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Abstract. The Katz-Sarnak density conjecture states that, as the analytic conductor R → ∞,
the distribution of the normalized low-lying zeros (those near the central point s = 1/2) converges
to the scaling limits of eigenvalues clustered near 1 of subgroups of U(N). There is extensive
evidence supporting this conjecture for many families, including the family of holomorphic cusp
newforms. Interestingly, there are very few choices for the main term of the limiting behavior. In
2009, S. J. Miller computed lower-order terms for the 1-level density of families of elliptic curve L-
functions and compared to cuspidal newforms of prime level; while the main terms agreed, the lower
order terms depended on the arithmetic of the family. We extend his work by identifying family-
dependent lower-order correction terms in the weighted 1-level and 2-level densities of holomorphic
cusp newforms up to O

(
1/ log4 R

)
error, sharpening Miller’s O

(
1/ log3 R

)
error. We consider

cases where the level is prime or when the level is a product of two, not necessarily distinct, primes.
We show that the rates at which the prime factors of the level tend to infinity lead to different
lower-order terms, breaking the universality of the main behavior.
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1. Introduction

The Katz-Sarnak conjecture states that as we take the limit as the analytic conductor goes to
infinity for families of L-functions, the zeros lying near the central point agree with the scaling
limits of eigenvalues near 1 of a classical compact group ([KS99a], [KS99b], [Hej94], [Mon73],
[Odl87], [Odl01], [RS96]). Supporting evidence for the conjecture has been gathered for various
families, by studying moments of L-functions ([CF00], [Con+05], [KS00a], [KS00b], [KS03]) as well
as by investigating the n-level density for suitable test functions ([DM06], [FI03a], [Gül05], [HR03],
[HM07], [Mil04], [ÖS99], [RR07], [Roy01], [Rub01], [You06]).

Specifically, given an L-function L(s, f) associated with a holomorphic cusp newform f ∈ H∗
k(N)

of level N and weight k, we assume the Generalized Riemann Hypothesis (GRH).1 Thus, all non-
trivial zeros of L(s, f) are of the form ρf = 1/2 + iγf . We then enumerate zeros by their imaginary
part 0 ≤ γ

(1)
f ≤ γ

(2)
f ≤ . . . with γ

(−j)
f = −γ(j)

f by symmetry. We define the n-level density by

Dn(f ; Φ) :=
∑

j1,...,jn
ji ̸=±jk

ϕ1

(
γ

(j1)
f

log(R)
2π

)
· · ·ϕn

(
γ

(jn)
f

log(R)
2π

)
, (1.1)

where2 Φ(x1, . . . , xn) = ϕ1(x1) · ϕ2(x2) · · ·ϕn(xn) is a Schwartz test function and R is the analytic
conductor of f . We rescale the zeros near the central point by log(R)/2π (in all our families of
interest, log(R) ∼ log(N)). The Katz-Sarnak conjecture states that for a family F =

⋃
FN of

L-functions ordered by their conductors, we have

lim
N→∞

∑
f∈FN

Dn(f ; Φ)
|FN |

=
ˆ

· · ·
ˆ

Φ(x1, . . . , xn)Wn,G(F)(x1, . . . , xn)dx1 · · · dxn, (1.2)

where WG(F) represents the limiting distribution of a similar statistic for the eigenvalues of random
matrices in some classical compact group as their rank goes to infinity. While the main terms in the
expansions of the n-level density have been shown to agree with random matrix theory, the lower
order terms break this universality and provide insight in the arithmetic properties of the family
and can serve to differntiate families. For example, [You05] analyzed lower order terms arising from
families of elliptic curves, revealing that the number of low lying zeros is highly family-dependent
(see also [GZ23], [FM15], [FI03b] for investigations of the lower order terms for other families of
L-functions).

Of particular importance to us, [Mil09] demonstrated how the lower-order terms in the 1-level
density can provide insight into the arithmetic properties of the family being studied by looking
specificaly at one-parameter families of elliptic curves. Moreover, in his thesis [Mil04] and some
subsequent papers ([Mil05], [Mil09]), S. J. Miller noticed that different one parameter families
of elliptic curve L-functions have different lower order terms for the moments of their Satake
parameters, and this has implications for the distribution of zeros near the central point, explaining
some of the observed excess rank. The calculations are complicated by the fact that the lower-
order terms for the n-level densities can be greatly impacted by the small primes. This led him
to develop averaging formulas to numerically approximate all the contributions. He proved that
while the main terms agree, different families had different lower-order terms. He then compared
that to the lower order terms for the family of all cuspidal newforms, for simplicity of prime level
N tending to infinity.

1We do not need the GRH to define any of the statistics described below. However, assuming the GRH allows us
to relate the n-level density with the spacing between the zeros.

2In general, we do not need the test function Φ to be a product of coordinate-wise test functions.
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We investigate how the lower-order terms of the weighted first-level and second-level density over
the space of holomorphic cusp newforms, which are respectively defined by

D1(H∗
k(N)) := lim

N→∞

1
WR(H∗

k(N))
∑

f∈H∗
k

(N)
wR(f)D1(f ;ϕ), (1.3)

D2(H∗
k(N)) := lim

N→∞

1
WR(H∗

k(N))
∑

f∈H∗
k

(N)
wR(f)D2(f ;ϕ1, ϕ2), (1.4)

where
D1(f, ϕ) :=

∑
i

ϕ

( 2π
log(R)γ

(i)
f

)
, (1.5)

D2(f ;ϕ1, ϕ2) :=
∑
i,j

i ̸=±j

ϕ1

( 2π
log(R)γ

(i)
f

)
ϕ2

( 2π
log(R)γ

(j)
f

)
, (1.6)

vary depending on how the prime factors of the level N of the family approach infinity. By doing
this, we break the universality of the main term behavior suggested by the Katz-Sarnak Conjecture.

We consider four different scenarios in which the level approaches infinity.
• The first case is N going to infinity through primes.
• The second case is when N = q1q2 for q1 ̸= q2 two primes with q1 fixed and q2 → ∞.
• The third case is when N = q1q2 for q1 ̸= q2 two primes with q1 ∼ N δ and q2 ∼ N1−δ where
δ ∈ (0, 1/2].

• Lastly, we consider the case when N = p2.
Here, we weight each f ∈ H∗

k(N) by non-negative weights wR(f) and define

WR(H∗
k(N)) :=

∑
f∈H∗

k
(N)

wR(f). (1.7)

Moreover, both of our test functions ϕ1(x) and ϕ2(y) are even Schwartz functions whose Fourier
transform has compact support.

We write D2(f, ϕ1, ϕ2) in terms of D1(f, ϕi) using inclusion-exclusion.

D2(f ;ϕ1, ϕ2) = D1(f, ϕ1)D1(f, ϕ2) − 2D1(f, ϕ1ϕ2) + 1 − εf

2 ϕ1(0)ϕ2(0), (1.8)

where ϵf = ±1 depending on whether the functional equation associated with the completed L-
function Λ(f, s) is even or odd. Then, we get

D2 (H∗
k(N)) = lim

N→∞

1
WR(H∗

k(N))
∑

f∈H∗
k

(N)

wR(f)
(
D1(f, ϕ1)D1(f, ϕ2) − 2D1(f, ϕ1ϕ2) + 1 − εf

2 ϕ1(0)ϕ2(0)
)
.

(1.9)
Whenever there is no ambiguity, we write the family H∗

k(N) as F . We assume that the reader is
familiar with standard properties of L-functions (see for example [IK04]), and in particular with
Satake parameters. We denote the Satake parameters of f at n by αf (n) and βf (n). The Satake
parameters at n are related to to the corresponding Hecke eigenvalue, λ(n). We have,

λf (n) = αf (n) + βf (n), (1.10)

αf (n)βf (n) = 1. (1.11)
Our main tool is the explicit formula (see [ILS00a] (4.11), for example),

D1(f, ϕ) = Ak,N (ϕ)
log(R) − 2

∑
p

∞∑
m=1

αf (p)m + βf (p)m

pm/2
log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)
(1.12)
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where

Ak,N (ϕ) := 2ϕ̂(0) log
(√

N

π

)
+
ˆ ∞

−∞
ψ

(
k

4 + 2πix
log(R)

)
ϕ(x)dx+

ˆ ∞

−∞
ψ

(
k

4 + 1
2 + 2πix

log(R)

)
ϕ(x)dx.

We define

S(ϕ) := −2
∑

p

∞∑
m=1

αf (p)m + βf (p)m

pm/2
log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)
so that using (1.12), we can write:

D1(f, ϕ1)D1(f, ϕ2) =
(
Ak,N (ϕ1)
log(R) + S(ϕ1)

)(
Ak,N (ϕ2)
log(R) + S(ϕ2)

)
. (1.13)

Expanding (1.13), we have

D1(f, ϕ1)D1(f, ϕ2) = Ak,N (ϕ1)Ak,N (ϕ2)
log2(R)

+S(ϕ1)
(
Ak,N (ϕ2)
log(R)

)
+S(ϕ2)

(
Ak,N (ϕ1)
log(R)

)
+S(ϕ1)S(ϕ2).

(1.14)
In addition, define

S1(F , ϕ) := −2
∑

p

∞∑
m=1

1
WR(F)

∑
f∈F

wR(f)αf (p)m + βf (p)m

pm/2
log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)
(1.15)

and
S2(F , ϕ1, ϕ2) := 4

∑
p1,p2

∑
m1∈N
m2∈N

1
WR(F)

∑
f∈F

wR(f)αf (p1)m
1 + βf (p1)m

1

p
m2/2
2

αf (p2)m
2 + βf (p2)m

2

p
m2/2
2

log(p1) log(p2)
log2(R)

× ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)
. (1.16)

Then we can rewrite D1(F , ϕ) and D2 (F , ϕ1, ϕ2) respectively by

D1(F , ϕ) = lim
N→∞

Ak,N (ϕ)
log(R) + S1(F , ϕ), (1.17)

D2 (F , ϕ1, ϕ2) = lim
N→∞

Ak,N (ϕ1)Ak,N (ϕ2)
log2(R)

+
(
Ak,N (ϕ2)
log(R)

)
S1(F , ϕ1) (1.18)

+
(
Ak,N (ϕ1)
log(R)

)
S1(F , ϕ2) + S2(F , ϕ1, ϕ2) − 2

(
Ak,N (ϕ1ϕ2)

log(R) + S1(F , ϕ1ϕ2)
)

+ ϕ1(0)ϕ2(0)
∑

f∈F wR(f)(1 − ϵf )
2WR(F) . (1.19)

Therefore, by computing Ak,N (ϕ), S1(F , ϕ), and S2(F , ϕ1, ϕ2) up to O
(

1
log4(R)

)
error for arbitrary

ϕ, ϕ1, and ϕ2 even Schwartz functions with compactly supported fourier transforms, we can calculate
D1(F , ϕ) and D2 (F , ϕ1, ϕ2) up to O

(
1

log4(R)

)
error.

By doing so, we greatly extend Miller’s work [Mil09], allowing the level N to be a product of
two, not necessarily distinct, primes. The assumption of prime level greatly simplifies the inclusion-
exclusion analysis and resulting formulas, as well as provides explicit formulas for the sign of the
functional equation, which allows us to split by sign. When N is not prime, we perform more
delicate analysis with main ingredients coming from ILS [ILS00a] when N is square-free, while we
use tools from [Bar+16] for general N .

While all the families we study share the same main term, they have different lower-order terms,
depending on the factorization of the level. We can compute up to errors of size O((1/ log(N))4).
In all the cases we study, so long as the largest factor of N is at least a fixed power smaller than N ,
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the lower-order terms agree to this degree of precision with those from the case when the level is
prime. On the other hand, the lower-order terms differ when the smallest prime is at most a given
size. Therefore, whether or not there is a space of oldforms of comparable size to the newforms
turns out to be the reason for the breaking of the universality of behavior.

Through computing the lower order terms for each of the four scenarios of how N goes to infinity,
we prove that for N = q1q2, the case in which q1 is fixed has different lower order terms compared
to other cases where both factors go to infinity at N c rate for some c ∈ (0, 1), which agree with the
N prime case. In other words, as long as both factors of the level N go to infinity fast enough, the
factorization of the level does not affect the lower order terms of first nor second level density up
to O

(
1/log4(R)

)
error. We conjecture that the same phenomenon holds in general.

Conjecture 1.1. Given N , as long as the prime factors of N go to infinity fast enough relative to
the error we are computing up to, the lower order terms of the n level density are the same as the
N prime case. Interesting new factors emerge when one of the factors goes to infinity slower than
the reciprocal of the error term, say at the rate of log(N), log2(N), or log3(N).

In Section 3, we compute Ak,N (ϕ) up to O
(

1
log4(R)

)
error. In Section 4, we compute explicitly

SA′(F) and SA(F) where

S1(F , ϕ) = SA(F) + SA′(F) +O

(
1

log4(R)

)
,

extending [Mil09]’s result to improve the error term. See Theorem 4.1 for definitions of SA′(F) and
SA(F). In Section 5, we compute SB′′(F), SB′(F), SBf

(F), and SB∞(F) to write

S2(F , ϕ1, ϕ2) = SB′′(F) + SB′(F) + SBf
(F) + SB∞(F) +O

(
1

log4(R)

)
.

See Theorem 5.1 for definitions of SB′′(F), SB′(F), SBf
(F), and SB∞(F). Then, we have an

explicit formula for D1(F) in terms of Ak,N (ϕ) and S1(F , ϕ) up to O
(
1/ log2(R)

)
error and an

explicit formula for D2(F) in terms of Ak,N (ϕ), S1(F , ϕ), and S2(F , ϕ1, ϕ2) up to O
(
1/log4(R)

)
error. Once we have a formula for both D1(F) and D2(F), we start investigating how the level
approaches infinity affects the lower-order terms of D1(F) and D2(F). In Section 6, we compute
explicitly the terms A′

r,F (p), Ar,F (p), B′′
r1,r2,F (p1, p2), B′

r1,r2,F (p1, p2), and Br1,r2,F (p1, p2) which
are defined repectively in (4.1),(4.2), (5.3), (5.4), (5.5). If the family we are averaging over is clear,
we omit specifying it in a subscript. These quantities determine the value of S1(F , ϕ1), S1(F , ϕ2),
and S2(F , ϕ1, ϕ2) for each of the four families we are considering. To this end, we use the Peterson
trace formula and [Bar+16]’s generalized formula. Lastly, in Section 7, we substitute the results
from Section 6 into the formula of S1(F , ϕ) and S2(F , ϕ1, ϕ2) we obtained in Sections 4 and 5 in
order to evaluate the lower order terms.

Computing the 2-level density, as opposed to calculating just the 1-level density, comes with
various new obstructions. From doing inclusion-exclusion, the error term of D2(F) is dictated by
the sharpness of the error term in the 1-level density; if we continue to use inclusion-exclusion
for a general n-level density, the error term will continue to be dictated by the 1-level density.
This is because terms S1(F , ϕ) occurs with just one factor of 1/ log(R) while S2(F , ϕ1, ϕ2) occurs
with 1/ log2(R). Therefore, we need to obtain more refined lower-order terms for 1-level density.
Furthermore, as the level increases, the number of terms that need to be considered greatly in-
creases; computing S2(F , ϕ1, ϕ2) requires far more terms than S1(F , ϕ). In addition, looking at
our work with the harmonic weights, new behaviors appear in the moments; there, careful case
work is required depending on the factorization of the level. Notably, the case where N = p2 is

5



nearly identical to N = q1q2 with both factors going to infinity, while new challenges and behaviors
emerge when one of the factors is fixed.

Remark 1.2. One helpful analogy to our results due to Miller [Mil09] is demonstrated by the
proof of the Central Limit Theorem (CLT). Suppose X1, . . . , XN are ‘nice’ independent, identically
distributed random variables with mean µ and variance σ2. Then, the running average (X1 +
· · · + XN − Nµ)/σ

√
N converges to the standard normal N (0, 1) as N → ∞. The universality

suggested by the CLT is that, modulo normalization, the main terms are independent of the initial
distribution. However, the higher moments of the distribution determine the rate of convergence
to N (0, 1) (See the Berry-Esseen Theorem [Ber41], [Ess42]). We observe a similar phenomenon
with the 2-level density. Universally, as suggested by Katz and Sarnak, we know what the main
terms should be in the limit as R → ∞. However, the higher moments of the Fourier coefficients
determine the lower-order terms of the 2-level density.

Remark 1.3. Erik Samuelsson [Sam] of the University of Gothenburg is working on a similar
problem, but for a fixed level (N = 1) with the weight k going to infinity.

2. Preliminaries

We define the N th congruence subgroup of SL2(Z) by

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 (mod N)
}
. (2.1)

We are interested in how N th congruence subgroup group acts on certain holomorphic functions
f : H → C, where H denotes the upper half complex plane. Specifically, we are interested in
functions f that admit a symmetry when acted on by Γ0(N) by the following relation:

f

(
az + b

cz + d

)
= (cz + d)kf(z). (2.2)

If these functions satisfy the extra stipulation that they vanish at their cusps, we call these functions
f a holomorphic cusp form of weight k and level N . Such functions admit a Fourier expansion

f(z) =
∞∑

n=1
af (n)e2πinz, (2.3)

where the coefficients af (n) are normalized so that af (1) = 1.3 We denote the space of all holo-
morphic cusp forms of weight k and level N by Sk(N). This space is a finite-dimensional Hilbert
space whose inner product is given by

⟨f, g⟩ := 1
ν(N)

ˆ
Γ0(N)\H

f(z)g(z) yk dx dy

y2 , (2.4)

where ν(N) := [SL2(Z) : Γ0(N)]. This inner product is called the Petersson inner product.
In 1970, Atkin and Lehner [AL70] built a theory on newforms of Sk(N). For every form in

Sk(N), we can induce a form in Sk(M) where N |M and M ̸= N . The induced forms are referred
to as “oldforms,” while the rest, which form an orthogonal space to the space spanned by oldforms,
are called “newforms.” While Sk(N) contains several oldforms, we filter them out and focus on the
remaining set H∗

k(N) of exclusively newforms. These newforms satisfy many desirable properties

3Since we are looking at cusp forms, af (0) = 0; for general forms, this is not necessarily true.
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like being eigenfunctions of the Hecke operators Tn (Hecke eigenforms for short) for all n ∈ N.. The
Hecke operators Tn are given by

Tnf(z) := nk−1 ∑
ad=n

(a,N)=1

d−1∑
b=0

d−kf

(
az + b

d

)
. (2.5)

Moreover, we can find an orthogonal basis Bk(N) of the newforms. See [ILS00a] for construction
of this basis. Since Sk(N) is finite-dimensional, we know |Bk(N)| is finite; in fact, from [ILS00b,
(2.73)],

|Bk(N)| ∼ k − 1
12 φ(N) +O

(
(kN)5/6

)
, (2.6)

where φ(N) is Euler’s totient function. Given Hecke eigenform f ∈ Bk(N), we refer to its eigenvalue
under Tn as the nth Hecke eigenvalue of f , λf (n). Thanks to Deligne [Del74], we know that
λf (p) ∈ [−2, 2]. Moreover, Hecke eigenvalues of f are closely related to its Fourier coefficients,
satisfying the following relation

af (n) = λf (n)n(k−1)/2. (2.7)
Furthermore, the Hecke eigenvalues of f possess useful multiplicative properties,

λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

λf

(
mn

d2

)
, (2.8)

which means that if (m,n) = 1, then
λf (mn) = λf (m)λf (n). (2.9)

Using this multiplicative property, we define the L-function associated to f as:

L(s, f) :=
∞∑

n=1

λf (n)
ns

, ℜ(s) > 1. (2.10)

For a cusp form f , we define the normalized Fourier coefficients by

Ψf (n) :=
(Γ(k − 1)

(4π)k−1

)1/2
||f ||−1λf (n)

with ||f ||2 = ⟨f, f⟩. We wish to consider the sum

∆k,N (m,n) =
∑

f∈Bk(N)
Ψf (m)Ψf (n)

where Bk(N) is an orthonormal basis of Sk(N). This sum is computed using the Petersson trace
formula [Pet32][IK04].
Proposition 2.1. We have

∆k,N (m,n) = δ(m,n) + 2πik +
∑

c≡0 mod N

c−1S(m,n; c)Jk−1

(
4π

√
mn

c

)
(2.11)

where δ(m,n) = 1 if m = n and is 0 otherwise, Jk−1 (x) denotes the Bessel function, and S(m,n; c)
is the classical Kloosterman sum.

