GENERALIZING ZECKENDORF'S THEOREM: THE KENTUCKY SEQUENCE
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ABSTRACT. By Zeckendorf’s theorem, an equivalent definition of thiedfiacci sequence (appro-
priately normalized) is that it is the unique sequence ofdasing integers such that every positive
number can be written uniquely as a sum of non-adjacent elesntéis is called a legal decomposi-
tion. Previous work examined the distribution of the numifesummands and the spacings between
them, in legal decompositions arising from the Fibonacenhars and other linear recurrence rela-
tions with non-negative integral coefficients. Many of thessults were restricted to the case where
the first term in the defining recurrence was positive. Westudeneralization of the Fibonacci
numbers with a simple notion of legality which leads to a reence where the first term vanishes.
We again have unique legal decompositions, Gaussian @havihe number of summands, and
geometric decay in the distribution of gaps.

1. INTRODUCTION

One of the standard definitions of the Fibonacci num§éis is that it is the unique sequence
satisfying the recurrenck, ., = F,, + F,,_; with initial conditionsF; = 1, F, = 2. An interesting
and equivalent definition is that it is the unique increasiaguence of positive integers such that
every positive number can be written uniquely as a sum ofadjacent elements of the sequeﬂce.
This equivalence is known as Zeckendorf’s theorenm [Ze], faegluently one says every number
has a unique legal decomposition as a sum of non-adjacem&aioi numbers.

In recent years there has been a lot of research explorirg ntiions of a legal decomposition,
seeing which sequences result, and studying the propefttes resulting sequences and decom-
positions (see for example [Al, Day, DDKMMV, DDKMV, DG, FGNR(GT,[GTNPKe[Len,
MW2, [Stel| Ste2] among others). Most of the previous workdee on sequencgs’,, } where
the recurrence relation coefficients are non-negativgerte with the additional restriction being
that the first and last terms are postfiysee for instancé [MW1], who call the®esitive Linear
Recurrence Sequences).

Much is known about the properties of the summands in deceitipas. The first result is
Lekkerkerker's theorem [Lek], which says the number of siands needed in the decomposition
of m € [F,, F,+1) grows linearly withn. Later authors extended this to other recurrences and
found that the distribution of the number of summands cage®ito a Gaussian. Recently the
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L1f we started the Fibonacci numbers with a zero, or with twegynve would lose unigueness.

2ThusGi1 = ¢1Gn + - + Gy (1—1) With c1c, > 0 ande; > 0.
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distribution of gaps between summands in decompositiorss stizdied; the distribution of the
longest gap between summands converges to the same distribne sees when looking at the
longest run of heads in tosses of a biased coin, while theghitity of observing a gap of length
g converges to a geometric random variable Jor- L (and is computable for smallet, with
the result depending on the recurrence); good sources ea theent gap results afe [BBGILMT,
BILMT].

Our goal is to extend these results to recurrences that cmilthe handled by existing tech-
niques. To that end, we study a sequence arising from a nofiariegal decomposition whose
recurrence has first term equal to ZBiahile this sequence does fit into the new framework of an
f-decomposition introduced in [DDKMMV], their argumentslpsuffice to show that our decom-
position rule leads to unique decompositions, and is sal#igton the distribution of the number
of summands and the gaps between them; we remedy this belaarbgletely resolving these
issues in Theorenis 1.3 apd]1.4.

We now describe our object of study. We can view the decortipasiule of the Fibonacci
numbers as saying our sequence is divided into bins of lehgémd (i) we can use at most one
element from a bin at most one time, and (ii) we cannot chotesaents from two adjacent bins.
This suggests a natural extension where the bins now coihtdements and any two summands
of a decomposition cannot be members of the same bin or arheafhins immediately before
or any of thes bins immediately after. We call this the, b)-Generacci sequence, and thus the
Fibonacci numbers are thi&, 1)-Generacci sequence. In this paper we consider the nextesmp
case:s = 1,b = 2. While the ideas needed to analyze this case carry over tadihe general case,
it is useful to specialize so that the technical details doneedlessly clutter arguments. For ease
of exposition, we decided to give this special sequence a&nand are calling it th& entucky-2
sequence after the homestate of one of our authors.

The elements of the Kentucky-2 sequence are partitionedins of size 2, and thus tid' bin
is

by = {agk—1, a2} (1.1)
For a positive integem, a Kentucky-2 legal decomposition is

m = ap + ap, + -+ ay, U < by < -0 < 4y (1.2)

and{ae;,ar,,,} ¢ b; Ub;_y for anyi,j (i.e., we cannot decompose a number using more than
one summand from the same bin or two summands from adjaaesjt Gihe first few terms of the
Kentucky-2 sequence are
1,2, 3,4, 5 8, 11,16 , 21, 32, 43,64 , 85, 128 , 171, 256 , ... (1.3)
b1 ba b3 ba bs be by bs
We have a nice closed form expression for the elements o$éjsence.

Theorem 1.1. If {a,} is the Kentucky-2 sequence, then
Unt1 = Ap1+2an-3, a1 = 1, a0 = 2, a3 = 3, ay = 4, (1.4)
which implies

1
as, = 2" and ag,_1 = 3 (2"+1+(—1)"). (1.5)

3Thus inGpy1 =c1Gp+ -+ + CLG,_(—1) We haver; = 0.
“The Kentucky-1 sequence is equivalent to the Fibonacciesemp
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This is not a Positive Linear Recurrence Sequence as thinteadefficient (that ofa,,) is
zero, and this sequence falls outside the scope of many qiréwious techniques. We prove the
following theorems concerning the Kentucky-2 Sequence.

