\ (&l +yr —k+ 1ol +yr —1|U{zl +yr—2k+1}). (2.2)

Proof. The proof is by double induction, first an, then ony. As the proof of the base case
x = y = 1 follows by a simple computation, we now assume the resultfor y R and prove it
forzL + (y + 1)R.

We are interested in

([0, 2 +yr]\ ([xl +yr —k+ 1L, al +yr — U {zl +yr — 2k +1})) + R. (2.3)
We prove that this set contains the proper elements in destefss:
Claim 1: [0,z + yr] C 2L+ (y + 1)R.
Proof: Clearlyxl + yr — 2k + 1 € =L + (y + 1)R, sincexl + yr — 2k € L + yR and1 € R.

Furthermore[zl +yr —k+ 1,2l +yr — 1] C 2L+ (y+ 1)R, sincexl +yr —k —4 € xL + yR,
wl+yr—k—1€xL+yR,and[4, k+ 2] C R.

Clam2:al+ (y+1)r —2k+1=al+yr+3¢ zL+ (y+1)R.
Proof: This is equivalent to showing that + yr + 3 — (zL + yR) N R = (). This is true as
wl+yr+3—(zL+yR)N(NU{0}) = {3}, and3 ¢ R.

Clam3: [zl + (y+ )r —k,al+ (y+ D)r — 1] N (zL + (y+ 1)R) = 0.

Proof: This is the same as showing that + yr +k +2, k{ +yr+2k+1]N(zL + (y+ 1)R) = 0.

l.e., we want to show thatax(zL + (y+ 1)R) —a ¢ vL + (y + 1)R for everyl < a < k. Thisis
true becauseax(xL +yR) —a ¢ vL + yR andmax(R) —a ¢ R for everyl < a < k. Therefore
the same will be true of L + yR + R = 2L + (y + 1) R.

Claim 4: All other elements izl + yr, 20 + (y + 1)r] are inzL + (y + 1) R.
Proof: This is true because each of those elements can be writteh-agr + ¢ for somec € R.

We have proved the inductive step fgrwe omit the proof of the inductive step for since it is
almost exactly the same as the above proof. O

With the technical lemma proved, we can construct a set ab@oem 1.1.

Theorem 2.2. Supposé € N, ands;+d; = sy+dy = k. Further suppose thdtsy, d; } # {s2, d2}.
There exists a set such thats; A — di A| = [s9A — dy A| + 1.

For example, the set
A=1{0,1,3,4,5,9,33,34,35,50,54, 55, 56, 58, 59, 60}

has the property that
A+ A+ A+A > A+ A+A—- 4.

Proof. BecausexA — yA| = |yA — xA|, we can assume that > d; ands, > d,. Therefore we
have eithes; > sy > dy > dy, Or sy, > 51 > dy > dy. We first treat the case whean > s,.
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Case 1:s; > sy: TakeL, R, ¢, r as in construction from Lemma 2.1, and chogase 4(kr—2k-+1).
Define

M = [kr—2k+1—dykn—(kr—2k+1—d)]
A = LUMU(@n-R). (2.4)

To prove this, we first show that the middle ofA — d; A is full, and then we examine the
fringes. We havé(kr — 2k + 1 — dy) — din,syn — (kr — 2k + 1 —d;)] C s1A — d, A. To prove
this, note that)/ is sufficiently large such thgtV/ + L) U (M + n — R) is the entire interval
[min(M),n + max(M)]. Therefore,jmin(M),n + max(M)] C A+ A. Similarly, we get that
[min(M) —n, max(M)] C A— A. The same idea shows that/ + L) U (M +n — R) is sufficiently
large such that

min(M),2n + max(M)]C (M +L+L)UM+M+L)U---U(M+n—R+n—R).

By induction,s; A — d; A will contain [min(M ), (k — 1)n 4+ max(M)].
We first look at the left fringe of; A — d; A, this is (up to translatiory + dRN [0, kr — 2k — d4].
Note thatkr — 2k — dy = s10 + dir — 2k — dy + s;. Therefore, using Lemma 2.1, we get that

SlL + le N [0, Slg -+ dl’l“ — 2k — dl -+ 81] = [0, kr — 2k — dl]\{51€ + dlr — 2k -+ 1} (25)

(this is because; > d;). Next we look at the right fringe. This is (up to translatiamd a minus
sign)d, L + syRN [0, kr — 2k — d;], which is the same as

dlL + 81R N [0, dlg + s1r — 2k — d1 + dl] = dlL -+ 81R N [O, dlg + s1r — 2/{3] (26)

Using Lemma 2.1, this is ju$d, d, ¢ + s, — 2k] (i.e., the entire interval). Thereforg A — d; A is
missing one element.