Effective bounding yields the following estimation from [ILS00a].
Proposition 2.2. For m,n ≥ 1,

∆k,N (m,n) = δ(m,n) +O

(
τ(N)
k5/6N

(m,n,N)τ3((m,n))
((m,N) + (n,N))1/2

(
mn

(mn)1/2 + kN

)1/2
log 2mn

)
, (2.12)

where the implied constant is absolute and τ3(ℓ) = {#(a, b, c) | abc = ℓ}
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Moreover, we define

Z(s, f) :=
∞∑

n=1

λf

(
n2)
ns

= ζN (s)L(s, f ⊗ f)
ζ(s) , (2.13)

ZN (s, f) :=
∑

n|N∞

λf (n2)
ns

. (2.14)

We wish to evaluate the arithmetically weighted sum

∆∗
k,N (m,n) =

∑
f∈H∗

k
(M)

ZN (1, f)
Z(1, f) λf (m)λf (n). (2.15)

Iwaniec, Luo, and Sarank derived the following expression in the case of N squarefree.

Proposition 2.3. Let N be squarefree, (m,N) = 1, and (n,N2)|N . Then

∆∗
k,N (m,n) = k − 1

12
∑

ML=N

µ(L)M
ν((n,L))

∑
ℓ|L∞

ℓ−1∆k,M (mℓ2, n). (2.16)

In addition, Corollary 2.10 in [ILS00a] provides the following estimate:

Proposition 2.4. Let N be squarefree, (m,N) = 1, and (n,N2)|N . Then,

∆∗
k,N (m,n) = k − 1

12 φ(N)δ(m,n) +O
(
k1/6(mn)1/4(n,N)−1/2τ2(N)τ3((m,n)) log 2mnN

)
.

(2.17)

As Proposition 2.4 requires N to be squarefree, for general N , we use proposition 4.1 in [Bar+16]
which removes the squarefree restriction on N .

Proposition 2.5. Let (m,N) = 1 and (n,N) = 1. Then

∆∗
k,N (m,n) = k − 1

12
∑

ML=N

∏
p2|M

(
p2

p2 − 1

)−1 ∑
ℓ|L∞

(ℓ,M)=1

ℓ−1∆k,M (mℓ2, n). (2.18)

3. Computing Ak,N(ϕ)

We start the computation of the 1st and 2nd level density by computing Ak,N (ϕ) up to O
(

1
log4(R)

)
error.

Theorem 3.1. Let ϕ be an even Schwartz function whose Fourier transform has compact support
and let ψ be the digamma function. We have the following estimate.

Ak,N (ϕ) = ϕ̂(0) log(N) + ϕ̂(0)
(
ψ

(
k

4

)
+ ψ

(
k

4 + 1
2

)
− 2 log(π)

)
− 2π2

log2(R)

(ˆ ∞

−∞
ϕ(x)x2dx

)(
ψ′′
(
k

4

)
+ ψ′′

(
k

4 + 1
2

))
+O

(
1

log4(R)

)
. (3.1)

Proof of Theorem 3.1. We start by proving a lemma.

Lemma 3.2. Let ϕ be an even Schwartz function whose Fourier transform has compact support
and let ψ be the digamma function. We have the following estimate.ˆ ∞

−∞
ϕ(x)ψ

(
k

4 + 2πix
log(R)

)
dx = ψ

(
k

4

)
ϕ̂(0) −

ψ
′′(k

4 )2π2

log2(R)

ˆ ∞

−∞
ϕ(x)x2dx+O

(
1

log4(R)

)
(3.2)
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Proof. Using (8.363.3) of [GR65] gives us that the leading term is ψ(k
4 )ϕ̂(0). Therefore, we subtract

the leading term and compute the error term more accurately. Using the fact that ϕ is even
ˆ ∞

−∞
ϕ(x)ψ

(
k

4 + 2πix
log(R)

)
dx− ψ

(
k

4

)
ϕ̂(0)

= 1
2

ˆ ∞

−∞
ϕ(x)

[
ψ

(
k

4 + 2πix
log(R)

)
+ ψ

(
k

4 − 2πix
log(R)

)
− 2ψ

(
k

4

)]
dx. (3.3)

Suppose f : Ω → C, where Ω is an open subset of C. Suppose further that z0 ∈ Ω. Taylor
expanding about the z0 ∈ Ω yields

f(z0 + z) + f(z0 − z) − 2f(z0) = f ′′(z0)z2 +O(z4) (3.4)

for all z such that |z| < R where R is the radius of convergence. Moreover, we know from Cauchy’s
Inequality that R ≥ dist(z0, ∂Ω). We apply the formula in (3.4) with Ω = {z ∈ C : Re(z) > 0},
f(z) = ψ(z), z0 = k

4 , and z = 2πix/ log(R). We remark that dist(k
4 , ∂({z ∈ C : Re(z) > 0})) = k

4
and hence R ≥ k

4 . Then, we get

ψ

(
k

4 + z

)
+ ψ

(
k

4 − z

)
− 2ψ

(
k

4

)
= ψ

′′
(
k

4

)
z2 +O(z4) (3.5)

for all x such that |x| < k log(R)/(8π).
Now we integrate (3.5) against the test function ϕ for |x| < k log(R)/(8π) and (3.3). Then
ˆ k log(R)/(8π)

−k log(R)/(8π)
ϕ(x)ψ

(
k

4 + 2πix
log(R)

)
dx− ψ

(
k

4

)
ϕ̂(0)

= 1
2

ˆ k log(R)/(8π)

−k log(R)/(8π)
ϕ(x)

[
−ψ′′

(
k

4

)( 2πx
log(R)

)2
+O

(
2πx

log4(R)

)]
dx

= 1
2

ˆ k log(R)/(8π)

−k log(R)/(8π)
ϕ(x)

[
−ψ′′

(
k

4

)( 2πx
log(R)

)2
]
dx+O

(
1

log4(R)

)(ˆ k log(R)/(8π)

−k log(R)/(8π)
ϕ(x)x4dx

)

= 1
2

ˆ k log(R)/(8π)

−k log(R)/(8π)
ϕ(x)

[
−ψ′′

(
k

4

)( 2πx
log(R)

)2
]
dx+O

(
1

log4(R)

)
. (3.6)

We now show the tail part of the integral is negligible. Consider the series expansion of ψ(z)
from [AS72], which holds for all z /∈ Z≤0:

ψ(z) = −γ +
∞∑

n=0

z − 1
(n+ 1)(n+ z) (3.7)

where γ is the Euler–Mascheroni constant. For z = k
4 + 2πix/ log(R), we then have that for all

n ≥ 1,: ∣∣∣∣∣∣
(

k
4 + 2πix/ log(R)

)
− 1

(n+ 1)(n+
(

k
4 + 2πix/ log(R)

)
)

∣∣∣∣∣∣ =
∣∣∣∣ 8iπx+ (−4 + k) log(R)
(1 + n) (8iπx+ (k + 4n) log(R))

∣∣∣∣
≤ 8πx+ |k − 4| log(R)

(1 + n) ((k + 4n) log(R))

≤ 8πx+ |k − 4| log(R)
n2 . (3.8)
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We also know that because ϕ(x) is Schwartz,
´∞

k log(R)/(8π) ϕ(x)P (x)dx = O
(

1
logB R

)
for any poly-

nomial P (x). Therefore, using this fact along with (3.8), we find∣∣∣∣∣
ˆ ∞

k log(R)/(8π)
ϕ(x)

(
−γ +

∞∑
n=0

z − 1
(n+ 1)(n+ z)

)
dx

∣∣∣∣∣
≤ (−γ + 1)

∣∣∣∣∣
ˆ ∞

k log(R)/(8π)
ϕ(x)dx

∣∣∣∣∣+
∞∑

n=1

∣∣∣∣∣
ˆ ∞

k log(R)/(8π)
ϕ(x)

(8πx+ |k − 4| log(R)
n2

)
dx

∣∣∣∣∣
=
(

−γ + 1 +
( ∞∑

n=1

|k − 4| log(R)
n2

)) ∣∣∣∣∣
ˆ ∞

k log(R)/(8π)
ϕ(x)dx

∣∣∣∣∣+ 8π
( ∞∑

n=1

1
n2

) ∣∣∣∣∣
ˆ ∞

k log(R)/(8π)
xϕ(x)dx

∣∣∣∣∣
= O

(
1

log4(R)

)
. (3.9)

Similarly, we know that∣∣∣∣∣
ˆ ∞

k log(R)/(8π)
ϕ(x)

(
−γ +

∞∑
n=0

z − 1
(n+ 1)(n+ z)

)
dx

∣∣∣∣∣ = O

(
1

log4(R)

)
.

In addition, we know that
ˆ ∞

k log(R)/(8π)
ϕ(x)

[
−ψ′′

(
k

4

)( 2πx
log(R)

)2
]
dx+

ˆ −k log(R)/(8π)

−∞
ϕ(x)

[
−ψ′′

(
k

4

)( 2πx
log(R)

)2
]
dx

(3.10)
is O

(
1/log4(R)

)
because ϕ is Schwartz. Therefore, combining (3.6), (3.9), and (3.10), and noticing

that
ˆ ∞

−∞
ϕ(x)x2dx = −ϕ̂′′(0) (3.11)

we have that

ˆ ∞

−∞
ϕ(x)ψ

(
k

4 + 2πix
log(R)

)
dx− ψ

(
k

4

)
ϕ̂(0) =

2π2ψ′′
(

k
4

)
log2(R)

ϕ̂′′(0) +O

(
1

log4(R)

)
(3.12)

as desired. □

By the same argument, but for z0 = k
4 + 1

2 , we get the following lemma.

Lemma 3.3. Let ϕ be an even Schwartz function whose Fourier transform has compact support
and let ψ be the digamma function. Then
ˆ ∞

−∞
ϕ(x)ψ

(
k

4 + 1
2 + 2πix

log(R)

)
dx = ψ

(
k

4 + 1
2

)
ϕ̂(0) +

2π2ψ
′′(k

4 + 1
2)

log2(R)
ϕ̂′′(0) +O

(
1

log4(R)

)
.

(3.13)

Using the two above lemmas, we have Theorem 3.1. □
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4. Computing S1(F , ϕ) up to O
(

1
log4(R)

)
error

Similar to Miller [Mil09], we define

A′
r,F (p) := 1

WR(F)
∑
f∈F
p|N

wR(f)λf (p)r (4.1)

Ar,F (p) := 1
WR(F)

∑
f∈F
p∤N

wR(f)λf (p)r (4.2)

where WR(F) :=
∑

f∈F wR(f). This brings us to the following theorem.

Theorem 4.1. Let

S1(F , ϕ) := −2
∑

p

∞∑
m=1

1
WR(F)

∑
f∈F

wR(f)αf (p)m + βf (p)m

pm/2
log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)
,

where log(R) is the average log conductor, then

S1(F , ϕ) = SA′(F) + SA(F) (4.3)

where

SA′(F) := − 2
∑

p

∞∑
m=1

A′
m,F (p)
pm/2

log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)
(4.4)

SA(F) := − 2ϕ̂ (0)
∑

p

2A0,F (p) log(p)
p(p+ 1) log(R) + 2

∑
p

2A0,F (p) log(p)
p log(R) ϕ̂

(
2 log(p)

log(R)

)
− 2

∑
p

A1,F (p) log(p)
p1/2 log(R)

ϕ̂

(
log(p)
log(R)

)
+ 2ϕ̂ (0)

∑
p

A1,F (p)(3p+ 1) log(p)
p1/2(p+ 1)2 log(R)

− 2
∑

p

A2,F (p) log(p)
p log(R) ϕ̂

(
2 log(p)

log(R)

)
+ 2ϕ̂ (0)

∑
p

A2,F (p)(p2 + 3p+ 1) log(p)
p(p+ 1)3 log(R)

+ ϕ̂′′(0)
∑

p

A0,F (p)(32p2 + 24p+ 8) log3(p)
p(p+ 1)3 log(R) − ϕ̂′′(0)

∑
p

A1,F (p)(27p3 − 17p2 + 5p+ 1) log3(p)
p1/2(p+ 1)4

− ϕ̂′′(0)
∑

p

A2,F (p)(64p4 − 4p3 + 44p2 + 20p+ 4) log3(p)
p(p+ 1)5 log3(R)

(4.5)

− 2ϕ̂ (0)
∑

p

∞∑
r=3

Ar,F (p)pr/2(p− 1) log(p)
(p+ 1)r+1 log(R)

+ ϕ̂′′ (0)
∑

p

∞∑
r=3

Ar,F (p− 1)(r2(p− 1)2 − 12rp− 8p)pr/2 log3(p)
(p+ 1)r+3 log(R) +O

(
1

log4(R)

)
. (4.6)
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Proof. Identical to Miller’s analysis in [Mil09], we break the explicit formula from [ILS00a] into
the case when p|N and p ∤ N and use properties of the Satake parameters to obtain

S1(F , ϕ) = − 2
∑

p

∞∑
m=1

1
WR(F)

∑
f∈F
p|N

wR(f)λf (p)m

pm/2
log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)

− 2
∑

p

1
WR(F)

∑
f∈F
p∤N

wR(f)λf (p)
p1/2

log(p)
log(R) ϕ̂

( log(p)
log(R)

)

− 2
∑

p

1
WR(F)

∑
f∈F
p∤N

wR(f)λf (p)2 − 2
p

log(p)
log(R) ϕ̂

(
2 log(p)

log(R)

)

− 2
∑

p

∞∑
m=3

1
WR(F)

∑
f∈F
p∤N

wR(f)αf (p)m + βf (p)m

pm/2
log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)
. (4.7)

The first three sums are already in the desired form, as they can easily be expressed as weighted
averages of Hecke eigenvalues. We now look to evaluate the last sum. Through Taylor expansion,
we see that

ϕ̂(mx) − ϕ̂(x) = m2 − 1
2 ϕ̂′′(0)x2 +O

(
(m4 − 1)x4

)
. (4.8)

Thus we have

ϕ̂

(
m

log(p)
log(R)

)
− ϕ̂

( log(p)
log(R)

)
= m2 − 1

2 ϕ̂′′(0)
( log(p)

log(R)

)2
+O

(
(m4 − 1)

( log(p)
log(R)

)4)
. (4.9)

Substituting (4.9) into the last sum in (4.7), we get∑
p

∞∑
m=3

1
WR(F)

∑
f∈F
p∤N

wR(f)αf (p)m + βf (p)m

pm/2
log(p)
log(R)

(
ϕ̂ ( log(p)

log(R)

)
+ m2 − 1

2 ϕ̂′′(0)
( log(p)

log(R)

)2

+ O

(
(m4 − 1)

( log(p)
log(R)

)4))
. (4.10)

Define

Mc,k(p) :=
∞∑

m=c

mkαf (p)m + βf (p)m

pm/2 . (4.11)

We now write equation (4.10) as∑
p

1
WR(F)

∑
f∈F
p∤N

wR(f)M3,0(p) log(p)
log(R) ϕ̂

( log(p)
log(R)

)
(4.12)

+ ϕ̂′′(0)
2

∑
p

1
WR(F)

∑
f∈F
p∤N

wR(M3,2(p) −M3,0(p)) log3(p)
log3R

+O

∑
p

1
WR(F)

∑
f∈F
p∤N

wR(M3,4(p) −M3,0(p)) log5(p)
log4(R)

 . (4.13)
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Substituting ϕ̂
(

log(p)
log(R)

)
= ϕ̂(0) + ϕ̂′′(0)

2
log2(p)
log2(R) +O

(
1

log4(R)

)
gives

ϕ̂(0)
∑

p

1
WR(F)

∑
f∈F
p∤N

wR(f)M3,0(p) log(p)
log(R) + ϕ̂′′(0)

2
∑

p

1
WR(F)

∑
f∈F
p∤N

wR(f)M3,2(p) log3(p)
log3(R)

+O

∑
p

1
WR(F)

∑
f∈F
p∤N

wR(f)(M3,4(p) −M3,0(p)) log5(p)
log4(R)

 (4.14)

In Miller’s proof of Theorem 1.1, he shows

M3,0(p) = 2
p(p+ 1) − p1/2(3p+ 1)

p(p+ 1)2 λf (p) − (p2 + 3p+ 1)
p(p+ 1)3 λf (p)2 +

∞∑
m=3

pm/2(p− 1)λf (p)m

(p+ 1)m+1 .

We now compute M3,2(p). See Appendix A for the proof.

Lemma 4.2. For prime p, we have

M3,2(p) = 32p2 + 24p+ 8
p(p+ 1)3 − 27p3 − 17p2 + 5p+ 1

√
p(p+ 1)4 λf (p) − 64p4 − 4p3 + 44p2 + 20p+ 4

p(p+ 1)5 λf (p)2

+
∞∑

r=3

(p− 1)(r2(p− 1)2 − 12rp− 8p)pr/2λf (p)r

(p+ 1)r+3 . (4.15)

Substituting equation (4.15) into equation (4.14) yields the main term in (4.1). Now, we look at
the error term∑

p

∞∑
m=3

1
WR(F)

∑
f∈F
p∤N

αf (p)m + βf (p)m

pm/2
log(p)
log(R)

(
O

(
(m4 − 1)

( log(p)
log(R)

)4))
. (4.16)

As | αf (p)m + βf (p)m | ≤ 2 for all m ∈ N, we have

(4.16) = O

∑
p

∞∑
m=3

1
WR(F)

∑
f∈F
p∤N

αf (p)m + βf (p)m

pm/2
log(p)
log(R)

(
(m4 − 1)

( log(p)
log(R)

)4)

= O

∑
p

( log(p)
log(R)

)5 ∞∑
m=3

∑
f∈F
p∤N

2wR(f)
WR(F)

1
pm/2

(
m4 − 1

)
= O

(∑
p

( log(p)
log(R)

)5 ∞∑
m=3

m4 − 1
pm/2

)
. (4.17)

Thus we have ∑
p

( log(p)
log(R)

)5 ∞∑
m=3

m4 − 1
pm/2 ≲

1
log4(R)

∑
p

log5(p)
p3/2 ≲

1
log5(R)

. (4.18)

(4.19)

As the sum
∑

p
log5(p)

p3/2 converges by the comparison test, our error term is sufficient. □
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5. Computing S2(F , ϕ1, ϕ2) up to O
(

1
log4(R)

)
error

We are interested in finding a formula for S2(F , ϕ1, ϕ2) = 1
WR(F)

∑
f∈F wR(f)S(ϕ1)S(ϕ2) where

S(ϕ1)S(ϕ2) =

∑
p1

∞∑
m1=1

αf (p1)m + βf (p1)m1

p
m1/2
1

log(p1)
log(R) ϕ̂1

(
m1

log(p1)
log(R)

)
·

∑
p2

∞∑
m2=1

αf (p2)m2 + βf (p2)m2

pm2/2
log(p2)
log(R) ϕ̂2

(
m2

log(p2)
log(R)

) (5.1)

up to O
(

1
log4(R)

)
error term.

