
Indecomposability Over the Max-Min Semiring

Benjamin Baily1, Henry L. Fleischmann, and Faye Jackson
Department of Mathematics

530 Church St.
University of Michigan
Ann Arbor, MI 48109

United States
bbaily@umich.edu, henryfl@umich.edu, alephnil@umich.edu

Justine Dell
Department of Mathematics

9500 Gilman Dr.
University of California San Diego

La Jolla, CA 92093
United States

jsdell@ucsd.edu

Steven J. Miller
Department of Mathematics and Statistics

Williams College
18 Hoxsey St.

Williamstown, MA 01267
United States

sjm1@williams.edu

Ethan Pesikoff
Department of Mathematics

Yale University
10 Hillhouse Ave.

New Haven, CT 06520
United States

ethan.pesikoff@yale.edu

1The authors of this work were supported by NSF Grants DMS1561945 and DMS1659037.

1

mailto:bbaily@umich.edu
mailto:henryfl@umich.edu
mailto:alephnil@umich.edu
mailto:jsdell@ucsd.edu
mailto:sjm1@williams.edu
mailto:ethan.pesikoff@yale.edu


Luke Reifenberg
Department of Mathematics
Univeristy of Notre Dame

255 Hurley
Notre Dame, IN 46556

United States
lreifenb@nd.edu

Abstract

For sets A,B ⊂ N, their sumset is A + B := {a + b : a ∈ A, b ∈ B}. If we cannot
write a set C as C = A+B with |A|, |B| ≥ 2, then we say that C is (additively) inde-
composable. The question of whether a given set C is indecomposable arises naturally
in additive combinatorics. Equivalently, we can formulate this question as one about
the indecomposability of boolean polynomials, which has been discussed in previous
work by Kim and Roush (2005) and Shitov (2014).

We use combinatorial and probabilistic methods to prove that almost all poly-
nomials are indecomposable over the max-min semiring, generalizing work of Shitov
(2014) and proving a 2011 conjecture by Applegate, Brun, and Sloane concerning lunar
numbers. Furthermore, we use measure-theoretic methods and apply Borel’s result on
normal numbers to prove that almost all power series are asymptotically indecompos-
able over the max-min semiring. This result generalizes work of Wirsing (1953).
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1 Introduction

The max-min semiring N consists of the set N ∪ {∞} equipped with the operations ⊕,⊗,
where a ⊕ b = max(a, b), a ⊗ b = min(a, b). Previous work [7, 9] has discussed the fac-
torization of polynomials over the Boolean Semiring, that is, the subsemiring B2 = {0, 1}.
Generally, understanding the factorization of boolean polynomials proves useful in both the
classical setting of factoring polynomials over fields [3] as well as in tropical geometry [11].
Remarkably, the study of factorization of boolean polynomials corresponds naturally with
the study of sumsets within additive combinatorics, an active area of research [4, 10]. This
paper explores the indecomposability (see Definition 6) of polynomials and power series over
the sub-semiring Bb = {0, . . . , b− 1} of N , also known as the semiring of lunar numbers in
base b [1]. Our main results generalize known results in the boolean case [9, 12].

1.1 Preliminaries

Since we deal with asymptotics throughout this paper, we first adopt one standard notation
for asymptotic analysis.

Definition 1. If f, g are nonnegative real-valued functions and there exists a constant c > 0
such that f ≤ cg, then we write f ≪ g.

We now formally define the polynomials over N .

Definition 2. The max-min semiring N = (N ∪ {∞},⊕,⊗) is defined by the operations

a⊕ b := max(a, b)

a⊗ b := min(a, b)

with the operations having units ∞ and 0, respectively. We also define the sub-semiring
Bb = {0, . . . , b− 1}, with units b− 1 and 0, respectively. For convenience we say N = B∞.

Furthermore, power series (and thus polynomials) in N [[x]] are defined so that the dis-
tributive law holds and for a, b ∈ N and i, j ∈ N we have

a⊗ xi = axi

axi ⊗ bxj = (a⊗ b)xi+j.
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Note that, in N [[x]], the unit for ⊕ is 0, and the unit for ⊗ is ∞. The units in Bb[[x]] are
b− 1 and 0. We define Bn

b [x] as the set of polynomials in Bb[x] whose degree is at most n.

Definition 3. Let f ∈ Bb[[x]]. If f = g ⊗ h for g, h ∈ Bb[[x]] implies that either g or h is a
unit, then f is said to be prime. If f = g ⊗ h implies that either g or h is a monomial, then
f is said to be indecomposable. Note that all primes are automatically indecomposable.