Theorem 1.2 (Uniqueness of Decompositiondgvery positive integer can be written uniquely as
a sum of distinct terms from the Kentucky-2 sequence wheamsummands are in the same bin
and no two summands belong to consecutive bins in the seguenc

While the above follows immediately from the work of Demamty, Do, Kulkarni, Miller, Moon
and Varmal[[DDKMMV] on f-decompositions (tak¢(n) = 3 if n is even andf(n) = 2 other-
wise), for completeness we give an elementary proof in Agpe#il We next generalize the results
on Gaussian behavior for the summands to this case.

Theorem 1.3 (Gaussian Behavior of Summandkgt the random variabl&,, denote the number of
summands in the (unique) Kentucky-2 decomposition of agenpicked at random froff, as,,+1)
with uniform probabilit)ﬁ NormalizeY,, to Y, = (Y,, — u,)/on, Wherepu,, ando,, are the mean
and variance ot/ respectively, which satisfy

n 2 n
n = —+-+0(=
K 59" <2n)
on 8 n?
2
- 2.2 ). 1.
o 27+81+O<2”) (1.6)

ThenY,! converges in distribution to the standard normal distribatasn — oo.

Our final results concern the behavior of gaps between sumsndior the legal decomposition

m = ay, +ap, + -+ ap, with £1<£2<"‘<£k (17)
andm € [0, az,+1), we define the set of gaps as follows:
Gap%(m) = {fz —fl,fg —fz,...,gk _Ek—l}; (18)

notice we do not include the wait to the first summand (we cdfule wish; one additional gap
will not affect the limiting behavior). We can do the analy/sio different ways, either averaging
over allm € [0,as,+1) Or for eachm. It is easier to average over all sugh and in fact this
analysis is the first step towards understanding the behaf/tbe individual gap measure. In this
paper we concentrate on just the average gap measure, thiithgdditional work the techniques
from [BILMT] should be applicable and should yield similasults for the individual gaps and the
distribution of the longest gap measure. We plan to retuthd@se questions in a later paper where
we consider the generéd, b)-Generacci sequence.

Thus in the theorem below we consider all the gaps betweemsunals in Kentucky-2 legal
decompositions of alin € [0, az,.1). We letP,(g) be the fraction of all these gaps that are of
lengthg; thusm = a; + a11 + a15 + aos + asg contributes two gaps of length 4, one gap of length
7 and one gap of length 10.

Theorem 1.4 (Average Gap MeasureJor P,(g) as defined above (the probability of a gap of
lengthg among Kentucky-2 legal decompositionso€ [0, as, 1)), the limitP(g) := lim,, o, P.(g)
exists, and

P(0) = P(1) = P(2) =0, P(3) = 1/8, (1.9)

SUsing the methods of [BDEMMTTW], these results can be ex¢enid hold almost surely for sufficiently large
sub-interval ofl0, a2, 41)-
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and forg > 4 we have
277 if g =27
P = . 1.10
(9) {gz—ﬂ it g=2j+1. (1.10)

In § we derive the recurrence relation and explicit closmthfexpressions for the terms of
the Kentucky-2 sequence, as well as a useful generatingidunfor the number of summands in
decompositions. We then prove Theorem 1.3 on Gaussian ioeha\83, and Theorerh 1.4 on
the distribution of the gaps i B4. We end with some conclgdemarks and directions for future
research in[85.

2. RECURRENCERELATIONS AND GENERATING FUNCTIONS

In the analysis below we constantly use the fact that evesitige integer has a unique Kentucky-
2 legal decomposition; sele [DDKMMV] or AppendiX A for proofs

2.1. Recurrence Relations.

Proposition 2.1. For the Kentucky-2 sequencg, = n for 1 < n < 5 and for anyn > 5 we have
ay, = Qy_o + 2a,_4. Further forn > 1 we have

1
an = 2" and azy = 2 (2" + (—1)"). (2.1)
Proof. Any a,,, .1 andas,, in the Kentucky-2 sequence is listed because it is the sgtalieeger
that cannot be legally decomposed using the membefs0fi,, . . ., as, } or {a1, a0, ..., a2,-1}
respectively:
1, 2 y 3, 4 5 5, 8 5 11, 16 y 21, 32 5 43, 64 , oy, Qop—3, Qop—2 , A2p—1, A2p . (22)
b1 b2 b3 by bs bs bn—1 bn

As ay, is the largest entry in the bib),, it is one more than the largest number we can legally
write, and thus
A = Qgn—1 + Ao(n—2) + Ao(n—a) + -+ a; +1 (2.3)
wherea; = a, if nis odd anda; = a4 if n is even. By construction of the sequence we have
Ao(n—2) + Ao(n—a) + -+ a; + 1 = ag—2)41 = asn—3. Thus

Q2n = Q2p—1 + A2p—3. (2.4)
Similarly as,, .1 is the smallest entry in bi, . ;, SO
Aont1 = Q2p + Ao(n—2) + Ao(n—g) + - +a; +1 (2.5)
wherea; = a, if nis odd andz; = a4 if n is even. Thus
2n4+1 = Q2n + A2p—3. (2.6)
Substituting Equatiori(2.4) int6 (2.6) yields
Agn+1 = Q2p-1 + 2a2,-3, (2.7)

and thus forn > 5 odd we have,, = a,,—2 + 2 - ayp—4.
Now using Equatior((217) i (2.4), we have
U2y = Qo1+ Qoneg = Qo3+ 2 Aop5 + Q23 = 2(A2p—3 + A2pp—5). (2.8)
4



Shifting the index in Equation (2.4) gives
a2p, = 2+ Agp_2. (2.9)

Sincea, = 2 anday = 4, together with Equation (2.9) we now havg, = 2" for alln > 1. A few
algebraic steps then confirm, = a,,_> + 2 - a,,_4 for m > 6 even.