For fixed f ∈ F , we break this sum given by (5.1) into four cases depending on whether each
p1 and p2 divide Nf or not. We freely change the order of summation because convergence is
guaranteed by ϕ̂1 and ϕ̂2 being Schwartz. Using the fact that if p|Nf , then αf (p)m + βf (p)m =
λf (p)m, we obtain:

S2(F , ϕ1, ϕ2) =

1
WR(F)

∑
p1,p2

∑
m1∈N
m2∈N

∑
f∈F

p1|Nf

p2|Nf

wR(f)λf (p1)m1

p
m1/2
1

λf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)

+ 1
WR(F)

∑
p1,p2

∑
m1∈N
m2∈N

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)

+ 1
WR(F)

∑
p1,p2

∑
m1∈N
m2∈N

∑
f∈F

p1∤Nf

p2|Nf

wR(f)αf (p1)m1 + βf (p1)m1

p
m1/2
1

λf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2))
log(R)

)

+ 1
WR(F)

∑
p1,p2

∑
m1∈N
m2∈N

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)αf (p1)m1 + βf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

· log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)
, (5.2)

where WR(F) =
∑

f∈F wR(f). Further, we introduce the notations:

B′′
r1,r2,F (p1, p2) = 1

WR(F)
∑

f∈F , p1|Nf , p2|Nf

wR(f)λf (p1)r1λf (p2)r2 (5.3)

B′
r1,r2,F (p1, p2) = 1

WR(F)
∑

f∈F , p1|Nf , p2∤Nf

wR(f)λf (p1)r1λf (p2)r2 (5.4)

Br1,r2,F (p1, p2) = 1
WR(F)

∑
f∈F , p1∤Nf , p2∤Nf

wR(f)λf (p1)r1λf (p2)r2 . (5.5)

Whenever there is no confusion, we drop the indication of the family F , and write B′′
r1,r2(p1, p2),

B′
r1,r2(p1, p2), or Br1,r2(p1, p2). We now compute each of the sums explicitly, using the notations

above.
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Theorem 5.1. Define P0(x) = 2
x(x+1) , P1(x) = −

√
x(3x+1)

x(x+1)2 , P2(x) = −(x2+3x+1)
x(x+1)3 Pm≥3(x) =

xm/2(x−1)
(x+1)m+1 . Let A = {(1, 2), (2, 1)}. We have that

S2(F , ϕ1, ϕ2) = SB′′(F) + SB′(F) + SBf
(F) + SB∞(F) +O

(
1

log4(R)

)
,

where

SB′′ (F) =
∑
p1,p2

∞∑
m1,m2=1

B′′
m1,m2 (p1, p2) log(p1) log(p2)

p
m1/2
1 p

m2/2
2 log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)
, (5.6)

SB′ (F) =
∑
p1,p2

∞∑
m1=1

B′
m1,1(p1, p2) log(p1) log(p2)

p
m1/2
1

√
p2 log2(R)

 ∑
(i,j)∈A

ϕ̂i

(
m1 log(p1)

log(R)

)
ϕ̂j

(
log(p2)
log(R)

)
+
∑
p1,p2

∞∑
m1=1

(B′
m1,2(p1, p2) − 2B′

m1,0(p1, p2)) log(p1) log(p2)
p

m1/2
1 p2 log2(R)

 ∑
(i,j)∈A

ϕ̂i

(
m1

log(p1)
log(R)

)
ϕ̂j

(
2 log(p2)

log(R)

)
+
∑
p1,p2

∞∑
m1=1,m2=0

B′
m1,m2 (p1, p2)Pm2 (p2)

p
m1/2
1

log(p1) log(p2)
log2(R)

 ∑
(i,j)∈A

ϕ̂i

(
m1 log(p1)

log(R)

)
ϕ̂j (0)

 (5.7)

SBf (F) =
∑
p1,p2

B1,1(p1, p2) log(p1) log(p2)
√

p1
√

p2 log2(R)
ϕ̂1

(
log(p1)
log(R)

)
ϕ̂2

(
log(p2)
log(R)

)
+
∑
p1,p2

(B1,2(p1, p2) − 2B1,0(p1)) log(p1) log(p2)
√

p1p2 log2(R)
ϕ̂1

(
log(p1)
log(R)

)
ϕ̂2

(
2 log(p2)
log(R)

)
+
∑
p1,p2

(B2,1(p1, p2) − 2B0,1(p2)) log(p1) log(p2)
p1

√
p2 log2(R)

ϕ̂1

(
2 log(p1)
log(R)

)
ϕ̂2

(
log(p2)
log(R)

)
+
∑
p1,p2

(B2,2(p1, p2) − 2B2,0(p1) − 2B0,2(p2) + 4) log(p1) log(p2)
p1p2 log2(R)

ϕ̂1

(
2 log(p1)
log(R)

)
ϕ̂2

(
2 log(p2)
log(R)

)
, (5.8)

SB∞ (F) = ϕ̂1(0)
∑
p1,p2

∞∑
m1=0

log(p1) log(p2)
log2(R)

ϕ̂2

(
2 log(p2)
log(R)

)
(Bm1,2(p1, p2) − 2Bm1,0(p1, p2))Pm1 (p1)

p2

+ ϕ̂1(0)
∑
p1,p1

∞∑
m1=0

ϕ̂2

(
log(p2)
log(R)

)
log(p1) log(p2)

log2(R)
Bm1,1(p1, p2)Pm1 (p1)

√
p2

+ ϕ̂2(0)
∑
p1,p1

∞∑
m1=0

ϕ̂1

(
log(p1)
log(R)

)
log(p1) log(p2)

log2(R)
B1,m1 (p1, p2)Pm1 (p2)

√
p1

+ ϕ̂2(0)
∑
p1,p2

∞∑
m1=0

log(p1) log(p2)
log2(R)

ϕ̂1

(
2 log(p1)
log(R)

)
(B2,m1 (p1, p2) − 2B0,m1 (p1, p2))Pm1 (p2)

p1

+ ϕ̂1(0)ϕ̂2(0)
∑
p1,p2

∞∑
m1,m2=0

log(p1) log(p2)
log2(R)

Bm1,m2 (p1, p2)Pm1 (p1)Pm2 (p2), (5.9)

with the convention that B0,r(q, p) = Br,0(p, q) = B′
0,r(q, p) = Ar(p), B′

r,0(p, q) = A′
r(p), and

B′′
0,0(p, q) = B′

0,0(p, q) = B0,0(p, q) = A′
0(p) = A0(p) = 1 for every p and q prime.

To prove the theorem, we show that the first line of (5.2) is SB′′(F), the sum of the second and
third line of (5.2) equals SB′(F), and the fourth line of (5.2) equals SBf

(F) + SB∞(F). Below, we
break the proof into three parts, where each part shows one of the equalities mentioned above.
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5.1. First line of (5.2): p1|Nf , p2|Nf . This case is simple. Using the notation established above,
the first line of (5.2) is equal to

1
WR(F)

∑
p1,p2

∑
m1∈N
m2∈N

∑
f∈F

p1|Nf

p2|Nf

wR(f)λf (p1)m1

p
m1/2
1

λf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)

=
∑

p1,p2

∑
m1∈N
m2∈N

B′′
m1,m2(p1, p2) log(p1) log(p2)

p
m1/2
1 p

m2/2
2 log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)
= SB′′(F).

(5.10)

5.2. Sum of Second and Third Lines of (5.2): p1|Nf , p2 ∤ Nf and p2|Nf , p1 ∤ Nf . We begin
by noting that the sums for p1|Nf , p2 ∤ Nf and p2|Nf , p1 ∤ Nf are essential symmetric with the
exception of the test function. Therefore, for A = {(1, 2), (2, 1)}, the second and third line of (5.2)
sum to

∑
(i,j)∈A

 1
WR(F)

∑
p1,p2

∑
m1∈N
m2∈N

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂i

(
m1

log(p1)
log(R)

)
ϕ̂j

(
m2

log(p2)
log(R)

) .

(5.11)

For (i, j) ∈ A fixed, we denote by (⋆) the expression inside of the brackets in (5.11). By symmetry,
it suffices to compute (⋆) for (i, j) = (1, 2).

We start by breaking the (⋆) into three parts, depending on whether m2 = 1,m2 = 2, or m2 ≥ 3.

(⋆) = 1
WR(F)

∑
p1,p2

∑
m1∈N

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

λf (p2)
√
p2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
log(p2)
log(R)

)

+ 1
WR(F)

∑
p1,p2

∑
m1∈N

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

(λf (p2)2 − 2)
p2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
2 log(p2)
log(R)

)

+ 1
WR(F)

∑
p1,p2

∑
m1∈N
m2≥3

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

· ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2 log(p2)

log(R)

)
. (5.12)

We write (⋆) = (⋆′) + (⋆′′) + (⋆′′′) where, for example, (⋆′) is the first line in (5.12). Using
the definition of B′

r1,r2(p1, p2) in (5.4) and Ar(p) in (4.2), as well as the convention that A′
r(p) =

B′
r,0(p, q) (for any prime q ∤ N), we can easily deal with the case when m2 = 1 and m2 = 2. We

have,

(⋆′) =
∑

p1,p2

∑
m1∈N

B′
m1,1(p1, p2) log(p1) log(p2)

p
m1/2
1

√
p2 log2(R)

ϕ̂1

(
m1 log(p1)

log(R)

)
ϕ̂2

( log(p2)
log(R)

)
(5.13)

and

(⋆′′) =
∑

p1,p2

∑
m1∈N

(
B′

m1,2(p1, p2) − 2Bm1,0(p1, p2)
) log(p1) log(p2)
p

m1/2
1 p2 log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
2log(p2)

log(R)

)
.

(5.14)
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We now aim to simplify (⋆′′′), which is the case when m2 ≥ 3. The purpose of the following
lemma is to remove the dependency of m2 in the argument of ϕ̂2 by arguing that we can replace
ϕ̂2
(
m2

log(p2)
log(R)

)
with ϕ̂2(0) at the cost of O

(
1/ log4(R)

)
.

Lemma 5.2. Suppose ϕ1 and ϕ2 are two even Schwartz test functions with Fourier transform
supported in [−σ, σ]. Then,

(⋆′′′) = 1
WR(F)

∑
p1

p2<Rσ

∑
m1∈N
m2≥3

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2(0)

+O

(
1

log4(R)

)
. (5.15)

Proof. By assumption, ϕ̂2 is even and therefore ϕ̂′
2(0) = 0. Thus, using the Taylor expansion around

the origin, we notice that

ϕ̂2

(
m2

log(p2)
log(R)

)
− ϕ̂2(0) = O

(
m2

2
log(p2)2

log(R)2

)
. (5.16)

Moreover, we know that for every m ∈ N and prime p,
|αf (p)m + βf (p)m| ≤ 2. (5.17)

Thus, because for p|Nf , λf (p)m = αf (p)m + βf (p)m, we have that if p|Nf ,
|λf (p)m| ≤ 2. (5.18)

Therefore, we get the following estimate:
1

WR(F)
∑
p1

p2<Rσ

∑
m1∈N
m2≥3

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

· ϕ̂1

(
m1

log(p1)
log(R)

)(
ϕ̂2

(
m2

log(p2)
log(R)

)
− ϕ2(0)

)
≲

1
log4(R)

(∑
p1

∑
m1∈N

log(p1)
p

m1/2
1

ϕ̂1

(
m1

log(p1)
log(R)

))(∑
p2

log(p2)3
∑

m2≥3

m2
2

p
m2/2
2

)
(5.19)

≲
1

log4(R)

(∑
p1

∑
m1∈N

log(p1)
p

m1/2
1

ϕ̂1

(
m1

log(p1)
log(R)

))(∑
p2

log(p2)3

p
3/2
2

)
, (5.20)

where the last line follows using the fact that m2
2 ≲

(
3
2

)m2/2
and the geometric series formula.

In fact, the proof is complete because
(∑

p1

∑
m1∈N

log(p1)
p

m1/2
1

ϕ̂1
(
m1

log(p1)
log(R)

))
and

(∑
p2

log(p2)3

p
3/2
2

)
are

convergent sums. □

With Lemma 5.2 and using the notation of M3,0(p) from (4.11), we have

(⋆′′′) = 1
WR(F)

∑
p1,p2

∑
m1∈N

∑
f∈F

p1|Nf

p2∤Nf

wR(f)λf (p1)m1

p
m1/2
1

M3,0(p2) log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2(0) +O

(
1

log4(R)

)
.

We know from [Mil09] that

M3,0(p) = 2
p(p+ 1) − p1/2(3p+ 1)

p(p+ 1)2 λf (p) − (p2 + 3p+ 1)
p(p+ 1)3 λf (p)2 +

∞∑
m=3

pm/2(p− 1)λf (p)m

(p+ 1)m+1 .
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Moreover, by observing that M3,0(p2) =
∑∞

m2=0 Pm(p2), we have that

(⋆′′′) =
∑

p1,p2

∞∑
m1=1,m2=0

B′
m1,m2(p1, p2)Pm2(p2)

p
m1/2
1

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1 log(p1)

log(R)

)
ϕ̂2 (0) . (5.21)

Now substituting (5.13), (5.14), and (5.21) for (⋆′), (⋆′′), and (⋆′′′) respectively, we get that the
second line of (5.2) equals SB′(F).

5.3. Fourth line of (5.2): p1 ∤ Nf , p2 ∤ Nf . Lastly, we show that up to O(log−4R) error, the
fourth line of (5.2) equals SBf

(F) + SB∞(F) .
For fixed primes p1, p2, let

C(m1, m2) :=
∑
f∈F

p1∤Nf

p2∤Nf

wR(f)αf (p1)m1 + βf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)
.

(5.22)
The fourth line of (5.2) is equal to

1
WR(F)

∑
p1,p2

∑
m1∈N
m2∈N

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)αf (p1)m1 + βf (p1)m1

p
m1/2
1

αf (p2)m2 + βf (p2)m2

p
m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2

(
m2

log(p2)
log(R)

)

= 1
WR(F)

∑
p1,p2

(
C(1, 1) + C(1, 2) + C(2, 1) + C(2, 2)

)
(5.23)

+ 1
WR(F)

∑
p1,p2

∑
m1,m2≥3

(
C(m1, 1) + C(m1, 2) + C(1, m2) + C(2, m2) + C(m1, m2)

)
. (5.24)

We show that the finite part, line (5.23), equals SBf
(F) while the infinite part, line (5.24), equals

SB∞(F).
The former immediately follows from the multiplicativity of Hecke eigenvalues. We know that

for all prime p, αf (p) + βf (p) = λf (p) and αf (p)2 + βf (p)2 = λf (p)2 − 2. For the latter, we need a
lemma. See Appendix B for the proof of it.

Lemma 5.3. Suppose ϕ1 and ϕ2 are even Schwartz functions with ϕ̂1 and ϕ̂2 having support in
[−σ, σ]. We then have the following estimate:

1
WR(F)

∑
p1,p2

∑
m1,m2≥3

C(m1,m2)

= 1
WR(F)

∑
p1,p2<Rσ

∑
m1,m2≥3

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)
∑2

j=1 (αf (pj)mj + βf (pj)mj )

p
m1/2
1 p

m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1(0)ϕ̂2(0)

+O

(
1

log4(R)

)
. (5.25)

Lemma 5.4. Suppose ϕ1 and ϕ2 are even Schwartz functions with ϕ̂1 and ϕ̂2 having compact
support in [−σ, σ]. We can estimate every term of (5.24) up to the desired error by replacing

18



ϕ̂i

(
mi log(pi)

log(R)

)
by ϕ̂i(0) and summing over primes pi < Rσ. For example, for the first term, we have

1
WR(F)

∑
p1,p2

∑
m1≥3

C(m1, 1)

= 1
WR(F)

∑
p1,p2<Rσ

∑
m1≥3

∑
f∈F

p1∤Nf

p2∤Nf

wR(f) (αf (p1)m1 + βf (p1)m1)λf (p2)
p

m1/2
1 p

1/2
2

log(p1) log(p2)
log2(R)

ϕ̂1(0)ϕ̂2

(
log(p2)
log(R)

)

+O

(
1

log4(R)

)
. (5.26)

The proof of Lemma 5.4 follows from the proof of Lemma 5.3. □
Now using lemmas 5.3 and 5.4, as well as using formulas for M3,0(p) from [Mil09], we get

1
WR(F)

∑
p1,p2

∑
m2≥3

C(1,m2)

= 1
WR(F)

∑
p1,p2

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)λf (p1)
√
p1

M3,0(p2) log(p1) log(p2)
log2(R)

ϕ̂1

( log(p1)
log(R)

)
ϕ̂2(0) +O

(
1

log4(R)

)

= ϕ̂1(0)
∑

p1,p1

∞∑
m1=0

ϕ̂2

( log(p2)
log(R)

) log(p1) log(p2)
log2(R)

Bm1,1(p1, p2)Pm1(p1)
√
p2

+O

(
1

log4(R)

)
.

Performing a similar substitution, we have

∑
p1,p2

∑
m2≥3

C(2, m2)
WR(F)

= ϕ̂1(0)
∑

p1,p2<Rσ

∞∑
m1=0

log(p1) log(p2)
log2(R)

ϕ̂2

(
2 log(p2)
log(R)

)
(Bm1,2(p1, p2) − 2Bm1,0(p1, p2))Pm1 (p1)

p2
+ O

(
1

log4(R)

)
,

∑
p1,p2

∑
m1≥3

C(m1, 1)
WR(F)

= ϕ̂2(0)
∑

p1,p1<Rσ

∞∑
m1=0

ϕ̂1

(
log(p1)
log(R)

)
log(p1) log(p2)

log2(R)
Bm1,1(p1, p2)Pm1 (p2)

√
p2

+ O

(
1

log4(R)

)
,

∑
p1,p2

∑
m1≥3

C(m1, 2)
WR(F)

= ϕ̂2(0)
∑

p1,p2<Rσ

∞∑
m1=0

log(p1) log(p2)
log2(R)

ϕ̂1

(
2 log(p1)
log(R)

)
(Bm1,2(p1, p2) − 2Bm1,0(p1, p2))Pm1 (p2)

p2
+ O

(
1

log4(R)

)
,

∑
p1,p2

∑
m1,m2≥3

C(m1, m2)
WR(F)

= ϕ̂1(0)ϕ̂2(0)
∑

p1,p2<Rσ

∞∑
m1,m2=0

log(p1) log(p2)
log2(R)

Bm1,m2 (p1, p2)Pm1 (p1)Pm2 (p2) + O

(
1

log4(R)

)
. (5.27)

With this, we can see that SB∞(F) is equivalent to (5.24), finishing the proof of Theorem 5.1.
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6. Formulas for Family Specific Terms

We use the harmonic weights4 to facilitate computing explicitly the asymptotic. Recall we are
working with the weights

wR(f) = ZN (1, f)
Z(1, f)

where ZN (s, f) and Z(s, f) are defined in (2.14) and (2.13) respectively. We consider F = H∗
k(N)

the family of holomorphic cusp newforms with weight k and level N . We consider four different
scenarios in which the level approaches infinity.

• N is prime.

• N = q1q2 for two primes q1, q2, with q1 ̸= q2 and q1 fixed.

• N = q1q2 for two primes with q1 ∼ N δ and q2 ∼ N1−δ where δ ∈ (0, 1/2].

• N = p2 where p is prime
The goal of this section is to compute explicitly the terms A′

r(p), Ar(p), B′′
r1,r2(p1, p2), B′

r1,r2(p1, p2),
and Br1,r2(p1, p2), which determine the value of S1(F , ϕ1, ϕ2) and S2(F , ϕ1, ϕ2). We will find we
only see significant differences in the moment when q1 is fixed and q2 → ∞.

Recall that using the definition of the above terms involve the sum of the weights over the family
WR(F) :=

∑
f∈F wR(f). Therefore, we start by computing WR(F) for each scenario.

6.1. Sum of the Weights. We compute the sum of the weights for each scenario below. In brief,
we do so by first appealing the Peterson trace formula and resulting bounds in [ILS00a] in the
N square-free case and to proposition 4.1 in [Bar+16] for the N = p2 case. Below, Lemma 6.1
computes WR(F) for the first three square-free cases while Lemma 6.2 computes it for N = p2

case.

Lemma 6.1. Let N = q1q2 be square-free with q1, q2 being distinct primes with

q1 ∼ C1N
δ, q2 ∼ C2N

1−δ.

