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ABSTRACT. A More Sums Than Differences (MSTD, or sum-dominant) set isa finite setA ⊂ Z such
that|A+A| < |A−A|. Though it was believed that the percentage of subsets of{0, . . . , n} that are
sum-dominant tends to zero, in 2006 Martin and O’Bryant [MO]proved that a positive percentage are
sum-dominant. We generalize their result to the many different ways of taking sums and differences
of a set. We prove that|ǫ1A+ · · ·+ ǫkA| > |δ1A+ · · ·+ δkA| a positive percent of the time for all
nontrivial choices ofǫj , δj ∈ {−1, 1}. Previous approaches proved the existence of infinitely many
such sets given the existence of one; however, no method existed to construct such a set. We develop
a new, explicit construction for one such set, and then extend to a positive percentage of sets.

We extend these results further, finding sets that exhibit different behavior as more sums/differences
are taken. For example, we prove that for anym, |ǫ1A+· · ·+ǫkA|−|δ1A+· · ·+δkA| = m a positive
percentage of the time. We find the limiting behavior ofkA = A+ · · ·+A for an arbitrary setA as
k → ∞ and an upper bound ofk for such behavior to settle down. Finally, we sayA is k-generational
sum-dominant ifA, A + A, . . . , kA are all sum-dominant. Numerical searches were unable to find
even a 2-generational set (heuristics indicate that the probability is at most10−9, and quite likely
significantly less). We prove that for anyk a positive percentage of sets arek-generational, and no
set can bek-generational for allk.
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1. INTRODUCTION

Given a finite set of integersA, two natural sets to study are

A+ A = {a1 + a2 : a1, a2 ∈ A}

A− A = {a1 − a2 : a1, a2 ∈ A}. (1.1)

The most natural question to ask is: As we varyA over a family of sets, how often is|A +
A| > |A − A| (where |X| is the cardinality ofX)? We call such sets More Sums Than Dif-
ferences (MSTD) sets, or sum-dominant (if the two cardinalities are the same we sayA is bal-
anced, and if|A − A| > |A − A| we sayA is difference-dominant). As addition is commutative
but subtraction is not, a typical pair contributes two differences toA − A but only one sum to
A + A. While there are numerous constructions of such sets and infinite families of such sets
[He, HM2, Ma, MOS, Na2, Na3, Na4, Ru1, Ru2, Ru3], one expects sum-dominant sets to be rare;
however, Martin and O’Bryant [MO] proved that a positive percentage of sets are sum-dominant.
They showed the percentage is at least2 · 10−7, which was improved by Zhao [Zh2] to at least
4.28 · 10−4 (Monte Carlo simulations suggest the true answer is about4.5 · 10−4). In all these ar-
guments, each integer in{0, . . . , n − 1} has an equal chance of being inA or not being inA, and
thus all of the2n subsets are equally likely to be chosen. The situation is dramatically different if
we consider a binomial model where the probability parameter tends to zero. Explicitly, for eachn
let p(n) ∈ (0, 1). Now assume each integer in{0, . . . , n − 1} is chosen with probabilityp(n). If
p(n) decays to zero withn, then Hegarty and Miller [HM1] proved that with probabilitytending to
1 a randomly chosen set is difference-dominated. See [ILMZ]for a survey of results in the field.

Throughout this paper we use the following notations:

• m · A = {m · a : a ∈ A}.

• A +B = {a+ b : a ∈ A, b ∈ B}, A− B = {a− b : a ∈ A, b ∈ B}.

• |A| is the number of elements inA.

• mA = A+ · · ·+ A
︸ ︷︷ ︸

m times

if m ≥ 1 (if m = 0 we define0A to be the empty set).

• −A = {−a : a ∈ A}, and ifm ≥ 0 then−mA = −(mA); note that ifm,n ≥ 0 then
mA + nA = (m+ n)A; however,mA− nA 6= (m− n)A.

• [a, b] = {a, a+ 1, . . . , b− 1, b}.

The purpose of this article is to generalize the positive percentage and explicit constructions of
MSTD sets. Two natural questions, which motivated much of this work, are

(1) Given non-negative integerss1, d1, s2, d2 with s1 + d1 = s2 + d2 ≥ 2, can we find a setA
with |s1A − d1A| > |s2A − d2A|, and if so, does this occur a positive percentage of the
time?
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(2) We say a set isk-generational ifA,A+A, . . . , kA are all sum-dominant. Dok-generational
sets exist, and if so, do they occur a positive percentage of the time? Is there a set that is
k-generational for allk?

The answer to the first question is yes, and in fact the result can be generalized. Whens1+d1 = 2,
the only possible sets are essentiallyA + A andA − A, as−A − A is just the negation ofA + A.
Whens1 + d1 = 3, again there are essentially just two possibilities,A + A + A andA + A − A,
sinceA − A − A = −(A + A − A) and thus we might as well assumesi ≥ di. New behavior
emerges once the sum is at least 4. In that case, we haveA + A + A + A, A + A + A − A and
A + A − A − A. One of our main results is that all possible orderings of these three sets happen
a positive percentage of the time. This generalizes and improves results from [MOS], where large
families were found with|A + A + A| > |A + A− A| and large families could be found for more
general binary comparisonsif one such set could be found.

For the second question, brute force numerical explorations could not find such sets. This is
not surprising, as such sets are expected to be rare (simple heuristics imply that the percentage of
such sets is at most10−9, and quite likely much less). Generalizing our construction for the first
problem, we find a positive percentage of sets arek-generational for anyk; further, no set can be
k-generational for allk.

We now state our main results and give a sketch of the proofs.

Theorem 1.1. Let s1, d1, s2, d2 be non-negative integers such that{s1, d1} 6= {s2, d2}.

(1) There exists a finite, non-empty setA of non-negative integers such that|s1A− d1A| >
|s2A− d2A|.

(2) A positive percentage of finite subsetsA of non-negative integers satisfy|s1A− d1A| >
|s2A− d2A|. Explicitly, there is a constantc(s1, d1, s2, d2) > 0 such that the number of sub-
setsA of{0, 1, . . . , n−1} satisfying|s1A− d1A| > |s2A− d2A| is at leastc(s1, d1, s2, d2)2n

asn → ∞.

Remark 1.2. Sketch of the proof:The difficulty is finding one such set; after such a set has been
found, we can modify the method of Martin and O’Bryant[MO] to obtain a positive percentage.
To create such a setA, we decomposeA into its left and right parts, denotedL andR. We pickL
andR to be almost symmetric, but we haveR slightly longer thanL. Next, note that the left (resp.
right) fringe ofxA − yA is given byxL − yR (resp.yL − xR). Because of the near-symmetry of
L andR, the fringes ofxA − yA will have similar structure for different values ofx, y. However,
becauseR is longer thanL, the total length of a fringe depends on the number of copies of R,L.

In Figures 1 and 2, we exhibit a setA where|2A+2A| > |2A−2A|. Figure 1 showsA+A+A+A,
while Figure 2 showsA + A − A − A. Notice that inA + A + A + A, the right fringe intersects
with the middle, which fills in all the gaps. The left fringe, on the other hand, grows too slowly to
completely intersect with the middle, and is left with one gap.

