
Irrationality measure and lower bounds for π(x)

David Burt Sam Donow Steven J. Miller∗

Matthew Schiffman Ben Wieland

August 10, 2017

Abstract

In this note we show how the irrationality measure of ζ(s) = π2/6
can be used to obtain explicit lower bounds for π(x). We analyze the key
ingredients of the proof of the finiteness of the irrationality measure, and
show how to obtain good lower bounds for π(x) from these arguments as
well. While versions of some of the results here have been carried out
by other authors, our arguments are more elementary and yield a lower
bound of order x/ log x as a natural boundary.

1 Introduction

One of the most important functions in number theory is π(x), the number of
primes at most x. Many of the proofs of the infinitude of primes fall naturally
into one of two categories. First, there are those proofs which provide a lower
bound for π(x). A classic example of this is Chebyshev’s proof (see [Da, MT-B])
that there is a positive constant c such that cx/ log x ≤ π(x). Another method
of proof is to deduce a contradiction from assuming there are only finitely many
primes. One of the nicest such arguments is due to Furstenberg (see Chapter 1
of [AZ]), who gives a topological proof of the infinitude of primes. As is often
the case with arguments along these lines, we obtain no information about how
rapidly π(x) grows.

Sometimes proofs which at first appear to belong to one category in fact
belong to another. For example, in one of the most famous proofs in math-
ematics (and probably the first proof many of us saw of this result), Euclid
proved there are infinitely many primes by noting the following: if not, and if
p1, . . . , pN is a complete enumeration of the primes, then p1 · · · pN + 1 is a new
prime or it is divisible by a prime not in our list. When presented in courses
it often appears to be in the second class, as many classes just aim on proving

∗We thank Emmanuel Kowalski, Tanguy Rivoal and Jonathan Sondow for helpful com-
ments and suggestions on an earlier draft, and the referee for numerous comments which
improved and clarified the exposition. The third named author was partly supported by NSF
grants DMS0600848, DMS1265673 and DMS1561945.
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there are infinitely many primes and stop. However, a little thought shows this
proof belongs to the first class, as it yields there are at least k primes at most

22
k

, thus π(x) ≥ log2 log2(x). For more results and questions related to Euclid’s
argument, see Appendix A.

As π(x) is approximately x/ log x, it seems Euclid’s argument is quite poor,
as it only gives a lower bound of size log2 log2 x. The main purpose of this note
is to show that this bound is much better than it first appears, and to investigate
what is needed to (elementarily) get close to the truth.1 We examine a standard
‘special value’ proof; see [MT-B] for proofs of all the claims below. Consider the
Riemann zeta function

ζ(s) :=

∞∑
n=1

1

ns
=

∏
p prime

(
1− p−s

)−1
, (1.1)

which converges for <s > 1; the product representation follows from the unique
factorization properties of the integers. One can show ζ(2) = π2/6. As π2 is
irrational, there must be infinitely many primes; if not, the product over primes
at s = 2 would be rational. While at first this argument may appear to belong
to the second class (proving π(x) tends to infinity without an estimate of its
growth), we show below that it belongs to the first class and we obtain an
explicit, though very weak, lower bound for π(x) for all x. We deliberately do
not attempt to obtain the optimal bounds attainable through this method, but
rather concentrate on proving the easiest possible results which best highlight
the idea. After a decent amount of work we see that our results are not as
good as what we can get from Euclid’s argument, hopefully gaining a newfound
appreciation for an argument from over two thousand years ago. We then show
how our weak estimates can be fed back into the argument to obtain (infinitely
often) massive improvement over the original bounds; our best results here are
almost as good as the estimates from Euclid’s argument. In the final part, we
open up some of the technical machinery and surpass Euclid’s result infinitely
often, getting arbitrarily close to x/ log x; we describe this in greater detail
below.