Here, δ ∈ [0, 1/2] while C1, C2 can be both prime constants if δ ̸= 0, or C1 = 1 or prime and C2
prime if δ = 0. Then,

WR(F) :=
∑
f∈F

wr(f) = k − 1
12 φ(N) +O(E(N, δ)), (6.1)

where

E(N, δ) =


log(N)

N
1−δ

2
if 0 < δ ≤ 1

2 or δ = 0, C1 = 1
log2(N)

N1/2 if δ = 0 and C1 prime.

4The harmonic weights are nearly constant across the family: by [Iwa90], [HL94],[Mil09] we have wR(f) = N ϵ

uniformly for f in the family. If we allow ineffective constants, the factor Nε can be replaced by log(N) for sufficiently
large N .There are other ways of normalizations. [Mil09] and our paper averages with wR(f) = ζN (2)

Z(1,f) = ζ(2)
L(1,sym2f) .

Rouymi [Rou11] uses the Petersson-harmonic weight w′
R(f) = Γ(k−1)

(4π)k−1 ⟨f, f⟩−1
N . Rankin-Selberg shows ⟨f, f⟩N ≍k,N

L(1, sym2f), so wR(f) ∝k,N w′
R(f). In addition, using this weight, Rouymi derived formulas for level N = pα for

fixed prime p and α → ∞. We also note that different weights exhibit different behaviors as seen in [KR19] and
[Dil+25].
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Proof. We begin by noticing that WR(F) = ∆∗
k,N (1, 1), which by Proposition 2.3 ([ILS00a]

Lemma 2.7) becomes

WR(F) = ∆∗
k,N (1, 1) = k − 1

12
∑

LM=N

µ(L)M
∑

ℓ|L∞

ℓ−1∆k,M (ℓ2, 1). (6.2)

Notice that if C1 = 1, then N is a prime and we get that

WR(F) = k − 1
12

N∆k,N (1, 1) −
∑

ℓ|N∞

ℓ−1∆k,q1(ℓ2, 1)

 .
On the other hand, if C1 ̸= 1, N is product of 2 distinct primes; so, we have:

WR(F) = k − 1
12

N∆k,N (1, 1) − q1
∑
ℓ|q∞

2

ℓ−1∆k,q1(ℓ2, 1) − q2
∑
ℓ|q∞

1

ℓ−1∆k,q2(ℓ2, 1) +
∑

ℓ|N∞

ℓ−1∆k,1(ℓ2, 1)

 .
Using Proposition 2.2 ([ILS00a] Cor 2.2), we have that

∆k,N (1, 1) = 1 +Ok

( 1
N3/2

)
and ∆k,M (ℓ2, 1) = δ(ℓ2, 1) +Ok

(
ℓ log(2ℓ2)

M(ℓ+ kM)1/2

)
,

where the implied constant is absolute in k. We first evaluate the two sums that appear in both
the N prime and N being the product of two distinct primes cases, then move to the sums specific
to the two prime case.

Case 1: N∆k,N (1, 1)
We see that since

∆k,N (1, 1) = 1 +Ok

( 1
N3/2

)
,

we have
N∆k,N (1, 1) = N +Ok

( 1
N1/2

)
for the first case.

Case 2:
∑

ℓ|N∞ ℓ−1∆k,q1(ℓ2, 1)
We have that∑

ℓ|N∞

ℓ−1∆k,1(ℓ2, 1) =
∞∑

r1,r2=0
q−r1

1 q−r2
2 ∆k,1(q2r1

1 q2r2
2 , 1)

=
∞∑

r1,r2=0

[
q−r1

1 q−r2
2 δ(q2r1

1 q2r2
2 , 1) +Ok

(
log(2q2r1

1 q2r2
2 )

(qr1
1 q

r2
2 + k)1/2

)]
. (6.3)

As q−r1
1 q−r2

2 δ(q2r1
1 q2r2

2 , 1) = 1 if and only if r1 = r2 = 0 and is 0 otherwise
∞∑

r1,r2=0
q−r1

1 q−r2
2 δ(q2r1

1 q2r2
2 , 1) = 1.

Since the implied constant is absolute and k is constant, we can combine the sum of the big O
terms into one error, and obtain

1 +Ok

 ∞∑
r1,r2=0

log(2q2r1
1 q2r2

2 )
(qr1

1 q
r2
2 + k)1/2

 .
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We now see
∞∑

r1,r2=1

log(2qr1
1 q

r2
2 )√

qr1
1 q

r2
2 + k

≲k
log(q1)

√
q2

 ∞∑
r1=1

r1√
qr1

1

+ log(q2)
√
q1

 ∞∑
r2=1

r2√
qr2

2

 ≲k
log(N)√

N
.

Thus we have

1 +Ok

( log(N)
N1/2

)
.

We have now exhausted the cases for N prime, giving us an error term of Ok

(
log(N)
N1/2

)
. We now

operate under the assumption that if δ = 0, then C1 is prime.

Case 3: q1
∑

ℓ|q∞
2
ℓ−1∆k,q1(ℓ2, 1)

Similarly,

q1
∑
ℓ|q∞

2

ℓ−1∆k,q1(ℓ2, 1) = q1

∞∑
m=0

q−m
2 ∆k,q1(q2m

2 , 1)

= q1

∞∑
m=0

q−m
2

(
δ(q2m

2 , 1) +Ok

(
qm

2 log(2q2m
2 )

q1(qm
2 + kq1)1/2

))

= q1 +Ok

( ∞∑
m=0

log(2q2m
2 )

(qm
2 + kq1)1/2

)

for the same reasons as in Case 2. We now turn our attention to the error term
∞∑

m=0

log(2q2m
2 )

(qm
2 + kq1)1/2 ≲k log(q2)

∞∑
m=0

m

q
m/2
2

≲k
log(q2)
q

1/2
2

≲k
logN

N (1−δ)/2 .

Thus we have

q1
∑
ℓ|q∞

2

ℓ−1∆k,q1(ℓ2, 1) = q1 +O

( log(N)
N (1−δ)/2

)
.

Case 4: q2
∑

ℓ|q∞
1
ℓ−1∆k,q2(ℓ2, 1)

Latly, we have

q2
∑
ℓ|q∞

1

ℓ−1∆k,q2(ℓ2, 1) = q2

∞∑
m=0

q−m
1 ∆k,q2(q2m

1 , 1)

= q2

∞∑
m=0

q−m
1

(
δ(q2m

1 , 1) +Ok

(
qm

1 log(2q2m
1 )

q2(qm
1 + kq2)1/2

))

= q2 +Ok

( ∞∑
m=0

log(2q2m
1 )

(qm
1 + kq2)1/2

)
.

We note that this error term requires additional care as when δ = 0, the method used in Case 3
achieves an O(1) error. Thus we write

∞∑
m=0

log(2q2m
1 )

(qm
1 + kq2)1/2 ≲k

log(q1)
q

1/2
2

 ∑
m≤ log(kq2)

log(q1)

m

( qm
1

kq2
+ 1)1/2

+
∑

m>
log(kq2)
log(q1)

m

( qm
1

kq2
+ 1)1/2

 .
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For the first sum, since qm
1 /kq2 ≤ 1, we have∑

m≤ log(kq2)
log(q1)

m

( qm
1

kq2
+ 1)1/2

≲k

∑
m≤ log(kq2)

log(q1)

m ≲k
log2(kq2)
log2(q1)

.

The second sum requires more care. Define α = ⌈log(kq2)/ log(q1)⌉. We can rewrite the sum as∑
m≥α

m

( qm
1

kq2
+ 1)1/2

=
∞∑

m=0
(m+ α) 1

( qm+α
1
kq2

+ 1)1/2
≲

∞∑
m=0

(m+ α) 1
(qm

1 )1/2 ≲
log(kq2)
log(q1) . (6.4)

Combining these together yields

log(q1)
q

1/2
2

 ∑
m≤ log(kq2)

log(q1)

m

( qm
1

kq2
+ 1)1/2

+
∑

m>
log(kq2)
log(q1)

m

( qm
1

kq2
+ 1)1/2

 ≲
log(q1)
q

1/2
2

[
log2(kq2)
log2(q1)

+ log(kq2)
log(q1)

]

≲
log2(C2N

1−δ)
(C2N1−δ)1/2 log2(C1Nδ)

+ log(C2N
1−δ)

(C2N1−δ)1/2 .

(6.5)

Here we note that if δ = 0, left term dominates, otherwise the right term dominates, thus
∞∑

m=0

log(2q2m
1 )

(qm
1 + kq2)1/2 = O(E(N, δ))

E(N, δ) =


log(N)

N
1−δ

2
if 0 < δ ≤ 1

2

log2(N)
N1/2 if δ = 0.

Combining this with the other error terms and observing that φ(N) =
∑

d|N µ(d)N/d yields the
lemma. □
While the Peterson trace formula applies for square-free level, we wish to investigate beyond this
condition. Thus we appeal to proposition 4.1 in [Bar+16] to obtain the following lemma.

Lemma 6.2. Let N = p2 for some prime p, then

WR(F) =
∑

f∈H∗
k

(N)
wR(f) = k − 1

12 (p2 − p− 1) + O

( 1
N1/4

)
= k − 1

12 (φ(N) − 1) + O

( 1
N1/4

)
.

(6.6)

We have
WR(F) = ∆∗

k,N (1, 1). (6.7)
By applying Proposition 2.5, we have

WR(F) = k − 1
12

µ(1)p2
(
p2 − 1
p2

)
∆k, p2(1, 1) + µ(p)p∆k, p(1, 1) + µ(p2)

∑
ℓ|(p2)∞

(ℓ,1)=1

ℓ−1∆k, 1(ℓ2, 1)


= k − 1

12 ((p2 − 1)∆k, p2(1, 1) − p∆k, p(1, 1)).

We now use [ILS00a] Proposition 2.2 to compute ∆k, p(1, 1) and ∆k, p2(1, 1):

∆k, p(1, 1) = 1 + O

(
τ(p)
pk5/6

( 1
1 + kp

)1/2
log(2)

)
= 1 +Ok

( 1
p3/2

)
.
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Similarly,

∆k, p2(1, 1) = 1 + O

(
τ(p2)
p2k5/6

( 1
1 + kp2

)1/2
log(2)

)
= 1 +Ok

( 1
p3

)
.

Thus, we have

WR(F) = k − 1
12 (p2 − p− 1) + Ok

( 1
N1/4

)
.

□

6.2. Computing Terms. Recall that our extended explicit formula is expressed in terms of
weighted average moments of Hecke eigenvalues, namely

∑
f∈H∗

k
(N)

λ(p1)r1λ(p2)r2 ,

wherein restrictions are placed on p1, p2 relative to the level N . We wish to compute these average
weighted moments for our four cases: N prime, N = q1q2 with q1 fixed and distinct from q2,
N = q1q2 with both distinct and neither fixed, and lastly N = p2. We summarize our results in
the following four lemmas.

Remark 6.3. Note that unless otherwise stated, the value of the moments in the following lemmas
is 0.

Lemma 6.4. For F = H∗
k(N) where N is a prime, the following holds:

A′
r(p) = O(N−r/2)

Ar(p) =

Cr/2 + O
(

r2rpr/4 log(prN)
N

)
if r even,

O
(

r2rpr/4 log(prN)
N

)
if r odd.

B′′
r1,r2 (p1, p2) = O

(
N−(r1+r2)/2)

B′
r1,r2 (p1, p2) = O

(
2r2 N−r1/2)

Br1,r2 (p1, p2) =


C(r1+r2)/2 + O

(
2r1+r2 (pr1

1 pr2
2 )1/4 log(2p

r1
1 p

r2
2 N) log(N)

k5/6N

)
if p1 = p2 and (r1 − r2 mod 2) = 0,

Cr1/2Cr2/2 + O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N) log(N)

k5/6N

)
if p1 ̸= p2 and r1, r2 even,

O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N) log(N)

k5/6N

)
otherwise.

Proof of Lemma 6.4. First, we show asymptotics for Ar(p) and A′
r(p). We know that if p|N, then

p = N. Therefore, we first determine how A′
r(N) behaves. We know that λf (N)2 = 1

N . Therefore,
we have

A′
r(N) = O(N−r/2). (6.8)
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Moreover, we compute Ar(p) for p ̸= N. To do this, we use (6.13) and (6.12):

Ar(p) = 1
WR(F)

∑
f∈F

wR(f)λf (p)r

= 1
WR(F)

∑
f∈F

wR(f)
⌊r/2⌋∑
k=0

br,r−2kλf (pr−2k)

=
⌊r/2⌋∑
ℓ=0

br,r−2ℓ

(
δ
(
pr−2ℓ, 1

)
+O

(
p

r−2ℓ
4

log(2pr−2ℓN)
N

))

=

Cr/2 +O
(

r2rpr/4 log(prN)
N

)
if r even,

O
(

r2rpr/4 log(prN)
N

)
if r odd.

(6.9)

where Cr/2 is the (r/2)th Catalan number (see sequences in A000108, A000984 in [Slo]). For the last
equality, we use the fact that br,r−2ℓ ≤ 2r.We compute B′′

r1,r2,H∗
k

(N)(p1, p2), B′
r1,r2,H∗

k
(N)(p1, p2),

and Br1,r2,H∗
k

(N)(p1, p2) for various r1, r2, p1, and p2. Because N is prime, notice that if prime p
divides N , then p = N . First, notice that

B′′
r1,r2,H∗

k
(N)(N,N) ≲

1
N (r1+r2)/2 , (6.10)

because N is prime, thus square-free, and in this case, for all prime p|N, λf (p)2 = 1
p .

Secondly, for p2 ∤ N , we have

B′
r1,r2,H∗

k
(N)(N, p2) = 1

WR(F)
∑
f∈F

wR(f)λf (N)r1λf (p2)r2

≲
1

N r1/2

 1
WR(F)

∑
f∈F

wR(f)λf (p2)r2

 ≲
2r2

N r1/2 . (6.11)

Recall for (p1, p2, N) = 1, by equation 2.4 we have

∑
f∈H∗

k
(N)

wR(f)λ(m)λ(n) = k − 1
12 φ(N)δ(m,n)+O

(
k1/6(mn)1/4(n,N)−1/2τ2(N)τ3((m,n)) log(2mnN)

)
.

Therefore using (6.1), we find

1
WR(F)

∑
f∈H∗

k
(N)

wR(f)λ(m)λ(n) = δ(m,n) +O

(
(mn)1/4 log(2mnN)

k5/6N

)
. (6.12)

In addition, note that

λf (p)r =
⌊r/2⌋∑
k=0

br,r−2kλf

(
pr−2k

)
. (6.13)

We can compute br,r−2k recursively using the fact that λf (m)λf (n) =
∑

d|(m,n) λf

(
mn
d2

)
.
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Thus, we have that for p1 ∤ N and p2 ∤ N :
Br1,r2,H∗

k
(N)(p1, p2) (6.14)

=
⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1 br2,r2−2k2

[
δ(pr1−2k1

1 , pr2−2k2
2 ) + O

(
(pr1

1 pr2
2 )1/4 log(2pr1

1 pr2
2 N)

k5/6N

)]

=
⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1 br2,r2−2k2 δ(pr1−2k1
1 , pr2−2k2

2 ) + O

(
(pr1

1 pr2
2 )1/4 log(2pr1

1 pr2
2 N)

k5/6N

)

=



O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N)

k5/6N

)
if p1 = p2 and (r1 − r2 mod 2) = 1

C(r1+r2)/2 + O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N)

k5/6N

)
if p1 = p2 and (r1 − r2 mod 2) = 0

O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N)

k5/6N

)
if p1 ̸= p2 and (r1 − r2 mod 2) = 1 or p1 ̸= p2 and r1, r2 odd

Cr1/2Cr2/2 + O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N)

k5/6N

)
if p1 ̸= p2 and r1, r2 both even.

(6.15)

where Cr is the rth Catalan number. The second-to-last equality follows because the sums here are
finite. □

Next, we compute the termsA′
r,F (p), Ar,F (p), B′′

r1,r2,F (p1, p2), B′
r1,r2,F (p1, p2), andBr1,r2,F (p1, p2)

for the other three cases we consider. The proof of them is similar to that of Lemma 6.4 and can
be found in Appendix C.

Lemma 6.5. Suppose F = H∗
k(N) where N = q1 · q2 for fixed prime q1 and q2 → ∞. Then

A′
r,F (p) =


q

−r/2
1 if p = q1 and r even,

O
( log(N)

N

)
if p = q1 and r odd,

O
(
N−r/2) if p = q2.

Ar,F (p) =

Cr/2 + Ok

(
2rpr/4 log(prN) log(N)

N

)
if r even,

Ok

(
2rpr/4 log(prN) log(N)

N

)
if r odd.

B′′
r1,r2,F (p1, p2) =


q

−(r1+r2)/2
1 if p1 = p2 = q1, r1 ≡ r2 (mod 2),

O
(

log2(N)
N

)
if p1 = p2 = q1, r1 ̸≡ r2 (mod 2),

O
(
N−⌊min(r1,r2)/2⌋) if p1 = q2 or p2 = q2.

B′
r1,r2,F (p1, p2) =



Cr2/2

q
r1/2
1

+ Ok,q1

(
2r2 p

r2/4
2 log(p

r2
2 N)

N

)
if p1 = q2, r1 even, r2 even,

Ok,q1

(
2r2 p

r2/4
2 log(p

r2
2 N)

N

)
if p1 = q2, r1 even, r2 odd,

Oq1,k

(
2r2 p

r2/4
2 log(p

r2
2 )

N

)
if p1 = q1 and r1 odd,

O

(
2r2 p

r2/4
2 log(p

r2
2 N)

N⌊r1/2⌋+1

)
if p1 = q2.

Br1,r2 (p1, p2) =


C(r1+r2)/2 + O

(
2r1+r2 (pr1

1 pr2
2 )1/4 log(2p

r1
1 p

r2
2 N) log(N)

k5/6N

)
if p1 = p2 and (r1 − r2 mod 2) = 0,

Cr1/2Cr2/2 + O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N) log(N)

k5/6N

)
if p1 ̸= p2 and r1, r2 even,

O
(

2r1+r2 (pr1
1 pr2

2 )1/4 log(2p
r1
1 p

r2
2 N) log(N)

k5/6N

)
otherwise.
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Lemma 6.6. Let F = H∗
k(N) and N = q1q2 with q1, q2 prime and q1 ∼ N δ, q2 ∼ N1−δ, where

δ ∈ (0, 1/2]. Then,
A′

r(p) = O
(

1
Nrδ/2

)
Ar,F (p) =

Cr/2 + Ok

(
2rpr/4 log(prN)

N

)
if r even,

Ok

(
2rpr/4 log(prN)

N

)
if r odd.

B′′
r1,r2 (p1, p2) = O

(
1

N(r1+r2)δ/2

)
B′

r1,r2 (p1, p2) = O
(

2r2

Nr1δ/2

)

Br1,r2 (p1, p2) =


Cr1/2Cr2/2 + O

(
2r1+r2 p

r1/4
1 p

r2/4
2 N−1 log

(
2p

r1/4
1 p

r2/4
2 N

))
if r1, r2 even and p1 ̸= p2,

C(r1+r2)/2 + O
(

2r1+r2 p
r1/4
1 p

r2/4
2 N−1 log

(
2p

r1/4
1 p

r2/4
2 N

))
if r1 − r2 ≡ 0 (mod 2) and p1 = p2,

O
(

2r1+r2 p
r1/4
1 p

r2/4
2 N−1 log

(
2p

r1/4
1 p

r2/4
2 N

))
otherwise.