In A + A − A − A, the left fringe is given byL + L − R − R, which has a length between
L + L + L + L andR + R + R + R. This is not quite long enough to intersect with the middle.
Similarly, the right fringe is given byR + R − L − L, which is once again too short. Therefore
A+ A−A−A is missing two elements.

Theorem 1.1 can be generalized to obtain the following.

Theorem 1.3 (Arbitrary Differences). Let a, b, c, d be non-negative integers such thata > b, c, d
and a + b = c + d = q. If c 6= d, then for any non-negative integersm, ℓ such thatℓ ≤ 2m
and all sufficiently largen, there existsA ⊆ [0, n] such that|aA − bA| = qn + 1 − m and
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0 9 18 27 33 326
H356-30L

336
H356-20L
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H356-10L
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FIGURE 1. A, A + A, A + A + A, andA + A + A + A. The sawtooth means all
elements are present in that range.
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H178-20L

168
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FIGURE 2. A, A + A, A + A− A, andA + A− A−A.

|cA − dA| = qn + 1 − ℓ. If c = d, then the statement holds with the additional condition that ℓ is
even.

The next theorem constructs chains of Generalized MSTD sets. We start atk = 2 below as there
is essentially only one possibility whenk = 1 (namely the setsA and−A, which must have the
same cardinality).

Theorem 1.4 (Chains of Generalized MSTD Sets). Let xj , yj, wj, zj be finite sequences of non-
negative integers of lengthk such thatxj + yj = wj + zj = j, and {xj , yj} 6= {wj, zj} for
every2 ≤ j ≤ k. A positive percentage of setsA satisfy|xjA− yjA| > |wjA− zjA| for every
2 ≤ j ≤ k.

Theorem 1.5 (Simultaneous Comparisons). Given finite, non-negative sequences of lengthn ≤
⌊
k
2

⌋
+ 1 calledsj, dj such thatsj + dj = k for all 1 ≤ j ≤ k and{sj , dj} 6= {si, di} whenever

j 6= i, there exists a setA such that|snA− dnA| > · · · > |s1A− d1A|
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Remark 1.6. The boundn ≤
⌊
k
2

⌋
+1 in the above theorem is completely artificial, as the condition

{sj, dj} 6= {si, di} is impossible forn >
⌊
k
2

⌋
+ 1.

Remark 1.7. It is possible to combine Theorems 1.4 and 1.5 to obtain a setA that satisfies the
criteria in Theorem 1.5 over many iterations of sums/differences.

From Theorem 1.4 we deduce

Corollary 1.8 (k-Generational Sets).
(1) For eachk, there exists ak-generational set. That is, for eachk, there exists a setA such

that |cA+ cA| > |cA− cA| for all 1 ≤ c ≤ k.
(2) For eachk, a positive percentage of sets arek-generational.
(3) There is no set which isk-generational for allk.

The paper is organized as follows. In §2 we explicitly construct one set with the properties in
Theorem 1.1, obtaining only existence and not a positive percentage. For completeness we provide
most of the verifications; the reader willing to accept theirexistence can move on to §3, where we
generalize the method of Martin and O’Bryant to improve our results from the existence of one set
to a positive percentage, completing the proof of Theorem 1.1. As the proof of arbitrary differences
(Theorem 1.3) is not needed for the remaining results and is somewhat long and technical, we give
it in Appendix A.

Section 4 contains a few lemmas required to construct the sets in Theorems 1.4 and 1.5. Once
again, a reader uninterested in technical constructions may skip this section and proceed to §5. We
discussk-generational sets (and related problems) in §5, proving Theorem 1.4 and Corollary 1.8
as well as results about the limiting behavior of|kA| and|kA− kA| ask grows, improving earlier
results of Nathanson [Na1]. We conclude in Section 6 with a proof of Theorem 1.5.

2. GENERALIZED MSTD SETS

The goal of this section is, givenk ∈ N and integers withs1 + d1 = s2 + d2 = k and{s1, d1} 6=
{s2, d2}, to explicitly construct a setA such that|s1A− d1A| = |s2A− d2A|+1. The existence of
these sets is the key ingredient in the proof of Theorem 1.4; the proof of that theorem requires us
to generalize these constructions slightly, and then modify the arguments of Martin and O’Bryant
to obtain a positive percentage by showing a positive percentage of middles may be added to our
set. The reader uninterested in the technical constructionshould skim the sketch of the method in
Remark 1.2 and then continue in §3.

Let ℓ = 2k + 1, r = 2k + 2, and consider the sets

L = {0, 1, 3, 4, . . . , k − 1, k, k + 1, 2k + 1}

= {0, ℓ− 2k, l − 2k − 2, ℓ− 2k − 3, . . . , ℓ− k − 1, ℓ− k, ℓ}

= [0, ℓ]\ ({2} ∪ [k + 2, 2k])

= [0, ℓ]\ ({2} ∪ [ℓ− k + 1, ℓ− 1])

R = {0, 1, 2, 4, 5, . . . , k, k + 1, k + 2, 2k + 2}

= [0, r]\ ({3} ∪ [k + 3, 2k + 1]) . (2.1)

We begin with a technical lemma. This lemma states that for any x, y ∈ N, the basic structure of
xL + yR is the same as that of the original sets. Basically,xL + yR is always missing the firstk
elements below the maximum, as well as the singleton element2k − 1 away from the maximum.
Even more, it is missing no other elements.



6 GEOFFREY IYER, OLEG LAZAREV, STEVEN J. MILLER, AND LIYANG ZHANG

Lemma 2.1. For all x, y ∈ N,

xL+ yR = [0, xℓ+ yr]\ ([xℓ + yr − k + 1, xℓ+ yr − 1] ∪ {xℓ+ yr − 2k + 1}) . (2.2)

Proof. The proof is by double induction, first onx, then ony. As the proof of the base case
x = y = 1 follows by a simple computation, we now assume the result forxL + yR and prove it
for xL+ (y + 1)R.

We are interested in

([0, xℓ+ yr]\ ([xℓ+ yr − k + 1, xℓ+ yr − 1] ∪ {xℓ+ yr − 2k + 1})) +R. (2.3)

We prove that this set contains the proper elements in several steps:

Claim 1: [0, xℓ+ yr] ⊂ xL+ (y + 1)R.
Proof: Clearlyxℓ + yr − 2k + 1 ∈ xL + (y + 1)R, sincexℓ + yr − 2k ∈ xL + yR and1 ∈ R.
Furthermore,[xℓ+ yr− k+ 1, xℓ+ yr− 1] ⊂ xL+ (y + 1)R, sincexℓ+ yr− k − 4 ∈ xL+ yR,
xℓ + yr − k − 1 ∈ xL+ yR, and[4, k + 2] ⊂ R.

Claim 2: xℓ+ (y + 1)r − 2k + 1 = xℓ + yr + 3 /∈ xL+ (y + 1)R.
Proof: This is equivalent to showing thatxℓ + yr + 3 − (xL + yR) ∩ R = ∅. This is true as
xℓ + yr + 3− (xL+ yR) ∩ (N ∪ {0}) = {3}, and3 /∈ R.