The key ingredient is the fact that the irrationality measure of π2/6 is
bounded. An upper bound on the irrationality measure of an irrational α is
a number u such that there are only finitely many integer pairs p and q with∣∣∣∣α− p

q

∣∣∣∣ < 1

qu
. (1.2)

The irrationality measure µirr(α) is defined to be the infimum of the numbers
u and need not itself be a number for which (1.2) has at most finitely many
solutions. Liouville constructed transcendental numbers by studying numbers

1An elementary proof of the Prime Number Theorem (PNT), due to Erdös and Selberg,
exists; see [Gol] for the history and [Ed, EE] for an exposition. Elementary is not a synonym
for easy. The first proof of the PNT used many results from complex analysis, and in fact was
a huge motivation for the development of much of the theory; it took approximately another
50 years before an elementary proof was given.
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with infinite irrationality measure, and Roth proved the irrationality measure
of an algebraic number is 2. Currently the best known bound for ζ(2) is due to
Rhin and Viola [RV2], who give 5.45 as a bound on its irrationality measure.
Unfortunately, the published proofs of these bounds use good upper and lower
bounds for dn := lcm(1, . . . , n). These upper and lower bounds are obtained by
appealing to the Prime Number Theorem (or Chebyshev type bounds); this is a
problem for us, as we are trying to prove a weaker version of the Prime Number
Theorem (which we are thus subtly assuming in one of our steps).2

In the arguments below we first examine consequences of the finiteness of the
irrationality measure of π2/6, deriving lower bounds for π(x) in §2. Our best
elementary result is Theorem 2.3, where we show µirr(π

2/6) < ∞ implies that
there is an M such that π(x) ≥ log log x

2 log log log x −M infinitely often. We conclude in
§3 by describing how we may modify the standard irrationality measure proofs
to yield weaker irrationality bounds which do not require stronger input on
dn than we are assuming. Theorems 2.2 and 2.3 are unconditional (explicitly,
we may remove the assumption that the irrationality measure of π2/6 is finite
through a slightly more involved argument). Theorem 3.1 requires results from
Rhin and Viola’s [RV2] proof of the irrationality measure, though it only needs
weaker results that are independent of the Prime Number Theorem.

For our last result we need little-oh notation; by f(x) = o(g(x)) we mean
that limx→∞ f(x)/g(x) = 0. Let g(x) be any non-decreasing function such
that g(x) = o(x/ log x). In Theorem 3.1 we show that the irrationality measure
arguments yield the existence of a positive c such that π(x) ≥ cg(x) for infinitely
many integers x. Thus, as expected, we see that x/ log x is a natural boundary
for these methods and we are able to get arbitrarily close to the truth infinitely
often.

2 Lower bounds for π(x)

We introduce some notation needed for analysis.
Define T (x, k) by T (x, k) = x∧(x∧(x∧(· · ·∧ x) · · · )), with x occurring k times.

Theorem 2.1. As µirr(π
2/6) < 5.45, there exists an N0 so that, for all k

sufficiently large,
π(T (N0, 2k)) ≥ k. (2.1)

Proof: For any integer N let pN and qN be the relatively prime integers

2For another example along these lines, see Kowalski [K]. He proves π(x) � log log x by
combining the irrationality measure bounds of ζ(2) with deep results on the distribution of
the least prime in arithmetic progressions. Our goal here is to see how far elementary methods
can be pushed; in particular, we are trying to see how far one can get without using input
about the distribution of primes in progressions. See also [S], where Sondow proves that
pn+1 ≤ (p1 · · · pn)2µirr(1/ζ(2)).
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satisfying

pN
qN

=
∏
p≤N

p prime

(
1− 1

p2

)−1
=

∏
p≤N

p prime

(
1 +

1

p2 − 1

)
. (2.2)

Assume there are no primes p ∈ (N, f(N)], where f(x) is some rapidly growing
function to be determined later. If f(N) is too large relative to N , we will find
that pN/qN is too good of a rational approximation to π2/6, and thus there
must be at least one prime between N and f(N). Under our assumption, we
find ∣∣∣∣pNqN − π2

6

∣∣∣∣ =
pN
qN

∣∣∣∣∣∣1−
∏

p>f(N)

(
1 +

1

p2 − 1

)∣∣∣∣∣∣ . (2.3)

Clearly pN/qN ≤ π2/6, and

∏
p>f(N)

(
1 +

1

p2 − 1

)
= exp

log
∏

p>f(N)

(
1 +

1

p2 − 1

)
≤ exp

 ∑
n>f(N)

log

(
1 +

1

(n− 1)2

)
≤ exp

 ∑
n>f(N)

1

(n− 1)2


≤ exp

(
1

f(N)2
+

1

f(N)

)
(2.4)

(the last inequality follows by replacing the sum over n ≥ f(N) + 2 with an
integral). Standard properties of the exponential function yield∣∣∣∣pNqN − π2

6

∣∣∣∣ ≤ π2

6

∣∣∣∣1− exp

(
1

f(N)2
+

1

f(N)

)∣∣∣∣ ≤ 10

f(N)
. (2.5)