Next, we look at the left fringe of, A — dy A. Once again, this is (up to translation). + d; RN
[0, kr — sk + 1 — d;]. This can be rewritten as L + da R N [0, sof + dor — 2k — dy + s»]. Since
we have that, > d;, we get

32L+d2Rﬂ[0,$2€+d27’—2k5—d1+52] = [0,ng—i—dg’f’—2k‘—d1+82]\{82€+dgr—2]{3—|—1}. (27)

Therefore the left fringe is missing one element. Now we labkhe right fringe. This is (up
to translation and a minus siga}L + soR N [0, kr — 2k + 1 — d;]. This is the same a$,L +
soR M [0,dol + sor — 2k + 1 — dy + do). Now, because we havg > d, this intersection is
[0, dol + sor — 2k + 1 — dy + do]\{d2l + sor — 2k + 1}. Therefore, the right fringe is missing one
element. This means that = |s; A — d1 A| > |so — doA| = kn — 1.

Case 2:s5 > s;: As sy > s; we haved, > d,. Define

M = [kr—2k+1—s,n—(kr—2k+1-—s)]
A = LUMU((n—R). (2.8)
We have
siL+diRN[0,kr —2k+1—s] = s;L+diRN[0,s10+dir —2k+ 1+ 51 — 5]
= [0, 810+ dyr — 2k + 1], (2.9)
so the left fringe is missing no elements. Furthermore
diL+s1RN[0,kr —2k+1—s5] = diL+siRN[0,dil+ s1r —2k+1—s1+ dy]

= [0, dil+sir— 2k +1—s; +di]. (2.10)
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The last step is true because> d;. Therefores; A — d; A misses no elements.
Next, we look at:
82L+d2Rﬁ[0,]{3T—2/€—|—1—81] = 82L+d2Rﬁ[0,82€+d2T—2/€—|—1—81—|—82]
= [0,890 +dor — 2k + 1 — 51 + so]\{s20 + dor — 2k + 1},
(2.11)
which is true because, > s;. This is enough to show that; A — d; A| > |s2A — dyA|, but we
will go slightly further and show thdt; A — d; A| = |se A — dyA| + 1. To do this, we look at the
right fringe of s, A — dy A. As sy > do, we have
d2L+82Rm[O,/€T—2]€+1—81] = dgL—i-Sng[0,d2€+82T—2]€+1—81+d2]
= [0, dgg + Sor — 2k +1-— S1 + dg], (212)

which completes the proof. O

Although it doesn’t matter for our current purposes, théofeing lemma will be important later.
Each of the sets constructed above is sum-difference kedaboth before and after the critical
point. More formally, we have the following.

Lemma 2.3. In all the setsA defined in the proof of Theorem 2.2,
|51A - d1A| = |52A - d2A| (213)
foranys; + d; = s; + ds such thats; + d; # k.

Proof. In every one of the constructions aboye, — dA contains all possible numbers whenever
s+ d > k, so it only remains to show this fact when+ d < k.

This essentially follows from Lemma 2.1. BothA — d; A ands,A — dy A contain the same
middle (up to translation), so it is enough to analyze thegkes. Whers; + d; < k, these fringes
do not intersect the middle, so it suffices to show that

|siL + diR| + |di L + s1R| = |soL + daR| + |doL + soR) . (2.14)
Using Lemma 2.1, we know thtL + dR| = s¢ + dr — k. Therefore, it is enough to show that
sl+dir—k+dil+s,r—k = sol +dir — k -+ dol + sor — k. (2.15)

This equation is the same as
(s1+di)(l+7r)—2k = (sg+do)(l +1)—2k; (2.16)
ass; + dy = s, + do, the above is true, which completes the proof. O

3. PosITIVE PERCENTAGES

We now give a proof of Part 2 of Theorem 1.1.

Lemma 3.1. Suppose there exists a finite setC Z such thatls; A — d; A| > |se A — d2 A|, where
s1 + di = so + do. Further suppose that; > 2. Then
C —1]; — —
lim inf #{B - [O,Tl 1]7 ‘SlB dlB| > ‘SQB ng|} S 0 (31)

n—o00 on ’

in other words, a positive percentage of subsets have thistste.
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Remark 3.2. Note that the assumption > 2 only rules out the case, = d; = 1, since we can
always replaced with —A without affecting the cardinalities. This case has alreddgn dealt
with in detail in[MO].

Proof. By translation, we can assume thatC [0, n — 1], with0,n — 1 € A.
Choose some: > 4(s; + dq)n, and define

L = AU [(81 + dl)n, 2(81 + dl)n - 1]
U = [m—2(51+d1)n,m— (81 +d1)n— 1] U (A+(m—n)) (32)

Informally, our fringes consist of a copy of at the far end, then an interval of size + d;)n
which is located s; + d;)n away from the edge.
Furthermore, define= u = 2(s; + d;)n. Next, we note three things:
(1) [{,20-2]cL+L
(2) 2m —2u,2m -5 -1 CcU+U
@) m—um+1-2C L+U.
Each of these claims follows frof4, ! — 1] € L and[m — u,m — % — 1] C U, as well as the fact
thatO € L,andm — 1 € U
Next, suppose thaB C [0, m — 1] is a set with fringed., U. Based on Proposition 8 of [MO],
the probability that

20-1,m—-u—-1Um+1-1,2m—-2u—-1] € B+ B (3.3)
IS at least
1—6(27 1 427100 > 1 —g(2-(rtdin  o=(satdiny — 1 _g.o-(bdintl — o (3 4)
Therefore, ifB is a set as above, then with positive probability (that iepehdent ofn),

Fﬂm—g—q<:B+B. (3.5)
2 2

Essentially, we have chosen the fringegaduch that with a positive probability that is independent
of m, the entire middle (here middle means everything besidesth-d; )n elements on each side)
of B + B will be full. However, this means that the entire middlese3 — d, B will also be full.
Therefore, it only remains to check the fringesspB — d; B. Each of these fringes is just a copy of
s1A —d, A. Therefores; B — d; B consists of a copy om A — d; A on each fringe, and everything
in between.