Claim 3: [xℓ+ (y + 1)r − k, xℓ+ (y + 1)r − 1] ∩ (xL+ (y + 1)R) = ∅.
Proof: This is the same as showing that[xℓ+ yr+ k+2, kℓ+ yr+2k+1]∩ (xL+(y+1)R) = ∅.
I.e., we want to show thatmax(xL+ (y+ 1)R)− a /∈ xL+ (y+ 1)R for every1 ≤ a ≤ k. This is
true becausemax(xL+ yR)− a /∈ xL+ yR andmax(R)− a /∈ R for every1 ≤ a ≤ k. Therefore
the same will be true ofxL+ yR+R = xL+ (y + 1)R.

Claim 4: All other elements in[xℓ+ yr, xℓ+ (y + 1)r] are inxL+ (y + 1)R.
Proof: This is true because each of those elements can be written asxℓ+ yr + c for somec ∈ R.

We have proved the inductive step fory; we omit the proof of the inductive step forx, since it is
almost exactly the same as the above proof. �

With the technical lemma proved, we can construct a set as in Theorem 1.1.

Theorem 2.2. Supposek ∈ N, ands1+d1 = s2+d2 = k. Further suppose that{s1, d1} 6= {s2, d2}.
There exists a setA such that|s1A− d1A| = |s2A− d2A|+ 1.

For example, the set

A = {0, 1, 3, 4, 5, 9, 33, 34, 35, 50, 54, 55, 56, 58, 59, 60}

has the property that

|A+ A + A+ A| > |A+ A+ A− A| .

Proof. Because|xA− yA| = |yA− xA|, we can assume thats1 ≥ d1 ands2 ≥ d2. Therefore we
have eithers1 > s2 ≥ d2 > d1, or s2 > s1 ≥ d1 > d2. We first treat the case whens1 > s2.
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Case 1:s1 > s2: TakeL,R, ℓ, r as in construction from Lemma 2.1, and choosen > 4(kr−2k+1).
Define

M = [kr − 2k + 1− d1, kn− (kr − 2k + 1− d1)]

A = L ∪M ∪ (n− R). (2.4)

To prove this, we first show that the middle ofs1A − d1A is full, and then we examine the
fringes. We have[(kr − 2k + 1 − d1)− d1n, s1n − (kr − 2k + 1 − d1)] ⊂ s1A − d1A. To prove
this, note thatM is sufficiently large such that(M + L) ∪ (M + n − R) is the entire interval
[min(M), n + max(M)]. Therefore,[min(M), n + max(M)] ⊂ A + A. Similarly, we get that
[min(M)−n,max(M)] ⊂ A−A. The same idea shows that(M+L)∪ (M+n−R) is sufficiently
large such that

[min(M), 2n+max(M)] ⊂ (M + L+ L) ∪ (M +M + L) ∪ · · · ∪ (M + n−R + n−R) .

By induction,s1A− d1A will contain [min(M), (k − 1)n+max(M)].
We first look at the left fringe ofs1A−d1A, this is (up to translation)sL+dR∩ [0, kr−2k−d1].

Note thatkr − 2k − d1 = s1ℓ+ d1r − 2k − d1 + s1. Therefore, using Lemma 2.1, we get that

s1L+ d1R ∩ [0, s1ℓ+ d1r − 2k − d1 + s1] = [0, kr − 2k − d1]\{s1ℓ+ d1r − 2k + 1} (2.5)

(this is becauses1 > d1). Next we look at the right fringe. This is (up to translationand a minus
sign)d1L+ s1R ∩ [0, kr − 2k − d1], which is the same as

d1L+ s1R ∩ [0, d1ℓ+ s1r − 2k − d1 + d1] = d1L+ s1R ∩ [0, d1ℓ+ s1r − 2k]. (2.6)

Using Lemma 2.1, this is just[0, d1ℓ + s1r − 2k] (i.e., the entire interval). Therefores1A− d1A is
missing one element.

Next, we look at the left fringe ofs2A− d2A. Once again, this is (up to translation)s2L+ d2R∩
[0, kr − sk + 1 − d1]. This can be rewritten ass2L + d2R ∩ [0, s2ℓ + d2r − 2k − d1 + s2]. Since
we have thats2 > d1, we get

s2L+d2R∩[0, s2ℓ+d2r−2k−d1+s2] = [0, s2ℓ+d2r−2k−d1+s2]\{s2ℓ+d2r−2k+1}. (2.7)

Therefore the left fringe is missing one element. Now we lookat the right fringe. This is (up
to translation and a minus sign)d2L + s2R ∩ [0, kr − 2k + 1 − d1]. This is the same asd2L +
s2R ∩ [0, d2ℓ + s2r − 2k + 1 − d1 + d2]. Now, because we haved2 > d1, this intersection is
[0, d2ℓ+ s2r− 2k + 1− d1 + d2]\{d2ℓ+ s2r− 2k + 1}. Therefore, the right fringe is missing one
element. This means thatkn = |s1A− d1A| > |s2 − d2A| = kn− 1.

Case 2:s2 > s1: As s2 > s1 we haved1 > d2. Define

M = [kr − 2k + 1− s1, n− (kr − 2k + 1− s1)]

A = L ∪M ∪ (n−R). (2.8)

We have

s1L+ d1R ∩ [0, kr − 2k + 1− s1] = s1L+ d1R ∩ [0, s1ℓ+ d1r − 2k + 1 + s1 − s1]

= [0, s1ℓ+ d1r − 2k + 1], (2.9)

so the left fringe is missing no elements. Furthermore

d1L+ s1R ∩ [0, kr − 2k + 1− s1] = d1L+ s1R ∩ [0, d1ℓ+ s1r − 2k + 1− s1 + d1]

= [0, d1ℓ+ s1r − 2k + 1− s1 + d1]. (2.10)
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The last step is true becauses1 ≥ d1. Therefore,s1A− d1A misses no elements.
Next, we look at:

s2L+ d2R ∩ [0, kr − 2k + 1− s1] = s2L+ d2R ∩ [0, s2ℓ+ d2r − 2k + 1− s1 + s2]

= [0, s2ℓ+ d2r − 2k + 1− s1 + s2]\{s2ℓ+ d2r − 2k + 1},

(2.11)

which is true becauses2 > s1. This is enough to show that|s1A− d1A| > |s2A− d2A|, but we
will go slightly further and show that|s1A− d1A| = |s2A− d2A| + 1. To do this, we look at the
right fringe ofs2A− d2A. As s1 > d2, we have

d2L+ s2R ∩ [0, kr − 2k + 1− s1] = d2L+ s2R ∩ [0, d2ℓ+ s2r − 2k + 1− s1 + d2]

= [0, d2ℓ+ s2r − 2k + 1− s1 + d2], (2.12)

which completes the proof. �

Although it doesn’t matter for our current purposes, the following lemma will be important later.
Each of the sets constructed above is sum-difference balanced both before and after the critical
point. More formally, we have the following.

Lemma 2.3. In all the setsA defined in the proof of Theorem 2.2,

|s1A− d1A| = |s2A− d2A| (2.13)

for anys1 + d1 = s2 + d2 such thats1 + d1 6= k.

Proof. In every one of the constructions above,sA − dA contains all possible numbers whenever
s+ d > k, so it only remains to show this fact whens+ d < k.