Definition 4. Let f, g ∈ Bb[[x]]. If f and g differ in only finitely many coefficients, then
we say f ∼ g. Furthermore, if f ∼ gh implies that either g or h is a monomial, then f is
asymptotically indecomposable.

As noted previously, the question of whether a polynomial is indecomposable within
B2[[x]] corresponds precisely to whether a certain subset of N is indecomposable as a sumset.
We recall the definition of the sum of A,B ⊆ Z and indecomposability of sets below.

Definition 5. Let A,B ⊂ G for some abelian group G. Their sumset is the set A + B :=
{a+ b : a ∈ A, b ∈ B}.
Definition 6. Let S ⊂ N. If S = A + B implies either A or B is a singleton, then
S is indecomposable. Similarly, if S ∼ A + B implies A or B is a singleton, then S is
asymptotically indecomposable. Here, ∼ denotes difference in finitely many elements.

With these definitions in mind, one may associate with any subset A ⊆ N the boolean
power series

∑
j 1A(j)x

j, where 1A(j) = 1 if j ∈ A, and 1A(j) = 0 if j ̸∈ A. Then the semiring
B2[[x]] is isomorphic to the semiring of subsets of N under union and set addition [5]. Under
this isomorphism, the notion of indecomposability of a polynomial exactly matches that of
indecomposability of a set.

Furthermore, just as products of boolean polynomials correspond to sums of sets, prod-
ucts of min-max polynomials correspond to sums of multisets. Gal Gross has previously
provided a full account of this correspondence [5].

We also recall the definition of a normal number, and the result that almost all numbers
are normal in any base b.

Definition 7. A number λ ∈ R is normal in base b if the base b representation of λ contains
an equal proportion of each finite sequence of digits base b. That is, if for all positive integers
n, all possible strings of n digits have density b−n in the base b representation.

More formally, let s = (δ1, . . . , δk) be a string of digits in {0, . . . , b−1}. Fix a real number
λ and let Nλ(n, s) denote the number of occurrences of the string s in the first n digits of
the base-b expansion of λ. Then the following holds:

lim
n→∞

Nλ(n, s)

n
= b−k.

An equivalent formulation of this is the following: let Z ⊂ {0, . . . , b−1}k and let Nλ(n, Z) =∑
s∈Z N(n, s). Then

lim
n→∞

N(n, Z)

n
= |Z|b−k. (1)

Almost every number is normal. This was first shown by Borel in base two in 1909 [2],
and Wirsing extended this result to all bases in 1953 [12].

Theorem 8 (Wirsing [12, Lemma 2’]). For any b ≥ 2, almost every λ ∈ R is normal in base
b. Consequently, almost every λ ∈ R is absolutely normal, that is, normal in every base.
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1.2 Summary of previous work

We now state previous work by Shitov in 2014 and by Wirsing in 1953. We begin with
Shitov’s work concerning polynomials over B2.

Theorem 9 (Shitov [9, Theorem 2.5]). As n → ∞, the proportion of degree n polynomials
in B2[x] which are prime tends to 1.

Theorem 9 answers a question of K. H. Kim and F. W. Roush posed in 2005 [7]. Remark-
ably, the proof uses only elementary combinatorics and probability. The result of Wirsing
stated below is much older, but, unlike Shitov’s work, the proof requires more advanced
techniques.

Theorem 10 (Wirsing [12, Theorem 2]). Almost every element of B2[[x]] is asymptotically
indecomposable.

The proof of Theorem 10 is measure-theoretic and builds heavily off the work of Borel, in
particular the result that almost every number is normal (Definition 7) in base 2. Wirsing
and Shitov phrased these results in two different settings. Wirsing in fact writes that almost
every set A ⊂ N is asymptotically indecomposable.

We restate Shitov and Wirsing’s results in these terms: almost every finite subset of N is
indecomposable and almost every subset of N is asymptotically indecomposable. As noted
previously, the semiring of sets under union and set addition is isomorphic to the semiring
of boolean polynomials [5]. Hence, these two formulations are equivalent.

1.3 Summary of results

Our contribution is to generalize these results to the setting of the max-min semiring Bb[[x]].
In particular, we prove the following two results.

Theorem 11. Fix b, and set Bb = {0, 1, . . . , b − 1} ⊂ N . Then as n → ∞, the proportion
of degree n polynomials in Bb[x] which are indecomposable tends to 1.