To show thats; B — d; B| > |s2 B — d2B|, itis sufficient to note that for the exact same reasons,
the fringes ofsy B — dy B will just be copies ofs; A — dy A. Therefore, since, B — d, B contains
strictly more elements on the fringe, as well as everythiagan the fringe, it must have more
elements that, B — d» B.

As for the probability, we have madés; + d;)n choices for the fringes aB, and making sure
the middle is full accounts for a factor of So the probability thats; B — di B| > |soB — dyB| is
at least2—4(s1+dun, O

4. TECHNICAL CONSTRUCTIONS

4.1. Multiple Fringes. In order to prove Theorems 1.4 and 1.5, we first construct g wel
behaved set. Then, in Section 85 we will use the base expams&thod to create a set that combines
many different copies of the below set.
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Lemma4.1. Supposé € N, ands,d € NU {0} such thats + d = k£ ands > d. There exists a set
A C NuU{0}suchthatifs’ + d' =k, s’ # s, ands’ > d’, then|sA — dA| = |sA — d'A| + 1.

Proof. Have L, R as in (2.1):

L = {0,1,3.4,... . k—1,kk-+12k+1}
= (2k+1}U0,k+1]\ {2}
R = {0,1,2,4,5,... .k k+1k+22k+2}
= {2k+2}U[0,k+2)\ {3}. (4.1)

Set! = 2k + 1 andr = 2k + 2 (just as before).
Before we give the main proof, there are two exceptionalcéseonsider. We have already
proved the case wherk= 0. If s = d, then choose > 2 (kr — 2k + 1 — d) and take
A= LUkr—-2k+1—dn—(kr—2k+1-d)]U(n—R). 4.2)

For this setsA — dA misses no elements, ar! — d’ A misses one element for any choicesbf/’
that satisfies the above. The proof of this statement is gallgrthe same as found in the above

proofs.
Now we assume that d > 1 and thats > d. Set
A = LUL+kr—2k+1—-d)U2kr —4k+2—-d—s,n— 2kr —4k+2—d —s)]

U(n — (2kr —2k+1—d)— R)U (n — R). (4.3)

Essentially,A consists of an outer fringe, and inner fringe, and a full red@oth the outer fringe
and the inner fringe have the same structure (they are batle myaof. and R). For simplicity, we
write this as

wherel, = L, Ly = L+kr—2k+1—d, R = R, Ry = R+kr —2k+1—d,andM =
2kr —4k+2—d—s,n— (2kr +2—d — s)].

Note first that because is sufficiently large,sA — dA ands’A — d’A will contian the entire
middle (the logic for this is the same as above). Further ti@tthe fringes ok A — dA are

(sLi —d(n — R) U (Lo + (s — 1)Ly — d(n — Ry)) (4.5)
and
(s(n —Ry) —dLy)U((n—Ry)+ (s —1)(n— Ry) —dL;. (4.6)
This is because all other sums/differences fall in the lamgeé full middle. As usual, we will
translate these sets (and possibly multiply-b)), and look at

(SLl -+ de) U (L2 + (S — 1)L1 + de) and (SRl + dLl) U (Rg + (S — 1)R1 + dLl) (47)

