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Abstract

For sets A,B ⊂ N, their sumset is A + B := {a + b : a ∈ A, b ∈ B}. If we cannot
write a set C as C = A+B with |A|, |B| ≥ 2, then we say that C is (additively) inde-
composable. The question of whether a given set C is indecomposable arises naturally
in additive combinatorics. Equivalently, we can formulate this question as one about
the indecomposability of boolean polynomials, which has been discussed in previous
work by Kim and Roush (2005) and Shitov (2014).

We use combinatorial and probabilistic methods to prove that almost all poly-
nomials are indecomposable over the max-min semiring, generalizing work of Shitov
(2014) and proving a 2011 conjecture by Applegate, Brun, and Sloane concerning lunar
numbers.
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1 Introduction

Given a positive integer b, let Ab denote the set {0, . . . , b− 1} equipped with the operations
⊕,⊗, where a⊕ b = max(t, u), t⊗ u = min(t, u). Previous work [6, 8] has discussed the fac-
torization of polynomials over the Boolean Semiring A2[x]. Understanding the factorization
of boolean polynomials proves useful in both the classical setting of factoring polynomials
over fields [2] as well as in tropical geometry [10]. Remarkably, the study of factorization
of boolean polynomials corresponds naturally with the study of sumsets within additive
combinatorics, an active area of research [3, 9].

More generally, Applegate, Le Brun, and Sloane define a lunar number to be an element
of the polynomial ring Ab[x]. In this paper, we show that almost all lunar numbers are inde-
composable, and as a consequence we confirm Applegate, Le Brun, and Sloane’s conjectured
asymptotic for the number of degree-n lunar primes in base b.

1.1 Preliminaries

Since we deal with asymptotic estimates throughout this paper, we first adopt one standard
notation for asymptotic analysis.

Definition 1. If f, g are nonnegative real-valued functions and there exists a constant c > 0
such that f ≤ cg, then we write f ≪ g.

We now define the term “lunar number”.

Definition 2. The semiring Ab = ({0, . . . , b− 1},⊕,⊗) is defined by the operations

t⊕ u := max(t, u)

t⊗ u := min(t, u)

with the operations having additive identity 0Ab
= 0 and multiplicative identity 1Ab

= b− 1,
respectively. The semiring of lunar numbers, then, is the polynomial semiring Lb := Ab[x].
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For each n ≥ 0, we define the set Ln
b ⊆ Lb of lunar numbers of degree at most n:

Ln
b =

{
n⊕

i=0

aix
i such that ai ∈ Ab for all i

}
.

For example, we have Ab = L0
b and Lb =

⋃
n≥0 Ln

b .

Remark 3. Originally, Applegate, Le Brun, and Sloane referred to these as dismal numbers.
Finding the old name too depressing, the authors have since renamed these objects “lunar
numbers.”

Example 4. Working in L3, the product of 1⊕ 2x with 2⊕ 1x is

(1⊕ 2x)⊗ (2⊕ 1x) = 1⊕ (2x⊕ 1x)⊕ 1x2 = 1⊕ 2x⊕ 1x2.

Written in the notation of lunar arithmetic used by Applegate, LeBrun, and Sloane, this is

2 1
×3 1 2

2 1
1 1
1 2 1

where 21 represents the polynomial 1⊕ 2x.

Definition 5. Let f ∈ Lb. Provided that h is not a unit and that in any decomposition
h = f ⊗ g for f, g ∈ Lb at least one of f, g is a unit, we say that h is prime. This corresponds
to the definition of a lunar prime given by Applegate, LeBrun, and Sloane [1, p. 7]. Provided
that h is not a monomial and that in any decomposition h = f ⊗ g for f, g ∈ Lb at least one
of f, g is a monomial, we say that h is indecomposable.

Remark 6. If h is a lunar prime that isn’t a monomial, then h is also indecomposable by
definition. On the other hand, every monomial satisfies h ⊗ h = h, so there are no prime
monomials. It follows that every lunar prime is indecomposable.

Example 7. We will work in base b. First, we see that 1⊕ x⊕ x2 is decomposable, since

(1⊕ x)⊗ (1⊕ x) = 1⊕ x⊕ x⊕ x2 = 1⊕ x⊕ x2.

In contrast, 1⊕ x⊕ x3 is indecomposable.