Lemma 6.7. Let F = H∗
k(N) and N = p2 with p → ∞. Then,

A′
r,F (q) = 0

Ar,F (q) =

Cr/2 + Ok

(
2rq

r
4 log(2qr)

N

)
r even

Ok

(
2rq

r
4 log(2qr)

N

)
r odd

B′′
r1,r2,F (p1, p2) = 0

B′
r1,r2,F (p1, p2) = 0

Br1,r2,F (p1, p2) =



Cr1/2Cr2/2 + Ok

(
1
N

2r1+r2 p
r1/4
1 p

r2/4
2 log (2pr1

1 pr2
2 )
)

if p1 ̸= p2 and r1, r2 even

Ok

(
1
N

2r1+r2 p
r1/4
1 p

r2/4
2 log (2pr1

1 pr2
2 )
)

if p1 ̸= p2 and r1, r2 odd

C r1+r2
2

+ Ok

(
1
N

2r1+r2 p
r1/4
1 p

r2/4
2 log (2pr1

1 pr2
2 )
)

if p1 = p2 and r1 − r2 ≡ 0 mod 2

Ok

(
1
N

2r1+r2 p
r1/4
1 p

r2/4
2 log (2pr1

1 pr2
2 )
)

if p1 = p2 and r1 − r2 ≡ 1 mod 2.

Remark 6.8. Notice that for the three cases where N prime, N product of two primes with both
factors going to infinity, and N square, the terms A′, B′′, and B′ do not admit a main term. On
the other hand, for N = q1q2 where q1 is fixed, A′, B′′, and B′ have main terms. Moreover, in all
four cases depending on N , even up to the error terms, the A and B terms are equal. This is an
important remark to keep in mind because it will save us a lot of computations later.

7. Lower Order Terms

Theorem 7.1. Suppose the test function ϕ is an even Schwartz function with ϕ̂ supported in [−σ, σ]
for σ < 0.22 5 If N is prime or N = q1q2 where both q1 and q2 goes to infinity, SA′(F) is negligible,
i.e.,

SA′(F) = O

(
1

log4(R)

)
.

However, when N = q1q2 for fixed q1, we have

SA′(F) = −2log(q1)
log(R)

ϕ̂(0)
q2

1 − 1
− log(q1)

log(R)
ϕ̂′′(0)
q2

1 − 1
+O

(
1

log5(R)

)
. (7.1)

5The restriction for the support arises in the proof.
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Proof. We compute the term

−2
∑

p:p|N

∞∑
m=1

A′
m,F (p)
pm/2

log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)

from S1(F , ϕ) up to the desired error.

Case 1. When N is prime, by Lemma 6.4

A′
r,F (p) = O(N−r/2).

Note that in this case p = N is the only prime factor of N and hence the sum becomes

−2
∞∑

m=1

1
Nm

log(N)
log(R) ϕ̂

(
m

log(N)
log(R)

)
≲

1
N

(
log(N)
log(R) + (log(N))3

(log(R))3 + · · ·
)

≲
log(N)
N log(R) ≲

1
N
. (7.2)

Case 2. When N = q1 · q2 with q1 < q2 and q1 is fixed, by Lemma 6.5

A′
r,F (p) =


q

−r/2
1 if p = q1 and r even,
O
(

log(N)
N

)
if p = q1 and r odd

O
(
N−r/2

)
if p = q2.

Notice that in this case, the main term only comes from when p = q1 and r is even. Therefore, the
main term is given by

−2
∞∑

r=1

1
q2r

1

log(q1)
log(R) ϕ̂

(
2r log(q1)

log(R)

)
= −2 log(q1)

log(R)
ϕ̂(0)

q2
1(1 − q−2

1 )
− log(q1)

log(R)
ϕ̂′′(0)

q2
1(1 − q−2

1 )
+O

(
1

log5(R)

)
. (7.3)

The equality follows from the power series expansion of the even function ϕ̂. Moreover, the error
term is bounded by

− 2
∞∑

r=1

log(N)

Nq
r− 1

2
1

log(q1)
log(R) ϕ̂

((2r − 1) log(q1)
log(R)

)
− 2

∞∑
m=1

1
Nm/2q

m/2
2

log(q2)
log(R) ϕ̂

((2r − 1) log(q2)
log(R)

)

≲
1
N

( ∞∑
r=1

1
qr

1

)
+

∞∑
m=1

1
Nm

≲
1
N
. (7.4)

Thus, we get that in this case,

−2
∑

p:p|N

∞∑
m=1

A′
m,F (p)
pm/2

log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)

= −2log(q1)
log(R)

ϕ̂(0)
q2

1(1 − q−2
1 )

− log(q1)
log(R)

ϕ̂′′(0)
q2

1(1 − q−2
1 )

+O

(
1

log5(R)

)
. (7.5)

Case 3. When N = q1 · q2 and q1, q2 → ∞, by Lemma 6.6 we have

A′
r,F (p) = O

(
N−rδ/2

)
, where 0 ≤ δ <

1
2 .
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Then, the term becomes an error term because

−2
∑

p:p|N

∞∑
m=1

A′
m,F (p)
pm/2

log(p)
log(R) ϕ̂

(
m

log(p)
log(R)

)
≲

1
log(R)

( ∞∑
m=1

log(q1)
Nmδ/2q

1+m/2
1

ϕ̂

(
m

log(q1)
log(R)

)

+
∞∑

m=1

log(q2)
Nmδ/2q

1+m/2
2

ϕ̂

(
m

log(q2)
log(R)

))

≲
1

log(R)N δ
.

□

Theorem 7.2. Suppose the test function ϕ is an even Schwartz function with ϕ̂ supported in [−σ, σ]
for σ < 0.22. For all our cases, we have

SA(F) = ϕ(0)
2 + ϕ̂(0)

log(R) (2γP NT 3 − γA,2 + γA,3 + γA,6) + ϕ̂′′(0)
log3(R)

(4γA,1 + γA,4 + γA,5 + γA,7) ,

(7.6)

where

γP NT 3 := 1 +
ˆ ∞

1

E(t)
t2 dt ≈ −1.33258

γA,1 :=
ˆ ∞

1

E(t)
t2

(
(log(t))2 − 2 log(t)

)
dt ≈ −10.0881

γA,2 :=
∑

p

4 log(p)
p(p + 1) ≈ 1.5382

γA,3 :=
∑

p

2(p2 + 3p + 1) log(p)
p(p + 1)3 ≈ 0.8852

γA,4 :=
∑

p

(32p2 + 24p + 8) log3(p)
p(p + 1)3 ≈ 43.6045

γA,5 :=
∑

p

(−64p4 + 4p3 − 44p2 − 20p − 4) log3(p)
p(p + 1)5 & ≈ −72.6540

γA,6 :=
∑

p

2(p − 1) log(p)
(p + 1)

∞∑
r=2

Crpr

(p + 1)2r
≈ 0.8321

γA,7 :=
∑

p

(p − 1) log3(p)
(p + 1)3

∞∑
r=3

Crpr(4r2(p − 1)2 − 24rp − 8p)
(p + 1)2r

≈ 5.8746529 (7.7)

and where we let θ(t) =
∑

p≤t log(p) and define E(t) := θ(t) − t be the error.

Proof of Theorem 7.2, We note that, regardless of factorization, we have

Ar,F (p) =

Cr/2 +Ok

(
r2rpr/4 log(p) log2(N)

N

)
if r even

Ok

(
r2rpr/4 log(p) log2(N)

N

)
if r odd.

(7.8)
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Thus we have

A0,F (p) = 1 +Ok

(
log(p) log2(N)

N

)

A1,F (p) = Ok

(
p1/4 log(p) log2(N)

N

)

A2,F (p) = 1 +Ok

(
p1/2 log(p) log2(N)

N

)
. (7.9)

Since

log2(N)
N log(R)

∑
p≤Rσ

log2(p)
p2 ≲

log2(N)
RσN

log2(N)
N log(R)

∑
p≤Rσ

log2(p)
p5/4 ≲

log2(N)
Rσ/4N

log2(N)
N log(R)

∑
p≤Rσ

log2(p)
p3/2 ≲

log2(N)
Rσ/2N

,

the error terms for all the finite sums in Theorem (4.1) that are multiplied by a Schwartz function
are sufficiently small and we have that the sums equal

− 2ϕ̂ (0)
∑

p

2 log(p)
p(p+ 1) log(R) + 2ϕ̂ (0)

∑
p

(p2 + 3p+ 1) log(p)
p(p+ 1)3 log(R)

+ ϕ̂′′(0)
∑

p

(32p2 + 24p+ 8) log3(p)
p(p+ 1)3 log3(R)

− ϕ̂′′(0)
∑

p

(64p4 − 4p3 + 44p2 + 20p+ 4) log3(p)
p(p+ 1)5 log3(R)

.

We now deal with the terms

2
∑

p

2A0,F (p) log(p)
p log(R) ϕ̂

(
2 log(p)

log(R)

)

−2
∑

p

A1,F (p) log(p)
p1/2 log(R)

ϕ̂

( log(p)
log(R)

)

−2
∑

p

A2,F (p) log(p)
p log(R) ϕ̂

(
2 log(p)

log(R)

)
.

In the appendix D, we estimate many sums up to our required error, which we now employ to
compute these expressions. In many cases, the error terms are left with convergent but non-
elementary integrals that must be estimated numerically. Since the main terms for A2(F)(p) and
A0(F)(p) agree and A1(F)(p) is an error, using Lemma D.1, we have

2
∑

p

2A0,F (p) log(p)
p log(R) ϕ̂

(
2 log(p)

log(R)

)
− 2
∑

p

A2,F (p) log(p)
p log(R) ϕ̂

(
2 log(p)

log(R)

)
= ϕ(0)

2 + 2ϕ̂(0)
log(R)

(
1 +
ˆ ∞

1

E(t)
t2 dt

)
+ 4ϕ̂′′(0)

(log(R))3

ˆ ∞

1

E(t)
t2

(
(log(t))2 − 2 log(t)

)
dt + O

( 1
log4(R)

)
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as the main term for these two sums. We now show the error terms in these cases are sufficiently
small. Using compact support, we have our error terms as

log(R)
N

∑
p≤Rσ

log2(p)
p

≲
log3(R)
N

log(R)
N

∑
p≤Rσ

log2(p)
p1/4 ≲

R3σ/4 log(N)
N

log(R)
N

∑
p≤Rσ

log2(p)
p1/2 ≲

Rσ/2 log(N)
N

, (7.10)

which for restricted support are all sufficient. We now evaluate the last two sums. Using (7.7) and
(7.8), we have

∑
p

∞∑
r=3

Ar,F (p)pr/2(p− 1) log(p)
(p+ 1)r+1 log(R) =

∑
p

(p− 1) log(p)
(p+ 1) log(R)

∞∑
r=2

Crp
r

(p+ 1)2r
+O

(
1

log4(R)

)
. (7.11)

We now aim to evaluate

∑
p

∞∑
r=3

Ar,F (p)(p− 1)(r2(p− 1)2 − 12rp− 8p)pr/2 log3(p)
(p+ 1)r+3 log3(R)

.

We first show the tail is negligible. We see

∑
p

∞∑
r=1+2 log(R)

Ar,F (p)((p − 1)(r2(p − 1)2 − 12rp − 8p)pr/2 log3(p)
(p + 1)r+3 log3(R)

≲
1

log3

∑
p

log3(p)
∞∑

r=1+2 log(R)

r2
(

2p1/2

p + 1

)r

.

(7.12)

Further,

1
log3(R)

∑
p

log3(p)
∞∑

r=1+2 log(R)
r2
(

2p1/2

p+ 1

)r

≲
1

log3(R)
∑

p

log3(p)
(
p1/2

p+ 1

)2 log(R)+1 ∞∑
r=1

r2
(

2p1/2

p+ 1

)r

≲
1

log3(R)
∑

p

log3(p)
(
p1/2

p+ 1

)2 log(R)+1 ∞∑
r=0

r2
(

2p1/2

p+ 1

)r

≲
1

log3(R)
∑

p

log3(p)
(

2p1/2

p+ 1

)2 log(R)+1

≲
1

R−.11 log3(R)
. (7.13)

Thus the tail is negligible. We now show the error term that arises from Ar(F) in the truncated
sum is also negligible. Using the same asymptotic for the rational function in the sum, we have
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that the error is

1
N log3(R)

∑
p≤Rσ

log4(p)
2 log(R)∑

r=3
r3
(

2p3/4

(p+ 1)

)r

≲
1

N log3(R)

 ∑
p<2025

log4(p)
2 log(R)∑

r=3
r3
(

2p3/4

(p+ 1)

)r ∑
2025<p<Rσ

log4(p)
2 log(R)∑

r=3
r3
(

2p3/4

(p+ 1)

)r


≲
1
N

2025 ·
(

2 · 33/4

4

)2 log(R)

+
∑

p∈[2027,Rσ ]

(
2p3/4

p+ 1

)
≲

Rmax{.11,3σ/4}

N
,

which is negligible for our support. Thus, we have

∑
p

(p− 1) log3(p)
p+ 1

log(R)∑
r=2

Crp
r(1 + 2r)

(
p2(2r − 1) − p(10 + 4r) + (2r − 1)

)
(p+ 1)2r log3(R)

(7.14)

as our main term. This sum can be extended to infinity at the cost of R−0.11, which is negligible.
Thus, we have shown

SA(F) = ϕ(0)
2 + 2ϕ̂(0)

log(R)

(
1 +
ˆ ∞

1

E(t)
t2

dt
)

+ 4ϕ̂′′(0)
(log(R))3

ˆ ∞

1

E(t)
t2

(
(log(t))2 − 2 log(t)

)
dt

− 2ϕ̂ (0)
∑

p

2 log(p)
p(p+ 1) log(R) + 2ϕ̂ (0)

∑
p

(p2 + 3p+ 1) log(p)
p(p+ 1)3 log(R) + ϕ̂′′(0)

∑
p

(32p2 + 24p+ 8) log3(p)
p(p+ 1)3 log3(R)

− ϕ̂′′(0)
∑

p

(64p4 − 4p3 + 44p2 + 20p+ 4) log3(p)
p(p+ 1)5 log3(R)

+ 2ϕ̂(0)
∑

p

(p− 1) log(p)
(p+ 1) log(R)

∞∑
r=2

Crp
r

(p+ 1)2r

+ ϕ̂′′(0)
∑

p

(p− 1) log3(p)
(p+ 1) log3(R)

∞∑
r=3

Cr(4r2(p− 1)2 − 24rp− 8p)pr

(p+ 1)2r
+O

(
1

log4(R)

)
. (7.15)

Substituting our constants in yields the theorem. □

Theorem 7.3. Suppose the test functions ϕ1, ϕ2 are even Schwartz functions with ϕ̂1, ϕ̂2 supported
in [−σ, σ] for σ < 0.22. If N is prime, N = q1q2 where both q1 and q2 goes to infinity, or N = p2,
then SB′′(F) is negligible, i.e.,

SB′′(F) = O

(
1

log4(R)

)
.

However, when N = q1q2 for fixed q1, we find that

SB′′(F) = ϕ̂1(0)ϕ̂2(0) log2(q1)
log2(R)q4

1(1 − q−2
1 )2 +O

(
1

log4(R)

)
. (7.16)

Theorem 7.4. Suppose the test functions ϕ1, ϕ2 are even Schwartz function with ϕ̂1, ϕ̂2 supported
in [−σ, σ] for σ < 0.22. If N is prime, N = q1q2 where both q1 and q2 goes to infinity, or N = p2,
then SB′′(F) is negligible, i.e.

SB′(F) = O

(
1

log4(R)

)
.
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However, when N = q1q2 for fixed q1, we have

SB′(F) = 2 log(q1)ϕ̂1(0)ϕ̂2(0)
log2(R)(q2

1 − 1)

( log(q1)
q1

− 3 log(q1)q1
(q1 + 1)3 + γB′,1

)

−
log(q1)

(
ϕ̂1(0)ϕ2(0) + ϕ1(0)ϕ̂2(0)

)
4 log2(R)(q2

1 − 1)
− 2 log(q1)ϕ̂1(0)ϕ̂2(0)

log3(R)(q2
1 − 1)

γP NT 3 +O

(
1

log4(R)

)
, (7.17)

where

γB′,1 :=
ˆ ∞

0
(t+ E(t)) 6t− 3

(t+ 1)4dt ≈ 0.7425, γP NT 3 = 1 +
ˆ ∞

1

E(t)
t2

≈ −1.332. (7.18)

For SB∞(F), we start by noticing that the expressions for Ar(p) and Br1,r2(p1, p2) are the same
up to error terms for the families with prime level or families with level being two distinct primes.
The error term only differs by an exponent on 1/N , making the computations more or less the
same.

First, we compute the main terms; the computation is exactly the same for all three families.

Theorem 7.5. Suppose the test functions ϕ1, ϕ2 are even Schwartz function with ϕ̂1, ϕ̂2 supported
in [−σ, σ] for σ < 0.22. Define ϕ(x) := (ϕ1 ∗ ϕ2)(x), with ϕ̂′′ the second derivative of ϕ̂. Then for
all of our cases

SBf
(F) =

ˆ ∞

0
uϕ̂(u)du+ 5ϕ1(0)ϕ2(0)

16 log2(R)
+ ϕ̂(0)

log2(R)
(1 − γP NT 1 − γP NT 2) − ϕ̂′′(0)

log2(R)
γP NT 2

+ 5(ϕ̂1(0)ϕ2(0) + ϕ̂2(0)ϕ1(0))
4 log3(R)

γP NT 3 +O

(
1

log4(R)

)
(7.19)

where

γP NT 1 :=
ˆ ∞

1

E(t)
t2

(1 − log(t))dt ≈ 2.546, γP NT 2 :=
ˆ ∞

1

E(t)(1 − 2 log(t))
t3

dt ≈ 1.633

γP NT 3 := 1 +
ˆ ∞

1

E(t)
t2

dt ≈ −1.332

Theorem 7.6. Suppose the test functions ϕ1, ϕ2 are even Schwartz functions with ϕ̂1, ϕ̂2 supported
in [−σ, σ] for σ < 0.22, and with ϕ̂′′

i the second derivative of ϕ̂i. Then for all of our cases,

SB∞(F) = ϕ̂1(0)ϕ̂2(0)
log(R)

(
3
4 − log(2) − γ3 + γ4−γ5

2 + 3γ2 − 4γ2 log 2 + 2γ2(γ4 − γ5) − 4γ2γ3

)
+ ϕ̂1(0)ϕ̂2(0)

log2(R)

(
2γ1 − γ6

2 + 2γ7 − 2γ8 − 7
18 + γ9 + γ10 + γ11

)
+ ϕ̂1(0)ϕ̂′′

2(0) + ϕ̂′′
1(0)ϕ̂2(0)

log2(R)
γ1
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where

γ1 :=
ˆ ∞

1

E(t)(2 − 5 log(t))
t7/2 dt ≈ 0.2953

γ2 :=
ˆ ∞

1

E(t)(2t+ 1)
(t2 + t)2 dt ≈ 0.1914

γ3 :=
ˆ ∞

1

E(t)(2t+ 1)
(t2 + t)2 dt ≈ 0.1914

γ4 :=
ˆ ∞

1
E(t)2t3 + 8t2 + 4t+ 1

t2(t+ 1)4 dt ≈ −0.000501

γ5 :=
ˆ ∞

1
E(t)4x3 − 5x2 + 4x+ 1

x2 (x+ 1)4 dt ≈ −0.4854

γ6 :=
ˆ ∞

0
t
et + 3 + e−t

(et + 1)3 dt ≈ 0.210279

γ7 :=
ˆ ∞

1

E(t)((−3x3 − 12x2 − 8x− 2) log(x) + x3 + 4x2 + 4x+ 1)
t3(t+ 1)4 ≈ 0.07780

γ8 :=
ˆ ∞

1

E(t)((−9t4 + 10t2 + 10t+ 3) log(t) + 3t4 + 3t3 − 2t2 − 3t− 1))
t4(t+ 1)4 dt ≈ 0.06586

γ9 :=
∑

p1,p2

log (p1) log(p2)
[
P0 (p1)P0 (p2) +

∞∑
ℓ=1

Cℓ (P0 (p1)P2ℓ (p2) + P2ℓ (p1)P0 (p2))
]

≈ 0.5135

γ10 :=
∑
p1p2

log(p1) log(p2)
∞∑

ℓ1,ℓ2=1
Cℓ1Cℓ2P2ℓ1(p1)P2ℓ2(p2) ≈ 0.4014

γ11 :=
∑

p

log2(p)
∞∑

ℓ1,ℓ2=1
[(Cℓ1+ℓ2 − Cℓ1Cℓ2)P2ℓ1 (p)P2ℓ2(p) + Cℓ1+ℓ2−1P2ℓ1−1(p)P2ℓ2−1(p)] ≈ 1.9648.

