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MOST SUBSETS ARE BALANCED IN FINITE GROUPS

STEVEN J. MILLER AND KEVIN VISSUET

ABSTRACT. The sumset is one of the most basic and central objects in additive number
theory. Many of the most important problems (such as Goldbach’s conjecture and
Fermat’s Last theorem) can be formulated in terms of the sumset S + S = {x +

y : x, y ∈ S} of a set of integersS. A finite set of integersA is sum-dominated
if |A + A| > |A − A|. Though it was believed that the percentage of subsets of
{0, . . . , n} that are sum-dominated tends to zero, in 2006 Martin and O’Bryant proved
a very small positive percentage are sum-dominated if the sets are chosen uniformly at
random (through work of Zhao we know this percentage is approximately4.5 · 10−4).
While most sets are difference-dominated in the integer case, this is not the case when
we take subsets of many finite groups. We show that if we take subsets of larger and
larger finite groups uniformly at random, then not only does the probability of a set
being sum-dominated tend to zero but the probability that|A+A| = |A−A| tends to
one, and hence a typical set is balanced in this case. The cause of this marked difference
in behavior is that subsets of{0, . . . , n} have a fringe, whereas finite groups do not. We
end with a detailed analysis of dihedral groups, where the results are in striking contrast
to what occurs for subsets of integers. Specifically, even though almost all subsets of
dihedral groups are balanced as the size grows, more sets aresum-dominated than
difference-dominated.
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1. INTRODUCTION

Given a subsetS of a groupG, we define its sumsetS + S and difference setS − S
by

S + S = {ai + aj : ai, aj ∈ A}

S − S = {ai − aj : ai, aj ∈ A}, (1.1)

and let|X| denote the cardinality ofX. Notice that we’re writing the group action as
addition, but are not assuming commutativity. If we were to write the action multiplica-
tively we would still call these the sumset and the difference set, instead of the product
and quotient sets, to match the language from earlier work which studied subsets of the
integers.

If |S + S| > |S − S| thenS is sum-dominant or an MSTD (more sums than differ-
ences) set, while if|S + S| = |S − S| we sayS is balanced and if|S + S| < |S − S|
thenS is difference-dominated. If we let the groupG be the integers, then we expect
that for a ‘generic’ setS we have|S − S| > |S + S|. This is because addition is com-
mutative while subtraction is not, since a typical pair(x, y) contributes one sum and
two differences.

Though MSTD sets are rare among all finite subsets of integers, they do exist. Ex-
amples of MSTD sets go back to the 1960s. Conway is credited with finding{0, 2, 3, 4,
7, 11, 12, 14}; for other early examples see also Marica [Ma] and Freiman and Pi-
garev [FP]. Recently there has been much progress in finding infinite families, either
through explicit constructions (see Hegarty [He] and Nathanson [Na1]), and existance
arguments via non-constructive methods (see Ruzsa [Ru1, Ru2, Ru3] and Miller-Orosz-
Scheinerman [MOS]). The main result in the subject is due to Martin and O’Bryant
[MO], who proved a positive percentage of subsets of{0, 1, . . . , N} are sum-dominant,
though the percentage is small (work of Zhao [Zh2] suggests it is around4.5 · 10−4).

Almost all previous research on MSTD sets focused exclusively on subsets of the
integers, though recently Zhao [Zh1] extended previous results of Nathanson [Na2],
who showed that MSTD sets of integers can be constructed fromMSTD sets in fi-
nite abelian groups. Zhao provides asymptotics for the number of MSTD sets in finite
abelian groups. An immediate corollary of the main theorem in [Zh2] is that if{Gn} is
a sequence of finite abelian groups with{Gn} → ∞ then the percentage of MSTD sets
is almost surely0. In this paper we not only extend this result to difference-dominated
sets but to non-abelian finite groups as well.

Theorem 1.1. Let {Gn} be a sequence of finite groups, not necessarily abelian, with
|Gn| → ∞. LetSn be a uniformly chosen random subset of aGn. ThenP(Sn + Sn =
Sn − Sn = G) → 1 asn → ∞. In other words, as the size of the finite group grows
almost all subsets are balanced (with sumset and differenceset the entire group).