Theorem 12. Almost every element of Bb[[x]] is asymptotically indecomposable.

The first result is particularly interesting as it relates to a third manner in which to inter-
pret the polynomials over Bb. In particular, Theorem 11 implies a conjecture of Applegate,
Le Brun, and Sloane concerning lunar primes [1].

Conjecture 13. Let πb(n) denote the number of degree n − 1 prime polynomials of Bb[x].
Then we have the asymptotic πb(n) ∼ (b− 1)2bn−2.

The paper is organized as follows. In Section 2, we prove Theorem 11 by partitioning the
collection of decomposable polynomials in Bb[[x]] into several subcollections and bounding
the size of each. We do this by applying Hoeffding’s inequality and a generalization of one of
Shitov’s lemmas [9, Lemma 2.6]. We then prove Conjecture 13 as a corollary of Theorem 11
in Section 2.1. In Section 3, we prove Theorem 12 using a similar partitioning strategy for
Bb[[x]]. We apply the Borel-Cantelli Lemma and the result that almost all numbers are
normal in every base [12].
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2 Indecomposability in Bn
b [x]

In this section, we generalize Shitov’s result to polynomials over the max-min semiring. We
begin with some conventions.

Definition 14. Let f ∈ N [x]. Then |f | denotes the number of nonzero coefficients of f .

Definition 15 (Applegate, LeBrun, and Sloane [1, p. 6]). A digit map is a nondecreasing
function N → N. If d is a digit map and f = a0 ⊕ a1x ⊕ a2x

2 ⊕ · · · ∈ N [[x]], then we let
d(f) = d(a0)⊕ d(a1)x⊕ d(a2)x

2 ⊕ · · · .

Theorem 16 (Applegate, Lebrun, and Sloane [1, Thm. 3]). If d is a digit map, then d :
N [[x]] → N [[x]] is a semiring homomorphism. In particular, if f = gh is a nontrivial
factorization and d(1) ≥ 1, then d(f) = d(g)d(h) is a nontrivial factorization of d(f).

Theorem 16 provides a framework for our proof, allowing us to reduce the problem of
factoring a polynomial over Bb to factoring one over B2.

Definition 17. We define the digit maps si for each i ∈ Z+.

si(n) :=

{
0, n < i;

i, n ≥ i.
(2)

For f ∈ N [[x]], we additionally define fi = s1(si(f)). These polynomials, which we refer to
as the “i-level support of f ,” are indicator functions for where the coefficients of f are at
least i.

Remark 18. These digit maps are a very useful tool, and it is natural to attempt to prove
Theorem 11 as a direct corollary of Theorem 16 and Theorem 9. One observes that almost all
degree-n polynomials in B2[x] are indecomposable. Additionally, for f ∈ Bb[x], f and f1 are
either both decomposable or both indecomposable. Hence, it is reasonable to expect that
almost all polynomials f of degree n are indecomposable because, thanks to Theorem 9,
almost all f1 of degree n are indecomposable. Unfortunately, the polynomials f1 are not
uniformly distributed in B2[x], so one does not have

P({f ∈ Bb[x] : f indecomposable}) = P({g ∈ B2[x] : g indecomposable}).

Hoeffding’s inequality and its corollary eq. (3) imply that if f is a random degree-n poly-

nomial in Bb[x], the polynomial f1 will almost surely have approximately (b−1)(n+1)
b

nonzero
coefficients, whereas a randomly-chosen degree-n polynomial in B2[x] will have approximately
n+1
2

nonzero coefficients. In fact, polynomials with more nonzero coefficients are much more
likely to be decomposable.

To fix the issue of this non-uniform distribution in the case that b = 2a, one might instead
look at fa. This way, the polynomials fa are in fact uniformly distributed in B2[x]. However,
a new issue emerges: nontrivial factorizations in Bb[x] may appear trivial under this digit
map. For example, if b = 4, f = 1 ⊕ x, and g = 1 ⊕ x ⊕ x2, then f 2 = g and f 2

2 = g2,
but f2 = g2 = 0. Ultimately, this is the correct approach, but we must look at both f1, fa
together and account for several other possible sources of decomposable polynomials.
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Finally, to conclude our setup, we use the following convention for referencing the coeffi-
cients of polynomials. Throughout the remainder of this paper, let

f =
∞⊕
k=0

αkx
k, g =

∞⊕
k=0

βkx
k, h =

∞⊕
k=0

γkx
k, σ =

∞⊕
k=0

δkx
k,

for notational convenience. Additionally, set α′
i = αi ⊗ 1 and similarly for each other coeffi-

cient. This way we have, for instance:

f1 =
∞⊕
k=0

α′
kx

k, g1 =
∞⊕
k=0

β′
kx

k, h1 =
∞⊕
k=0

γ′
kx

k, σ1 =
∞⊕
k=0

δ′kx
k.