Finally, we prove that, 1 = (2" + (=1)") for n > 1 by induction. The basis case
is immediate agy, = 1 and $(2'*! + (-1)') = (4 — 1) = 1. Assume for someV > 1,
asn-1 = (2N + (=1)V). By Equation[(2l7), we have

A(N+1)—1 = A2N+1

= aon-1+2-asn_3

= %(2N+1 F(=1D)M) 2 %(2N—1+1 +(=1)N Y

= @ ()Y 2 ()Y ()Y

S CARE L) 2.10
and thus for alh > 1 we haveny, 1 = $(2"*' + (—=1)"). ]

2.2. Counting Integers With Exactly £ Summands. In [KKMW], Kolo glu, Kopp, Miller and
Wang introduced a very useful combinatorial perspectivattack Zeckendorf decomposition
problems. While many previous authors attacked relatedlgnas through continued fractions
or Markov chains, they instead partitioned thec [F,,, F,,;1) into sets based on the number of
summands in their Zeckendorf decomposition. We employ @aitechnique here, which when
combined with identities about Fibonacci polynomialswabaus to easily obtain Gaussian behav-
ior.

Let p,, , denote the number ofv € [0, as,11) Whose legal decomposition contains exadtly
summands wherk > 0. We havep,, o = 1forn > 0, por = 0fork > 0,p;1 = 2, andp,,,, = 0 if
k> [*:L]. Also, by definition,

125

D Pk = s, (2.11)
k=0

and we have the following recurrence.
Proposition 2.2. For p, ; as above, we have

Pnk = 2pn—2,k—1 +pn—1,k (212)
forn > 2andk < |2 ].

Proof. We partition the Kentucky-2 legal decompositions ofralk [0, as,,. 1) into two sets, those
that have a summand from bbp and those that do not.

If we have a legal decomposition = ay, +as,+- - -+ay, With ay, € by, thena,, | < as,—2) and
there are two choices fay, . The number of legal decompositions of the farm+as, +- - -+ay, _,
with a,, | < an—2) IS pr—2—1 (NOte the answer is independent of which valyg € b, we
have). Thus the number of legal decompositions:afontaining exactly: summands with largest
summand in birb,, iS2 - p,,_g 1.
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If m € [0,as2,+1) does not have a summand from Wip in its decomposition, them &
[0, as,—1), and by definition the number of sueh with exactly x summands in a legal decom-
position isp,,_1 k.

Combining these two cases yields

Dk = 2Dn—2k-1 + Pn-1k> (2.13)
completing the proof. O

This recurrence relation allows us to compute a closed-xpression foiF'(z, y), the gener-
ating function of thep,, ;.’s.

Proposition 2.3. Let

F(z,y) == > pasa™y" (2.14)
n,k>0
be the generating function of theg ,’s arising from Kentucky-2 legal decompositions. Then
14 22y
F = — 2.1
(7,9) ——e (2.15)

Proof. Noting thatp,, , = 0 if eithern < 0 ork < 0, using explicit values of,, ;, and the recurrence
relation from Proposition 212, after some straightforwalgkbra we obtain

F(z,y) = 22°yF(x,y) + o F(z,y) + 2zy + 1. (2.16)
From this, Equatior (2.15) follows. O

While the combinatorial vantage of [KKMW] has been fruitfubpplied to a variety of recur-
rences (se€ [MWI1, MW2]), their simple proof of Gaussianites not generalize. The reason
is that for the Fibonacci numbers (which are also thel )-Generacci numbers) we have an ex-
plicit, closed form expression for the corresponding.’s, which greatly facilitate the analysis.
Fortunately for us a similar closed form expression exwstddentucky-2 decompositions.

Proposition 2.4. Letp, ; be the number of integers [, as,+1) that have exactly summands in
their Kentucky-2 legal decomposition. For &ll> 1 andn > 1 + 2(k — 1), we have

Pk = 2 (n - (Z - 1)). (2.17)

Proof. We are counting decompositions of the fotfn+ - - - +-a; wherea;, € by, = {az, 1, az, }
and/; < n. Definex;, := ¢, — 1 andzy 1 :=n — ¢;. For2 <i < k, definex; :=¢; — ¢;_1 — 1.
We have
rn+1l4+zo+1+a3+1+ -4+ +1+2501 = n. (2.18)

We change variables to rewrite the above. Essentially weatrne doing is replacing thes with
new variables to reduce our Diophantine equation to a stdrfdam that has been well-studied.
As we have a legal decomposition, our bins must be separgtatilbast one and thus > 1 for
2 <i<k-1andzy,z, > 0. We remove these known gaps in our new variables by setting
Y1 = X1, Ype1 = Tpe1 andy; = x; — 1 for 2 < i < k, which gives

Yty Uty = o+ (@2 — 1)+ (g — 1) + T
—n—k—(k—1). (2.19)
6
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FIGURE 1. The distribution of the number of summands in Kentuckegal
decompositions for 200,000 integers frém10°).

Finding the number of non-negative integral solutions tig iophantine equation has many
names (the Stars and Bars Problem, Waring's Problem, th&i€®&woblem). As the number

of solutions toz; + - - - + zp = C'is (“}7[") (see for examplé [MT-B, Na], of [MBD] for a proof

and an application of this identity in Bayesian analysts},iumber of solutions to Equatidn (2.19)
is given by the binomial coefficient

(n—k—(lg—l)Jrk) _ (n—u]z—m) 2.20)

As there are two choices for eaa}), we have2® legal decompositions whose summands are from
the bins{b,, , by,, . . ., by, } and thus

pog = 2° (" - (Z - 1>). (2.21)

O

3. GAUSSIAN BEHAVIOR

Before launching into our proof of Theordm 1.3, we providmemumerical support in Figure
(. We randomly chose 200,000 integers friom 0°°°). We observed a mean number of summands
of 666.899, which fits beautifully with the predicted value666.889; the standard deviation of
our sample was 12.154, which is in excellent agreement \wélptediction of 12.176.