The question of whether a polynomial is indecomposable within L2 corresponds precisely
to whether a certain subset of N is indecomposable as a sumset. We recall the definition of
the sum of A,B ⊆ Z and indecomposability of sets below.

Definition 8. Let A,B ⊂ G for some abelian group G. Their sumset is the set A + B :=
{a+ b : a ∈ A, b ∈ B}.

Definition 9. Let S ⊂ N. If S = A + B implies either A or B is a singleton, then S is
indecomposable.
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With these definitions in mind, one may associate with any finite subset A ⊆ N the
polynomial

∑
j 1A(j)x

j, where 1A(j) = 1 if j ∈ A, and 1A(j) = 0 if j ̸∈ A. Then the semiring
L2 is isomorphic to the semiring of finite subsets of N under union and set addition [4]. Under
this isomorphism, the notion of indecomposability of a polynomial exactly matches that of
indecomposability of a set.

Furthermore, just as products of boolean polynomials correspond to sums of sets, prod-
ucts of min-max polynomials correspond to sums of multisets. Gal Gross has previously
provided a full account of this correspondence [4].

1.2 Summary of results

In 2008, Shitov studied the proportion of degree n polynomials over A2 which are prime.

Theorem 10 (Shitov [8, Theorem 2.5]). As n → ∞, the proportion of degree n polynomials
in L2 with nonzero constant term which are prime tends to 1.

Theorem 10 answers a question of K. H. Kim and F. W. Roush posed in 2005 [6]. Remark-
ably, the proof uses only elementary combinatorics and probability. In particular, Hoeffding’s
inequality plays a key role in the proof, allowing Shitov to control the degrees of the factors
making up composite polynomials. Our contribution is to generalize Shitov’s result to the
setting of lunar arithmetic in higher bases.

Theorem 11. Fix an integer b ≥ 2. Then as n → ∞, the proportion of polynomials in Ln
b

which are indecomposable tends to 1.

The proportion of polynomials in Ln
b which have degree n is b−1

b
, so Theorem 11 is

equivalent to the statement that the proportion of degree n polynomials in Lb which are
indecomposable tends to 1. Theorem 11 implies a conjecture of Applegate, Le Brun, and
Sloane concerning lunar primes [1] as a corollary.

Corollary 12 (Applegate et al. [1, Conjecture 1]). Let πb(n) denote the number of degree
n − 1 prime lunar numbers in Lb. Then, for fixed b ≥ 2, we have the asymptotic estimate
πb(n) ∼ (b− 1)2bn−2 as n → ∞.

In Section 2, we prove Theorem 11 by partitioning the collection of decomposable polyno-
mials in Ln

b into several subcollections and bounding the size of each. We do this by applying
Hoeffding’s inequality and a generalization of one of Shitov’s lemmas [8, Lemma 2.6]. We
then prove Corollary 12 as a corollary of Theorem 11 in Section 2.1.

2 Indecomposability in Ln
b

We begin with some conventions.

Definition 13. Let f ∈ Lb. Then |f | denotes the number of nonzero coefficients of f .
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Definition 14 (Applegate, LeBrun, and Sloane [1, p. 6]). A base-b digit map is a nonde-
creasing function from Ab to itself. We define a map d : Lb → Ld(b−1)+1 by the rule

d

(
n⊕

i=0

aix
i

)
=

n⊕
i=0

d(ai)x
i.

This definition and these results can be extended to include all nondecreasing functions from
N ∪ {∞} to itself, though we do not need this extended notion for our application.

We also note that d(Ln
b ) ⊆ Ln

d(b−1)+1. By construction, we have d(1Lb
) = 1Ld(b−1)+1

. If

d(0) = 0, then the following proposition shows that d is in fact a semiring homomorphism.

Theorem 15 (Applegate, Lebrun, and Sloane [1, Thm. 3]). If d is a base-b digit map and
f, g ∈ Lb, then

d(f)⊕ d(g) = d(f ⊕ g) and d(f)⊗ d(g) = d(f ⊗ g).

Theorem 15 provides a framework for our proof, allowing us to reduce the problem of
factoring a polynomial over Lb to factoring one over L2.