We may now begin in earnest. In the proof of one lemma, Shitov shows the following
statement, which will be of great use to us.

Corollary 19 (Shitov [9, p. 1185]). For any d > 0, the number of pairs of boolean polynomials
(f, g) satisfying the following conditions is at most n2d+12(k,n), where (k, n) is used to denote
the greatest common divisor of k and n.

1. The constant terms of f, g are nonzero;

2. deg f = k > 0, deg g = n− k;

3. |f ⊗ g| ≤ |f |+ |g|+ d.

We now generalize Corollary 19 to our setting.

Lemma 20. The number of pairs of boolean polynomials (f, g) satisfying the following con-
ditions is at most n2d+22k for any d > 0.

1. The constant term of f is nonzero;

2. deg f = k > 0, deg g = n− k;

3. |f ⊗ g| ≤ |f |+ |g|+ d.

Proof. Write g = xj ⊗ (1 + · · ·+ xn−k−j) and define ḡ by g = xj ⊗ ḡ. Then clearly |f ⊗ g| =
|f ⊗ ḡ| and |g| = |ḡ|. By Corollary 19, there are at most n2d+12(k,n−j) pairs (f, ḡ) satisfying
the hypotheses of the corollary. Since there are at most n choices for j, the number of pairs
(f, g) satisfying the hypotheses of this lemma is at most

∑n−1
j=0 n

2d+12(k,n−j) ≤ n2d+22k.

The final ingredient for our proof is Hoeffding’s inequality.

Proposition 21 (Hoeffding’s Inequality [6, Thm. 2]). Let Xn be a sum of n independent
Bernoulli random variables X with E[X] = p. Then P(|Xn − np| > ϵn) ≤ 2e−2ϵ2n.

When we choose a degree n− 1 polynomial f at random from Bb[x], the quantity |fi| is
a sum of n independent Bernoulli random variables Zi with E[Zi] =

b−i
b
. As a consequence,

if f is a degree n− 1 polynomial chosen randomly from Bb[x], then

P
(∣∣∣∣|fi| − (b− i)n

b

∣∣∣∣ > ϵn

)
≤ 2e−2ϵ2n. (3)

We now prove a quantitative version of Theorem 11.
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Proposition 22. Let b > 1 and a = ⌊b/2⌋ and let Σb,n denote the set of decomposable degree
n− 1 polynomials in Bb[x]. Then for any d, v > 0 we have

|Σb,n| ≪ bn
(
ne−d2/4(n+1) + vn2d+12vb−n + n22−v + n2d+32

d
2
−n

3

)
.

We define sets Ei = En
i (d, v), 1 ≤ i ≤ 7, such that Σb,n ⊆ E1 ∪ . . . E7. Our proposition

follows from the trivial bound |Σb,n| ≤ |E1| + · · · + |E7| and a series of lemmas concerning
the size of |E1| , . . . , |E7|.

We now detail the partition. Though we will not write this after each set, we stipulate
that h ∈ Ei only if h /∈ Ej for any j < i.

E1 is the set of polynomials h such that
∣∣∣|h1| − (b−1)n

b

∣∣∣ > d
2
.

E2 is those h = f ⊗ g such that
∣∣∣|f1|+ |g1| − (b−1)(n+1)

b

∣∣∣ > d
2
.

E3 is those h such that
∣∣∣|ha| − (b−a)n

b

∣∣∣ > d
2
.

E4 is those h = f ⊗ g such that
∣∣∣|fa|+ |ga| − (b−a)(n+1)

b

∣∣∣ > d
2
.

E5 is those h = f ⊗ g with deg f ≤ v.

E6 is those h = f ⊗ g with |fa| ≤ 1 or |ga| ≤ 1.

E7 is all remaining decomposable degree n− 1 polynomials h.

The size of E1, . . . , E4 can be bounded using Equation (3). The purpose of these sets is
to control the size of the supports of the polynomials in the remaining sets. In particular,
we want |hi| ≤ |fi| + |gi| + d for i = 1, a. This is so that when hi = fi ⊗ gi is a nontrivial
factorization, the hypotheses of Lemma 20 apply and we can conclude that there are few
possible pairs (f, g).