Proof Sketch of Theorems 7.3, 7.4,7.5, and 7.6.
The above theorems follow from substituting the terms A′, A,B′′, B, and B obtained from Lem-

mas 6.4, 6.5, 6.6, and 6.7 for each case into the formulas for SB′′(F), SB′(F), SBf
(F), and SB∞

given in Theorem 5.1.
There are two parts to the proof of the theorem. The first is evaluating the main terms from

merely plugging in what we’ve already proved. For example, one of the main terms that come up
in SB∞ is, after plugging in our results,

ϕ̂1(0)
∑

p

∞∑
m1=0

ϕ̂2

( log(p)
log(R)

) log2(p)
√
p log2(R)

(
−(3p+ 1)
p(p+ 1)2) +

∞∑
ℓ=2

Cℓ
pℓ−1(p− 1)
(p+ 1)2ℓ

)
. (7.20)

Notice that the substitution still has a sum over p of ϕ̂2 evaluated at log(p)/ log(R). The general
procedure is as follows: to move the dependence on ϕ̂i outside of the sum, we substitute its power
series expansion and apply the Prime Number Theorem to compute the sum associated to the
constant term. The other sums are generally error terms, since they involve larger powers of
log(R) in the denominator. Often, we use techniques involving generating functions to simplify our
expressions.

In the example (7.20), we find that the expression is equal to, up to O
(
1/ log4(R)

)
error,

ϕ̂1(0)
(

− 4ϕ̂2(0)
9 log2(R)

+ ϕ̂2(0) + ϕ̂′′
2(0)

log2(R)

ˆ ∞

1

E(t)(2 − 5 log(t))
t7/2 dt

)
.

As mentioned above, the remaining lemmas we use to get rid of the dependency on the test function
as well as to simplify evaluating the main terms can be found in Appendix D.
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The second part of the proof is to argue that the error terms of terms A′, A,B′′, B, and B obtained
from Lemmas 6.4, 6.5, 6.6, and 6.7 become error terms in computing SB′′(F), SB′(F), SBf

(F), and
SB∞ as well. Below are the two main lemmas we use to bound the errors.

Lemma 7.7. Suppose n is a fixed positive integer. Then,

∑
p<Rσ

logn(p)
2 log(R)∑

m=0

2mmp3m/4(p− 1)
(p+ 1)m+1 ≲ Rmax(0.11, 3σ/4). (7.21)

Proof of Lemma 7.7. Note that

∑
p<Rσ

logn(p)
2 log(R)∑

m=0

2mmp3m/4(p− 1)
(p+ 1)m+1 ≤

∑
p<Rσ

logn(p)
2 log(R)∑

m=0
m

(
2p3/4

p+ 1

)m

≲
∑

p<2025
logn(p)

2 log(R)∑
m=0

m

(
2p3/4

p+ 1

)m

+
∑

p∈[2027,Rσ]

logn(p)
2 log(R)∑

m=0
m

(
2p3/4

p+ 1

)m

≲ 2025 ·
(

2 · 33/4

4

)2 log(R)

+
∑

p∈[2027,Rσ]

(
2p3/4

p+ 1

)
≲ R0.12 +

∑
p∈[2027,Rσ ]

p−1/4

≲ R0.12 +R3σ/4.

In the second to last line above, we can bound 2025 ·
(

2·33/4

4

)2 log(R)
≲ R0.12 because

log((2 · 33/4/4)2) = log(3
√

3/4) ≈ 0.1136 < 0.12. □

Lemma 7.8. Suppose n is any fixed positive integer.

∑
p

logn(p)
∞∑

m=2 log(R)

2mpm/2(p− 1)
(p+ 1)m+1 ≲

1
R0.11 (7.22)

Proof. Observe that:

∑
p

logn(p)
∞∑

m=2 log(R)

2mpm/2(p− 1)
(p+ 1)m+1 ≤

∑
p

logn(p)
∑

m=2 log(R)

( 2√
p

p+ 1

)m

≲
∑

p

logn(p)
( 2√

p

p+ 1

)2 log(R)

≲

2025 ·
(

2
√

2
3

)2 log(R)

+
∑

p≥2027

logn(p)
p2 log(R)/3

 ≲ R−0.11.

Again, it is crucial that 2
√

2
3 < 1. The restriction for the support (σ < 0.22) comes from the fact

that log((2
√

2/3)2) = log(8/9) ≈ −0.1178 and that −2 log((2
√

2/3)2) ≥ 0.22. □

Every error term from those of A′, A,B′′, B, and B obtained from Lemmas 6.4, 6.5, 6.6, and 6.7
is in big O notation where the implied constant is absolute in k. Therefore, we can bring in all the
sum into the big O notation. Moreover, every error term has some infinite sum over m1 or m2 over
N. Whenever we have this sum in mi, we break the into two parts, into cases when mi < 2 log(R)
and when mi ≥ 2 log(R). In the first case, when mi < 2 log(R), we bound the error using the terms
given from Lemmas 6.4, 6.5, 6.6, and 6.7 then apply Lemma 7.7. On the other hand, in the case
where mi ≥ 2 log(R), we use the bound |B∗

r1,r2(p1, p2)| ≤ 2r1+r2 for all ∗ = (′′), (′), (), r1, r2 ≥ 1,
and p1, p2 primes then apply Lemma 7.8.
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For example, when we are dealing with the term

ϕ̂1(0)
∑

p1,p2<Rσ

∞∑
m1=0

ϕ̂2

( log(p2)
log(R)

) log(p1) log(p2)
log2(R)

Bm1,1(p1, p2)Pm1(p1)
√
p2

(7.23)

appearing in the computation of SB∞(F), the error term is

ϕ̂1(0)

 ∑
p1,p2<Rσ

2 log(R)∑
m1=0

ϕ̂2

(
log(p2)
log(R)

)
log(p1) log(p2)

log2(R)
Error(Bm1,1(p1, p2))Pm1(p1)

√
p2

+
∑

p1,p2<Rσ

∞∑
m1=2 log(R)

(Same Terms)

 .

(7.24)

For the first sum, we use bounds from Lemmas 6.4, 6.5, 6.6, and 6.7 then apply Lemma 7.7:

ϕ̂1(0)
∑

p1,p2

2 log(R)∑
m1=0

ϕ̂2

( log(p2)
log(R)

) log(p1) log(p2)
log2(R)

Error(Bm1,1(p1, p2))Pm1(p1)
√
p2

≲
Rσ/2

log(R)

Rσ∑
p1

log(p1)
2 log(R)∑
m1=0

m12m1p
3m1/4
1 log(p1N)

N(p1 + 1)m1


≲
Rσ/2 log(R)

N

 ∑
p1<2025

log2(p1)
2 log(R)∑
m1=0

m1

(
2p3/4

1
p1 + 1

)m1

+
Rσ∑

p1=2027
log2(p1)

2 log(R)∑
m1=0

m1

(
2p3/4

1
p1 + 1

)m1


≲
Rσ/2 log(R)

N

2025
(

2 · 33/4

4

)2 log(R)

log2(R) +
Rσ∑

p=2027

2p3/4

p1 + 1


≲
Rσ/2 log2(R) ·R0.11

N
+ Rσ/2

N
log(R)

Rσ∑
p=2027

p
−1/4
1 ≲

Rσ/2 log2(N)R0.11

N
+ Rσ/2 log(R)

N
N3σ/4.

This error is negligable as long as σ < 0.8, which we assumed.
For the second sum, we bound |Bm1,1(p1, p2)| ≲ 2m1 then apply Lemma 7.8:

ϕ̂1(0)
∑

p1,p2

2 log(R)∑
m1=0

ϕ̂2

( log(p2)
log(R)

) log(p1) log(p2)
log2(R)

Error(Bm1,1(p1, p2))Pm1(p1)
√
p2

≲

(
Rσ/2

log(R)

)∑
p1

log(p)
∞∑

m1=2 log(R)
2m1 p

m1/2
1

(p1 + 1)m1


≲

(
Rσ/2

log(R)

)∑
p1

log(p)
∞∑

m1=2 log(R)

(
2p1/2

1
p1 + 1

)m1


≲

(
Rσ/2

log(R)

)∑
p1

log(p)
(

2p1/2
1

p1 + 1

)2 log(R)

≲

(
Rσ/2

log(R)

)2025
(

2p1/2
1

p1 + 1

)2 log(R)

+
∑

p1≥2026

log(p1)
p

2 log(R)/3
1

 ≲
Rσ/2

R0.11 log2(R)
,

which is negligible as long as σ < 0.22, which we assume.
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Appendix A. Proof of Lemma 4.2

Lemma 4.2. For prime p, we have

M3,2(p) = 32p2 + 24p+ 8
p(p+ 1)3 − 27p3 − 17p2 + 5p+ 1

√
p(p+ 1)4 λf (p) − 64p4 − 4p3 + 44p2 + 20p+ 4

p(p+ 1)5 λf (p)2

+
∞∑

r=3

(p− 1)(r2(p− 1)2 − 12rp− 8p)pr/2λf (p)r

(p+ 1)r+3 . (A.1)

Proof of Lemma. We recall M3,2(p) =
∑∞

m=3m
2
(

αf (p)
p1/2

)m
+
∑∞

m=3m
2
(

βf (p)
p1/2

)m
. We note that

since
1

1 − x
=

∞∑
n=0

xn,

x

(1 − x)2 =
∞∑

n=1
nxn, and

2 x2

(1 − x)3 =
∞∑

n=2
n(n− 1)xn =

∞∑
n=2

n2xn −
∞∑

n=2
nxn.

We have
∞∑

n=2
n2xn = 2 x2

(1 − x)3 + x

(1 − x)2 − x = x2 + x

(1 − x)3 − x. (A.2)

Thus,

∞∑
m=3

m2
(
αf (p)
p1/2

)m

+
∞∑

m=3
m2

(
βf (p)
p1/2

)m

=

(
αf (p)
p1/2

)2
+ αf (p)

p1/2(
1 − αf (p)

p1/2

)3 +

(
βf (p)
p1/2

)2
+ βf (p)

p1/2(
1 − βf (p)

p1/2

)3

− 4
((

αf (p)
p1/2

)2
+
(
βf (p)
p1/2

)2)
−
(
αf (p)
p1/2 + βf (p)

p1/2

)
.

(A.3)

We see that by multiplying by p3/2 we can write(
αf (p)
p1/2

)2
+ αf (p)

p1/2(
1 − αf (p)

p1/2

)3 = αf (p)2p1/2 + αf (p)p
(p1/2 − αf (p))3

and we obtain a similar result for the corresponding βf (p) term. We now aim to combine

αf (p)2p1/2 + αf (p)p
(p1/2 − βf (p))3 + βf (p)2p1/2 + βf (p)p

(p1/2 − βf (p))3 . (A.4)

The denominator becomes

(p1/2 − αf (p))(p1/2 − βf (p)) = p+ αf (p)βf (p) − (αf (p) + βf (p))p1/2

= p+ 1 − λf (p)p1/2.

We note we are leaving the aforementioned expression inside the cube. Thus we have

λf (p)2(p2 − p) + λf (p)(p2√
p− √

p) − 8(p2 − p)
(p+ 1 − λf (p)√p)3 − 4(λf (p)2 − 2)

p
− λf (p)

p1/2 . (A.5)
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Looking at the first term, we express the denominator (p+1−λf (p)√p)3 as (p+1)3
(
1 − λf (p)√p

p+1

)3

and use the power series 1
(1−x)3 = 1

2
∑∞

n=2 n(n− 1)xn−2 to obtain

1(
1 − λf (p)p1/2

p+1

)3 = 1
2

∞∑
r=0

(r + 2)(r + 1)
(
λf (p)p1/2

p+ 1

)r

.

Thus we get

(
λf (p)2(p2 − p) + λf (p)(p2√

p− √
p) − 8(p2 − p)

) ∞∑
r=0

(r + 2)(r + 1)
2

λf (p)rpr/2

(p+ 1)r+3 ,

which is equal to

− 8(p2 − p)
(p+ 1)3 − 24(p2 − p)p1/2

(p+ 1)4 λf (p) − 48(p2 − p)p
(p+ 1)5 λf (p)2 −

∞∑
r=3

(r + 2)(r + 1)
2

8(p2 − p)λf (p)rpr/2

(p+ 1)r+3

+ p5/2 − p1/2

(p+ 1)3 λf (p) + 3(p5/2 − p1/2)p1/2

(p+ 1)4 λf (p)2 +
∞∑

r=2

(r + 2)(r + 1)
2

(p5/2 − p1/2)λf (p)r+1pr/2

(p+ 1)r+3

+ p2 − p

(p+ 1)3λf (p)2 +
∞∑

r=1

(r + 2)(r + 1)
2

(p2 − p)λf (p)r+2pr/2

(p+ 1)r+3 .

Combining like terms yields

− 8(p2 − p)
(p+ 1)3 +

√
p(p− 1)(p2 − 22p+ 1)

(p+ 1)4 λf (p) + 4p(p− 1)(p2 − 10p+ 1)
(p+ 1)5 λf (p)2

+
∞∑

r=3

(p− 1)(r2(p− 1)2 − 12rp− 8p)pr/2λf (p)r

(p+ 1)r+3 .

Plugging this back into equation (A.5) we get

M3,2(p) = −8(p2 − p)
(p+ 1)3 +

√
p(p− 1)(p2 − 22p+ 1)λf (p)

(p+ 1)4 + 4p(p− 1)(p2 − 10p+ 1)λf (p)2

(p+ 1)5

− 4(λf (p)2 − 2)
p

− λf (p)
√
p

+
∞∑

r=3

(p− 1)(r2(p− 1)2 − 12rp− 8p)pr/2λf (p)r

(p+ 1)r+3 (A.6)

= 32p2 + 24p+ 8
p(p+ 1)3 − 27p3 − 17p2 + 5p+ 1

(p+ 1)4 λf (p) − 64p4 − 4p3 + 44p2 + 20p+ 4
p(p+ 1)5 λf (p)2

+
∞∑

r=3

(p− 1)(r2(p− 1)2 − 12rp− 8p)pr/2λf (p)r

(p+ 1)r+3 . (A.7)

□
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Appendix B. Proof of Lemma 5.3
Lemma 5.3 Suppose ϕ1 and ϕ2 are even Schwartz function with ϕ̂1 and ϕ̂2 having support in
[−σ, σ]. We then have the following estimate:

1
WR(F)

∑
p1,p2

∑
m1,m2≥3

C(m1,m2)

= 1
WR(F)

∑
p1,p2<Rσ

∑
m1,m2≥3

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)
∑2

j=1 (αf (pj)mj + βf (pj)mj )

p
m1/2
1 p

m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1(0)ϕ̂2(0) +O

(
1

log4(R)

)
.

(B.1)

Proof of Lemma. Let us write

(A) := 1
WR(F)

∑
p1,p2

∑
m1,m2≥3

C(m1,m2),

(B) := 1
WR(F)

∑
p1,p2<Rσ

∑
m1,m2≥3

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)
∑2

j=1 (αf (pj)mj + βf (pj)mj )

p
m1/2
1 p

m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1(0)ϕ̂2(0),

(C) := 1
WR(F)

∑
p1,p2<Rσ

∑
m1,m2≥3

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)
∑2

j=1 (αf (pj)mj + βf (pj)mj )

p
m1/2
1 p

m2/2
2

log(p1) log(p2)
log2(R)

ϕ̂1

(
m1

log(p1)
log(R)

)
ϕ̂2(0).

Notice that the statement of the lemma is equivalent to saying that (A) − (B) = O
(
1/ log4(R)

)
.

We first show that (A) − (C) = O
(
1/ log4(R)

)
, then argue that (C) − (B) = O

(
1/ log4(R)

)
.

1
WR(F)

∑
p1,p2<Rσ

∑
m1,m2≥3

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)
∑2

j=1 (αf (pj)mj + βf (pj)mj )

p
m1/2
1 p

m2/2
2

log(p1) log(p2)ϕ̂1

(
m1

log(p1)
log(R)

)
log2(R)

[
ϕ̂2

(
m2

log(p2)
log(R)

)
− ϕ̂2(0)

]

≲
1

log4(R)

∑
p1<Rσ

∑
m1≥3

log(p1)
p

m1/2
1

ϕ̂1

(
m1

log(p1)
log(R)

)
≲

1
log4(R)

∑
p1

log(p1)
p(√p − 1)

≲
1

log4(R)

∑
p1

log(p1)
p3/2

≲
1

log4(R)
.

The first approximation follows from using Taylor expansion, bounding |αf (p)m + βf (p)m| by 2,
and finally observing that

∑
m2≥3m

2
2/p

m2/2
2 = O(p−3/2

2 ) and
∑

p2 log(p2)3/p
3/2
2 < ∞. Therefore, we

have that (A) − (C) = O
(

1
log4(R)

)
.
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Now we show that (C) − (B) = O
(

1
log4(R)

)
. By a similar approximation,

1
WR(F)

∑
p1,p2<Rσ

∑
m1,m2≥3

∑
f∈F

p1∤Nf

p2∤Nf

wR(f)
∑2

j=1 (αf (pj)mj + βf (pj)mj )

p
m1/2
1 p

m2/2
2

log(p1) log(p2)
log2(R)

(
ϕ̂1

(
m1

log(p1)
log(R)

)
− ϕ̂1(0)

)
ϕ̂2(0)

≲
1

log4(R)

 ∑
p1<Rσ

∑
m1≥3

m2
1 log(p1)3

p
m1/2
1

 ∑
p2<Rσ

∑
m2≥3

log(p2)3

p
m2/2
2


≲

1
log4(R)

 ∑
p1<Rσ

p1
−3/2


≲

1
log4(R)

.

With this, the proof of Lemma 5.3 is complete. □

Appendix C. Proof of Lemmas 6.5, 6.6, and 6.7

In this section, we prove the Lemmas 6.5, 6.6, and 6.7.
Proof of Lemma 6.5. The proofs for Ar(p) and Br1,r2(p1, p2) are identical to the prime case so we
omit it. First we look at A′

r,F (p). There are two cases to consider: when p = q1 and when p = q2.

If p = q1 and r is even, then using the fact that λf (q1)2 = 1
q1

, we have that A′
r(q1) = q

−r/2
1 . If r

is odd, using Corollary 2.10 of [ILS00a] and substituting for WR(F) we found in lemma (6.5), we
have:

A′
r(q1) = q

−⌊r/2⌋
1
WR(F)

∑
f∈F

wR(f)λf (q1) = q
−⌊r/2⌋
1
WR(F)

(
O(k1/6q

−1/4
1 log(q1N)

)
= Oq1,k

( log(N)
N

)
.

Moreover, when p = q2, using triangle inequality and using the fact that wR(f) ≥ 0 for all f ∈ F ,

|A′
r(q2)| ≤ 1

q
r/2
2

 1
WR(F)

∑
f∈F

wR(f)

 ≲ N−r/2.