This essentially follows from Lemma 2.1. Boths1A − d1A ands2A − d2A contain the same
middle (up to translation), so it is enough to analyze the fringes. Whens1 + d1 < k, these fringes
do not intersect the middle, so it suffices to show that

|s1L+ d1R|+ |d1L+ s1R| = |s2L+ d2R|+ |d2L+ s2R| . (2.14)

Using Lemma 2.1, we know that|sL+ dR| = sℓ+ dr − k. Therefore, it is enough to show that

s1ℓ+ d1r − k + d1ℓ+ s1r − k = s2ℓ+ d1r − k + d2ℓ+ s2r − k. (2.15)

This equation is the same as

(s1 + d1)(ℓ+ r)− 2k = (s2 + d2)(ℓ+ r)− 2k; (2.16)

ass1 + d1 = s2 + d2, the above is true, which completes the proof. �

3. POSITIVE PERCENTAGES

We now give a proof of Part 2 of Theorem 1.1.

Lemma 3.1. Suppose there exists a finite setA ⊆ Z such that|s1A− d1A| > |s2A− d2A|, where
s1 + d1 = s2 + d2. Further suppose thats1 ≥ 2. Then

lim inf
n→∞

#{B ⊆ [0, n− 1]; |s1B − d1B| > |s2B − d2B|}

2n
> 0; (3.1)

in other words, a positive percentage of subsets have this structure.
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Remark 3.2. Note that the assumptions1 ≥ 2 only rules out the cases1 = d1 = 1, since we can
always replaceA with −A without affecting the cardinalities. This case has alreadybeen dealt
with in detail in[MO] .

Proof. By translation, we can assume thatA ⊆ [0, n− 1], with 0, n− 1 ∈ A.
Choose somem ≥ 4(s1 + d1)n, and define

L = A ∪ [(s1 + d1)n, 2(s1 + d1)n− 1]

U = [m− 2(s1 + d1)n,m− (s1 + d1)n− 1] ∪ (A+ (m− n)). (3.2)

Informally, our fringes consist of a copy ofA at the far end, then an interval of size(s1 + d1)n
which is located(s1 + d1)n away from the edge.

Furthermore, definel = u = 2(s1 + d1)n. Next, we note three things:

(1) [ l
2
, 2l− 2] ⊂ L+ L

(2) [2m− 2u, 2m− u
2
− 1] ⊂ U + U

(3) [m− u,m+ l − 2] ⊂ L+ U .

Each of these claims follows from[ l
2
, l − 1] ⊂ L and[m − u,m− u

2
− 1] ⊂ U , as well as the fact

that0 ∈ L, andm− 1 ∈ U
Next, suppose thatB ⊂ [0, m − 1] is a set with fringesL, U . Based on Proposition 8 of [MO],

the probability that

[2l − 1, m− u− 1] ∪ [m+ l − 1, 2m− 2u− 1] ⊆ B +B (3.3)

is at least

1− 6(2−|L| + 2−|U |) > 1− 6(2−(s1+d1)n + 2−(s1+d1)n) = 1− 6 · 2−(s1+d1)n+1 = c. (3.4)

Therefore, ifB is a set as above, then with positive probability (that is independent ofm),
[
l

2
, 2m−

u

2
− 1

]

⊂ B +B. (3.5)

Essentially, we have chosen the fringes ofB such that with a positive probability that is independent
of m, the entire middle (here middle means everything besides the(s1+d1)n elements on each side)
of B + B will be full. However, this means that the entire middle ofs1B − d1B will also be full.
Therefore, it only remains to check the fringes ofs1B−d1B. Each of these fringes is just a copy of
s1A− d1A. Therefore,s1B − d1B consists of a copy ons1A− d1A on each fringe, and everything
in between.

To show that|s1B − d1B| > |s2B − d2B|, it is sufficient to note that for the exact same reasons,
the fringes ofs2B − d2B will just be copies ofs2A − d2A. Therefore, sinces1B − d1B contains
strictly more elements on the fringe, as well as everything not on the fringe, it must have more
elements thats2B − d2B.

As for the probability, we have made4(s1 + d1)n choices for the fringes ofB, and making sure
the middle is full accounts for a factor ofc. So the probability that|s1B − d1B| > |s2B − d2B| is
at leastc2−4(s1+d1)n. �

4. TECHNICAL CONSTRUCTIONS

4.1. Multiple Fringes. In order to prove Theorems 1.4 and 1.5, we first construct a very well
behaved set. Then, in Section §5 we will use the base expansion method to create a set that combines
many different copies of the below set.
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Lemma 4.1. Supposek ∈ N, ands, d ∈ N ∪ {0} such thats+ d = k ands ≥ d. There exists a set
A ⊂ N ∪ {0} such that ifs′ + d′ = k, s′ 6= s, ands′ ≥ d′, then|sA− dA| = |s′A− d′A|+ 1.

Proof. HaveL,R as in (2.1):

L = {0, 1, 3, 4, . . . , k − 1, k, k + 1, 2k + 1}

= {2k + 1} ∪ [0, k + 1] \ {2}

R = {0, 1, 2, 4, 5, . . . , k, k + 1, k + 2, 2k + 2}

= {2k + 2} ∪ [0, k + 2] \ {3}. (4.1)

Setℓ = 2k + 1 andr = 2k + 2 (just as before).
Before we give the main proof, there are two exceptional cases to consider. We have already

proved the case whered = 0. If s = d, then choosen > 2 (kr − 2k + 1− d) and take

A = L ∪ [kr − 2k + 1− d, n− (kr − 2k + 1− d)] ∪ (n− R). (4.2)

For this set,sA−dA misses no elements, ands′A−d′A misses one element for any choice ofs′, d′

that satisfies the above. The proof of this statement is essentially the same as found in the above
proofs.

Now we assume thats, d ≥ 1 and thats > d. Set

A = L ∪ (L+ kr − 2k + 1− d) ∪ [2kr − 4k + 2− d− s, n− (2kr − 4k + 2− d− s)]

∪(n− (2kr − 2k + 1− d)− R) ∪ (n− R). (4.3)

Essentially,A consists of an outer fringe, and inner fringe, and a full middle. Both the outer fringe
and the inner fringe have the same structure (they are both made up ofL andR). For simplicity, we
write this as

A = L1 ∪ L2 ∪M ∪ (n− R2) ∪ (n− R1), (4.4)

whereL1 = L, L2 = L + kr − 2k + 1 − d, R1 = R, R2 = R + kr − 2k + 1 − d, andM =
[2kr − 4k + 2− d− s, n− (2kr + 2− d− s)].

Note first that becausen is sufficiently large,sA − dA ands′A − d′A will contian the entire
middle (the logic for this is the same as above). Further notethat the fringes ofsA− dA are

(sL1 − d(n− R1)) ∪ (L2 + (s− 1)L1 − d(n− R1)) (4.5)

and
(s(n−R1)− dL1) ∪ ((n− R2) + (s− 1)(n− R1)− dL1. (4.6)

This is because all other sums/differences fall in the largeand full middle. As usual, we will
translate these sets (and possibly multiply by−1), and look at

(sL1 + dR1) ∪ (L2 + (s− 1)L1 + dR1) and (sR1 + dL1) ∪ (R2 + (s− 1)R1 + dL1). (4.7)

We analyze each of these four fringes one at a time.