While Theorem 1.1 shows that in the limit almost all subsets of finite groups are
balanced, it leaves open the relative behavior of sum-dominant and difference-dominant
sets. Though the number of such sets are lower order and percentagewise tends to zero,
are there more, equal or fewer sum-dominant or difference-dominant sets? For example,
Figure 1 shows the result of numerical simulations for 10,000 clock groupsZ/nZ for
n ∈ {10, . . . , 100}.
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FIGURE 1. Numerical simulations on the number of balanced,
difference-dominated and sum-dominated subsets ofZ/nZ for n ∈
{10, . . . , 100}. For eachn we uniformly chose 10,000 random subsets
of {1, . . . , n}. Top plot is the percentage of balanced, middle is the per-
centage of difference-dominated, and bottom is the percentage of sum-
dominated.

In Section 3.2 we explore this question for subsets of dihedral groups, and see very
different behavior than in the integers. We conjecture thatwhile almost all subsets of
the dihedral group are balanced, there are more MSTD sets than there are difference-
dominated sets, in sharp contrast to the prevalence of difference-dominated subsets of
the integers.

The paper is organized as follows. We first prove our main result for all finite groups
in §2. We then explore the MSTD sets of the dihedral group in §3. We end with some
concluding remarks and suggestions for future research.

2. SUBSETS OFFINITE GROUPS

Martin and O’Bryant [MO] showed that although MSTD subsets of the integers are
rare, they are a positive percentage of subsets. MSTD sets infinite groups are even
rarer. We will prove that as the size of a finite group tends to infinity, the probability
that a subset chosen uniformly at random is sum-dominant tends to zero. Somewhat
surprisingly, this is also true for difference-dominated sets. This is very different than
the integer case, where more than 99.99% of all subsets are difference-dominated.

The reason the integers behave differently than finite groups is that a subset of the
integers contains fringe elements, which we now define. LetS be a subset ofIn :=
{0, 1, . . . , n} chosen uniformly at random. The elements ofS near 0 andn are called
the fringe elements. Interestingly the notion of nearness is independent ofn; the reason
is that almost all possible elements ofIn + In andIn − In are realized respectively by
S+S andS−S; Martin and O’Bryant [MO] prove thatS+S andS−S miss on average
10 and 6 elements, while Lazarev, Miller and O’Bryant [LMO] prove the variance is
bounded independent ofn. Thus whether or not a set is sum-dominant is essentially
controlled by the fringe elements ofS, as the ‘middle’ is filled with probability 1 and
the presence and absence of fringe elements control the extremes. In a finite group,
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there are no fringe elements since each element can be written as|G| different sums
and differences, and thus most elements appear in the sumsetor difference set with
high probability.

In the proof of Theorem 1.1 we reduce certain probabilities to products of Lucas
numbersL(n); these satisfy the recurrenceL(n + 2) = L(n + 1) + L(n) with ini-
tial conditionsL(0) = 2 andL(1) = 1. Note this is the same recurrence relation as
the Fibonacci numbersF (n), who differ from the Lucas numbers in that their initial
conditions areF (0) = 0 andF (1) = 1.

The following lemma is useful, and is in the spirit of calculations from [LMO]. The
interpretation will be that the red vertices correspond to elements chosen to be in an
S, and the condition that no neighboring vertices are both colored red will ensure that
certain elements are not represented inS + S.

Lemma 2.1. Let Cn = {a1, . . . , an} denote a closed chain ofn elements (soa1 is
adjacent toa2 andan, and so on). IfP (n) is the number of ways to color the vertices
of Cn red or blue such that no two neighboring vertices are coloredred, thenP (n) =
L(n).

Proof. We derive a recurrence formula forP (n). We may drawCn as a regularn-gon
with theai’s as the vertices. LetA(n) denote the number of ways a line withn vertices
a1, a2, . . . , an can be colored red or blue so that no two neighboring verticesare colored
red. We have

P (n) = A(n− 1) + A(n− 3). (2.1)
To see this, there are two cases. Consider the first vertex,a1. If it is colored blue then

we may ‘break’ the chain ata1 and the problem reduces to determining the number of
ways to colorn − 1 vertices on a line red or blue so that no two neighboring ones are
both red; by definition this isA(n−1). Alternatively, ifa1 is colored red thena2 andan
must both be colored blue, and thus we are left with coloringn− 3 vertices on a line so
that no two consecutive vertices are both red; again, by definition this is justA(n− 3).