Lemma 23. For j = 1, 3 we have |Ej| ≪ e−d2/4(n+1)bn.

Proof. Applying Equation (3) with ϵ = d
2n
, we obtain

|Ej| ≤ 2e−d2/4nbn ≪ e−d2/4nbn ≤ e−d2/4(n+1)bn.

Lemma 24. For j = 2, 4 we have |Ej| ≪ ne−d2/4(n+1)bn.

Proof. Each pair (f, g) corresponds to only one choice of h, thus it suffices to bound the
number of pairs (f, g). If we fix deg f = k, then we must have deg g = n − k − 1 as

8



deg(f ⊗ g) = n− 1. The set of pairs (f, g) ∈ (Bb[x])
2 such that deg f = k, deg g = n− k − 1

is in bijection with Bn
b [x], with the bijection given below:

ϕ(f, g) = f ⊕
(
((b− 1)xk+1)⊗ g

)
ϕ−1(h) =

(
k⊕

j=0

γjx
j,

n⊕
j=k+1

γjx
j−k−1

)
.

Moreover, |fi| + |gi| = |(ϕ(f, g))i|. Thus, choosing ϵ = d
2n+2

and applying Equation (3), we

obtain that there are at most 2e−d2/4(n+1)bn+1 such pairs (f, g). Since there are n/2 choices
for deg f , we use this bound for each choice and obtain

|Ej| ≤ ne−d2/4(n+1)bn+1 ≪ ne−d2/4(n+1)bn.

Lemma 25. We have |E5| ≤ vn2d+12v.

Proof. Let h = f ⊗ g ∈ E5. Since h /∈ E1 ∪ E3, we have |h1| ≤ (b−1)n
b

+ d
2
, |f1| + |g1| ≥

(b−1)(n+1)
b

− d
2
. Thus |h1| ≤ |f1|+ |g1|+d. If |f1| ≤ 1 or |g1| ≤ 1, then f or g is a monomial in

contradiction to the assumption that f ⊗ g is a nontrivial factorization, hence (f1, g1) satisfy
every hypothesis of Lemma 20. We apply this lemma once for each choice of 1 ≤ deg f ≤ v,
and conclude

|E5| ≤
v∑

deg f=1

n2d+12deg f ≤ vn2d+12v.

Lemma 26. We have |E6| ≪ n22−vbn.

Proof. Suppose |fa| ≤ 1. Then fix deg f = k. Since h /∈ E5, we can assume k > v.
Then there are (k + 1)(b− a)(a− 1)k choices1 for f and bn−k choices for g, hence there are
≤ (k + 1)(a− 1)kbn−k+1 pairs (f, g). There are at most n choices for k, hence

|E6| ≤
n∑

k=v

(k + 1)(a− 1)kbn−k+1 ≤ n(n+ 1)(a− 1)vbn−v+1

≪ n2(a− 1)vbn−v ≤ n2

(
b

2

)v

bn−v ≤ n22−vbn.

If instead |ga| ≤ 1, then we have that deg(g) ≥ deg(f) ≥ v. By symmetry, there are at most
twice as many pairs with either |fa| ≤ 1 or |ga| ≤ 1 as there are with |fa| ≤ 1. This doubles
the size of our upper bound, but that is only a constant factor.

Lemma 27. We have |E7| ≤ n2d+32
d
2
−n

3 bn.

1Pick the index of the coefficient to be at least a, then pick its value, then pick the remaining coefficients
from {0, · · · , a− 1}.
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Proof. Let h = f⊗g. Since h /∈ E3∪E4, we have |ha| < (b−a)n
b

+ d
2
and |fa|+ |ga| > (b−a)(n+1)

b
,

hence |ha| ≤ |fa|+ |ga|+ d. Moreover, as h /∈ E6, neither fa nor ga is a monomial and thus
the pair (fa, ga) is a nontrivial factorization of ha and satisfies the hypotheses of Lemma 20.
Thus, using the fact that (deg fa, n − 1) ≤ n−1

2
≤ n

2
for 1 ≤ deg f ≤ n − 2, the number of

possible choices for ha is at most

n−2∑
deg fa=1

n2d+22(deg fa,n−1) ≤ n2d+32
n
2 .

Once ha is known, if |ha| = k, there are an−k(b − a)k choices for h. This is because each 0
coefficient of ha can correspond to any coefficient in {0, . . . , a−1}, and any 1 corresponds to a

coefficient in {a, . . . , b−1}. To clean up our expressions, let s denote the quantity (b−a)n
b

+ d
2
.