We split Theorerh 13 into three parts: a proof of our formolzlie mean, a proof of our formula
for the variance, and a proof of Gaussian behavior. We isthet first two as separate propositions;
we will prove these after first deriving some useful promsrtdof the generating function of the

pn,k’s-

Proposition 3.1. The mean number of summands in the Kentucky-2 legal decdiaps$or inte-
gersin(0, as,+1) is

un=%+g+0<2ﬁn). (3.1)
7



Proposition 3.2. The variancer? of Y,, (from Theoreni 113) is

) 2n 8 n?

o, = 27+81+O<2“)' (3.2)
3.1. Mean and Variance. RecallY,, is the random variable denoting the number of summands in
the unique Kentucky-2 decomposition of an integer choséoumly from [0, as,,+1), andp,, ;, de-
notes the number of integers|in a2,,+1) whose legal decomposition contains exaétsummands.
The following lemma yields expressions for the mean ancawae ofY,, using a generating func-
tion for thep,, ;'s; in fact, it is this connection of derivatives of the gestang function to moments
that make the generating function approach so appealing.pidof is standard (see for example

[DDKMMV]).

Lemma 3.3. [DDKMMV, Propositions 4.7, 4.8Let F'(z,y) :== >_, 150 Pnix™y" be the generat-

ing function ofp, , and letg,(y) := >_,_, pnxy" be the coefficient of” in F(z,y). Then the
mean ofY,, is

9,(1)
n — z s 3.3
: gn(1) (3:3)
and the variance oY, is
d !

gn(1> "
In our analysis our closed form expressiongf; as a binomial coefficient is crucial in obtaining

simple closed form expressions for the needed quantities.ak® able to express these needed
guantities in terms of thEibonacci polynomials, which are defined recursively as follows:

FO('I) = 07 Fl(x) = 17 FZ('I) = T, (35)
and forn > 3
Fu(x) = 2Fy 1(2) + Fy (). (3.6)
Forn > 3, the Fibonacci ponnomiBan(x) is given by
3]

Fua) = 3 (n Bl 1) @7
§=0

and also has the explicit formula

B (x+ V22 +4)" — (v — V22 +4)"
F.(z) = N . (3.8)

The derivative ofF,,(x) is given by

2nF,_1(xz)+ (n — 1)aF,(x)
22+ 4 '

For a reference on Fibonacci polynomials and the formulaagabove (which follow immediately

from the definitions and straightforward algebra), $ee [Kos

F(z) = (3.9)

®Note thatF), (1) gives the standard Fibonacci sequence.
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Proposition 3.4. Forn > 3

gn(y) = (v/29)""' Fop <—) : (3.10)

Proof. By Propositioi 24, we have

Fz,y) = Y. paa™y’ = ZZ2k<n_:+1)x"yk. (3.11)

Thus, using Equation_(3.7) we find

Flz,y) = %\/@ i - ((n - Q)k— k— 1) (\/%) (n+2)—2k—1 (o /Ty

n=0 k=0
1 - 1 > 1
- — _NF —— | (zy/2y)""? = F, — | (/2y)"2", (3.12
9:2\/@; "+2< Qy) (zv/2y) ; n2 (\/@)( y)"at o (3.12)
completing the proof. O

In Appendix[B we provide alternate proofs of Proposition, Ptopositio 3.2 and Theorem
[1.3 that follow directly from the recurrence for, , and properties of generating functions, as
these arguments generalize better to other recurrendedgtsimilar to the difference in proofs
in [KKMW] and [MW1], where the first exploits the closed fornxgressions while the second
argues more generally). In doing so, we find another formoitayf(y). This formula gives an
independent derivation of the explicit formula for the Rilaaci polynomials, Equation (3.8).

Proof of Proposition 3]1By Lemmal3.8, the mean 6f, is ¢/,(1)/g,(1). Calculations of deriva-
tives using Equation$ (3.9) arld (3.10) give

gu(1) (V2" Fua(g)  (V2)'TE ()

00 FualBWVD Fa(p vV

1
n+1 1 Frlz+2<ﬁ

_n+1 2(n+2)Fop (-2) + n_\;%anH (%)
) el <%>
v e (4
_ §(n+1)—?2(n+2)Fn: (é%
- g(nﬂ)_g(””) <%+0(2‘")) = g+§+0(n2‘"), (3.13)

where in the next to last step we use Equation (3.8) to apprater), . (1/v/2)/F..2(1/v/2). O
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Proof of Propositiofi 312By Lemmd3.3,

ol = ZZ/—S; ZZ—EB — = gi—EB + pa(l — ). (3.14)

Now,
7 o Fr’L L 2 _ FT’L’ 1
gu(l) _ (=2n+1) +2<¢1§> -1 1 +2(f)‘ (3.15)
gn(1) 442 Fn+2(ﬁ) 4 8 Fn+2(7)
Applying the derivative formula in Equationh (3.9) and usi{@a), we find
Fré—i—Z(%) _ 4(n+2) Fnﬂ(%) V2(n +1)
Fuia(5) 9 Fua() 9
4n+2) [ 1 o] V2(n+1)
5 {\/5 +0(2 )] + 5 (3.16)
and
Flo(z) 162 +3n+2) Fa(gp) LAV 430 - 2) Foa(75) L 2r’+9n+8)
Foia(5) 81 Fria(5) 81 Foia(5) 81
16(n*+3n+2) [1 Y 4220 +3n—2) [ 1 .
_ S {5 +0(2 )] + 51 Vol o@2™)
2(n% +9n + 8)
_l_
81
(3.17)
Thus
, _ (e [ve B BCES VEN ETE T
ol = ™G 9(3n+5)+0(n2 )|+ 1 +8 9 +3+27+O( )
2 n 2 n 2n 8 n?
- [3+9+0<zn>] {“?5*0(%)} = E+Q+O<§)’
(3.18)
completing the proof. O