Thus the lemma is reduced to computingA(n), which satisfies the Fibonacci-Lucas
recurrence. To see this, considern vertices on a line, withA(n) the number of ways to
color these red and blue so that no neighbors are both coloredred. If the first vertex is
colored blue, then by definition there areA(n−1) ways to color the remaining vertices,
while if the first vertex is colored red then the second must becolored blue, leaving
A(n− 2) ways to color the remaining vertices. Thus

A(n) = A(n− 1) + A(n− 2). (2.2)

It is easy to see thatA(1) = 2 andA(2) = 3, which implies

A(n) = F (n+ 2), (2.3)

whereF (n) is thenth Fibonacci number. AsP (n) = A(n− 1) + A(n− 3), we find

P (n) = F (n+ 1) + F (n− 1). (2.4)

As thenth Lucas number satisfies

L(n) = F (n+ 1) + F (n− 1) (2.5)

(this can easily be proved directly, or see for example [BQ]), we findP (n) = L(n) as
claimed. �



MOST SUBSETS ARE BALANCED IN FINITE GROUPS 5

We now prove our main theorem.

Proof of Theorem 1.1.We start by showing that the probability ag ∈ G = {g1, g2, . . . ,
gn} is in S + S approaches 1 exponentially fast. Forg ∈ G, we have

P(g /∈ S + S) = P(x /∈ S ∨ y /∈ S ∀x, y ∈ G s.t.x+ y = g). (2.6)

To determine the probability thatS + S is not all ofG we will add the probabilities
P(g /∈ S+S) for eachg. Note these probabilities are not independent, asx 6∈ G affects
the probability of severalg being inS + S.

We concentrate on a fixedg. If x ∈ G then there exist a chain of elements{x1, x2 . . . xn}
= X ⊆ G such that

x+ x1 = x2 + x3 = · · · = xn−1 + xn = xn + x = g, (2.7)

; clearly the pairs depend ong. Note thatX also depends on the choice ofx ∈ G. If we
denote all distinct chains asX1, . . . , Xn then these sets partitionG. If S is a subset of
G, for g not to be represented inS+S we need at least one element of each pair in each
Xi to fail to be inS. The number of ways this can happen is

∏

L(|Xi|), whereL(n) is
thenth Lucas number.

To see this equality we use a method similar to that used by Lazarev, Miller, and
O’Bryant in [LMO]. Counting the number of subsets ofXi such that we never take two
adjacent elements is equivalent to counting the number of ways the vertices of a regular
polygon with|Xi| = n vertices can be colored with two colors (say red and blue) such
that no two adjacent vertices are blue. Note that each subsetS of vertices with this
property is equivalent to a set whereg 6∈ S + S, and since theXi partitionG, then by
Lemma 2.1 the number of such colorings is

∏

L(|Xi|). Combining the independence
of theXi with Lemma 2.1, we conclude,

P(g /∈ S + S) =

∏

L(|Xi|)

2|G| . (2.8)

For example, take the elementa+ b ∈ D6 = 〈a, b|a+a+a, b+ b, a+ b+a+ b〉, where
D6 is the dihedral group with six elements. Here we have that

a+ b = (a+ b) + (a+ a+ a) = (a+ a+ a) + (a+ b) (2.9)

and

a+ b = (a+ a)+ (a+ a+ b) = (a+ a+ b)+ (a) = (a)+ (b) = (b)+ (a+ a), (2.10)

where plus denotes the group operation. The two chains we obtain areX1 = {a+b, a+
a+ a} andX2 = {a+ a, a+ a+ b, a, b}. LettingSX1

= S ∩X1 andSX2
= S ∩X2 we

have that

P(a+ b /∈ S + S) = P(a + b /∈ SX1
+ SX1

)P(a + b /∈ SX2
+ SX2

)

=

(

L(2)

22

)(

L(4)

24

)

, (2.11)

where the latter equality occurs because of Lemma 2.1.
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Note thatL(n) = φn + (−φ)−n whereφ = 1+
√
5

2
is the golden ratio. As theXi’s are

disjoint, we obtain for eachg ∈ G that

P(g /∈ S + S) =

∏

L(|Xi|)

2|G| ≤

∏

1.8|Xi|

2|G| =

(

1.8

2

)|G|
. (2.12)

As crude bounds suffice, we use the union bound to bound the contribution from each
element inG, and find

P(|S+S| < |G|) = P(∪g∈Gg /∈ G) ≤
∑

g∈S+S

P(g /∈ S+S) ≤ |G|

(

1.8

2

)|G|
. (2.13)

As the size of the group approaches infinity, we have thatP(|S + S| < |G|) approaches
zero. The same argument holds forS − S since there is a one to one bijection between
group elements and their inverses. Thus most subsets are balanced. �

Remark 2.2. The above arguments do not apply to subsets of the integers. The reason
is due to the lack of a group structure. In particular, the result from equation(2.7)does
not hold and different elements have different number of representations as a sum or a
difference. For example, for the integers the number of pairs (x, y) ⊂ {0, . . . , n − 1}2

such thatx + y = k is a triangular function ofk, peaking whenk = n − 1. Thus
whether or not small (near 0) or large (near2n − 2) k are in the sumset is controlled
by the fringe elements of our set. A similar result holds for differences, and thus if the
fringe is carefully chosen then we can force our set to be sum-dominant or difference-
dominant. Note such forcing arguments cannot happen with a group structure.