The largest qN can be is N !2, which happens only if all integers at most N are
prime. We can greatly reduce this bound, as the only even prime is 2; however,
our purpose is to highlight the method by using the most elementary arguments
possible. If we take f(x) = (x!)14, we find (for N sufficiently large) that∣∣∣∣π2

6
− pN
qN

∣∣∣∣ ≤ 10

f(N)
<

1

q6N
; (2.6)

however, this contradicts Rhin and Viola’s bound on the irrationality measure
of π2/6 (µirr(π

2/6) < 5.45). Thus there must be a prime between N and f(N).
Note f(N) ≤ N14N ≤ (14N)14N . Letting f (k)(N) denote the result of applying
f a total of k times to N , for N0 sufficiently large we see for large k that there
are at least k primes at most T (14N0, 2k). QED
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The inverse of the function T (N,−) is called the log∗ function to baseN . It is
the number of times one can iterate the logarithm without the number becoming
non-positive and leaving the domain of the logarithm. It is this extremely slowly
growing function that the above theorem yields as a lower bound for π(x).
The base was determined by the irrationality bound and the unspecified (but
constructive) bound on the size of the finite number of approximations violating
the irrationality bound.

Of course, this bound arises from assuming that all the numbers at most
x are prime (as well as some weak estimation). If all the numbers at most x
are prime then do not need to search for a prime between N and f(N). This
interplay suggests that a more careful argument should yield a significantly
better estimate on π(x), if not for all x then at least infinitely often. We will
use an upper bound on π(x) with the inequality qN ≤

∏
p≤N (p2− 1) ≤ N2π(N).

While isolating the true order of magnitude of our bound is difficult, we can
easily prove the following.

Theorem 2.2. The finiteness of the irrationality measure of π2/6 implies the
existence of an M > 0 such that for infinitely many integers x we have π(x) ≥
log log log(x)−M .

Proof: We choose our constants below to simplify the exposition, and not
to obtain the sharpest results. Let b be a bound on the irrationality measure
of π2/6. The theorem trivially follows if π(x) ≥ (log x)e−1/4b infinitely often,
so we may assume that π(x) < (log x)e−1/4b for all x sufficiently large. Thus
the denominator qN in our rational approximation in equation (2.6), when we
consider primes at most N for N sufficiently large, has the bound

qbN ≤ N2bπ(N) = exp(2bπ(N) logN) < exp

(
(logN)e

2

)
≤ exp (log(N)e)

10
.

(2.7)
Thus, if f(N) = exp(log(N)e), we have checked the right-hand inequality of
equation (2.6), which in this case is that 10/f(N) < 1/qbN < 10/ exp(logN)e.
This cannot hold for N sufficiently large without violating our bound b on the
irrationality measure, unless of course there is a prime between N and f(N).
Thus there must be a prime between N and f(N) for all N large. Define xn
by x0 = ee and iterating by applying f , so that xn+1 = f(xn) = exp((log xn)e).
Then log xn+1 = (log xn)e, so log xn = (log x0)e

n

= exp en or xn = exp(exp en).
Once xM is sufficiently large so that the above argument applies, there is a
prime between every pair of xi, so there are at least n−M primes less than xn.
QED

The simple argument above illustrates how our result can improve itself (at
least for an increasing sequence of x’s). Namely, the lower bound we obtain is
better the fewer primes there are, and if there are many primes we can afford to
wait awhile before finding another prime. By more involved arguments, one can
show that π(x) ≥ h(x) infinitely often for many choices of h(x). Sadly, however,
none of these arguments allow us to take h(x) = log log x. Our attempts at
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obtaining such a weak bound gave us a new appreciation of the estimate from
Euclid’s argument. Our best result along these lines is the following.

Theorem 2.3. The finiteness of the irrationality measure of π2/6 implies the
existence of an M > 0 such that for infinitely many integers x we have π(x) ≥

log log x
2 log log log x −M .

Proof: The proof is similar to that in Theorem 2.2. As before, let b
be a bound on the irrationality measure of π2/6. We assume that π(x) ≤
(log log x)/4b for all sufficiently large x, as otherwise the claim trivially follows.
We show that there is a prime between xn and xn+1, where xn = exp(exp an)
and the sequence an is defined by an+1 = an + log an. It is easy to show that
an grows like n log n; from there the growth of xn proves the theorem. Consider
h(x) = log log log x/ log log x. Note logh(x) x = log log x, so our assumption can

be rewritten as π(x) ≤ (logh(x) x)/4b for large x. Therefore, if N is sufficiently
large we have the bound

qbN ≤ N2bπ(N) = exp(2bπ(N) logN) ≤ exp

(
logh(N)+1N

2

)
≤

exp
(

logh(N)+1N
)

10
.