(1) sL1 + dR1

First note thatL2 + (s − 1)L1 + dR1 contains the interval[kr − k + 1 − s, kr − s] =
[sℓ+dr−k+1, sℓ+dr−1]. This means that of the potential missing elements insL1+dR1,
all except forkr−2k+1 can be found inL2+(s−1)L1+dR1. Essentially, we are interested
in sL1 + dR1 ∩ [0, kr − 2k − d]. This issL1 + dR1 ∩ [0, sℓ+ dr − 2k − d + s], which is
just [0, kr− 2k− d]\{sℓ+ dr− 2k + 1} (becauses > d). Therefore the outer left fringe is
missing one element.
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(2) L2 + (s− 1)L1 + dR1

Part of this set will intersect with the full middle, so we arereally only interested in
L2 + (s− 1)L1 + dR1 ∩ [kr− 2k + 1− d, 2kr− 4k + 1− d− s]. After translation, this is
the same assL1 + dR1 ∩ [0, kr − 2k − s]. This issL1 + dR1 ∩ [0, sℓ+ dr − 2k], which is
just [0, sℓ+ dr − 2k]. Therefore the inner left fringe is missing no elements.

(3) sR1 + dL1

Similar to the above case, this fringe intersects withR2 + (s − 1)R1 + dL1. Therefore,
we are only interested insR1 + dL1 ∩ [0, kr − 2k − d]. This is the same assR1 + dL1 ∩
[0, sr+ dℓ− 2k], which is just[0, sr+ dℓ− 2k]. Therefore the outer right fringe is missing
no elements.

(4) R2 + (s− 1)R1 + dL1

Because of the intersection with the middle, we are only interested inR2 + (s− 1)R1 +
dL1 ∩ [kr − 2k + 1− d, 2kr − 4k + 1− d− s]. After translation, this is justsR1 + dL1 ∩
[0, kr− 2k− s] = sR1 + dL1 ∩ [0, sr+ dℓ− 2k− s+ d]. Sinces > d, this is just the entire
interval[0, kr − 2k − s]. Therefore the inner right fringe is missing no elements.

Next, we run through the same analysis withs′A−d′A. We split this into two cases. First, ifs′ > s,
then:

(1) s′L1 + d′R1

Just as above, we are interested ins′L1 + d′R1 ∩ [0, kr − 2k − d]. This iss′L1 + d′R1 ∩
[0, s′ℓ+ d′r− 2k− d+ s′] = [0, kr− 2k− d]\{s′ℓ+ dr− 2k+1}. Therefore the outer left
fringe is missing one element.

(2) L2 + (s′ − 1)L1 + d′R1

Similar to above, this is the same thing ass′L1 + d′R1 ∩ [0, kr − 2k − s]. This is just
s′L1 + d′R1 ∩ [0, s′ℓ + d′r − 2k − s + s′]. Sinces′ > s, this is [0, s′ℓ + d′r − 2k − s +
s′]\{s′ℓ + d′r − 2k + 1}.

Therefores′A − d′A is missing at least two elements. Only slightly more work shows that the set
is missing exactly two elements, which means that|sA− dA| = |s′A− d′A|+ 1.

Next, we assume thats > s′. In this case we haves > s′ ≥ d′ > d. If we perform the
same analysis as above, we will find thatsL1 + dR1 andsR1 + dL1 are both missing one element.
Therefore we get that|sA− dA| = |s′A− d′A|+ 1. �

Corollary 4.2. Suppose thatk ∈ N, ands, d ∈ N ∪ {0} such thats + d = k. Then there exists a
setA ⊆ N ∪ {0} such that ifs′ + d′ = k, {s, d} 6= {s′, d′}, then|sA− dA| = |s′A− d′A|+ 1.

Proof. This follows from the above if we just note that|sA− dA| = |−(sA− dA)|. �

4.2. Base expansion. We end this section with a quick proof of the base expansion method for cre-
ating new sets. Base expansion allows us to use multiple copies of the well-behaved sets constructed
in Lemma 4.1 to create the sets in Theorems 1.4 and 1.5.

Lemma 4.3. Fix a positive integerk. LetA,B ⊂ N ∪ {0} and choosem > k ·max(A). LetC =
A+m·B (wherem·B is the usual scalar multiplication). Then|sC − dC| = |sA− dA|·|sB − dB|
whenevers+ d ≤ k.

Proof. Note that each element ofA + mB can be written uniquely asa + mb for somea ∈ A,
b ∈ B. This is true because ifa1 + mb1 = a2 + mb2, thena1 − a2 = m(b2 − b1). Because we
chosem sufficiently large, this is only possible whenb1 = b2, in which casea1−a2 = 0. Therefore
|C| = |A| |B|.
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Furthermore, each element ofC ±C can be written uniquely asa′ ±mb′, wherea′ ∈ A±A and
b′ ∈ B ±B. As proof, assumea1 ±mb1 = a2 ±mb2 for somea1,a2 ∈ A±A, andb1, b2 ∈ B ±B.
This meansa1−a2 = ∓m(b2−b1), and this is only possible whena1 = a2, andb1 = b2. Therefore,
|C ± C| = |A± A| |B ± B|. A similar proof shows this fact for anys+ d ≤ k. �

In fact, base expansion works in more generality:

Lemma 4.4. Fix a positive integerk. Say thatA1, . . . , Ak ⊂ N ∪ {0}. Choose somem > k ·
max({a; a ∈ Ak for somek}). LetC = A1 +m · A2 + · · ·+mk−1 ·Ak (wherem · Aj is the usual
scalar multiplication). Then|sC − dC| =

∏k

j=1 |sAj − dAj| whenevers+ d ≤ k.

Proof. This can be proved using induction and the previous lemma. �

5. k-GENERATIONAL SETS

5.1. Proof of Theorem 1.4. We now have the tools required to prove our results about chains.

Theorem 1.4.For eachj, choose a setAj such that|xjAj − yjAj | > |wjAj − zjAj |, and|s1Aj −
d1Aj | = |s2Aj − d2Aj | whenevers1 + d1 = s2 + d2 6= j. We know such a set exists, because of
Theorem 1.1 and Lemma 2.3. Next, choose somem > k · max({a ∈ Aj ; 1 ≤ j ≤ k}). Define
A = A1 +mA2 +m2A3 + · · ·+mk−1Ak. We have that for each2 ≤ j ≤ k

|xjA− yjA| =

k∏

i=1

|xjAi − yjAi|

= |xjAj − yjAj | ·
∏

i 6=j

|xjAi − yjAi|

= |xjAj − yjAj | ·
∏

i 6=j

|wjAi − zjAi|

> |wjAj − zjAj | ·
∏

i 6=j

|wjAi − zjAi|

= |wjA− zjA| . (5.1)

�

Most of Corollary 1.8 now follows automatically. The existence of ak-generational set is proven
by the above theorem, and proving that a positive percentageof sets have this property only requires
a slight modification of the work done in §3. It only remains tothat no set can bek-generational for
all k by analyzing the limiting behavior of|kA| and|kA− kA|.