Note that we used1.8 as a very crude bound. While
∏

L(|Xi|) is much closer toφn

then it is to1.8n, sinceφ0 is less thanL(0), φn does not provide an inequality for alln.

3. SUM DOMINATED SETS IN DIHEDRAL GROUPS

Although sum-dominated sets and and difference-dominatedsets are rare in arbitrar-
ily large finite groups, we can compare the size of the number of sum-dominated subsets
and difference-dominated subsets in any fixed finite group. In this section we first ex-
plore the sumset and difference set of cyclic groups. We thenapply those results to give
intuition on why in any dihedral group, there should be more sum-dominated sets than
difference-dominated sets.

3.1. Cyclic Group Preliminaries. Before we look at the dihedral group, we explore
two different cases in cyclic groups. In the first case we compute the probability of an
element missing in the sumset and difference set. In the second case we compute the
probability of missing an element inA+B whereA andB are both subsets ofZ/nZ.

Lemma 3.1. LetS be a uniformly chosen random subset ofZ/nZ. Then

P(k /∈ S + S) = O
(

(3/4)n/2
)

. (3.1)

Proof. Let k ∈ Z/nZ. Since addition is commutative, all sets of pairs of elements that
sum tok partition the group. Furthermore, the number of pairs of distinct elements in
Z/nZ is equal to eithern/2, n/2−1 or (n−1)/2. The number of distinct pairs depends
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on the parity ofn andk. From the independence of the pairs of elements that sum tok,
we have

P(k /∈ S + S) =
∏

0≤i≤⌈(n+1)/2⌉
P(i /∈ S ∨ k − i /∈ S). (3.2)

Finally, since counting the number of distinct pairs is straightforward, we conclude

P(k /∈ S + S) =







(1/2)2(3/4)n/2−1 k even andn even
(3/4)n/2 k odd andn even

(1/2)(3/4)(n−1)/2 n odd.
(3.3)

The factor of1/2 is due to the number of elementsx ∈ Z/nZ such thatx + x = k.
Again, the number of these elements depends on the parity ofn andk. �

Lemma 3.2. LetS1 andS2 be uniformly chosen random subsets ofZ/nZ. Then

P(k /∈ S1 + S2) = (3/4)n. (3.4)

Proof. Let k ∈ Z/nZ. The claim follows immediately from the fact that

P(k /∈ S1 + S2) =
∏

0≤i≤n−1

P(i /∈ S1 ∨ k − i /∈ S2) (3.5)

and the fact that thesen products are mutually independent. �

Lemma 3.3. LetS be a uniformly chosen random subset ofZ/nZ. Then

P(k /∈ S − S) =
L(n/d)d

2n
= O ((φ/2)n) , (3.6)

wheregcd(k, n) = d, L(n) is thenth Lucas number, andφ is the golden ratio.

Proof. Let k ∈ Z/nZ. Since the order ofk in Z/nZ is equal ton/ gcd(n, k), if we
have a set{x1, x2, . . . , xm} such thatx1 − x2 = x2 − x3 = · · · = xm − x1 = k then
m = n/ gcd(n, k). These sets partition the group and thus, the number of subsets of
Z/nZ that satisfy this property isgcd(n, k). Combining the fact that these sets have a
pairwise trivial intersection with Lemma 2.1 we have

P(k /∈ S − S) =
L(n/d)d

2n
, (3.7)

as desired. �

Lemma 3.4. LetS1 andS2 be uniformly chosen random subsets ofZ/nZ. Then

P(k /∈ S1 − S2) =

(

3

4

)n

. (3.8)
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Proof. The proof follows immediately from the following equalities:

P(k /∈ S1 − S2) =
∏

x∈Z/nZ
P(x /∈ S1 ∪ x− k /∈ S2)

=
∏

x∈Z/nZ
(1− P(x ∈ S1 ∩ x− k /∈ S2))

=
∏

x∈Z/nZ
(1− P(x ∈ S1)P(x− k /∈ S2))

=

(

3

4

)n

.