3.2. Gaussian Behavior.

Proof of Theorerh 1]3We prove thal’, converges in distribution to the standard normal distribu-
tion asn — oo by showing that the moment generating functionyf)fconverges to that of the
standard normal (which is”*/2). Following the same argument as in [DDKMMV, Lemma 4.9],
the moment generating functiavy, (t) of Y,, is

gn(et/on )6—t,un/crn

My (t) = 3.19
Thus we have
(7L+1 —in t/O’n
n+2 Voet/on €
My (t) = (=) 1 , (3.20)
Fn+2 (\/5)



and

1 t (n+1 1
log(My, (1)) = log Fyes (—) b ( . un) ~log Fus (

— )+ ﬁ) . (3.21)

From Equation[(318),

n+2
Froalt) — (x + V22 + 4)"+2 s x2 +4 i (3.22)
N TV + 4 | |

Thus
log Fro(z) = (n+2)log(z + vVa? +4) — (n+ 2)log2

1
— —log(2® 4+ 4) + log(1 — r(z)"*?)

2
4
=(n+2)logz+ (n+2)log | 1+ 1+; —(n+2)log2
_ %log(zz +4) + O(r(2)"), (3.23)
where for allz
r— Va2 +4
= (Z2YE ) € (0,10, 3.24
(o) me) 0.1 329
Thus
log Fn+2(%) = 3(n+3)log2 —log3+ 027" (3.25)
and
1 . (n+2) (n+2)
log F,19 (\/%) = 5 log 2 o t—(n+2)log2
1
where
an(t) = log(1+ 1+ 8et/7n), B,(t) = log (%e‘t/"” + 4) : (3.27)
and
1
r=r < 1. 3.28
(=) (3.28)

The Taylor series expansions foy,(¢) and,(t) aboutt = 0 are given by

o3 2+ 0(n%?) (3.29)

n

1
an(t) = log4+§t+

and

9 1 4 _
Bn(t) = log (5) — QTnH o7 2+ 0(n=?). (3.30)
11



Going back tdog(My; (t)) we now have

3 +2 1
log(My,(t)) = _i(n +2)log2 — <n20_ >t +(n+2)|2log2+ 3715 + 57o? 2+ 0(n=?)
1 1—24,) 1 !
5 [2log3 —log2 + O(n‘lp)} + Wt - i(n +3)log2 + log3

+0(27") 4+ O(r™)
_ _(2,un+1)t+ (n+2)t+ (n+2)

20, 30, 2702

2+ 0Mn )+ 02 +00m).

(3.31)
Sincey, ~ % ando? ~ 2, it follows thatlog(My; (t)) — 4t* asn — co. As this is the moment
generating function of the standard normal, our proof is gieted. O

4. AVERAGE GAP DISTRIBUTION

In this section we prove our results about the behavior o gggtween summands in Kentucky-
2 decompositions. The advantage of studying the averageligagbution is that, following the
methods of [BBGILMT [ BILMT], we reduce the problem to a comaiorial one involving how
manym € [0, as,+1) have a gap of length starting at a given index We then write the gap prob-
ability as a double sum over integersand starting indiceg interchange the order of summation,
and invoke our combinatorial results.

While the calculations are straightforward once we adaoigtpgbrspective, they are long. Addi-
tionally, it helps to break the analysis into different cadepending on the parity eandg, which
we do first below and then use those results to determine timpilities.

Proof of Theorerh 1l4Let I, := [0, az,.1) and letm € I,, with the legal decomposition
m = ay, +a€2+"'+a€k7 (41)

with ¢, < 0y < --- < {. Forl < i,g < n we defineX; ,(m) as an indicator function which
denotes whether the decompositiomohas a gap of length beginning at. Formally,

1 if34, 1<5<kwith:=/¢;and: =/,
X, ,(m) = hI=Is P andi g = Gn (4.2)
’ 0 otherwise
Notice whenX; ,(m) = 1, this implies that there exists a gap betwegmnda,,,. Namelym
does not contain; 1, . . ., a;4+4—1 @S summands in its legal decomposition.

As the definition of the Kentucky-2 sequence impliegy) = 0 for 0 < g < 2, we assume
below thatg > 3. Hence ifa; is a summand in the legal decompositionefanda; < a;, then
the admissiblg are at most — 4 if and only if i is even, whereas the admissihlare at most
1 — 3 ifand only if 7 is odd. We are interested in computing the fraction of gapsi(g from the
decompositions of all: € 1,,) of lengthg. This probability is given by

aznt+1—12n—g

Pn(g) = Cp Z ZXi,g(m)a (43)
m=0 i=1

where
1
Cp = —. 4.4
(,Lbn—l)a2n+1 ( )
12



To compute the above mentioned probability we argue basateparity ofi. We find the
contribution of gaps of length from eveni and odd; separately and then add these two. The case
wheng = 3 is a little simpler, as only evencontribute (ifi were odd and = 3 we would violate
the notion of Kentucky-2 legal).

Part 1 of the Proof: Gap Preliminaries:

Case 1. i iseven: Suppose thatis even. This means that is the largest entry in its bin. Thus
the largest possible summand less thamould bea,_4. First we need to know the number of
legal decompositions that only contain summands ffem. . ., a;,_4 }, but this equals the number
of integers that lie ino, a2<%)+1) = [0, a,_3). By Equation[(2.1), this is given by

1
CLQ(%>+1 = Qj_3 = §<22 -+ (—1)

i

7). (4.5)

Next we must consider the possible summands betwggrandas,, ;. There are two cases to
consider depending on the parityiof g.