We analyze each of these four fringes one at a time.
(1) SL1 + dR1

First note thatl, + (s — 1)L; + dR; contains the intervadkr — k + 1 — s, kr — s] =
[s{+dr—k+1, sl+dr—1]. This means that of the potential missing elementdiy-dR;,
all except forkr —2k+1 can be found i, +(s—1) L, +dR; . Essentially, we are interested
insLy +dRy N[0, kr — 2k — d]. ThisissLy; + dRy N[0, s¢ + dr — 2k — d + s|, which is
just[0, kr — 2k — d]\{sl¢ + dr — 2k + 1} (because > d). Therefore the outer left fringe is
missing one element.
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(2) L2 + (S - 1)L1 + dR1
Part of this set will intersect with the full middle, so we aeally only interested in
Lo+ (s—1)Ly +dRy N [kr — 2k + 1 —d, 2kr — 4k + 1 — d — s|. After translation, this is
the same asL, + dR, N[0, kr — 2k — s]. ThisissL; + dR, N [0, s¢ 4+ dr — 2k], which is
just[0, s¢ + dr — 2k|. Therefore the inner left fringe is missing no elements.
(3) sRy + dL,
Similar to the above case, this fringe intersects With+ (s — 1)R; + dL;. Therefore,
we are only interested inR, + dL, N [0, kr — 2k — d|. This is the same asR; + dL; N
0, sr + d¢ — 2k], which is just[0, sr + d¢ — 2k]. Therefore the outer right fringe is missing
no elements.
(4) R2 + (S - 1)R1 + dL1
Because of the intersection with the middle, we are onlyrésteed inR, + (s — 1) Ry +
dLy N [kr — 2k +1—d,2kr — 4k + 1 — d — s]. After translation, this is justR, + dL; N
0, kr —2k — s| = sRy +dL; N[0, sr + dl — 2k — s+ d]. Sinces > d, this is just the entire
interval [0, kr — 2k — s|. Therefore the inner right fringe is missing no elements.
Next, we run through the same analysis with — d’ A. We split this into two cases. First,df > s,
then:
(1) S/L1 + d/Rl
Just as above, we are interested’iby, + d'R; N [0, kr — 2k — d|. Thisiss'L; + d' Ry N
0,0 +d'r—2k—d+s'] =0, kr — 2k — d]\{s'¢ + dr — 2k + 1}. Therefore the outer left
fringe is missing one element.
(2) L2 + (S/ - 1)[/1 + d,Rl
Similar to above, this is the same thing#és, + d'R; N [0, kr — 2k — s]. This is just
s'Ly +d Ry N[0, +dr—2k— s+ s]. Sinces’ > s, thisis[0,s¢ +d'r — 2k — s+
SI\{s"C + d'r — 2k + 1}.
Therefores’A — d’ A is missing at least two elements. Only slightly more workvehithat the set
is missing exactly two elements, which means that— dA| = |[s’A — d'A| + 1.
Next, we assume that > <. In this case we have > s’ > d' > d. If we perform the
same analysis as above, we will find tkat, + dR; andsR; + dL, are both missing one element.
Therefore we get thas A — dA| = |sA — d'A| + 1. O

Corollary 4.2. Suppose that € N, ands,d € N U {0} such thats + d = k. Then there exists a
setA C NU {0} suchthatifs’ + d' =k, {s,d} # {s',d'}, then|sA — dA| = |sA — d'A| + 1.

Proof. This follows from the above if we just note thatd — dA| = |—(sA — dA)]. O

4.2. Baseexpansion. We end this section with a quick proof of the base expansiadhoador cre-
ating new sets. Base expansion allows us to use multiplesapihe well-behaved sets constructed
in Lemma 4.1 to create the sets in Theorems 1.4 and 1.5.

Lemma 4.3. Fix a positive integek. Let A, B € NU {0} and choosen > k- max(A). LetC =
A+m-B (wherem- B is the usual scalar multiplication). ThesC' — dC'| = |sA — dA|-|sB — dB)|
wheneves + d < k.

Proof. Note that each element of + mB can be written uniquely as + mb for somea € A,
b € B. This is true because if; + mb; = as + mbs, thena; — ay = m(by — by). Because we
chosem sufficiently large, this is only possible whén= b,, in which casei; — a; = 0. Therefore
|C| = |A[[B].
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Furthermore, each element@f+ C can be written uniquely a8 + mt’, wherea’ € A+ A and
V' € B+ B. As proof, assume; + mb, = ay £ mb, for somea; a; € A+ A, andb,, b, € B £ B.
This means; —ay, = Fm(bs — by ), and this is only possible when = a,, andb; = by. Therefore,
|C' +C| =|A+ A|l|B + B|. Asimilar proof shows this fact for any+ d < k. O

In fact, base expansion works in more generality:

Lemma 4.4. Fix a positive integerc. Say thatA,,..., A, € NU {0}. Choose some: > k -
max({a;a € Aj for somek}). LetC = Ay +m - Ay + - +m"1 - A;, (wherem - A; is the usual
scalar multiplication). ThensC' — dC'| = Hle |sA; — dA;| wheneves + d < k.

Proof. This can be proved using induction and the previous lemma. O
5. k-GENERATIONAL SETS

5.1. Proof of Theorem 1.4. We now have the tools required to prove our results abouhshai

Theorem 1.4For eachy, choose a setl; such thafz; A; — y,;A;| > |w;A; — 2;A;], and|s1 A; —
di1A;| = |s2A; — d2A;| whenevers; + d; = s, + dy # j. We know such a set exists, because of
Theorem 1.1 and Lemma 2.3. Next, choose seme k - max({a € A;; 1 < j < k}). Define
A=A +mAy +mPA; + - -+ mF 1 A,. We have that foreach < j < k

k
|2;A — y; Al = H 25 Ai — y; Al
i=1

= |z;4; — y;4] - H 25 Ai — y; Al

i

= |2;4; =y Aj| - [ lwsAi = 2 Al
i

> |wiA; — 2z A;| - [ ] lw;As — 2 Al
i

U

Most of Corollary 1.8 now follows automatically. The existe of ak-generational set is proven
by the above theorem, and proving that a positive percemtisggts have this property only requires
a slight modification of the work done in 83. It only remainghat no set can be-generational for
all & by analyzing the limiting behavior gk A| and|kA — kA|.