(2.8)

Setting f(N) = exp(logh(N)+1N), we see that for large N there must be a prime
between N and f(N). We define xn by iterating f (so xn+1 = f(xn)), starting
at x2 = exp(exp(e)). The recursion can be rewritten as log log xn+1 = (h(xn) +

1) log log xn. In terms of an = log log xn, this is an+1 =
(

log an
an

+ 1
)
an =

an + log an. For an upper bound, we have an ≤ 2n log n. We prove this by
induction. For the base case, a2 = e < 4 log 2. If an ≤ 2n log n with n ≥ 2, then

an+1 ≤ 2n log n+log(2n log n) < (2n+1) log n+log n < (2n+2) log(n+1).
(2.9)

For a lower bound, note that log ak ≥ 1 so an ≥ n. This improves to an+1−an =
log an ≥ log n. Therefore an+1 ≥

∑n
k=1 log k >

∫ n
1

log x dx = n log n − n + 1.
Thus n log n− n < an ≤ 2n log n. Therefore π(xn) ≥ n−M , where xM is large
enough that the assumed bound on π(xM ) applies. To derive our asymptotic
conclusions, we need to know the inverse of the sequence xn. For n large there
are at least n−M primes that are at most xn = exp(exp an) ≤ exp(exp(2n log n).
Letting x = exp(exp(2n log n), we find n is at least log log x/2 log log log x.
Therefore, for infinitely many integers x we have π(x) ≥ log log x/2 log log log x−
M (where we subtract M for the same reasons as in Theorem 2.2). QED

Remark 2.4. The lower bound from Theorem 2.3 is slightly weaker than the
one from Euclid’s argument, namely that π(x) ≥ log2 log2 x. It is possible to
obtain slightly better results by assuming instead that π(x) ≤ (log log x)c(x)

/ b; a good choice is to take c(x) = log g(x) / log(g(x) log g(x)) with g(x) =
log log x/ log log log x. The sequence an+1 = an + log an which arises in our
proof is interesting, as the Prime Number Theorem states the leading term
in the average spacing between primes of size x for large x is log x. Thus
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an is approximately the nth prime pn; for example, a1000000 ∼ 15479041 and
p1000000 = 15485863, which differ by about .044%.

3 Bounds for the irrationality measure of π2/6

We briefly describe how to modify standard arguments on the irrationality mea-
sure of ζ(2) = π2/6 to make Theorems 2.2 and 2.3 unconditional. As always,
we merely highlight the ideas and do not attempt to prove optimal results.
We follow the argument in [RV1], and recall by A(x) = o(B(x)) we mean
limx→∞A(x)/B(x) = 0. With dn = lcm(1, . . . , n), they show the existence
of sequences {an}, {bn} such that

an − bnζ(2) = d2n

∫ 1

0

∫ 1

0

Hn(x+ y, xy)dxdy

(1− xy)n+1
=: d2nIn (3.1)

for a sequence of polynomials Hn(u, v) with integer coefficients, with ρ, σ > 0
such that

(RV1) lim supn→∞
log |bn|
n ≤ ρ, and

(RV2) limn→∞
log |an−bnζ(2)|

n = −σ.

Then µirr(ζ(2)) ≤ 1+ ρ
σ (this is their Lemma 4, and is a special case of Lemma

3.5 in [C]). Unfortunately (for us), they use the Prime Number Theorem to prove
that dn = exp(n + o(n)). From this they deduce that there exist constants a
and b such that for any ε > 0, (i) exp((a+ 2− ε)n) ≤ d2nIn ≤ exp((a+ 2 + ε)n)
and (ii) |bn| ≤ exp((b + 2 + ε)n). Note (i) and (ii) imply (RV1) and (RV2)
for our sequences {an} and {bn} with ρ = b + 2 and σ = 2 − a, which gives
µirr(ζ(2)) ≤ (a − b)/(a + 2). It is very important that the upper and lower
bounds of dn are close, as the limit in (RV2) needs to exist. We now show how
to make Theorems 2.2 and 2.3 independent of the Prime Number Theorem (i.e.,
we do not assume the irrationality measure of ζ(2) is finite, as the published
proofs we know use the Prime Number Theorem). Assume π(x) ≤ log x for all
x sufficiently large; if not, then π(x) > log x infinitely often and Theorems 2.2
and 2.3 are thus trivial. Under this assumption, we have 1 ≤ dn ≤ exp(log2 n).
The lower bound is clear. For the upper bound, note the largest power of a
prime p ≤ n that is needed is blogp nc ≤ log n/ log p. Thus