Subcase (i): g iseven: Notice that ifi+ g is even (that is when s even) and; is a summand in
the legal decomposition of. with a;,, < a;, thenj > i + ¢g + 3. In this case the number of legal
decompositions only containing summands from the{aet, s, a;g+4, - . ., a2, } is the same as
the number of integers that lie [, a(2,—(i+g+2))+1), Which equals

1 7 2n-(G+g) 2n—(itg)
An—(i+g+2)+1 = Oy(nGiown gy 4 = 3 (2 (-1 ) (4.6)

So for a fixed even, g, the number ofn € I, that have a gap of lengthbeginning at is

+(—1) ). 4.7)

S8 4 (1) P

Hence in this case we have that
aznt+1—1 2n—g 1 2n—g

Z Z XLQ(m) = § Z (2%_|_(_1)i;2><22”;éi+g)+1_'_(_1)271,;#9)). (48)
m=0 i=1

i=1
i,g even 1,9 even

2n—(i+g)
2

Subcase (ii): ¢ isodd: In the case when is even and; is odd, any legal decomposition of
an integerm < I, with a gap from: to i + ¢ that contains summands > a;., must have
j > i+ g+ 4. The number of legal decompositions achievable only withrsands in the set

{@itg+a,ivgys,...,a2,} IS the same as the number of integers in the intefVals, ;- g+2)),
which is given by
1 2n— (itg+1) 2n—(itg+1)
A2n—(i+g+2) = %(W)_l = 3 (2 2oty (—1) o ) . (4.9)
Hence wheri is even and; is odd we have that
dznt1=l 2n—g 1 i i—2 2n—(it+g+1) 2n—(it+g+1)
S Xalm) =5 Y0 @E4 (-1 (2FFI g ()T,
m=0 i=1 9 i=1
i even,g odd i even,g odd
(4.10)

13



Subcase (iii): g = 3: As remarked above, there are no gaps of length 3 wheodd, and thus
the contribution from even is the entire answer and we can immediately find that

aznt+1—1 2n—3

Pu(3) = e Y, Z X 5(m)

1 even

2n—3
1 i i—2 2n—(i44) 2n—(i44)
= —¢, 23 4 (—1) 2 <2f+1+ -1 f)
5 Zl( (=1) =) (—1)
1 3 2n—(i+4) 2n—(i4+4)
7 n—(2 n—(2 i—2
= 56 ARG 27 5 tH=1)% 4+ (=1)"2 (4.11)

i=1
1 even

As the largest term in the above sun2is!, we have

P.(3) = %‘ [(n—1)2""" +0(2")] . (4.12)

Sincep, ~ § andag, 41 ~ %(4 -2™), using [4.4) we find that up to lower order terms which vanish
asn — oo we have
9

nn+2’

(4.13)

Cp

Therefore

1
n2n+2

Pu(3) ~ [t —1)2" +0@Y)] = é olo (%) | (4.14)

Now asn goes to infinity we see thdt(3) = 1/8.

Case 2: i isodd: Suppose now thatis odd. The largest possible summand less thaim a
legal decomposition is;_3. As before we now need to know the number of integers thatlie i
[0, a2<ﬂ)+1), but this equals

2

Ga(imayyy = (1) = %<2i21+1+(—1)i21). (4.15)

We now need to consider the parityiof g.

Subcase (i): ¢ isodd: Wheni and g are odd, we know + ¢ is even and therefore the
first possible summand greater than, is a;.,+3. Like before, the number of legal decom-
positions using summands from the $@et. .3, a;ig+4, ..., a2,} IS the same as the number of

m with legal decompositions using summands from the{sgtas, ..., as,—(i+g+2)}, Which is
14



1 <272”*§”g)+1 + (—1)72”7(2”9)). This leads to

3

aznt1—1  2n—g 1 2n—g i1, i1 2n*(’i+g)+1 2n—(i+g)
Z Z Xig(m) = 5 Z 27 4 (=D)7)27 2 4 (=1)" =2 ). (4.16)
m=0 i od’ifgl odd % Od’ifgl odd

Subcase (ii): ¢ is even: Following the same line of argument we see thatig odd andyg is
even, then

agnt+1—1 2n—g 2n—g

2 2 Xiglm) :% > (27 4 (—1)F )@ ()R,
m=0 i=1

=1
i odd,g even i odd,g even

(4.17)

Using these results, we can combine the various cases tovileéethe gap probabilities for
differentg.

Part 2 of the Proof: Gap Probabilities:

Case l: giseven: As g is even, we have = 2; for some positive integer. Therefore

azn41—12n—2j

Pu(2f) = ca Y Y Xini(m) (4.18)
m=0 i=1
azp+1—12n—2j azn41—12n—2j
= Cp Z Z Xi72j(m) + Cn Z Z X,-Qj(m) (419)
m=0 i ie:vin m=0 iio:dld
12y 2n—(i+25) 2n—(i+25)
i i—2 n—(i+2j n—(i+2j
=c, |- 22 4 (=1)2)(2° 2 T4 (=1)" =z 4.20
e | Zl( (=1) =2 )( (1) ) (4.20)
1% 2n—(i+2j+1) 2n—(i42j+1)
i—1 i—1 n—(i+25+1 n—(i+2j+1
+ ¢, | = 27 (=) 7)) (27 = (=)=
e | g Z( (=1)7=)( (1) )
io_dd
1 g 2n—(i+2j) 2n—(i+24)
. i n—(142j n—(i+2j i—2 :
= 50 PINCARAREEPEICE ) - aa o e G5 DR G0 Dty (4.21)
=1
1 2n—2j ) o o .
+ §Cn Z (2n—j—|—1 i 2251+1(_1)27L*(’L;2J+1) i 227L*(’L«52J+1)+1(_1)’L;l 4 (_l)n—j—l)‘
i=1
i odd