5.2. Limiting behavior of |kA| and |kA − kA|. Before proving Corollary 1.8(3), we first prove
two useful lemmas.

Lemma 5.1. LetA = {a1, a2, . . . , am} ⊂ [0, n− 1] be a set of integers wherea1 < a2 < · · · < am
and lets = gcd(a1, a2, . . . , am). Then there exists an integerN such that fork ≥ N we have
|kA| = k(am−a1)

s
− C whereC is a constant andN is bounded above byam−a1

s
.

Proof. It suffices to show that a set of the form{0, a1, . . . , am} with gcd(a1, . . . , am) = 1 has the
claimed properties (because of translating and rescaling).

Let A = {0, a1, . . . , am}, with gcd(a1, . . . , am) = 1. We first show that ina1A (which is the
sum ofa1 copies ofA) there are elements of each congruence class ofa1. Consider the setB =



GENERALIZED MORE SUMS THAN DIFFERENCES SETS 13

{0, a′2, . . . , a
′
m} wherea′i = ai mod a1. Clearly we also havegcd(a′2, . . . , a

′
m) = 1. Thus they

generate the entire set[0, a1]. It is clear that the largest number of times required to addB to itself
is a1 since the greatest order of any element in the set isa1. This proves the claim.

Now consideramA, in particular we consider the setL = amA ∩ [0, a1am]. We show that
kA∩ [0, a1am] = L for k ≥ am. This is becausea1 is the smallest element in the setA, so elements
that are less thana1am can be written as

∑m

i=1 ǫiai where
∑m

i ǫi ≤ am. We callL the stabilized left
fringe ofA.

We can apply the same idea to the setam − A and show that the right fringeR = kA ∩ [(k −
1)am, kam] is also stabilized (meaning thatkam − R stays the same for allk ≥ am). Now we just
need to show that fork ≥ am we havekA\(L ∪ R) is completely filled. This can be shown by
induction. With all the congruence classes ofa1, by brute force we can show that the middle part of
amA is completely filled. This serves as the base case of the induction. If kA\(L∪R) is completely
filled thenkA contains the interval[a1am, (k − am + am−1)am]. If we addam to this interval we
will get the interval[(k− am + am−1)am, (k+ 1− am + am−1)am]. So in(k+ 1)A, we will have a
completely filled middle[a1am, (k + 1− am + am−1)am]. This completes the proof. �

Lemma 5.2. LetA = {a1, a2, . . . , am} ⊂ [0, n− 1] be a set of integers wherea1 < a2 < · · · < am
and lets = gcd(a1, a2, . . . , am). Then there exists an integerN such that fork ≥ N we have
|kA− kA| ≥ |kA+ kA| andN is bounded above by2(am−a1)

s
.

Proof. Note thatkA ⊂ kA− kA. This means that ifcA + cA has stable fringes and a full middle,
then2cA− 2cA will contain all those fringe elements (and maybe more) as well as the full middle.
Therefore, if we chooseN = 2c, then for anyk ≥ N , |kA− kA| ≥ |kA+ kA| �

Corollary 1.8(3) now follows immediately; in other words, no set can bek-generational for allk.
This significantly improves an earlier result of Nathanson [Na1], who proved thatkA stabilizes by
k ≥ a2m, wherea is the largest element ofA andm is the largest gap between elements ofA.

6. SIMULTANEOUS COMPARISON

In this section we prove that any ordering for a simultaneouscomparison happens.

Proof of Theorem 1.5.We repeatedly use base expansion. For each1 ≤ j ≤ n, chooseAj such
that |sjAj − djAj | = |sA− dA| + 1 for everys 6= ±sj . Next, choose anm > k · max({a; a ∈
Aj for some1 ≤ j ≤ n}). Let

A = A1 +mA2 +m2A2 + · · ·+m
j(j−1)

2 Aj + · · ·+m
j(j−1)

2
+j−1Aj

︸ ︷︷ ︸

j times

+ · · ·+m
n(n−1)

2
+n−1An.

(6.1)

More simply,A is made ofj copies of eachAj . Arguing as before (such as in Lemma 4.3), we find

|sjA− djA| =
∏

i

|sjAi − djAi|
i . (6.2)
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Now, we have that|sjAi − djAi| = |sℓAi − dℓAi| wheneverℓ, j 6= i. Furthermore, we have that
|siAi − diAi| = |sjAi − djAi|+ 1 wheneveri 6= j. Therefore, if we choosej > ℓ, we obtain

|sjA− djA| =
∏

i

|sjAi − djAi|
i

= |sjAj − djAj |
j ·

∏

i 6=j

|sjAi − djAi|
i

= (|sℓAj − dℓAj |+ 1)j · (|sℓAℓ − dℓAℓ| − 1)ℓ
∏

i 6=j,ℓ

|sℓAi − dℓAi|
i

= |sℓAℓ − dℓAℓ|
j |sℓAj − dℓAj |

ℓ
∏

i 6=j,ℓ

|sℓAi − dℓAi|
i

> |sℓAℓ − dℓAℓ|
ℓ |sℓAj − dℓAj|

j
∏

i 6=j,ℓ

|sℓAi − dℓAi|
i

=
∏

i

|sℓAi − dℓAi|
i = |sℓA− dℓA| . (6.3)

Informally, we have chosen theAi such that|siAi − diAi| is larger than all other possible com-
binations of sums and differences. Then we made|s2A− d2A| > |s1A− d1A| by having more
copies ofA2 than ofA1. Similarly, we made|s3A− d3A| > |s2A− d2A| by having more copies of
A3 than ofA2. Following this process, we constructed a setA with the desired properties.

We have found anA such that|snA− dnA| > · · · > |s1A− d1A|, completing the proof. �

APPENDIX A. ARBITRARY DIFFERENCES

In this section we prove Theorem 1.3. Let

A = L ∪ [16km− 2m+ 1, n− (16km− 2m+ 1)] ∪ (n− R) (A.1)

where

L = [0, 4m] ∪ [5m+ 1, 6m] ∪ {8m}

R = (L+m/k) ∪ [0, m/k − 1]. (A.2)

Note that the fringesL,R of thisA are generalizations of the original fringes in (2.1). For example,
this newL is obtained from the originalL by extending the first gap of the originalL to have length
m. Also, note that thisR is L shifted down bym/k, with the front filled in; this generalizes the
originalR in (2.1), whereR is L shifted down only by1.

We modify thisA in several steps, each step bringing us closer to the full generality of Theo-
rem 1.3. We first show that the aboveA has the property that|kA + kA| = 2kn + 1 − m and
|kA− kA| = 2kn+1− 2m so that|kA+ kA| − |kA− kA| = m. Note that this fringe only works
if m is a multiple ofk sinceR is shifted bym/k. In the second step, we fix this to allowm that
is not a multiple ofk by partially filling in the first gap ofL,R. In the third step, we constructA
such that|kA+ kA| = 2kn + 1 −m and|kA− kA| = 2kn + 1 − ℓ for anyℓ ≤ 2m by extending
the middle interval[16km− 2m+ 1, n− (16km− 2m+ 1)] of A. In the last step, we get the full
theorem for generala, b, c, d by changing how muchR is shifted fromL.