Definition 16. We define the digit maps si for each 1 ≤ i ≤ b− 1.

si(n) :=

{
0, n < i;

1, n ≥ i.
(1)

For f ∈ Lb, we additionally define fi = si(f). These polynomials, which we refer to as the
“i-level support of f”, are indicator functions for where the coefficients of f are at least i.

Remark 17. One observes that almost all degree-n polynomials in L2 are indecomposable.
Additionally, for h ∈ Lb, we have that h = f ⊗ g implies h1 = f1 ⊗ g1, and f1, g1 are
monomials if and only if f, g are. As a consequence, if h1 is indecomposable, so is h. If the
polynomials h1 were uniformly distributed in Ln

2 , then we would have

P({f ∈ Ln
b : f indecomposable}) ≥ P({g ∈ Ln

2 : g indecomposable}).

The polynomials h1, however, are not uniformly distributed in Ln
2 . Hoeffding’s inequality and

its corollary eq. (2) imply that if f is a random degree-n polynomial in Lb, the polynomial

f1 will almost surely have approximately (b−1)(n+1)
b

nonzero coefficients, whereas a randomly-
chosen degree-n polynomial in L2 will have approximately n+1

2
nonzero coefficients. In fact,

polynomials with more nonzero coefficients are much more likely to be decomposable.
To fix the issue of this non-uniform distribution in the case that b = 2a, one might instead

look at fa. This way, the polynomials fa are in fact uniformly distributed in L2. However,
a new issue emerges here: nontrivial factorizations in Lb may appear trivial under this digit
map. We may have h = f ⊗ g where f, g are non-monomials but fa or ga is a monomial, so
it is not true that the indecomposability of ha implies the indecomposability of h. Consider,
for instance, h = 1⊕ 2x⊕ 2x2 ∈ L2

4, which factors as (2⊕ 2x)⊗ (1⊕ 2x).
Fortunately for us, these two ideas lead to a proof of the result. We use the first idea to

control the number of h ∈ Σn
b such that h = f ⊗ g and fa is a monomial, at which point

the second idea leads immediately to a proof of the claim. In the case that b = 2a + 1, the
distribution on the {ha} induced by the map h 7→ ha is no longer uniform. The result is not
immediate from Theorem 10 in this case, but it is an easy consequence of Lemma 19.
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To conclude our setup, we use the following convention for referencing the coefficients of
polynomials. Throughout the remainder of this paper, let

f =
∞⊕
k=0

αkx
k, g =

∞⊕
k=0

βkx
k, h =

∞⊕
k=0

γkx
k, σ =

∞⊕
k=0

δkx
k,

for notational convenience. Additionally, set α′
i = αi ⊗ 1 and similarly for each other coeffi-

cient. This way we have, for instance:

f1 =
∞⊕
k=0

α′
kx

k, g1 =
∞⊕
k=0

β′
kx

k, h1 =
∞⊕
k=0

γ′
kx

k, σ1 =
∞⊕
k=0

δ′kx
k.

We may now begin in earnest. In the proof of one lemma, Shitov shows the following
statement, which will be of great use to us.

Corollary 18 (Shitov [8, p. 1185]). For any d > 0, the number of pairs of boolean polynomials
(f, g) satisfying the following conditions is at most n2d+12gcd(k,n).

1. The constant terms of f, g are nonzero;

2. deg f = k > 0, deg g = n− k;

3. |f ⊗ g| ≤ |f |+ |g|+ d.

We now generalize Corollary 18 to our setting.

Lemma 19. The number of pairs of boolean polynomials (f, g) satisfying the following con-
ditions is at most n2d+22k for any d > 0.

1. The constant term of f is nonzero;

2. deg f = k > 0, deg g = n− k;

3. |f ⊗ g| ≤ |f |+ |g|+ d.

Proof. Write g = xj ⊗ (1 + · · ·+ xn−k−j) and define ḡ by g = xj ⊗ ḡ. Then clearly |f ⊗ g| =
|f ⊗ ḡ| and |g| = |ḡ|. By Corollary 18, there are at most n2d+12gcd(k,n−j) pairs (f, ḡ) satisfying
the hypotheses of the corollary. Since there are at most n choices for j, the number of pairs
(f, g) satisfying the hypotheses of this lemma is at most

∑n−1
j=0 n

2d+12gcd(k,n−j) ≤ n2d+22k.