Notice that the largest terms in the above sums/expresarergiven by2"—/+! and2"—/*!, the

sum of which givest(n — j)2"~7. The rest of the terms are of lower order and are dominated as
15



n — oo. Using [4.18) for,, we find

Pa(2)) ~ F4(n = )2 s 4 —J)2 prTa (4.22)
and thus a® goes to infinity we see thd?(2j) = 1/27.
Case2: gisodd: As g is odd we may writg = 25 + 1. Thus
agnt+1—12n—25—1
P.(2j+1) = ¢y Z Z Xigjr1(m) (4.23)
m=0 i=1

azn+1—12n—-2j—1 aznt1—12n—-2j—1

= ¢y Z Z Xigjri(m) + cp Z Z Xigjy1(m) (4.24)
m=0 i=1 m=0 i=1

i even i odd

2n—2j—1

1 i i—2 2n—(i4+25+2) 2n—(i42j+2)
—c, | = 22 4 (—1)"z (2f+1+ 1 f) 4.25
;Y @) (-1 (4.25)
R 2n—(i+2j+1) 2n—(i+2;+1)
i1 i1 n—(i+2j+1 n—(i+2j+1
+ o, | = 29 ()2 2T 2 (=1 =2
g ;1 ( (=1) 2 )( (=1) )
i odd
Mm—2j—1

i—2

= —c, Z 2n—g + 2%(_1>2"*(i;2j+2) + 22n7(i;2j+2) +1<_1> = 4 (_1)1’L—j—2

(4.26)

2n—(i+2j+1) 2n—(i42j+1) i—1
2 + 2 2 +1 -

(1) + (-1,

Notice that the largest terms in the above sums/expresaiergiven by2" 7 and2”~7+!, the sum
of which gives3(n—j)2"7. The rest of the terms are of lower order and are dominated-asx.
Using [4.13) forc,, we find

n—j
n2n+2 n2i -’

and thus as goes to infinity we see thadt(2j + 1) = 2 (1/27). O

. - emei 3
Pu(2j+1) ~ %3(n—j)2“ i~ B2 = 5 (4.27)

5. CONCLUSION AND FUTURE WORK

Our results generalize Zeckendorf’s theorem to an intexgstiew class of recurrence relations,
specifically to a case where the first coefficient is zero. e still have uniqueness of decom-
position here, that is not always the case. In a future we study another example
with first coefficient zero, the recurreneg.; = a,_1 + a,_». This leads to what we call the
Fibonacci quilt, and there unigueness of decompositids.fai

Additionally, the Kentucky-2 sequence is but one of infilyitenany (s, b)-Generacci recur-

rences; in[[CFHMNR] we extend the results of this paper tatemty (s,b).
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APPENDIXA. UNIQUE DECOMPOSITIONS

Proof of Theorerh 1120ur proof is constructive. We build our sequence by only iadjg terms
that ensure that we camiquelydecompose a number while never using more than one summand
from the same bin or two summands from adjacent bins. Thess®egubegins:

1,2, 3,4, 58, ... (A.1)
b1 bo b3

Note we would not adjoin 9 because then 9 would legally deasapwo ways, a8 = 9 and as
9 = 8+1. The next number in the sequence must be the smallest integeannot be decomposed
legally using the current terms.

We proceed with proof by induction. The basis case followsnfia direct calculation. Notice
that if; < 5 theni = q;. AlsO6 = a5 + a;.

The sequence continues:

-y Qop—5, A2p—a , A2p—3, Q2p—2 , A2p—1, A2n , A2p41, A2p4+2 5 - - - (A-Z)
L [] L [] L [] L []

bn72 bn71 bn bn+1

By induction we assume that there exists a unique decomos$dr all integersm < as,, + w,
wherew is the maximum integer that legally can be decomposed usinggstin the sefay, as, as,
..., as,_4}. By construction we know that = ay, 3 — 1, as this was the reason we adjoined
as,_3 to the sequence.

Now let y be the maximum integer that can be legally decomposed usimgstin the set

{ai,as,as, ..., as,}. By construction we have

Yy = agp +w = agp +agp—3 — L. (A.3)
Similarly, let z be the maximum integer that legally can be decomposed usmngstin the set
{ay,as,as3, ..., as,_2}. Notex = ay,_1 — 1 as this is why we include,,_; in the sequence.

Claim: as,.1 = y + 1 and this decomposition is unique.

By induction we know that was the largest value that we could legally make using omipge
in {ay,as,...,as,}. Hence we choosg+ 1 asas, 1 andy + 1 has a uniqgue decomposition.

Claim: Al N € [y + 1,y + 1 + x] = [a2,41, azn+1 + x] have a unique decomposition.

We can legally and uniquely decompose alllo®, 3, ..., x using elements in the séti;, a,
...,y Qo }. Addingas, . to the decomposition is still legal sineg, ., is not a member of any
bins adjacent tdby, bs, ..., b,_1}. The uniqueness follows from the fact that if we do not inelud
as,+1 @S a summand, then the decomposition does not yield a nungbendugh to exceeg—+ 1.

Clam: asp.o =y + 14+ 2+ 1= as,11 + 2+ 1 and this decomposition is unique.

By construction the largest integer that legally can be dgmmsed using termu;, as, . . ., aon41}
isy+1+x.

Claim: All N € [agy 19, a2,12 + x| have a unique decomposition.