5.2. Limiting behavior of |k A| and |kA — kA|. Before proving Corollary 1.8(3), we first prove
two useful lemmas.

Lemmab5.1l. LetA = {ay,as,...,a,} C [0,n — 1] be a set of integers whetg < a; < -+ < a,,
and lets = ged(aq,as, ..., a,). Then there exists an integé¥ such that fork > N we have

kA| = Hem—a1) _ & whereC is a constant andV is bounded above by~

Proof. It suffices to show that a set of the forff, a,, . .., a,,} with ged(ay, ..., a,) = 1 has the
claimed properties (because of translating and rescaling)

Let A = {0,a4,...,an}, With ged(ay,...,a,) = 1. We first show that ini; A (which is the
sum ofa, copies ofA) there are elements of each congruence class.o€Consider the sebB =
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{0,dl,...,a.,} wherea, = a; mod a;. Clearly we also havgcd(a),...,a! ) = 1. Thus they
generate the entire sgX a,]. It is clear that the largest number of times required to Bdd itself
is a; since the greatest order of any element in the set.ig his proves the claim.

Now considera,, A, in particular we consider the sét = a,,A N [0,a1a,,]. We show that
kEAN[0,a1a,,) = Lfor k > a,,. Thisis because, is the smallest element in the sétso elements
that are less tham a,, can be written a§ ;" | ¢;a; where) " ¢; < a,,,. We callL the stabilized left
fringe of A.

We can apply the same idea to the ggt— A and show that the right fring& = kA N [(k —
1)am, ka,,] is also stabilized (meaning that,, — R stays the same for all > a,,). Now we just
need to show that fok > a,, we havekA\(L U R) is completely filled. This can be shown by
induction. With all the congruence classesofby brute force we can show that the middle part of
a,, Ais completely filled. This serves as the base case of thefiwfudf £ A\ (LU R) is completely
filled thenk A contains the intervdh, a,,, (k — a,, + am-1)an]. If we adda,, to this interval we
will get the interval[(k — a,, + am—1)am, (k+ 1 — ap + am-1)an]. Soin(k+1)A, we will have a
completely filled middléa, a,,, (k + 1 — a,, + am-1)a.,]. This completes the proof. O

Lemmab5.2. LetA = {ay,as,...,a,} C [0,n — 1] be a set of integers whetg < a; < --- < a,,
and lets = ged(aq,as,...,a,). Then there exists an integéf such that fork > N we have

kA — kA| > |[kA + kA| and N is bounded above b3,

Proof. Note thatt A C kA — kA. This means that ifA + cA has stable fringes and a full middle,
then2cA — 2cA will contain all those fringe elements (and maybe more) dsagehe full middle.
Therefore, if we choos& = 2¢, then for anyk > N, |kA — kA| > |kA + EA| O

Corollary 1.8(3) now follows immediately; in other wordgy set can bé-generational for alk.
This significantly improves an earlier result of Nathanseal], who proved that A stabilizes by
k > a®*m, whereq is the largest element of andm is the largest gap between elementsiof

6. SMULTANEOUS COMPARISON

In this section we prove that any ordering for a simultanexmmmsparison happens.

Proof of Theorem 1.5We repeatedly use base expansion. For dagh;j < n, chooseA; such
that|s;A; — d;A;| = [sA — dA| + 1 for everys # =£s;. Next, choose am > k- max({a;a €
A; forsomel < j < n}). Let

iG-1) F1€)

A = A1_|_mA2_|_m2A2_|__|_m 2 AJ++m ;1)+j—1Aj+...+mw+N—1An‘

YV
j times

(6.1)

More simply,A is made ofj copies of each!;. Arguing as before (such as in Lemma 4.3), we find

|s;A = d; Al = ] ls;4 - d; Al (6.2)



14 GEOFFREY IYER, OLEG LAZAREV, STEVEN J. MILLER, AND LIYAN&ZHANG

Now, we have thafs; A; — d;A;| = |scA; — dyA;| whenever, j # i. Furthermore, we have that
|siA; — d;A;| = |s;A; — d;jA;| + 1 whenever # j. Therefore, if we choosg > ¢, we obtain

;A= d;Al = []ls;A — d; Al
= s A — Al - ] Isi4i — d; Al
i#]j
= (|SgAj — dgAj| + 1)3 . (‘SgAg - dgAg‘ - 1)Z H ‘SEAZ‘ — dgAZ|Z
5,0

— ‘SgAg — dgAg‘j |85Aj — dgAj‘Z H ‘SgAZ' — dgAZ‘Z

oy
> ‘SgAg — dgAg‘é |SgAj — dgAj‘j H ‘SgAZ' — dgAZ‘Z

oy
=[] Isedi — deAil = |seA — dyAl. (6.3)

Informally, we have chosen thé; such thats; A; — d;A;| is larger than all other possible com-
binations of sums and differences. Then we madel — d2 A| > |s1A — dy A| by having more
copies ofA, than ofA;. Similarly, we mades; A — d3A| > |sy A — dy A| by having more copies of
Az than of A,. Following this process, we constructed a detith the desired properties.