Next, we considerB′′
r1,r2(p1, p2). There are four pairs possible for (p1, p2). They are: (q1, q1), (q1, q2), (q2, q1),

and (q2, q2).
In the first case, where (p1, p2) = (q1, q1), we have

B′′
r1,r2(q1, q1) = 1

WR(F)
∑
f∈F

wR(f)λf (q1)r1+r2

= 1
q

⌊(r1+r2)/2⌋
1

1
WR(F)

∑
f∈F

wfλf (q1)((r1+r2) mod 2)

=

q
(r1+r2)/2
1 if r1 + r2 even,

Ok,q1

(
log2(N)

N

)
if r1 + r2 odd.
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In the last three cases, with at least one of p1 or p2 being q2, we have:

B′′
r1,r2(p1, p2) = 1

WR(F)
∑
f∈F

wR(f)λf (p1)r1λf (p2)r2

= 1
p

⌊r1/2⌋
1

1
p

⌊r2/2⌋
2

 1
WR(F)

∑
f∈F

wR(f)λf (p1)(r1 mod 2)λf (p2)(r1 mod 2)


≲

1
q

⌊min(r1,r2)/2⌋
2

( log(N)
N1/4

)
≲

1
N ⌊min(r1,r2)/2⌋ .

Next, we look at B′
r1,r2(p1, p2). By definition, p1|N and p2 ∤ N. If p1 = q1, we see

B′
r1,r2(q1, p2) = 1

WR(F)
∑
f∈F

wR(f)λf (q1)r1λf (p2)r2

= 1
q

⌊r1/2⌋
1

1
WR(F)

∑
f∈F

wR(f)λf (q1)(r1 mod 2)λf (p2)r2 .

If r1 is even, it follows that

B′
r1,r2(q1, p2) = 1

q
r1/2
1

(Ar2(p2)) =


1

q
r1/2
1

Cr2/2 +Ok,q1

(
r22r2 p

r2/4
2 log(pr2

2 N) log(N)
N

)
if r2 even

Ok,q1

(
r22r2 p

r2/4
2 log(pr2

2 N) log(N)
N

)
if r2 odd

.

If r1 is odd, Corollary 2.10 of [ILS00a] yields

B′
r1,r2(q1, p2) = Oq1,k

(
2r2p

r2/4
2 log(p2) log2(N)

N

)
.

Next, suppose we have that p1 = q2. Then, trivially bounding by |λf (p2)| ≤ 2 gives:

B′
r1,r2(q2, p2) = 1

WR(F)
∑
f∈F

wR(f)λf (q2)r1λf (p2)r2

= 1
q

⌊r1/2⌋
2

1
WR(F)

∑
f∈F

wR(f)λf (q2)(r1 mod 2)λf (p2)r2

= O

(
2r2p

r2/4
2 log(pr2

2 N)
N ⌊r1/2⌋+1/2

)
,

completing the proof. □

Next, we prove Lemma 6.6.
Proof of Lemma 6.6. The proofs of Ar(p) and Br1,r2(p1, p2) is identical to the prime case so we
omit it. We can see

|A′
r(p)| ≤ 1

WR(F)
∑
f∈F
p|N

wR(f)|λf (p)|r ≤ 1
pr/2 .

Since N−(1−δ)/2 ≲ N−δ/2, this gives

A′
r(p) = O

( 1
N rδ/2

)
.
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We now look at B′′
r1,r2(p1, p2). We see we must have (p1, p2) ∈ {(q1, q2), (q1, q1), (q1, q2), (q2, q1)} =

A, and (q2, q2). Using the fact that |λf (p)| = p−1/2 for p|N , we have

|B′′
r1,r2(p1, p2)| =

∣∣∣∣∣∣ 1
WR(F)

∑
f∈F

wR(f)λf (p1)r1λf (p2)r2

∣∣∣∣∣∣
≤ 1
WR(F)

∑
f∈F

wR(f)|λf (p1)|r1/2|λf (p2)|r2/2

≤ 1
WR(F)

∑
f∈F

wR(f) 1
p

r1/2
1

1
p

r2/2
2

≲
1

N (r1+r2)δ/2 . (C.1)

For B′
r1,r2(p1, p2), we have p1 = q1, q2. We can write

B′
r1,r2(p1, p2) = 1

p
r1/2
1 WR(F)

∑
f∈F

wR(f)λf (p2)r2 .

Using the triangle inequality and the fact that |λf (p2)| ≤ 2, we find

|B′
r1,r2(p1, p2)| = 1

p
r1/2
1 WR(F)

∑
f∈F

wR(f)|λf (p2)|r2 ≤ 2r2

pr2/2 . (C.2)

□
Lastly, we look at the proof of Lemma 6.7. Proof of Lemma 6.7. First, we show thatA′

r(p), B′′
r1,r2(p1, p2),

and B′
r1,r2(p1, p2) for N = p2 are 0. By definition, for p1, p2 ∤ N , we have that the sum is empty, so

B′′
r1,r2(p1, p2) = 0. For p1, p2 | N , by [Bar+16] (2.11), we have for pi a prime,

λf (pi)2 =
{ 1

pi
, pi || N

0, p2
i | N.

Since p1, p2 | N the Hecke eigenvalue terms are zero. Thus, B′′
r1,r2(p1, p2) = 0 for all values of p1

and p2. Similarly for B′
r1,r2(p1, p2), for p1 ∤ N , the sum is empty, so B′

r1,r2(p1, p2) = 0. For p1 | N ,
we again have that the Hecke eigenvalue term λf (p1) is zero. Thus, B′

r1,r2,(p1, p2) = 0 for all values
of p1 and p2. The same reasoning applies to show that A′

r(p) for all primes p.
Next, we compute Ar(q). For q | N , which implies q = p, the sum is empty, so Ar(q) = 0.

Therefore, assume that q ̸= p. We then have

Ar(p) = 1
WR(F)

∑
f∈F

wR(f)λf (p)r

= 1
WR(F)

∑
f∈F

wR(f)
⌊r/2⌋∑
n=0

br,r−2nλf (pr−2n)

= 1
WR(F)

⌊r/2⌋∑
n=0

br,r−2n
k − 1

12
(
(p2 − 1)∆k,p2

(
qr−2n, 1

)
− p∆k,p

(
qr−2n, 1

))

=
⌊r/2⌋∑
n=0

br,r−2nδ(qr−2n, 1) + Ok

( 1
N

2rqr/4 log (2qr)
)

=

Cr/2 +Ok

(
2rq

r
4

log(2qr−2ℓ)
N

)
r even

Ok

(
2rq

r
4

log(2qr−2ℓ)
N

)
r odd.

(C.3)
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Lastly, we compute Br1,r2,(p1, p2). By definition,

Br1,r2(p1, p2) = 1
WR(H∗

k(N))
∑

f∈H∗
k

(N), p1∤Nf , p2∤Nf

wR(f)λf (p1)r1λf (p2)r2 . (C.4)

For p1, p2 | N , which implies p1 and p2 equal p, the sum is empty, so Br1, r2, H∗
k

(N)(p1, p2) = 0.
Therefore, assume that p1, p2 ̸= p. We then have

Br1,r2(p1, p2) = 1
WR(F)

∑
f∈F

⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

wR(f)br1,r1−2k1br2,r2−2k2λf

(
pr1−2k1

1

)
λf

(
pr2−2k2

2

)

= 1
WR(F)

⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1br2,r2−2k2

∑
f∈F

wR(f)λf

(
pr1−2k1

1

)
λf

(
pr2−2k2

2

)

= 1
WR(F)

⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1br2,r2−2k2∆∗
k,N

(
pr1−2k1

1 , pr2−2k2
2

)
. (C.5)

We now apply [Bar+16] Proposition 4.1, which holds as p1 and p2 are not equal p. Using the
fact that µ(p2) = 0,

∆∗
k,N

(
pr1−2k1

1 , pr2−2k2
2

)
= k − 1

12
∑

LM=N

µ(L)M
∏

q2|M
q prime

(
q2 − 1
q2

) ∑
ℓ|L∞

(ℓ,M)=1

ℓ−1∆k,M (mℓ2, n)

= k − 1
12

(
(p2 − 1)∆k,p2

(
pr1−2k1

1 , pr2−2k2
2

)
− p∆k,p

(
pr1−2k1

1 , pr2−2k2
2

))
.

By [ILS00a] Proposition 2.2,

∆k,p2

(
pr1−2k1

1 , pr2−2k2
2

)
= δ

(
pr1−2k1

1 , pr2−2k2
2

)
+O

 τ(p2)
p2k5/6

τ3
((
pr1−2k1

1 , pr2−2k2
2

))
√

2

 pr1−2k1
1 pr2−2k2

2√
pr1−2k1

1 pr2−2k2
2 + kp2

1/2

log
(
2pr1−2k1

1 pr2−2k2
2

)
= δ(pr1−2k1

1 , pr2−2k2
2 ) + Ok

 1
p2

 pr1−2k1
1 pr2−2k2

2√
pr1−2k1

1 pr2−2k2
2 + kp2

1/2

log
(
2pr1−2k1

1 pr2−2k2
2

)
and

∆k,p

(
pr1−2k1

1 , pr2−2k2
2

)
= δ

(
pr1−2k1

1 , pr2−2k2
2

)
+O

 τ(p)
pk5/6

τ3
((
pr1−2k1

1 , pr2−2k2
2

))
√

2

 pr1−2k1
1 pr2−2k2

2√
pr1−2k1

1 pr2−2k2
2 + kp

1/2

log
(
2pr1−2k1

1 pr2−2k2
2

)
= δ

(
pr1−2k1

1 , pr2−2k2
2

)
+Ok

1
p

 pr1−2k1
1 pr2−2k2

2√
pr1−2k1

1 pr2−2k2
2 + kp

1/2

log
(
2pr1−2k1

1 pr2−2k2
2

) .
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After multiplying ∆k,p(p1, p2) by p and ∆k, p2(p1, p2) by (p2 − 1), the error term associated with
∆k, p(p1, p2) absorbs the error terms associated with ∆k,p2(p1, p2). As such, we may write

Br1,r2(p1, p2) = 1
WR(F)

⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1br2,r2−2k2

(
k − 1

12 (p2 − p− 1)δ
(
pr1−2k1

1 , pr2−2k2
2

)

+ Ok


 pr1−2k1

1 pr2−2k2
2√

pr1−2k1
1 pr2−2k2

2 + kp

1/2

log
(
2pr1−2k1

1 pr2−2k2
2

)
 .

(C.6)
Dividing by WR(F), we have

Br1,r2(p1, p2) =
⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1br2,r2−2k2δ(p
r1−2k1
1 , pr2−2k2

2 )

+ Ok

 1
N

⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1br2,r2−2k2

(
pr1−2k1

1 pr2−2k2
2

)1/4
log

(
2pr1−2k1

1 pr2−2k2
2

) .
Trivial estimation and the fact that |

∑⌊r/2⌋
ℓ=0 br,r−2ℓ| ≲ 2r gives us

Br1,r2,(p1, p2) =
⌊r1/2⌋∑
k1=0

⌊r2/2⌋∑
k2=0

br1,r1−2k1br2,r2−2k2δ(p
r1−2k1
1 , pr2−2k2

2 ) + Ok

( 1
N

2r1+r2p
r1/4
1 p

r2/4
2 log (2pr1

1 p
r2
2 )
)
,

yielding the lemma. □

Appendix D. Lemmas Used for Main Terms in Theorems 7.3, 7.4, 7.5, and 7.6.

In this section, we state and prove various lemmas used to compute the main Terms in Theorems
7.3, 7.4, 7.5, and 7.6.

Lemma D.1. Let ϕ̂ be a compactly supported even Schwartz test function. As in [You05], define

θ(t) :=
∑
p≤t

log(p), E(t) := θ(t) − t, S(R) :=
∑

p

2 log(p)
p log(R) ϕ̂

(2 log(p)
log(R)

)
.

Then

S(R) = ϕ(0)
2 + 2ϕ̂(0)

log(R)
(
1 +
ˆ ∞

1

E(t)
t2

dt
)

+ 4ϕ̂′′(0)
(log(R))3

ˆ ∞

1

E(t)
t2

(
(log(t))2 − 2 log(t)

)
dt+O

( 1
log4(R)

)
.

(D.1)

Proof. By Abel summation

S(R) =
∑

p

2 log(p)
p log(R) ϕ̂

(2 log(p)
log(R)

)
= 2

log(R)
∑

p

log(p)
p

ϕ̂
(2 log(p)

log(R)
)

= 2
log(R) lim

x→∞

[
θ(x) 1

x
ϕ̂
(2 log(x)

log(R)
)

−
ˆ x

1
θ(t) d

dt

(1
t
ϕ̂
(2 log(t)

log(R)
))
dt
]

= − 2
log(R)

ˆ ∞

1
θ(t) d

dt

(1
t
ϕ̂
(2 log(t)

log(R)
))
dt.

(D.2)

Define u = 2 log(t)
log(R) . Then

d

dt

(1
t
ϕ̂(u)

)
= − 1

t2
ϕ̂(u) + 2

(log(R))t2 ϕ̂
′(u). (D.3)
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Write θ as t+ E(t). The first term in (D.2) is
2

log(R)

ˆ ∞

1

1
t

(
ϕ̂
(2 log(t)

log(R)
)

− 2
log(R) ϕ̂

′
(2 log(t)

log(R)
))
dt (D.4)

= 2
log(R)

ˆ ∞

1

1
t
ϕ̂
(2 log(t)

log(R)
)
dt− 4

(log(R))2

ˆ ∞

1

1
t
ϕ̂′
(2 log(t)

log(R)
)
dt

= 2
log(R) · log(R)

2

ˆ ∞

0
ϕ̂(u)du− 4

(log(R))2 · log(R)
2

ˆ ∞

0
ϕ̂′(u)du

= 2
log(R) · log(R)

2 · ϕ(0)
2 − 4

(log(R))2 · log(R)
2 ·

(
−ϕ̂(0)

)
= ϕ(0)

2 + 2ϕ̂(0)
log(R) .

(D.5)

The second term in (D.2) is
2

log(R)

ˆ ∞

1

E(t)
t2

(
ϕ̂
(2 log(t)

log(R)
)

− 2
log(R) ϕ̂

′
(2 log(t)

log(R)
))
dt. (D.6)

Because ϕ̂ is even, the Taylor expansions are

ϕ̂(u) = ϕ̂(0) + ϕ̂′′(0)
2 u2 +O(u4), ϕ̂′(u) = ϕ̂′′(0)u+O(u3). (D.7)

Thus, the second term in (D.2) becomes

= 2
log(R)

ˆ ∞

1

E(t)
t2

[
ϕ̂(0) + ϕ̂′′(0)

2
(2 log(t)

log(R)
)2

− 2ϕ̂′′(0)
log(R)

(2 log(t)
log(R)

)
+O

(( log(t)
log(R)

)3)]
dt

= 2ϕ̂(0)
log(R)

ˆ ∞

1

E(t)
t2

dt+ 4ϕ̂′′(0)
(log(R))3

ˆ ∞

1

E(t)(log(t))2

t2
dt− 8ϕ̂′′(0)

(log(R))3

ˆ ∞

1

E(t) log(t)
t2

dt+O
( 1

log4(R)

)
.

(D.8)
Combining the terms in (D.5) and (D.8) yields the lemma. □

Lemma D.2. Let ϕ̂1, ϕ̂2 be a compactly supported even Schwartz test function. Then∑
p

log2(p)
p log2(R)

ϕ̂1

( log(p)
log(R)

)
ϕ̂2

( log(p)
log(R)

)

=
ˆ ∞

0
uϕ̂(u)du− ϕ̂(0)

log2(R)

ˆ ∞

1

E(t)
t2

(1 − log(t))dt+O

(
1

log4(R)

)
, where ϕ := ϕ1 ∗ ϕ2.

Proof. By the Convolution Theorem, we have

ϕ̂1

( log(p)
log(R)

)
ϕ̂2

( log(p)
log(R)

)
= ϕ̂

( log(p)
log(R)

)
, ϕ := ϕ1 ∗ ϕ2. (D.9)

Define
f(t) := log(t)

t log2(R)
ϕ̂

( log(t)
log(R)

)
, θ(t) := t+ E(t).

S1(R) :=
∑

p

log2(p)
p log2(R)

ϕ̂

( log(p)
log(R)

)
=
∑

p

log(p)f(p).

By Abel summation, we write

S1(R) = lim
x→∞

θ(x)f(x) −
ˆ ∞

1
θ(t)f ′(t)dt = −

ˆ ∞

1
θ(t)f ′(t)dt. (D.10)

45



Differentiate f with respect to u := log(t)
log(R) . Then we change the variable and calculate (D.10)

f ′(t) = 1
log2(R)

(1 − log(t)
t2

ϕ̂(u) + log(t)
t2 log(R) ϕ̂

′(u)
)
, (D.11)

S1(R) =
ˆ ∞

0
θ(t)

(
log(t) − 1
t2 log2(R)

ϕ̂(u) − 1
log(R)

log(t)
t2 log2(R)

ϕ̂′(u)
)
dt. (D.12)

Write θ as t+ E(t), by change of variable, the first term in (D.12) isˆ ∞

0
uϕ̂(u)du− 1

log(R)

ˆ ∞

0

(
ϕ̂(u) + uϕ̂′(u)

)
du =

ˆ ∞

0
uϕ̂(u)du. (D.13)

Since ϕ̂ is even. The Taylor expansions are
ϕ̂(u) = ϕ̂(0) +O(u2), ϕ̂′(u) = ϕ̂′′(0)u+O(u3). (D.14)

Substituting (D.14) into f ′(t) yields

f ′(t) = ϕ̂(0)
t2 log2(R)

(1 − log(t)) +O
( log2 t

t2 log4(R)

)
. (D.15)

The second term is then equal to

− ϕ̂(0)
log2(R)

ˆ ∞

1

E(t)
t2

(1 − log(t))dt+O

(
1

log4(R)

)
. (D.16)

Combining (D.15) and (D.16) yields the lemma.
□

Lemma D.3. Let ϕ1, ϕ2 be even Schwartz functions with ϕ̂1 and ϕ̂2 compactly supported. Define

S2(R) :=
∑

p

log2(p)
p2 log2(R)

ϕ̂1

(2 log(p)
log(R)

)
ϕ̂2

(2 log(p)
log(R)

)
,

then we have

S2(R) = ϕ̂(0)
log2(R)

− ϕ̂(0) + ϕ̂′′(0)
log2(R)

ˆ ∞

1

E(t)(1 − 2 log(t))
t3

dt+O

(
1

log4(R)

)
.

Proof. As before, we appeal to the convolution theorem, writing ϕ := ϕ1 ∗ ϕ2 so that∑
p

log2(p)
p2 log2(R)

ϕ̂1

(2 log(p)
log(R)

)
ϕ̂2

(2 log(p)
log(R)

)
=
∑

p

log2(p)
p2 log2(R)

ϕ̂

(2 log(p)
log(R)

)
. (D.17)

Recall that we define θ(t) :=
∑

p≤t log(p) and let

f(x) := log(x)
x2 ϕ̂

(2 log(x)
log(R)

)
.

Now, by the Abel summation formula and the fact that supp(ϕ̂) is bounded,

S2(R) = 1
log2(R)

lim
x→∞

[
θ(x)f(x) −

ˆ x

1
θ(t)f ′(t)dt

]
= − 1

log2(R)

ˆ ∞

1
θ(t)f ′(t)dt. (D.18)

To ease notation, substitute u = 2 log(t)
log(R) and differentiate to get

f ′(t) = 1 − 2 log(t)
t3

ϕ̂(u) + 2 log(t)
t3 log(R) ϕ̂

′(u) (D.19)
ˆ ∞

1
tf ′(t)dt = −

ˆ ∞

1
f(t)dt. (D.20)
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Splitting the error in θ(t) = t+E(t), we first consider the main term. Substituting in u again gives
ˆ ∞

1
f(t)dt = log2(R)

4

ˆ ∞

0
ue

−u log(R)
2 ϕ̂(u)du. (D.21)

Now, using the evenness of ϕ̂, we Taylor expand and find

ϕ̂(u) = ϕ̂(0) + ϕ̂′′(0)
2 u2 +O(u4). (D.22)

and note that
´∞

0 ue−αu = 1/α2 and
´∞

0 u3e−αu = 6/α4. Thus, the main term is, after bringing
in the factor of −1/ log2(R),

ϕ̂(0)
log2(R)

+ 12ϕ̂′′(0)
log4(R)

+O

(
1

log6(R)

)
= ϕ̂(0)

log2(R)
+O

(
1

log4(R)

)
. (D.23)

We now compute the error term

− 1
log2(R)

ˆ ∞

1
E(t)f ′(t)dt = − 1

log2(R)

ˆ ∞

1
E(t)

(1 − 2 log(t)
t3

ϕ̂(u) + 2 log(t)
t3 log(R) ϕ̂

′(u)
)
dt. (D.24)

Since we also have from evenness that

ϕ̂′(u) = ϕ̂′′(0)u+O(u3). (D.25)

we expand each of ϕ̂ and ϕ̂′ to see that the above is equal to

− 1
log2(R)

ˆ ∞

1
E(t)

(
1 − 2 log(t)

t3
ϕ̂(0) +

(
2 log2(t)
t3 log2(R)

+ 1 − 2 log(t)
t3

)
ϕ̂′′(0) +O

(
log3(t)
log3(R)

))

= − ϕ̂(0) + ϕ̂′′(0)
log2(R)

ˆ ∞

1

E(t)(1 − 2 log(t))
t3

dt+O

(
1

log4(R)

)
.