dn ≤
∏
p≤n

plogn/ log p = exp

∑
p≤n

log n

log p
· log p

 = exp(π(n) log n); (3.2)

the claimed upper bound follows from our assumption that π(x) ≤ log x. We
now find for any ε > 0 that (i’) exp((a− ε)n) ≤ d2nIn ≤ exp((a+ ε)n+ 2 log2 n)
and (ii’) |bn| ≤ exp((b + ε)n + 2 log2 n). We again find that (RV1) and (RV2)
hold, and µirr(ζ(2)) ≤ (a− b)/a.
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Using the values of a and b from their paper, we obtain (under the assump-
tion that π(x) ≤ log x) that µirr(ζ(2)) is finite. Thus Theorems 2.2 and 2.3 are
independent of the Prime Number Theorem. Using the values of a and b in
[RV1], we can prove that π(x) is quite large infinitely often.

Theorem 3.1. Let g(x) be any function satisfying g(x) = o(x/ log x). Then
there is a c > 0 such that infinitely often π(x) ≥ cg(x). In particular, for any
ε > 0 we have π(x) ≥ x/ log1+ε x infinitely often.

Proof: We assume π(x) ≤ g(x) for all x sufficiently large, as otherwise the
claim is trivial. In [RV1] numerous admissible values of a and b are given (and
the determination of these bounds does not use any estimates on the number
of primes); we use a = −2.55306095 . . . and b = 1.70036709 . . . (page 102).
From (3.2) we have 1 ≤ dn ≤ exp(π(n) log n). Using π(x) ≤ g(x) we find (i”)
exp((a−ε)n) ≤ d2nIn ≤ exp((a+ε)n+2g(n) log n) and (ii’) |bn| ≤ exp((b+ε)n+
2g(n) log n). We again find (RV1) and (RV2) hold, with the same values of a and
b. For example, to see that (RV2) holds we need to show limn→∞(1/n) log |an−
bnζ(2)| = −σ. As an − bnζ(2) = d2nIn, we have for any ε > 0 that

lim
n→∞

(a− ε)n
n

≤ lim
n→∞

log |an − bnζ(2)|
n

≤ lim
n→∞

(a+ ε)n+ 2g(n) log n

n
.

(3.3)

Our assumption on g(x) implies that limn→∞
g(n) logn

n = 0, and thus the limit
exists as before. We find we may take ρ = b and σ = −a, which yields
µirr(ζ(2)) ≤ 1 − b

a = 1.666 . . . < 2. As the irrationality exponent of an ir-
rational number is at least 2 (see [MT-B] for a proof of this and a proof of
the irrationality of π2), this is a contradiction. Thus π(x) cannot be less than
g(x) for all x sufficiently large (and thus infinitely often we beat Euclid by an
enormous amount). QED

Remark 3.2. We have proved the above in the case of g(x) = o(x/ log x). Now,
suppose we wanted to get π(x) ∼ cx/ log x for some x. Then, following the
calculations above, we would have bn ≤ (b+ ε)n+ 2g(n log(n)) = (b+ ε)n+ 2cn,
so then taking the limit sup as above gives ρ = b+ 2c. However, if we attempt
to take the limit for σ, we get exp ((a− ε)n) ≤ d2In ≤ exp ((a+ ε)n+ 2cn),
and then we can find a ≤ limn→∞(log |an − bnζ(2)|)/n ≤ a + 2c. Notably, the
upper and lower bounds are not equal, so we do not know if the limit exists; to
show this we would need to have a non-trivial lower bound on dn, which requires
the Prime Number Theorem. However, if we had the limit equal to the upper
bound, we would have −σ = a + 2c, and then the irrationality of π2 implies
µirr(ζ(2)) ≥ 1 − b+2c

a+2c , which would give us that c < 0.213. So, this is possible
to show if a lower bound for dn can be found independent of the Prime Number
Theorem.