The final ingredient for our proof is Hoeffding’s inequality.

Proposition 20 (Hoeffding’s Inequality [5, Thm. 2]). Let Xn be a sum of n independent
Bernoulli random variables X with E[X] = p. Then P(|Xn − np| > ϵn) ≤ 2e−2ϵ2n.

When we choose a degree n − 1 polynomial f at random from Lb, the quantity |fi| is a
sum of n independent Bernoulli random variables Zi with E[Zi] =

b−i
b
. As a consequence, if

f is a degree n− 1 polynomial chosen randomly from Lb, then

P
(∣∣∣∣|fi| − (b− i)n

b

∣∣∣∣ > ϵn

)
≤ 2e−2ϵ2n. (2)

We now prove a quantitative version of Theorem 11. Let Σn
b denote the set of decomposable

lunar numbers of base b and degree at most n.
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Proposition 21. Fix b > 1 and let a = ⌊b/2⌋. Then for any d, v > 0 we have

|Σn
b | ≪ bn+1

(
n2e

−d2

4(n+2) + n2d+42
d
2
−n+1

3 + vn2d+22vb
d
2
−n

b + n22−v

)
.

For b, n ≥ 2, let a = ⌊b/2⌋. We partition Σn
b into two subsets, then control the size of

each. Let Dn
b ⊆ Σn

b denote the set of h that admit a factorization h = f ⊗ g such that fa, ga
are not monomials and let In

b = Σn
b \ Dn

b .

Remark 22. When b = 2a, the size ofDn
b is easy to control. As each h ∈ Dn

b has a factorization
h = f⊗g such that ha = fa⊗ga is nontrivial, we have that sa(Dn

b ) ⊆ Σn
2 (though the inclusion

may be strict, as ha = f ⊗ g may not lift to a factorization of h). As |s−1
a (f)| = an+1 for all

f ∈ Ln
2 , we have

|Dn
b |

bn
≤ |s−1

a (Σn
2 )|

bn
=

an+1|Σn
2 |

bn
=

|Σn
2 |

2n
,

a quantity which goes to zero as a consequence of Theorem 10.

Definition 23. A polynomial h ∈ Ln
b is d-Hoeffding extremal if there exists 1 ≤ i ≤ b − 1

such that ∣∣∣∣|hi| −
(b− i)n

b

∣∣∣∣ > d

2
, (3)

or if h admits a factorization h = f ⊗ g such that∣∣∣∣|fi|+ |gi| −
(b− i)(n+ 1)

b

∣∣∣∣ > d

2
. (4)

Let Hn
b (d) denote the set of all h ∈ Ln

b that are d-Hoeffding extremal.

We will show individually that Hn
b (d),Dn

b \Hn
b (d), and In

b \Hn
b (d) are small, from which

it follows that Σn
b is small.

Lemma 24. For fixed b and all d ∈ R+, we have |Hn
b (d)| ≪ n2e

−d2

4(n+2) bn.

Proof. Fix i. By Equation (2) with ϵ = d
2(n+1)

, the number of polynomials h satisfying

Equation (3) is at most e
−d2

4(n+1) bn+1. To bound the number of h = f ⊗ g such that h is
d-Hoeffding extremal due to Equation (4), it suffices to bound the number of pairs (f, g)
such that deg f ⊗ g ≤ n and (fi, gi) satisfies Equation (4).

For each m ≤ n, we will bound the number of pairs (f, g) with deg f ⊗ g = m. If we
fix deg f = k, then we must have deg g = m − k as deg(f ⊗ g) = m. The set of pairs
(f, g) ∈ (Lb)

2 such that deg f = k, deg g = m−k is in bijection with Lm+1
b with the bijection

given below:

ϕ(f, g) = f ⊕
(
((b− 1)xk+1)⊗ g

)
ϕ−1(h) =

(
k⊕

j=0

γjx
j,

m+1⊕
j=k+1

γjx
j−k−1

)
.
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Moreover, |fi|+ |gi| = |(ϕ(f, g))i|. Thus, choosing ϵ = d
2(m+2)

and applying Equation (2), we

obtain that there are at most 2e
−d2

4(m+2) bm+2 such pairs (f, g) with deg f = k, deg g = m − k.
As there are m choices for deg f , b choices for i, and n choices for m, we have

|Hn
b | ≤ e

−d2

4(n+1) bn+1 +
n∑

m=1

2me
−d2

4(m+2) bm+3 ≪
n∑

m=1

e
−d2

4(m+2) bm+1 ≤ n2e
−d2

4(n+2) bm+1.