Step 1: m is a multiple of k.
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We first prove that ifm is a multiple ofk, the aboveA has|kA+kA| = 2kn+1−m, |kA−kA| =
2kn+ 1− 2m. To find |kA+ kA|, |kA− kA|, we need to study the fringes ofkA+ kA, kA− kA.
We will use Lemma 2.1, which says that for anyx, y thatxL + yR is a translation ofL with the
front filled in. In general, note that ifR is shifted down fromL by d, we have thatxL + yR ends
at x(8m) + y(8m + d) = (x + y)(8m) + yd and if x + y is fixed, the result depends only ony
andd. Hence as in Figure 1, the left fringekL + kL of kA + kA moves slower than the right
fringe kR + kR. Therefore the right fringe ofkA + kA reaches the middle before the left fringe
of kA + kA, resulting in some missing elements in the left fringe but nomissing elements in the
right fringe. By Figure 2, the fringeskL+ kR of kA− kA each have some missing elements since
kL+ kR also moves slower thankR + kR.

To be precise, the left fringekL+ kL of kA + kA is

kL+ kL = [0, 16km− 4m] ∪ [16km− 3m+ 1, 16km− 2m] ∪ {16km}

= (L+ 16km− 8m) ∪ [0, 16km− 8m− 1]. (A.3)

Note by (A.1) that the middle ofkA + kA on the left side starts at16km − 2m + 1. Therefore,
kA + kA is missing them elements in[16km− 4m+ 1, 16km− 3m] in its left fringe.

The right fringe ofkA + kA is 2kn− (kR + kR) and so after reflection, we only need to study
kR + kR, which is

kR + kR = [0, 16km− 2m] ∪ [16km−m+ 1, 16km] ∪ {16km+ 2m}. (A.4)

Again by (A.1) note that the middle ofkA+ kA on the right side starts at2kn− (16km− 2m+1),
which is 16km − 2m + 1 after reflection. This covers the missing elements ofkR + kR and so
kA + kA has no missing elements in its right fringe.

Since the middle ofkA + kA is filled in, kA + kA has all elements except for them missing
elements in its left fringe and so|kA+ kA| = 2kn+ 1−m.

Now we need to study the fringes ofkA − kA. Note thatkA− kA is symmetric so the left and
right fringes are the same. The left fringe ofkA− kA is kL− k(n− R) = kL + kR − kn. After
translation, we can studykL+ kR, which is

kL+ kR = [0, 16km− 3m] ∪ [16km− 2m+ 1, 16km−m] ∪ {16km+m}. (A.5)

After translation, the middle ofkA−kA starts on the left side at16km−2m+1 as before. Therefore,
the middle covers the first gap[16km − m + 1, 16km + m − 1] in kL + kR but not the second
gap[16km− 3m+ 1, 16km− 2m], which hasm elements. Therefore, the left fringe ofkA− kA
hasm missing elements. By symmetry, the right fringe ofkA − kA also hasm missing elements.
Since the middle ofkA− kA is filled in, kA− kA has all elements except for2m elements and so
|kA− kA| = 2kn+ 1− 2m.

Finally, we note that it is sufficient to taken such thatn− 2(16km− 2m+1) > 16m. We make
n large enough so that the middle ofA has size at least16m, the size of the original fringesL,R.
In fact, we just need that the middle ofkA+kA, kA−kA has enough elements to cover the second
gap of thekL+ kL, kR + kR, andkL+ kR.

Step 2: m is not a multiple of k.

To do the case whenm is not a multiple ofk, we use the same fringes as before but partially fill
in their gaps. Letm′ be the smallest multiple ofk that is greater than or equal tom. By (A.1) and
Step 1, we can constructA′ such that|kA′+kA′| = 2kn+1−m′ and|kA′−kA′| = 2kn+1−2m′.
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That is, the left fringe ofA′ is

L′ = [0, 4m′] ∪ [5m′ + 1, 6m′] ∪ {8m′} (A.6)

so thatL′ is defined like the originalL but form′ instead ofm. Now we note that since the middle of
A′ starts at16km′ − 2m′ + 1, the first gap ofL′ accounts for all the missing elements ofkL′ + kL′

andkL′ + kR′. In fact, a copy ofL′ ∩ [4m′ + 1, 5m′] appears identically in the left fringe of
kA′ + kA′ andkA′ − kA′. Therefore, we can fill in the firstm′ −m elements of the first gap ofL′

by considering

L′′ = L′ ∪ [4m′ + 1, 4m′ + (m′ −m)]. (A.7)

and do the same to constructR′′ fromR′. ThenkL′′+kL′′ will have onlym missing elements since
kL′ + kL′ hasm′ missing elements and we filled inm′ −m elements. Also note thatkR′′ + kR′′

has no missing elements sincekR′ + kR′ did not have any missing elements. Thus, if we construct
A from L′′ andR′′, we have|kA + kA| = 2n + 1 −m. Note that for this construction, we can fill
in anym′ −m elements of the first gap ofL′, not necessarily the firstm′ −m elements.

Similarly,kL′′+kR′′ now misses onlym elements since it also has a copy ofL′′∩ [4m′+1, 5m′].
ThereforekA− kA hasm missing elements in each fringe and so|kA− kA| = 2kn + 1− 2m.

Step 3: Arbitrarym, ℓ ≤ 2m.

Now we further modifyA so that for anym andℓ ≤ m, we have|kA+ kA| = kn + 1−m and
|kA− kA| = kn+1− 2ℓ. Note that again we must do the cases whenm is multiple ofk and when
m is not a multiple separately. However, we only do the case wherem is a multiple ofk since from
Step 2, it is clear how to extend to other case.

In particular, we will modifyA by extending the middle section in both directions bym − ℓ.
Therefore the middle ofkA+ kA now starts at16km− 2m+ 1− (m− ℓ). Recall that the missing
elements inkL+ kL occur only from the first gap[16km− 4m+ 1, 16km− 3m]. Sinceℓ ≥ 0, we
have16km − 2m+ 1 − (m − ℓ) ≥ 16km− 3m + 1 and sokL + kL is still missingm elements.
As before,kR + kR has no missing elements and so we still have|kA+ kA| = 2kn+ 1−m.

On the other hand,kL+kR has fewer missing elements than it usually would. Note that now the
middle ofkA−kA also starts at16km−2m+1−(m−ℓ) = 16km−3m+ℓ+1. Since the missing
elements inkL+ kR occur only from the first gap[16km− 3m+1, 16km− 2m] of kL+ kR, then
kL + kR has only the missingℓ elements[16km − 3m + 1, 16km − 3m + ℓ]. Therefore, we get
thatkA− kA is missing onlyℓ elements in each fringe and so|kA− kA| = 2kn + 1− 2ℓ.

Note that we cannot do better than having|kA − kA| = 2kn + 1 − 2ℓ with ℓ ≤ m with this
approach. Shortening the middle does not help since although it increases the number of missing
elements inkA− kA, it also increases the number of missing elements inkA+ kA.

Step 4: Arbitrarya, b, c, d.

Finally, we modifyA to prove the desired theorem for arbitrarya, b, c, d. In particular, we will
modify A by changing how muchR is shifted fromL. This changes the speed at which the right
fringe approaches the middle. We adjust the speed so that theright fringe ofaA−bA has no missing
elements while all the other fringes still have some missingelements.