We have found an! such thats, A — d,A| > --- > |s1A — d; A|, completing the proof. [

APPENDIXA. ARBITRARY DIFFERENCES

In this section we prove Theorem 1.3. Let

A = LU[16km —2m+ 1,n — (16km —2m + 1)]U (n — R) (A.1)
where
L = [0,4m]U[5bm + 1,6m] U {8m}
R = (L+m/k)Ulo,m/k—1]. (A.2)

Note that the fringe4., R of this A are generalizations of the original fringes in (2.1). Faareple,
this newL is obtained from the original by extending the first gap of the originalto have length
m. Also, note that this? is L shifted down bym/k, with the front filled in; this generalizes the
original R in (2.1), whereR is L shifted down only byi.

We modify thisA in several steps, each step bringing us closer to the fulkigdity of Theo-
rem 1.3. We first show that the aboyvehas the property that A + kA| = 2kn + 1 — m and
|kA —kA| = 2kn+1—2m sothatlkA+ kA| — |kA — kA| = m. Note that this fringe only works
if m is a multiple ofk sinceR is shifted bym/k. In the second step, we fix this to allaw that
is not a multiple ofk by partially filling in the first gap of, R. In the third step, we construet
such thatkA + kA| = 2kn + 1 —mand|kA — kEA| = 2kn + 1 — ¢ for any/ < 2m by extending
the middle interval16km — 2m + 1,n — (16km — 2m + 1)] of A. In the last step, we get the full
theorem for general, b, ¢, d by changing how mucl® is shifted fromL.

Step 1: mis a multiple of k.
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We first prove that ifn is a multiple ofk, the aboved has|k A+ kA| = 2kn+1—m, |kA—EkA| =
2kn +1—2m. Tofind|kA+ kA|, |kA — kA|, we need to study the fringes bl + kA, kA — KA.
We will use Lemma 2.1, which says that for anyy thatxL + y R is a translation of. with the
front filled in. In general, note that iR is shifted down fromL by d, we have that L + yR ends
atz(8m) + y(8m +d) = (x + y)(8m) + yd and if z + y is fixed, the result depends only gn
andd. Hence as in Figure 1, the left fringel + kL of kA + kA moves slower than the right
fringe kR + kR. Therefore the right fringe of A + kA reaches the middle before the left fringe
of kA + kA, resulting in some missing elements in the left fringe butmssing elements in the
right fringe. By Figure 2, the fringesL + kR of kA — kA each have some missing elements since
kL + kR also moves slower thanR + kR.

To be precise, the left fringeL + kL of kA + kA is

EL+ kL = [0,16km —4m]U [16km — 3m + 1,16km — 2m] U {16km}
= (L + 16km — 8m) U[0, 16km — 8m — 1. (A.3)

Note by (A.1) that the middle of A + kA on the left side starts di6km — 2m + 1. Therefore,
kA + kA is missing then elements if16km — 4m + 1, 16km — 3m] in its left fringe.

The right fringe ofk A + kA is 2kn — (kR + kR) and so after reflection, we only need to study
kR + kR, which is

kR + kR = [0,16km — 2m] U [16km —m + 1, 16km] U {16km + 2m}. (A.4)

Again by (A.1) note that the middle &fA + £ A on the right side starts &8kn — (16km — 2m + 1),
which is 16km — 2m + 1 after reflection. This covers the missing elementg Bf+ kR and so
kA + kA has no missing elements in its right fringe.

Since the middle ok A + kA is filled in, kA 4+ kA has all elements except for the missing
elements in its left fringe and $6A + kA| = 2kn +1 —m.

Now we need to study the fringes bfi — kA. Note thatt A — kA is symmetric so the left and
right fringes are the same. The left fringefod — kA iSkL — k(n — R) = kL + kR — kn. After
translation, we can studyL + kR, which is

kL + kR = [0,16km — 3m] U [16km — 2m + 1, 16km — m] U {16km + m}. (A.5)

After translation, the middle dfA—k A starts on the left side a6km—2m+1 as before. Therefore,
the middle covers the first gdp6im — m + 1,16km + m — 1] in kL + kR but not the second
gap[16km — 3m + 1,16km — 2m|, which hasm elements. Therefore, the left fringe bfl — kA
hasm missing elements. By symmetry, the right fringetof — £ A also hasn missing elements.
Since the middle ok A — kA is filled in, kA — kA has all elements except fdm elements and so
|kA — kA| =2kn+ 1 —2m.

Finally, we note that it is sufficient to takesuch that, — 2(16km — 2m + 1) > 16m. We make
n large enough so that the middle dfhas size at leasttm, the size of the original fringes, R.
In fact, we just need that the middlebfl + kA, kA — kA has enough elements to cover the second
gap ofthekL + kL, kR + kR, andkL + kR.