First note that the decomposition exists as we can legalliytamquely constructiy,, > + v,
where0 < v < z. For uniqueness, we note that if we do not ugg -, then the summation would

be too small.
17



Claim: aq,.2 + z is the largest integer that legally can be decomposed usmgst{ a,, as, . . .,
a2n+2}-
This follows from construction. U

APPENDIX B. GENERATING FUNCTION PROOFS

In §3 we proved that the distribution of the number of sumnsané Kentucky-2 decomposition
exhibits Gaussian behavior by using properties of Fibonpotynomials. This approach was
possible because we had an explicit, tractable form fopthés (Propositiori 24) that coincided
with the explicit sum formulas associated with the Fibomgodynomials. Below we present a
second proof of Gaussian behavior using a more general agipravhich will be more useful in
addressing the behavior of the number of summands whemdeaith general s, b)-Generacci
sequences.

As in the first proof, we are interestedgn(y), the coefficient of the™ term in F'(z, y).

LemmaB.1. We have

n

1

a(y) = m[4y(1+\/1+8y>n—4y<1—\/1+8y>
b (e virs) - (1 m)} | (B.1)

Proof. For brevity setr; = z,(y) andx, = z,(y) for the roots ofr in 2% + %x - % In particular,
we find

1 1
"=y (1+\/1+8y) n=-3 (1—«/1—1—83/). (B.2)
Sincex; andx, are unequal for aly > 0, we can decomposg(z, y) using partial fractions:
1+ 22y 1+2zy 1 1 1
F(z,y) = - { |
—2y(z — x1)(z — x2) —2y T — I
Using the geometric series formula, after some algebra wagrob

ren = s LG RG] e

i>0

(B.3)

r — T Tr — T2

From here we find that that the coefficient:fis

1 1 1 2y 2y
W(y) = — = _ =2 B.5
U M Ey Lc oy ag x} (&2

Substituting the functions from Equatidn (B.2) and simpiifj we obtain the desired result. [J
As we mentioned in[&3]1, we have the following corollary.

Corollary B.2. Let F},(z) be a Fibonacci polynomial. Then
(@ + VT T A" — (z — Va2 1 A)"
/22 1 4 '

Proof. Set the righthand sides of Equatiohs (3.10) &nd|(B.1) equihletz = 1/+/2y. O
18
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Proof of Propositiom 3]1 Straightforward, but somewhat tedious, calculations give

1
gn(l) — g ((_1)n+1 + 2n+2)
g(1) = g (272 4+ 2(-1)"*) + 22—7 (2"72) + o(1). (B.7)
Dividing these two quantities and using Lemima 3.3 gives #wrdd result. O

Proof of Propositio 312 Another straightforward (and again somewhat tedious)utafion yields

. 227%5(4 4 3n) — 2(8 + 3n) — 2"T2(—1)"(28 + 36n + 9In?)
n 81(2n+2 _ (_1)n)2
n[(6)22t — 18(—1)"2" 3 — 6] + [(8)2** — 14(—1)"2""3 — 16] — 4.5(—1)"n?2"*3

81 [22n+4 _ (_1)n2n+3 + 1}

(B.8)
0

Proof of Theorerh 113As in our earlier proof, we show that the moment generatimgtion of Y/
converges to that of the standard normal. Following the sangiement as iri [DDKMMV, Lemma
4.9], the moment generating functiddy (¢) of Y, is

gn(et/on )6—t,un/crn

My (t) = D)

(B.9)

Taking logarithms yields

log My, (t) = loglga(e”*")] — loglga(1)] — . (B.10)

We tackle the right hand side in pieces.
Letr, =t/o,. Sinces? = 3—? + % +0 (g—j) asn goes to infinityr,, goes to 0. This allows us

to use Taylor series expansions.
First we rewriteg,, (™)

(em) = 1 (14 I +8e)"(4e™ + 1+ /1 +8e™)
In V1 + 8em on+1
4e" (1 —/1+8e™)" (1 —+/1+ 8em)"H!

a on+1 o on+1 : (B.11)

Using Taylor series expansions of the exponential and squat functions we obtain

1—+/1 ™
e —140(1) and %86 — _1+40(1). (B.12)
Thus
4e" (1 —+/T+8e™)" (1 —+/1+ 8em)"H!
- 2n+1+ - + ( 2,116 A 2(=1)" +o(1) — (=1)" + o(1)

= (—=1)"+o(1). (B.13)
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Hence

1 (14 1+ 8em™)"(4de™ + 1+ /1 + 8e™)

gnle™) = V1+8em on+1 — (=" +o(1)|. (B.14)
So
log(gn(e™)) = — $log(1 +8e™) 4+ nlog(1l + V14 8em)
+ log(4e™ + 14 /1 + 8e™) — (n +1)log2 + o(1). (B.15)

Continuing to use Taylor series expansions

8 4 1 1
log(gn(ern)) - % [logg + _/rn + _T2:| + n |}Og4 "’ _Tn + _T2

9" 8" 3o
2 2, 5
+ |log8& + g?“n + ﬁrn +O0(r)) — (n+1)log 2 + o(1). (B.16)
Finally, recallg, (1) = 1[(—1)"*' + 2"*2] so
log[gn(1)] = —log3+ (n+2)log2+ o(1). (B.17)

To finish we plug values into Equation (B]10). In particufglug inlog(g,(e™)) from Equation

(B18), log[g,(1)] from Equation [(B.1I7)x,, from Propositiod 3]1¢,, from Propositiori 312, and
r, = t/o,. This gives
2
log My, (t) = % +o(1). (B.18)

Thus, My, (t) converges to the moment generating function of the stanaanehal distribution.
Which according to probability theory, implies that thetdisution of Y,/ converges to the standard

normal distribution. d
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