Since h /∈ E3, we can say k ≤ s. Recalling that a := ⌊b/2⌋, we have a ≤ b/2 ≤ (b− a), with
equality of all terms when b is even. This gives the following upper bound:

an−k(b− a)k ≤ an−s(b− a)s ≤
(
b

2

)n(
b− a

a

)( b−a
b

− 1
2)n(b− a

a

) d
2

.

For b ≥ 2, we have the bounds 1 ≤ b−a
a

≤ 2 and 0 ≤ b−a
b

− 1
2
≤ 1

6
, both of which are achieved

when b = 3. Moreover, for b = 2, we have
(

b−a
b

b−a
b

− 1
2

)
= 1, thus for any b ≥ 2 we have(

b−a
b

)( b−a
b

− 1
2
)n ≤ 2

n
6 . Altogether, this yields:

|E7| ≤ n2d+32
n
2

(
b

2

)n(
b− a

a

) d
2
(
b− a

b

)( b−a
b

− 1
2
)n

≤ n2d+32
n
2

(
b

2

)n

2
n
6
+ d

2 ≤ n2d+32
d
2
−n

3 bn.

These bounds lead to an immediate proof of Proposition 22, and with the right choice of
d, v, this gives us a proof of Theorem 11.

Proof. Our goal is to show that |Σb,n|/bn → 0, from which the result follows. Setting
d = 2

√
n+ 1 log n and v = 3 log2 n, we then apply Proposition 22 to conclude |Σb,n|/bn → 0.

2.1 Proof of Conjecture 13

We are now prepared to state and prove Conjecture 13 using Theorem 11. Recall from
Definition 3 the distinction between a prime polynomial (one factor is a unit) and an inde-
composable polynomial (one factor is a monomial). Applegate, LeBrun, and Sloane discuss
prime polynomials, but primeness and indecomposability are sufficiently similar that our
results can be applied to the conjecture [1]. These authors instead use the term pseudoprime
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to refer to indecomposability. We choose to use the term indecomposability for its relation
to ring theory more generally.

Motivating their conjecture, Applegate et al. observed that only certain polynomials can
be prime by leveraging the fact that b− 1 is the only unit in Bb[x].

Definition 28. A prime candidate of Bb[x] is a polynomial with nonzero constant term and
maximum coefficient b− 1.

It is easy enough to see that a polynomial is prime only if it is a prime candidate. If
h = ajx

j ⊕ · · · ⊕ an−1x
n−1 for j > 1, then h = (b− 1)xj ⊗ (aj ⊕ · · · ⊕ an−1x

n−j−1) which is a
nontrivial factorization in their convention. Moreover, if c < b−1 is the maximum coefficient
of h, then h = c⊗ h.

They showed that the number of prime candidates is asymptotic to (b− 1)2bn−2 (i.e., if

πcand
b (n) is the number of prime candidates then

πcand
b (n)

(b−1)2bn−2 → 1 as n → ∞). Furthermore,
their data shows that, almost all prime candidates are in fact prime as k → ∞. See OEIS
sequences A169912 and A087636 for the number of prime elements of B2[x] and B10[x] of
each degree n. As evidence for this fact, Applegate et al. produced the following lower
bound:

(b− 1)n−2 + 2(b− 2)n−2 + · · · ≤ πb(n).

Moreover, they observed the following, which we will re-prove here.

Lemma 29 (Applegate, LeBrun, and Sloane [1, p. 10]). An indecomposable prime candidate
is prime.

Proof. If h is indecomposable, then h = fg implies either f, g is a monomial. Without loss
of generality, assume that f is a monomial. Since the constant term of h is nonzero, we must
have that f is a constant. Since the maximum coefficient of h is b − 1, we must also have
that f = b− 1, thus h is prime.

With this lemma, Conjecture 13 is a simple corollary of Theorem 11.

Proof. The proportion of prime candidates of Bn−1
b [x] which are indecomposable is at most

a quantity which vanishes as n → ∞:

|Σb,n|
(b− 1)2bn−2

≪ |Σb,n|
bn

→ 0. (4)

It follows that almost all prime candidates are prime.

3 Asymptotic indecomposability

Before we prove this, we first must clarify what we mean by “almost all.” It turns out, there
is a very natural measure to associate with the set Bb[[x]].