Remark 3.3. It was essential that the limit in (RV2) exist in the above argu-
ment. By f(x) � g(x) we mean there is a positive constant C such that for
all x sufficiently large f(x) ≥ Cg(x). If π(x) � x/ log x infinitely often and
π(x)� x/ log1+ε x infinitely often then our limit might not exist and we cannot
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use Lemma 4 of [RV1]. Kowalksi [K] notes3 that knowledge of ζ(s) as s → 1
yields π(x) � x/ log1+ε x infinitely often, which is significantly better than his
proof using knowledge of ζ(2) and Linnik’s theorem on the least prime in arith-
metic progressions to get π(x)� log log x. We may interpret our arguments as
correcting this imbalance, as now an analysis of ζ(2) gives a comparable order
of magnitude estimate. It is interesting that the correct growth rate of π(x),
namely x/ log x, surfaces in these arguments as a natural boundary.

We conclude by improving Theorem 3.1 to show that not only are we in-
finitely often close to the true order of growth, but when we are close we are
close for large stretches of integers. For notational simplicity we work with
logarithms below, but one can easily modify the argument to o(x/ log x).

Corollary 3.4. For any ε̃ > 0 there exists an increasing sequence of numbers
Xn,ε̃ tending to infinity such that for each n, π(x) ≥ x/ log1+ε̃ x for almost all
x ≤ Xn,ε̃ (in other words, if Fn,ε̃ denotes the number of x ≤ Xn,ε̃ such that

π(x) < x/ log1+ε̃ x, then Fn,ε̃|/Xn,wepsilon → 0).

Proof: Let Yn,ε̃ be an increasing sequence tending to infinity so that the re-

sult of Theorem 3.1 holds with exponent ε = ε̃/2; thus π(Yn,ε̃) > Yn,ε̃/ log1+ε̃/2 Yn,ε̃.

Let Xn,ε̃ = Yn,ε̃ logε̃/2 Yn,ε̃; we show the claim in the theorem holds for almost
all x ≤ Xn,ε. We may assume Yn,ε̃ ≤ x ≤ Xn,ε̃, as the fraction of numbers less
than Xn,ε̃ which are also less than Yn,ε̃ tends to zero (the percentage is just

1/ logε̃/2 Yn,ε̃).

The claim follows by showing π(x) > x/ log1+ε̃ x for such x. We use the
fact that π(x) is non-decreasing, and by definition of Yn,ε̃ there are at least

Yn,ε̃/ log1+ε̃/2 Yn,ε̃ primes at most Xn,ε̃. The worst case for us would be that
these are all the primes up to Xn,ε̃, but as the number of primes at most x is

non-decreasing we have π(x) ≥ Yn,ε̃/ log1+ε̃/2 Yn,ε̃ for all x under consideration;
we now need to rewrite this in terms of x. We have

π(x) ≥
Yn,ε̃

log1+ε̃/2 Yn,ε̃
≥

x log−ε̃/2 Yn,ε̃

log1+ε̃/2 Yn,ε̃
=

x

log1+ε̃ Yn,ε̃
≥ x

log1+ε̃ x
; (3.4)

thus for x in the desired range we have π(x) ≥ x/ log1+ε̃ x, completing the proof.
QED

Appendix A Euclid’s sequence

Euclid’s argument leads to an interesting sequence: 2, 3, 7, 43, 13, 53, 5,
6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209,
37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857,
103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457,

3His note incorrectly mixed up a negation, and the claimed bound of π(x) � x1−ε is
wrong.
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9649, 61, 4357.... This sequence is generated as follows. Let a1 = 2, the first
prime. We apply Euclid’s argument and consider 2 + 1; this is the prime 3
so we set a2 = 3. We apply Euclid’s argument and now have 2 · 3 + 1 = 7,
which is prime, and set a3 = 7. We apply Euclid’s argument again and have
2 · 3 · 7 + 1 = 43, which is prime and set a4 = 43. Now things get interesting:
we apply Euclid’s argument and obtain 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139, and
set a5 = 13. Thus an is the smallest prime not on our list generated by Euclid’s
argument at the nth stage.

There are a plethora of unknown questions about this sequence, the biggest
of course being whether or not it contains every prime. This is a great se-
quence to think about, but it is a computational nightmare to enumerate.
These terms from the Online Encyclopedia of Integer Sequences (see http:

//oeis.org/A000945). You can enter the first few terms of an integer sequence,
and it will list whatever sequences it knows that start this way, provide history,
generating functions, connections to parts of mathematics, .... This is a great
website to know if you want to continue in mathematics.
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