Lemma 25. If h = f ⊗ g ∈ Σn
b \ Hn

b (d) and 1 ≤ i ≤ b− 1, then |hi| ≤ |fi|+ |bi|+ d.

Proof. We have |hi| < (b−a)(n+1)
b

+ d/2 and |fa|+ |ga| > (b−a)(n+2)
b

− d/2 ≥ |hi| − d.

Lemma 26. For fixed b and all d > 0, we have |Dn
b \ Hn

b (d)| ≤ n2d+42
d
2
−n

3 bn+1.

Proof. Let h ∈ Dn
b \ Hn

b (d) and fix a nontrivial factorization ha = fa ⊗ ga. We will count
the number of pairs (fa, ga) with deg ha = m for each 2 ≤ m ≤ n. Since h is not d-
Hoeffding extremal, we have |ha| ≤ |fa| + |ga| + d. It follows that the pair (fa, ga) satisfies
the hypotheses of Lemma 19. Being non-monomials, fa, ga must both have positive degree,
so deg f = m−deg g ≤ m−1. Using the fact that gcd(deg fa,m) ≤ m

2
for 1 ≤ deg fa ≤ m−1,

the number of possible choices for ha is at most

m−1∑
deg fa=1

m2d+22gcd(deg fa,m) ≤ m2d+32
m
2 .

The total number of possibilities for ha, therefore, is bounded by
n∑

m=2

m2d+32
m
2 ≤ n2d+42

n
2 .

Once ha is known, if |ha| = k, there are an+1−k(b− a)k choices for h. This is because each 0
coefficient of ha can correspond to any coefficient in {0, . . . , a − 1}, and any 1 corresponds

to a coefficient in {a, . . . , b − 1}. Let s denote the quantity (b−a)(n+1)
b

+ d/2. As h is not
d-Hoeffding extremal, we have k ≤ s. Recalling that a = ⌊b/2⌋, we have a ≤ b/2 ≤ (b− a),
with equality of all terms when b is even, we see that the quantity an+1−k(b−a)k is maximized
when k is maximized. This gives the following upper bound:

an+1−k(b− a)k ≤ an+1−s(b− a)s = a
n+1
2 (b− a)

n+1
2

(
b− a

a

)( b−a
b

− 1
2)(n+1)(

b− a

a

) d
2

.

By the AM-GM inequality, we have a
n+1
2 (b−a)

n+1
2 ≤

(
b
2

)n+1
. For b ≥ 2, we have the bounds

1 ≤ b−a
a

≤ 2 and 0 ≤ b−a
b

− 1
2
≤ 1

6
, thus for any b ≥ 2 we have

(
b−a
a

)( b−a
b

− 1
2
)(n+1) ≤ 2

n+1
6 .

Altogether, this yields:

|Dn
b \ Hn

b (d)| ≤ n2d+42
n
2

(
b

2

)n+1(
b− a

a

) d
2
(
b− a

a

)( b−a
b

− 1
2
)n+1

≤ n2d+42
n
2

(
b

2

)n+1

2
n+1
6

+ d
2 ≤ n2d+42

d
2
−n

3 bn+1.
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Lemma 27. For all d, v ∈ R+, the number of lunar numbers in Σn
b \ Hn

b (d) that can be

factored as h = f ⊗ g where deg f ≤ v is at most vn2d+32v(b− 1)
(b−1)n

b
+ d

2 .

Proof. Let h ∈ In
b \ Hn

b (d) such that deg h = m. Let h = f ⊗ g be a nontrivial factorization
where deg f ≤ v. As h is not d-Hoeffding extremal and f1, g1 are both not monomials, the
factorization h1 = f1 ⊗ g1 satisfies the hypotheses of Lemma 19. Applying this lemma once
for each choice of 1 ≤ k ≤ v, we conclude that the number of possible pairs (f1, g1) with
deg h1 = m is at most

∑v
k=1m

2d+22gcd(k,m) ≤ vm2d+12v. Considering all values ofm together,
the number of pairs (f1, g1) is at most

n∑
m=2

vm2d+22v ≤ vn2d+32v.