Definition 30. To each element of Bb[[x]] we associate a real number in [0, b], given by

ρb

(
∞⊕
k=0

akx
k

)
:=

∞∑
k=0

akb
−n. (5)
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In other words, each power series corresponds to a string of digits in [0, 1, . . . , b−1], which
we can interpret as the base-b expansion of a number. This allows us to define a probability
measure m on Bb[[x]].

Definition 31. For a set A ⊂ Bb[[x]] such that ρb(A) is a measurable subset of R, let
m(A) = b−1L(ρb(A)), where L denotes the Lebesgue measure.

This reframing allows us to ask and answer questions about these polynomials measure-
theoretically. We will use Borel’s theorem that every number is normal, regardless of base [12]
(see Theorem 8). We deduce Theorem 12 from a second theorem, which is simpler to relate
to normality.

Theorem 32. Let Cb ⊂ Bb[[x]] denote the set of decomposable polynomials. Then m(Cb) = 0.

We show first how Theorem 12 follows from Theorem 32.

Proof. For f ∈ Bb[[x]], let [f ] denote the set of all g such that f ∼ g, and for a set S ⊆ Bb[[x]]
we let [S] denote

⋃
s∈S[s]. The set of asymptotically decomposable f is precisely the set [Cb].

Fix a natural number n. Notice the set of polynomials which can be obtained from an
element of Cb by editing only the first n coefficients has measure at most bnm(Cb), which
evaluates to 0. Thus, [Cb] is a countable union of measure 0 sets, hence it has measure 0
and almost all power series over Bb[[x]] are asymptotically indecomposable.

We now prove Theorem 32. Our proof is essentially a reformulation of Wirsing’s original
argument, but as the authors are not aware of an English translation of Wirsing’s result [12],
we reproduce it here for the sake of completeness.

Definition 33. For n ∈ N and f =
⊕∞

k=0 akx
k ∈ N [[x]], define f(n) :=

⊕n
k=0 akx

k ∈ N [x].

First, partition Cb into three sets T b
1 , T

b
2 , T

b
3 :

T b
1 := {h : h = f ⊗ g with 2 ≤ |g1| < ∞}

T b
2 :=

{
h : h = f ⊗ g with lim inf

n→∞

|f1(n)|+ |g1(n)|
n

<
1

5
and |f1| = ∞ = |g1|

}
T b
3 :=

{
h : h = f ⊗ g with lim inf

n→∞

|f1(n)|+ |g1(n)|
n

≥ 1

5
and |f1| = ∞ = |g1|

}
.

Since T b
1 ∪ T b

2 ∪ T b
2 = Cb, it suffices to show that L(T b

1 ) = L(T b
2 ) = L(T b

3 ) = 0. In proving
that the measures of T b

1 and T b
3 are 0, we rely extensively on the following idea.

We now state an important lemma with an elementary proof.

Lemma 34. If h = f ⊗ g, then
⊕n

k=0 αk ⊗ βn−k = γn.

Proof. To elucidate this fact, all we need to do is rewrite the product f ⊗ g:

f ⊗ g =
∞⊕
i=0

αix
i

∞⊕
j=0

βjx
j =

∞⊕
n=0

(
n⊕

k=0

αk ⊗ βn−k

)
xn =

∞⊕
n=0

γnx
n.

12



Lemma 35. We have m(T b
1 ) = 0.

Proof. We show that no element of T b
1 is normal, whence the result follows. Specifically, we

claim that the following sequence of digits can never occur in ρb(h) for any h = f ⊗ g ∈ T b
1 :

00 . . . 0︸ ︷︷ ︸
deg g+1

1 00 . . . 0︸ ︷︷ ︸
deg g+1

. (6)

Let f1 =
⊕∞

k=0 αkx
k, g1 =

⊕deg g1
k=0 βkx

k, h1 =
⊕∞

k=0 γkx
k. We can write

h1 = g1 ⊗ f1 =

deg g⊕
k=0

βkx
k ⊗ f1.

If γk = 1, then by Lemma 34 there exist i, j such that αi = βj = 1 and i + j = k. Since g1
is not a monomial, there exists another index j′ ̸= j such that βj′ = 1. Then by Lemma 34:
1 ≤ γi+j′ and γ′

i+j′ = 1. The gap between the two indices i+ j, i+ j′ is at most deg g1 (but
either index can come first), thus ρb(h1) does not have a “1” without another “1” at most
deg g indices away. Thus the string Equation (6) does not occur in ρb(h1).

Lemma 36. We have m(T b
2 ) = 0.