We again make some simplifying assumptions. We will only constructA such that|aA− bA| =
qn + 1 −m and|cA − dA| = qn + 1 − 2m since we can use the methods from Step 3 to extend
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to the case with|aA − bA| = qn + 1 − m, |cA − dA| = qn + 1 − ℓ, whereℓ ≤ 2m. Since
|aA − bA| = |bA − aA|, we can assumea > b andc > d. Furthermore, sincea + b = c + d = q
anda is the maximal element, we have thata > c andb < d. We first assume thatc 6= d and then
discuss how to do case whenc = d; note that in the casec = d, we must haveℓ be even. We must
also break up the proof into the case whenc− d ≤ d− b and whenc− d > d− b. We will only do
the case whenc− d ≤ d − b and then discuss how to do the other case. Finally, we must consider
separately the case whenm is a multiple ofc − d and whenm is not; we will only do the former
since the latter follows as in Step 2.

We now constructA such that|aA − bA| = qn + 1 −m and|cA − dA| = qn + 1 − 2m, with
c 6= d andm a multiple ofc− d.

We first let∆ = m/(c− d) and

L = [0, 2∆(a− b)] ∪ [2∆(a− b) + ∆(c− d) + 1, 3∆(a− b)] ∪ {4∆(a− b)}

R = (L+∆) ∪ [0,∆− 1]. (A.8)

These fringes are similar to the fringes in (A.1) except thatthe middle block ofL,R has a different
size andR is shifted fromL by a different amount. Also let

A = L∪[4∆(a−b)(a+b)+∆a−2∆(a−b)+1, n−(4∆(a−b)(a+b)+∆a−2∆(a−b)+1)]∪(n−R).
(A.9)

The middle is chosen to start at4∆(a− b)(a + b) + ∆a− 2∆(a− b) + 1, which is 1 after the end
of the first block ofbL+ aR, the right fringe ofaA− bA.

We first studyaA− bA. The left fringe ofaA− bA is aL− (b(n−R)), which isaL+ bR after
translation. The maximum element ofaL+ bR is

4∆(a− b)a + (4∆(a− b) + ∆)b = 4∆(a− b)(a + b) + ∆b (A.10)

and the pattern to the left of the maximum element is exactly the same as inL andR. That is,

aL+ bR

= [0, 4∆(a− b)(a + b) + ∆b− 2∆(a− b)]

∪[4∆(a− b)(a + b) + ∆b− 2∆(a− b) + ∆(c− d) + 1, 4∆(a− b)(a + b) + ∆b−∆(a− b)]

∪{4∆(a− b)(a + b) + ∆b}. (A.11)

Since the middle ofA starts at

4∆(a− b)(a + b) + ∆a− 2∆(a− b) + 1 = 4∆(a− b)(a+ b) + ∆b−∆(a− b) + 1, (A.12)

we see thataL+ bR is missing the∆(c− d) = m elements

[4∆(a− b)(a+ b)+∆b−2∆(a− b)+1, 4∆(a− b)(a+ b)+∆b−2∆(a− b)+∆(c−d)], (A.13)

which are all the elements in its first gap.
Now we must consider the right fringea(n−R)−bL of aA−bA, whichbL+aR after reflection.

Note that

bL+ aR = aL+ bR +∆(a− b)

= [0, 4∆(a− b)(a + b) + ∆a− 2∆(a− b)]

∪[4∆(a− b)(a + b) + ∆a− 2∆(a− b) + ∆(c− d) + 1, 4∆(a− b)(a+ b) + ∆a−∆(a− b)]

∪{4∆(a− b)(a + b) + ∆a}, (A.14)
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with the first equality sinceR is L shifted down by∆. Note thatbL + aR is not missing any
elements since the middle ofA starts at

4∆(a− b)(a + b) + ∆a− 2∆(a− b) + 1, (A.15)

which is exactly where the first gap ofbL + aR starts. Therefore|aA− bA| = 2kn+ 1−m since
aA− bB is missing onlym elements in its left fringe.

Now we will considercA−dA. Its left fringe iscL−d(n−R), which iscL+dR after translation.
Then as before,

cL+ dR = aL+ bR +∆(d− b)

= [0, 4∆(a− b)(a + b) + ∆d − 2∆(a− b)]

∪[4∆(a− b)(a + b) + ∆d− 2∆(a− b) + ∆(c− d) + 1, 4∆(a− b)(a + b) + ∆d −∆(a− b)]

∪{4∆(a− b)(a + b) + ∆d}. (A.16)

ThencL+ dR is only missing the∆(c− d) = m elements

[4∆(a− b)(a+ b)+∆d−2∆(a− b)+1, 4∆(a− b)(a+ b)+∆d−2∆(a− b)+∆(c−d)], (A.17)

which are all the elements in its first gap. This is because themiddle ofA starts in the middle of the
second block ofcL+ dR since

4∆(a−b)(a+b)+∆d−2∆(a−b)+∆(c−d)+1 ≤ 4∆(a−b)(a+b)+∆a−2∆(a−b) (A.18)

asc < a and

4∆(a− b)(a + b) + ∆a− 2∆(a− b) ≤ 4∆(a− b)(a+ b) + ∆d−∆(a− b) (A.19)

asb > d.
Similarly, the right fringe ofcA− dA is c(n−R)− dL, which isdL+ cR. Then

dL+ cR = aL+ bR +∆(c− b)

= [0, 4∆(a− b)(a + b) + ∆c− 2∆(a− b)]

∪[4∆(a− b)(a + b) + ∆c− 2∆(a− b) + ∆(c− d) + 1, 4∆(a− b)(a + b) + ∆c−∆(a− b)]

∪{4∆(a− b)(a + b) + ∆c}, (A.20)

and as before,dL+ cR is only missing them elements

[4∆(a− b)(a+ b)+∆c−2∆(a− b)+1, 4∆(a− b)(a+ b)+∆c−2∆(a− b)+∆(c−d)], (A.21)

which are all the elements in its first gap. This is because themiddle ofA starts in the middle of the
second block ofdL+ cR since

4∆(a−b)(a+b)+∆c−2∆(a−b)+∆(c−d)+1 ≤ 4∆(a−b)(a+b)+∆a−2∆(a−b) (A.22)

and

4∆(a− b)(a+ b) + ∆a− 2∆(a− b) ≤ 4∆(a− b)(a + b) + ∆c−∆(a− b). (A.23)

To verify the first inequality, we note that2c− d < a holds sincea + b = c+ d andc− b < d− b
in this case. The second inequality follows fromb ≤ c. Therefore,cA− dA is missingm elements
in each fringe and so|cA− dA| = 2kn + 1− 2m.

To do the casec − d > d − b, we need to change the fringes slightly. However, the only real
difference occurs when we extend the middle to get|cA − dA| = 2kn + 1 − ℓ, whereℓ ≤ 2m, as
in Step 3. We do this by first extending the middle one element at a time (to decreaseℓ one element
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at a time). However, at a certain point we need to extend the middle by adding a whole block; at
this point extending one element does not change the value of|cA− dA| and so we just extend by
a whole block. Afterwards, we continue extending the middleone element at a time as before.

Finally, we note that the case whenc = d is similar to the result achieved in Step 3, except that
now the left fringeaL + bR of aA − bA is closer to the middle; therefore we need to make the
middle shorter so that the middle misses the first gap in the left fringe of aL+ bR. This completes
the proof of Theorem 1.3. 2
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