Each pair (f1, g1) corresponds to (b− 1)|f1|+|g1| possible pairs (f, g), and since (f1, g1) do not
satisfy Equation (4), the claim follows.

Lemma 28. For all d, v ∈ R+, we have |In
b \ Hn

b (d)| ≪ vn2d+22vb
(b−1)n

b
+ d

2 + n22−vbn+1.

Proof. For fixed k, there are at most (k+1)(a−1)kb possible lunar numbers f with deg f ≤ k
and |fa| ≤ 1: pick the index of the coefficient with no constraint, then pick its value from
{0, . . . , b−1}, then pick the remaining coefficients from {0, . . . , a−1}. Additionally, there are
bn+1−k lunar numbers g of degree ≤ n− k. It follows that there are at most (k+ 1)akbn−k+2

lunar numbers h such that deg h ≤ n, h = f ⊗ g, deg f = k, and |fa| ≤ 1. As

n∑
k=v

(k + 1)akbn−k+2 ≤ n(n+ 1)(a− 1)vbn−v+2 ≪ n2bn+12−v,

the claimed bound follows from Lemma 27.

These bounds lead to an immediate proof of Proposition 21, and with the right choice of
d, v, this gives us a proof of Theorem 11.

Proof. Our goal is to show that |Σb,n|/bn+1 → 0, from which the result follows. Setting
d = 2

√
n+ 2 log n and v = 3 log2 n, we then apply Proposition 21 to conclude |Σb,n|/bn+1 → 0

for fixed b as n → ∞.

2.1 Proof of Conjecture 12

We are now prepared to state and prove Corollary 12 using Theorem 11. Recall from Def-
inition 5 the distinction between a prime polynomial (one factor is always a unit) and an
indecomposable polynomial (one factor is always a monomial). Applegate, LeBrun, and
Sloane discuss prime polynomials, but primeness and indecomposability are sufficiently sim-
ilar that our results can be applied to the conjecture [1]. These authors instead use the term
pseudoprime to refer to indecomposability. We choose to use the term indecomposability for
its relation to ring theory more generally.

Motivating their conjecture, Applegate et al. observed that only certain polynomials can
be prime by leveraging the fact that b− 1 is the only unit in Lb.

10



Definition 29. A prime candidate of Lb is a polynomial with nonzero constant term and
maximum coefficient b− 1.

It is easy enough to see that a lunar number is prime only if it is a prime candidate. If
h = ajx

j ⊕ · · · ⊕ an−1x
n−1 for j > 1, then h = (b− 1)xj ⊗ (aj ⊕ · · · ⊕ an−1x

n−j−1) which is a
nontrivial factorization in their convention. Moreover, if c < b−1 is the maximum coefficient
of h, then h = c⊗ h.

They showed that, if πcand
b (n) is the number of prime candidates in base b with degree

n− 1, then πcand
b (n) ∼ (b− 1)2bn−2. Furthermore, their data suggests that almost all prime

candidates are in fact prime as n → ∞. See OEIS sequences A169912 and A087636 for the
number of prime elements of Ln

2 and Ln
10. As evidence for this fact, Applegate et al. produced

the following lower bound:

(b− 1)n−2 + 2(b− 2)n−2 + · · · ≤ πb(n).

Moreover, they observed the following, which we will re-prove here.

Lemma 30 (Applegate, LeBrun, and Sloane [1, p. 10]). An indecomposable prime candidate
is prime.

Proof. If h is indecomposable, then h = fg implies either f, g is a monomial. Without loss
of generality, assume that f is a monomial. Since the constant term of h is nonzero, we must
have that f is a constant. Since the maximum coefficient of h is b − 1, we must also have
that f = b− 1, thus h is prime.

With this lemma, Corollary 12 is a simple corollary of Theorem 11.

Proof. For fixed b, the proportion of prime candidates of Ln
b which are decomposable is at

most a quantity which vanishes as n → ∞:

πb(n)

(b− 1)2bn−2
≤

∣∣Σn−1
b

∣∣
(b− 1)2bn−2

≪
∣∣Σn−1

b

∣∣
bn

→ 0. (5)

It follows that almost all prime candidates are prime.
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