Proof. We begin by defining a finite counterpart to T b
2 :

T b
2 (n) :=

{
ρb(h) : h = f ⊗ g :

|f1(n)|+ |g1(n)|
n

<
1

5
and |f1| = ∞ = |g1|

}
.

Notice that
T b
2 ⊆ lim sup({T b

2 (n)}) =
⋂
N≥1

⋃
n≥N

T b
2 (n).

By the Borel-Cantelli Lemma, we know that if
∞∑
n=1

m(T b
2 (n)) < ∞, then

m

(
lim sup
n→∞

(T b
2 (n))

)
= m(T b

2 ) = 0.

As such, it suffices to show that
∑∞

n=1m(T b
2 (n)) < ∞.

Fix an integer k and consider all possible f and h such that |f1(n)|+ |g1(n)| = k. There
are

(
2n+2
k

)
possibilities for f1(n) and g1(n): each has n + 1 coefficients, and we distribute k

nonzero coefficients among them. Additionally, for a given choice of f1(n) and g1(n), there
are (b− 1)k polynomials f(n) and g(n) since each 1 coefficient of f1 or g1 can correspond to
any value in {1, . . . , b− 1}. Thus, for a given k, there are at most (b− 1)k

(
2n+2
k

)
possibilities

for f(n) ⊗ g(n). Therefore, T b
2 (n) is a subset of a union of at most

∑
0≤k≤n

5
(b − 1)k

(
2n+2
k

)
intervals, each of length b−n.

13



We then compute

m(T b
2 (n)) ≤ 1

bn

∑
0≤k≤n

5

(b− 1)k
(
2n+ 2

k

)

≤ n

5bn
(b− 1)n/5

(
2n+ 2

⌊n/5⌋

)
≤ n

bn
(b− 1)n/5

(
2n

⌊n/5⌋

)
≤ n

bn
(b− 1)n/5

(
2ne

n/5

)n/5

≤ n

(
1.94(b− 1)1/5

b

)n

.

Notice that 1.94(b−1)1/5

b
< 1 for b ≥ 2. Hence, the sum

∑∞
n=1m(T b

2 (n)) converges, and thus
m(T b

2 ) = 0.

Lemma 37. We have m(T b
3 ) = 0.

Proof. As in the case of T b
1 , we will show that no element of T b

3 is normal, from which the
result will follow.

Without loss of generality, we know that lim infn→∞
|f1(n)|

n
≥ 1

10
. Let k be a positive

integer such that (
b− 1

b

)k

<
1

10
.

Pick a positive integer r such that |g1(r − 1)| = k. This is equivalent to choosing r such
that ρb(g1(r − 1)) has exactly k ones. Let Z denote the polynomials σ ∈ Br−1

b [x] such that
σ1 ⊕ g1 = σ1. In other words, Z is the set of σ ∈ Br−1

b [x] such that βi ̸= 0 =⇒ δi ̸= 0. We
can compute |Z| using a counting argument: If βi ̸= 0, then δi ∈ {1, . . . , b − 1}, otherwise
δi ∈ {0, . . . , b−1}. As |g1| = k and σ has r coefficients, there are (b−1)kbr−k possible choices
for σ.

If ρb(h) is normal, we expect the digit strings in ρb(Z) to occur at a frequency of
(b−1)kbr−k

br
=
(
b−1
b

)k
in ρb(h). We show that they instead occur at a frequency of at least

1
10
, from which it follows that ρb(h) is not normal.
Suppose α′

s = 1. Then from Lemma 34, it follows that(
γ′
sx

s ⊕ · · · ⊕ γ′
s+r−1x

s+r−1
)
⊕ (α′

sx
s ⊗ g1(r − 1)) = (α′

sx
s ⊗ g1(r − 1)) .

Thus γs ⊕ · · · ⊕ γs+r−1x
r−1 ∈ Z. This observation allows us to lower-bound the frequency of

these strings in ρb(h):

1

10
≤ lim inf

n→∞

(
|f1(n)|

n

)
≤ lim inf

n→∞

(
Nρ(h)(n+ r − 1, Z)

n

)
= lim inf

n→∞

(
Nρ(h)(n, Z)

n

)
.

The above contradicts Equation (1), thus h is not normal.

We now prove Theorem 32, from which Theorem 12 is a corollary.

Proof. By construction, Cb = T b
1 ∪ T b

2 ∪ T b
3 . As a consequence of Lemma 35, Lemma 36, and

Lemma 37, we have
m(Cb) ≤ m(T b

1 ) +m(T b
2 ) +m(T b

3 ) = 0.
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