(D.26)

□

Lemma D.4. Let p be prime. For α < 1 and p prime, we have∑
p≤x

log(p)
pα

= x1−α

1 − α
+O

(
x1−α

log(x)

)
.

Proof. Define

S(x) :=
∑
p≤x

log(p)
pα

, θ(t) := t+ E(t).

By Abel summation

S(x) = x−αθ(x) − 2−αθ(2) + α

ˆ x

2
θ(t)t−α−1dt.

= x−α(x+ E(x)
)

− 2−α log(2) + α

ˆ x

2

(
t+ E(t)

)
t−α−1dt

= x1−α + α

ˆ x

2
t−αdt− 2−α log(2) + x−αE(x) + α

ˆ x

2
E(t)t−α−1dt.

(D.27)

After calculating the main terms, we have

S(x) = x1−α

1 − α
+ x−αE(x) + α

ˆ x

2
E(t)t−α−1dt− 2−α log(2) − α21−α

1 − α
. (D.28)
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By the Prime Number Theorem, E(t) = θ(t) − t = O
(
t/ log(t)

)
, substituting in (D.28) yields

x−αE(x) =
( x1−α

log(x)
)
,

ˆ x

2
E(t)t−α−1dt = O

(ˆ x

2

t−α

log(t)dt
)

= O

(
x1−α

log(x)

)
. (D.29)

The constants are absorbed into the big O term, gives

S(x) = x1−α

1 − α
+O

(
x1−α

log(x)

)
. (D.30)

□

Lemma D.5. Let ϕ̂ be an even Schwartz function, then∑
p

ϕ̂

( log(p)
log(R)

) log2(p)
log2(R)

[
−3p− 1
p(p+ 1)2 +

∞∑
i=2

Ci
pi−1(p− 1)
(p+ 1)2i

]

= − ϕ̂(0)
log2(R)

+ ϕ̂(0) + ϕ̂′′(0)
log2(R)

ˆ ∞

1

E(t)(1 − 2 log(t))
t3

dt+O

(
1

log4(R)

)
.

(D.31)
Proof. As in [Slo], the generating function for the Catalan numbers can be written in closed-form
for |z| < 1/4:

∞∑
i=0

Ciz
i = 1 −

√
1 − 4z

2z . (D.32)

Letting z = p/(p+ 1)2, we note that

|z| ≤ 2
(2 + 1)2 = 2

9 <
1
4 (D.33)

so we always have convergence to the above formula. Factoring and subtracting off the first two
terms,

∞∑
i=2

Ci
pi−1(p− 1)
(p+ 1)2i

= p− 1
p

( ∞∑
i=0

Ciz
i − C0 − C1z

)
. (D.34)

Since

1 − 4z = (p+ 1)2

(p+ 1)2 − 4p
(p+ 1)2 =

(
p− 1
p+ 1

)2
, (D.35)

we have, using C0 = C1 = 1,
∞∑

i=0
Ciz

i − C0 − C1z = 1 −
√

1 − 4z
2z − 1 − z = p+ 1

p
− 1 − z = 1

p
− z. (D.36)

We multiply through by the extra factors to get
∞∑

i=2
Ci
pi−1(p− 1)
(p+ 1)2i

= p− 1
p

(1
p

− z

)
= p− 1

p2 − p− 1
p

z = p− 1
p2 − p− 1

(p+ 1)2 . (D.37)

Furthering our effort to simplify the bracket in the sum, note that
−3p− 1
p(p+ 1)2 + p− 1

p2 − p− 1
(p+ 1)2 = −3p2 − p+ (p− 1)(p+ 1)2 − (p− 1)p2

p2(p+ 1)2 = − 1
p2 . (D.38)

hence, the sum becomes

−
∑

p

ϕ̂2

( log(p)
log(R)

) log2(p)
p2 log2(R)

(D.39)
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which is amenable to our techniques involving the Prime Number Theorem. Let u = log(t)/ log(R)
and apply the Abel summation formula with the sequence ap = log(p) to get the main term

−
ˆ ∞

1

log(t)
t2 log2(R)

ϕ̂2

( log(t)
log(R)

)
dt = −

ˆ ∞

0
ue−u log(R)ϕ̂2(u)du (D.40)

arising from θ(t) = t+E(t). Writing ϕ̂(u) = ϕ̂(0) +O(u2) and plugging back into the integral, the
main term becomes

− ϕ̂(0)
log2(R)

+O

(
1

log4(R)

)
(D.41)

since
´∞

0 ue−uαdu = 1/α2. We proceed to compute the error term. We have that the error is

1
log2(R)

ˆ ∞

1
E(t) d

dt

[
log2 t

t2
ϕ

( log(t)
log(R)

)]
. (D.42)

Now,
d

dt

[
log2 t

t2
ϕ

( log(t)
log(R)

)]
= 1 − 2 log(t)

t3
ϕ̂(u) + log(t)

t3 log(R) ϕ̂
′(u) (D.43)

so the error term is
ϕ̂(0) + ϕ̂′′(0)

log2(R)

ˆ ∞

1

E(t)(1 − 2 log(t))
t3

dt+O

(
1

log4(R)

)
. (D.44)

□

Lemma D.6. Let ϕ̂ be an even Schwartz function, then∑
p

log2(p)
log2(R)

ϕ̂2

(2 log(p)
log(R)

)
p2 + 3p+ 1
p2(p+ 1)3

= Iϕ̂(0)
4 log2(R)

− ϕ̂(0)
log2(R)

ˆ ∞

1

E(t)B(t)
t3(t+ 1)4dt+O

(
1

log4(R)

)
,

where quantities I and B(t) are defined explicitly in the proof below.

Proof. Let f(x) = log(x) ϕ̂2
(

2 log(x)
log(R)

)
x2+3x+1
x2(x+1)3 so that by our standard tricks, we have

∑
p

log2(p)
log2(R)

ϕ̂2

(2 log(p)
log(R)

)
p2 + 3p+ 1
p2(p+ 1)3 = − 1

log2(R)

ˆ ∞

1
tf ′(t)dt− 1

log2(R)

ˆ ∞

1
E(t)f ′(t)dt.

(D.45)
Integrating the first term by parts and letting s = 2 log(t), it suffices to computeˆ ∞

1
f(t)dt = 1

4

ˆ ∞

0
sϕ̂

(
s

log(R)

)
es + 3 + e−s

(es + 1)3 ds. (D.46)

Expanding ϕ̂ using evenness, this gives that the main term is
Iϕ̂(0)

4 log2(R)
+O

(
1

log4(R)

)
, (D.47)

where we let
I :=

ˆ ∞

0
s
es + 3 + e−s

(es + 1)3 ds (D.48)

to later be integrated numerically. We now compute the error term in (D.45). Differentiating, we
have

f ′(x) =
A(x)ϕ̂′

(
2 log(x)
log(R)

)
+ log(R) B(x)ϕ̂

(
2 log(x)
log(R)

)
x3(x+ 1)4 log(R) (D.49)
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where

A(x) := (2x3 + 8x2 + 8x+ 2) log(x) (D.50)
B(x) := (−3x3 − 12x2 − 8x− 2) log(x) + x3 + 4x2 + 4x+ 1. (D.51)

Using evenness to expand ϕ̂ and ϕ̂′ to compute the integral

− 1
log2(R)

ˆ ∞

1
E(t)f ′(t)dt, (D.52)

we see that the first term is absorbed into the O(log−4R) error. Considering the second term, only
the constant term in the expansion of ϕ̂ matters for us, yielding an error term of

− ϕ̂(0)
log2(R)

ˆ ∞

1

E(t)B(t)
t3(t+ 1)4dt. (D.53)

□

Lemma D.7. Let ϕ̂ be even Schwartz function. Then∑
p1,p2

log(p1) log(p2)
p2 log2(R)

ϕ̂

(2 log(p2)
log(R)

) 2
p1(p1 + 1)

=

(
−1

2 + log 2
)
ϕ̂(0)

2 log(R) (1 + 4F1) + ϕ̂(0)F2
2 log(R) + 2ϕ̂(0)F1F2

log(R) +O

(
1

log4(R)

)
.

(D.54)

Proof. Rearranging ∑
p1,p2

log(p1) log(p2)
p2 log2(R)

ϕ̂

(2 log(p2)
log(R)

) 2
p1(p1 + 1)

=
∑
p1

log(p1)
p1(p1 + 1) log(R)

∑
p2

2 log(p2)
p2 log(R) ϕ̂

(2 log(p2)
log(R)

)
.

(D.55)

We apply Lemma D.1 to the sum over p2, getting that the above equals
S(R)

log(R)
∑
p1

log(p1)
p1(p1 + 1) (D.56)

where we can compute S(R) up to O(log−4R) numerically, leaving only the consideration of the
sum over p1. We apply the standard method of Abel summation, setting g(x) = 1

x(x+1) so that

∑
p1

log(p1)
p1(p1 + 1) = −

ˆ ∞

1
tg′(t)dt−

ˆ ∞

1
E(t)g′(t)dt. (D.57)

Integrating by parts, the first term gives a contribution of

[−tg(t)]∞1 +
ˆ ∞

1
g(t)dt = −1

2 + log 2. (D.58)

Since
g′(x) = − 2x+ 1

(x2 + x)2 , (D.59)

the error term in (D.57) ˆ ∞

1

E(t)(2t+ 1)
(t2 + t)2 dt =: F1 (D.60)
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which is a constant that we can compute numerically. Hence, after substituting in our expression
for S(R) from Lemma D.1, we have in total∑
p1,p2

log(p1) log(p2)
p2 log2(R)

ϕ̂

(2 log(p2)
log(R)

) 2
p1(p1 + 1) = S(R)

log(R)

[
−1

2 + log(2) + F1

]

=
[

ϕ̂(0)
2 log(R) + 2ϕ̂(0)

log(R)

(
1 +
ˆ ∞

0

E(t)
t2

dt

)
+O

(
1

log4(R)

)]
·
[(

−1
2 + log(2)

)
+
ˆ ∞

1

E(t)(2t+ 1)
(t2 + t)2 dt

]
.

(D.61)
Let

F2 :=
ˆ ∞

1

E(t)(2t+ 1)
(t2 + t)2 dt. (D.62)

Substituting (D.60) and (D.62) into (D.61) yeilds the lemma. □

Lemma D.8. Let ϕ̂ be even Schwartz function. Then∑
p1,p2

log(p1) log(p2)
p2 log2(R)

ϕ̂

(2 log(p2)
log(R)

) (p2
1 + 3p1 + 1)
p1(p1 + 1)3

=
ϕ̂(0)(log 2 + 3

4 + F3)
log(R)

(1
4 + F1

)
+O

(
1

log4(R)

)
.

(D.63)

where F1 = 1 +
´∞

0 E(t)/t2dt.
Proof. We begin the same as in Lemma D.7, obtaining∑

p1,p2

log(p1) log(p2)
p2 log2(R)

ϕ̂2

(2 log(p2)
log(R)

) (p2
1 + 3p1 + 1)
p1(p1 + 1)3 = S(R)

2 log(R)

[∑
p1

log(p1)p
2
1 + 3p1 + 1
p1(p1 + 1)3

]
. (D.64)

We define h(x) = x2+3x+1
x(x+1)3 so that by the Prime Number Theorem it follows that∑

p1

log(p1)h(p) = −
ˆ ∞

1
th′(t)dt−

ˆ ∞

1
E(t)h′(t)dt. (D.65)

The first term is
−[t · h(t)]∞1 +

ˆ ∞

1
h(t)dt = log 2 + 3

4 . (D.66)

Since
h′(x) = −2x3 + 8x2 + 4x+ 1

x2(x+ 1)4 , (D.67)

the second term is
F3 :=

ˆ ∞

1
E(t)2t3 + 8t2 + 4t+ 1

t2(t+ 1)4 dt. (D.68)

Hence, applying Lemma D.1 to get the value of S(R), we obtain∑
p1,p2

log(p1) log(p2)
p2 log2(R)

ϕ̂

(2 log(p2)
log(R)

) (p2
1 + 3p1 + 1)
p1(p1 + 1)3

=
[

ϕ̂(0)
4 log(R) + F1ϕ̂(0)

log(R) +O

(
1

log4(R)

)]
·
[
log 2 + 3

4 + F3

]

=
ϕ̂(0)(log 2 + 3

4 + F3)
log(R)

(1
4 + F1

)
+O

(
1

log4(R)

)
,

(D.69)

where F1 = 1 +
´∞

0 E(t)/t2dt. □
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Lemma D.9. Let ϕ̂ be even Schwartz function. Then

∑
p1,p2

log(p1) log(p2)
p2 log(R) ϕ̂

(2 log(p2)
log(R)

) ∞∑
ℓ=2

Cℓ
pℓ

1(p1 − 1)
(p1 + 1)2ℓ+1

=
ϕ̂(0)(log(2) + 1

4 + F4)
log(R)

(1
4 + F1

)
+O

(
1

log4(R)

)
.

(D.70)

Proof. Applying the same argument as in the previous computations and the fact that
∞∑

ℓ=2
Cℓ

pℓ
1(p1 − 1)

(p1 + 1)2ℓ+1 = 2p2
1 − p1 + 1
p1(p+ 1)3 , (D.71)

it follows that the sum equals

S(R)
2 log(R)

[∑
p1

log(p1)2p2
1 − p1 + 1
p1(p+ 1)3

]
. (D.72)

By the Prime Nnumber Theorem, letting f(x) = −2x2−x+1
x(x+1)3 gives

∑
p1

log(p1)2p2
1 − p1 + 1
p1(p+ 1)3 = −

ˆ ∞

1
tf ′(t)dt−

ˆ ∞

1
E(t)f ′(t)dt. (D.73)

The first term is

−
ˆ ∞

1
tf ′(t)dt = −[tf(t)]∞1 +

ˆ ∞

1
f(t)dt− 1 = log(2) + 1

4 . (D.74)

For the second term, note that

f ′(x) = −4x3 − 5x2 + 4x+ 1
x2 (x+ 1)4 (D.75)

so that

−
ˆ ∞

1
E(t)f ′(t)dt =

ˆ ∞

1
E(t)4x3 − 5x2 + 4x+ 1

x2 (x+ 1)4 dt =: F4. (D.76)

Hence, (D.73) is equal to

log(2) + 1
4 + F4. (D.77)

Substituting into (D.72), the sum is

∑
p1,p2

log(p1) log(p2)
p2 log(R) ϕ̂2

(2 log(p2)
log(R)

) ∞∑
ℓ=2

Cℓ
pℓ

1(p1 − 1)
(p1 + 1)2ℓ+1

=
[
ϕ̂2(0)

4 log(R) + F1ϕ̂2(0)
log(R) +O

(
1

log4(R)

)]
·
[
log 2 + 1

4 + F4

]

=
ϕ̂2(0)(log 2 + 1

4 + F4)
log(R)

(1
4 + F1

)
+O

(
1

log4(R)

)
.

(D.78)

□
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Lemma D.10. Let ϕ̂ be even Schwartz function. Then∑
p

log2(p)
log2(R)

ϕ̂

(2 log(p)
log(R)

) ∞∑
ℓ=2

(Cℓ+1 − Cℓ)
pℓ(p− 1)

(p+ 1)2ℓ+1

= ϕ̂2(0)
4 log2(R)

− ϕ̂2(0)
log2(R)

ˆ ∞

1
E(t)(−9t4 + 10t2 + 10t+ 3) log(t) + 3t4 + 3t3 − 2t2 − 3t− 1

t4(t+ 1)4 dt

+ O

(
1

log4(R)

)
.

(D.79)
Proof. We first simplify the sum over ℓ. Let

G(x) :=
∞∑

ℓ=0
Cℓx

ℓ = 1 −
√

1 − 4x
2x (D.80)

and
S :=

∞∑
ℓ=2

(Cℓ+1 − Cℓ)zℓ (D.81)

where z = p/(p+ 1)2. Since C0 = C1 = 1 and C2 = 2, it follows that

S = G(z) − 1 − z − 2z2

z
−G+ 1 + z = (1 − z)G− 1 − z2

z
. (D.82)

Plug in z = p/(p+ 1)2, noting that
√

1 − 4z = (p− 1)/(p+ 1) to get that

G(z) = p+ 1
p

(D.83)

and thus
S = 3p2 + 3p+ 1

p2(p+ 1)2 . (D.84)

Multiplying through by what we factored out, we get
∞∑

ℓ=2
(Cℓ+1 − Cℓ)

pℓ(p− 1)
p(p+ 1)2ℓ+1 = (p− 1)(3p2 + 3p+ 1)

p3(p+ 1)3 . (D.85)

The rest of the argument is analogous to (D.6). We define

g(x) := ϕ̂

(2 log(x)
log(R)

)
G(x) log(x), (D.86)

where
G(x) := (x− 1)(3x2 + 3x+ 1)

x3(x+ 1)3 . (D.87)

Hence, we can rewrite the sum we want as
1

log2(R)
∑

p

log(p) g(p) = − 1
log2(R)

ˆ ∞

1
tg′(t)dt− 1

log2(R)

ˆ ∞

1
E(t)g′(t)dt. (D.88)

Letting u = 2 log(p)/ log(R),

− 1
log2(R)

ˆ ∞

1
tg′(t)dt = 1

log2(R)

ˆ ∞

1
g(t)dt = 1

log2(R)

ˆ ∞

1
log(t) ϕ̂2

(2 log(t)
log(R)

)
G(t)dt. (D.89)

This is equal to
ϕ̂2(0)

log2(R)

ˆ ∞

1

log(t)(t− 1)(3t2 + 3t+ 1)
t3(t+ 1)3 +O

(
1

log4(R)

)
= ϕ̂2(0)

4 log2(R)
+O

(
1

log4(R)

)
. (D.90)

53



We now consider the error term. We have that

g′(x) =
A(x) log(x)ϕ̂′

2

(
2 log(x)
log(R)

)
+ (B(x) log(x) + C(x)) log(R)ϕ̂2

(
2 log(x)
log(R)

)
log(R)x4(x+ 1)4 (D.91)

where A(x), B(x), and C(x) are polynomials. Expanding ϕ̂ and ϕ̂′, the main term doesn’t con-
tribute, so the error is

− ϕ̂2(0)
log2(R)

ˆ ∞

1
E(t)B(t) log(t) + C(t)

t4(t+ 1) dt (D.92)

which is explicitly

− ϕ̂2(0)
log2(R)

ˆ ∞

1
E(t)(−9t4 + 10t2 + 10t+ 3) log(t) + 3t4 + 3t3 − 2t2 − 3t− 1

t4(t+ 1)4 dt. (D.93)

Combining (D.90) and (D.93) yields the lemma. □
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[ÖS99] A. E. Özlük and C. Snyder. “On the distribution of the nontrivial zeros of quadratic
L-functions close to the real axis”. In: Acta Arithmetica 91.3 (1999), pp. 209–228.
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