Step 2: mis not a multiple of k.
To do the case whem is not a multiple oft, we use the same fringes as before but partially fill

in their gaps. Letn’ be the smallest multiple df that is greater than or equal te. By (A.1) and
Step 1, we can construdf such thatk A’ +kA’| = 2kn+1—m’ and|k A’ —kA'| = 2kn+1—-2m/.
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That is, the left fringe ofd’ is
L' = [0,4m/'TU [5m/ + 1,6m/] U {8m'} (A.6)

so thatl’ is defined like the original but form’ instead ofn. Now we note that since the middle of
A’ starts atl6km’ — 2m’ + 1, the first gap ofL’ accounts for all the missing elementsiaf + kL’
andkL’ + kER'. In fact, a copy ofL' N [4m’ + 1,5m’| appears identically in the left fringe of
kA" + kA" andk A’ — kEA’. Therefore, we can fill in the first/’ — m elements of the first gap df
by considering

L" = L'UdAm’ + 1,4m' + (m' —m)]. (A7)

and do the same to construet from R’. ThenkL” + kL" will have onlym missing elements since
kL' + kL' hasm’ missing elements and we filled in’ — m elements. Also note thatR” + kR"
has no missing elements sinc&’ + kR’ did not have any missing elements. Thus, if we construct
A from L” andR”, we havelk A + kA| = 2n + 1 — m. Note that for this construction, we can fill
in anym’ — m elements of the first gap df, not necessarily the firgst’ — m elements.

Similarly, k" 4+ kR” now misses onlyn elements since it also has a copyldin[4m’ + 1, 5m/].
Thereforek A — kA hasm missing elements in each fringe and|sel — kA| = 2kn + 1 — 2m.

Step 3: Arbitrarym, ¢ < 2m.

Now we further modifyA so that for anyn and? < m, we havelk A + kA| = kn + 1 — m and
|kA—kA| = kn+1—2(. Note that again we must do the cases wheis multiple ofk and when
m iS not a multiple separately. However, we only do the casaevinds a multiple ofk since from
Step 2, itis clear how to extend to other case.

In particular, we will modify A by extending the middle section in both directionssy— /.
Therefore the middle of A + kA now starts at6km — 2m + 1 — (m — ¢). Recall that the missing
elements ink L + kL occur only from the first gapl6km — 4m + 1, 16km — 3m|. Sincel > 0, we
havel6km —2m + 1 — (m — ¢) > 16km — 3m + 1 and sokL + kL is still missingm elements.
As before kR + kR has no missing elements and so we still Have+ kA| = 2kn + 1 — m.

On the other hand;L + kR has fewer missing elements than it usually would. Note tbat the
middle of kA — kA also starts at6km —2m+1—(m—/{) = 16km —3m+{¢+ 1. Since the missing
elements ink L + kR occur only from the first gafl6km — 3m + 1, 16km — 2m] of kL + kR, then
kL + kR has only the missing elementg16km — 3m + 1, 16km — 3m + {]. Therefore, we get
thatk A — kA is missing only/ elements in each fringe and Bod — kA| = 2kn + 1 — 24.

Note that we cannot do better than haviagl — kA| = 2kn + 1 — 2¢ with £ < m with this
approach. Shortening the middle does not help since althdugcreases the number of missing
elementsinkA — kA, it also increases the number of missing elementsAnt Lk A.

Step 4: Arbitrarya, b, ¢, d.

Finally, we modify A to prove the desired theorem for arbitrary, ¢, d. In particular, we will
modify A by changing how mucl® is shifted fromL. This changes the speed at which the right
fringe approaches the middle. We adjust the speed so thagtiidringe ofa A —bA has no missing
elements while all the other fringes still have some missilegnents.

We again make some simplifying assumptions. We will onlystarct A such thata A — bA| =
gn + 1 —m and|cA — dA| = gn + 1 — 2m since we can use the methods from Step 3 to extend
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to the case witHaA — bA| = gn + 1 — m,|cA — dA| = gn + 1 — ¢, where/ < 2m. Since
laA — DA| = |bA — aA|, we can assume > b andc > d. Furthermore, since +b =c+d = ¢
anda is the maximal element, we have that- ¢ andb < d. We first assume that+# d and then
discuss how to do case wher= d; note that in the case= d, we must havé be even. We must
also break up the proof into the case whend < d — b and when: — d > d — b. We will only do
the case when — d < d — b and then discuss how to do the other case. Finally, we musiaden
separately the case whenis a multiple ofc — d and whenm is not; we will only do the former
since the latter follows as in Step 2.
We now constructd such thajaA — bA| = gn + 1 — m and|cA — dA| = gn + 1 — 2m, with
¢ # d andm a multiple ofc — d.
We first letA = m/(c — d) and
L = [0,2A(a —b)]U2A(a—b) + A(c—d) + 1,3A(a — b)] U {4A(a — b)}
R = (L+A)U0,A—1]. (A.8)
These fringes are similar to the fringes in (A.1) except thatmiddle block of”, R has a different
size andR is shifted fromL by a different amount. Also let
A = LUM4A(a—b)(a+b)+Aa—2A(a—b)+1,n—(4A(a—b)(a+b)+Aa—2A(a—b)+1)|U(n—R).
(A.9)
The middle is chosen to startéf\(a — b)(a + b) + Aa — 2A(a — b) + 1, which is 1 after the end
of the first block ofb L + a R, the right fringe ofu A — bA.
We first studya A — bA. The left fringe ofaA — bAisaL — (b(n — R)), which isaL + bR after
translation. The maximum element@f + bR is
4A(a —b)a + (4A(a —b) + A)b = 4A(a —b)(a +b) + Ab (A.10)
and the pattern to the left of the maximum element is exab#ysme as i and R. That is,

al + bR
= [0,4A(a —b)(a+b) + Ab — 2A(a — b)]
U[4A(a —b)(a +b) + Ab—2A(a — b) + A(c — d) + 1,4A(a — b)(a + b) + Ab — A(a — b)]
U{4A(a — b)(a + b) + Ab}. (A.11)
Since the middle o#i starts at
4A(a —=b)(a+b)+Aa—2A(a—b)+1 = 4A(a—b)(a+b) + Ab— A(a—b) + 1, (A.12)
we see thatiL + bR is missing theA(c — d) = m elements
[AA(a—0b)(a+b)+Ab—2A(a—b)+1,4A(a—b)(a+b) + Ab—2A(a—b)+ A(c—d)], (A.13)

which are all the elements in its first gap.
Now we must consider the right fringgn — R) —bL of aA—bA, whichbL +a R after reflection.
Note that
bL +aR = aL+ bR+ A(a—b)
= [0,4A(a —b)(a+b) + Aa — 2A(a — b)]
U[4A(a —b)(a +b) + Aa — 2A(a — b) + A(c — d) + 1,4A(a — b)(a + b) + Aa — A(a — b)]
U{4A(a — b)(a + b) + Aa}, (A.14)
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with the first equality since? is L shifted down byA. Note thatbl + aR is not missing any
elements since the middle df starts at

4A(a —b)(a +b) + Aa — 2A(a — b) + 1, (A.15)

which is exactly where the first gap &f. + aR starts. Therefor&w A — bA| = 2kn + 1 — m since
aA — bB is missing onlym elements in its left fringe.

Now we will considerA—dA. Its left fringe iscL —d(n— R), which iscL+dR after translation.
Then as before,

cL+dR = aL+ bR+ A(d—b)
= [0,4A(a —b)(a+b) + Ad — 2A(a — b)]
U[4A(a —b)(a+b) + Ad — 2A(a — b) + A(c — d) + 1,4A(a — b)(a + b) + Ad — A(a — b)]
U{4A(a — b)(a + b) + Ad}. (A.16)
ThencL + dR is only missing theA(c — d) = m elements
[4A(a—b)(a+b)+Ad—2A(a—b)+1,4A(a—b)(a+b) + Ad—2A(a—b) + A(c—d)], (A.17)
which are all the elements in its first gap. This is becausenidele of A starts in the middle of the
second block ot L + dR since
4A(a—=b)(a+b)+Ad—2A(a—b)+A(c—d)+1 < 4A(a—Db)(a+b)+Aa—2A(a—b) (A.18)
asc < a and
4A(a —b)(a +b) + Aa —2A(a —b) < 4A(a—b)(a+b) + Ad — A(a— ) (A.19)
asb > d.
Similarly, the right fringe oA — dA isc¢(n — R) — dL, which isdL + cR. Then
dL+cR = aL+ bR+ A(c—1b)
= [0,4A(a —b)(a +b) + Ac — 2A(a — b)]
UMdA(a —b)(a+b) + Ac— 2A(a — b) + A(c — d) + 1,4A(a — b)(a + b) + Ac — A(a — b)]
U{4A(a — b)(a + b) + Ac}, (A.20)
and as before]/L + cR is only missing then elements
[4A(a—b)(a+b)+Ac—2A(a—b)+1,4A(a—Db)(a+b)+ Ac—2A(a—b)+ A(c—d)], (A.21)
which are all the elements in its first gap. This is becausenidele of A starts in the middle of the
second block oflL + ¢R since
4A(a—b)(a+b)+Ac—2A(a—b)+Alc—d)+1 < 4A(a—b)(a+b)+Aa—2A(a—0b) (A.22)
and
4A(a —b)(a+b) + Aa —2A(a—b) < 4A(a—b)(a+b) + Ac— A(a — D). (A.23)
To verify the first inequality, we note that — d < a holds sincer +b=c+dandc—b<d—1»

in this case. The second inequality follows frors c. ThereforecA — dA is missingm elements
in each fringe and spA — dA| = 2kn + 1 — 2m.

To do the case — d > d — b, we need to change the fringes slightly. However, the ordy re
difference occurs when we extend the middle to|gdt— dA| = 2kn + 1 — ¢, where/ < 2m, as
in Step 3. We do this by first extending the middle one elemeatiane (to decreaséone element
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at a time). However, at a certain point we need to extend thiellmiby adding a whole block; at

this point extending one element does not change the valuglof dA| and so we just extend by

a whole block. Afterwards, we continue extending the middie element at a time as before.
Finally, we note that the case whenr= d is similar to the result achieved in Step 3, except that

now the left fringeal + bR of aA — bA is closer to the middle; therefore we need to make the

middle shorter so that the middle misses the first gap in thériege of aL + bR. This completes

the proof of Theorem 1.3. O
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