(3.9)

�

Proposition 3.5. Let S be uniformly chosen random subsets ofZ/nZ then asn ap-
proaches infinityP(|S + S| = |S − S| = n) approaches 1.

Proof. This is immediate from the union bound and Lemmas 3.1, 3.2, 3.3 and 3.4. �

3.2. Dihedral Group Case. Let S be a subset ofD2n = 〈a, b|an, b2, abab〉 chosen
uniformly at random. We first give a proof for the dihedral group subcase of Theorem
1.1 by using the previous lemmas. Before we do so we need two results. The first looks
at the probability of a rotation element (k = ai) not being in the sumset. The second
looks at the probability of a reflection element(k = aib) not being in the sumset. We
denote the set of all rotation elements byR and the set of all reflection elements byF .

Lemma 3.6. LetS be a uniformly chosen random subset ofD2n and letk ∈ D2n such
thatk = ai. ThenP(k /∈ S + S) ≤ (3/4)n/2(φ/2)n andP(k /∈ S − S) ≤ (φ/2)2n.

Proof. An element of the formai can be written as a product of two rotations,axay

wherex + y = i, or the product of two reflections,axbayb wherex − y = i. Since
the set of rotations and the set of reflections can be viewed ascyclic groups the proofs
follow immediately from Lemmas 3.1 and 3.3. �

Lemma 3.7. LetS be a uniformly chosen random subset ofD2n and letk ∈ D2n such
thatk = aib. ThenP(k /∈ S + S) ≤ (3/4)n andP(k /∈ S − S) ≤ (3/4)n.

Proof. Since an element of the formaib can be written as a product of a rotation and a
reflection the proof follows immediately from Lemma 3.2. �

Theorem 3.8. Let S be a uniformly random subset ofD2n. Then, asn approaches
infinity,P(|S + S| = |S − S|) approaches 1.

Proof. The proof follows immediately from applying the union boundto Lemmas 3.6
and 3.7. �

Note that by Theorem 1.1 we know that the percentage of sum-dominated and difference-
dominated sets goes to zero at an exponential rate. However,if we look at any fixedD2n

we conjecture that the number of sum-dominated subsets is greater than the number of
difference-dominated subsets. For the first few dihedral groups (up toD16) Figure 2
shows an exhaustive comparison of the subsets ofD2n. Figure 2 also includes a sample
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FIGURE 2. Relative number of sum-dominated sets (larger values) ver-
sus difference-dominated sets (lower values) in dihedral groups.

statistic for larger dihedral groups. Note that it is hard tocontinue a complete enumer-
ation.

As Figure 2 suggests, sum-dominated sets are more likely to appear than difference-
dominated sets. LetS = R ∪ F whereR is the set of rotations inS andF is the set
of reflections inS. From Table 1 we note that the difference in what contributesto
the sumsets and difference sets isR − R which contributes to the difference set and
F − R andR + R which contributes to the sumset. It is due to this that there are more
sum-dominated sets than difference-dominated sets.

Set Rotations in the Set Reflections in the Set
S R F

S+S R +R, F + F R + F , −R + F
S-S R −R, F + F R + F
TABLE 1. How elements contribute to the size ofS + S versusS − S.

4. CONCLUSION

We have shown that finite groups behave differently than the integers in the sense
that almost all subsets are balanced. The reason is that finite groups do not have a
fringe. As a result, in finite groups almost all sumsets and difference sets are equal to
the entire group. The dihedral group case also hints at the importance of the size of the
commutator subgroup and the number of order two elements. Itis easy to see that the
size of the sumset is greater when the commutator subgroup issmall while the size of
the difference set is lower due to the greater amount of ordertwo elements.

A natural question to ask is what would happen if we no longer weight each subset
equally. When each subset is chosen with uniform probability then the probability of
the subset being balanced is equal to1; however, inZ/nZ, if we take subsets of the
first half of the group (i.e.,̄0, 1̄, . . . , ⌊̄n

2
⌋) then the sumsets and differece sets behave like

they would inZ. Thus, the percentage of balanced groups is closer to0. It would be
interesting to explore where the phase transition occurs.

Another question to ask is what happens when we look at non-abelian infinite groups.
One difficulty is how we approach subsets of infinite groups. For example, if we look at
(Z/2Z)|N| we have two different ways to limit the size of the subset. Onepossibility is to



10 STEVEN J. MILLER AND KEVIN VISSUET

requireS to be a subset of a finite subgroup. This would allow for an easier computation
of the limiting behavior, though we would have to determine the probability it lives in
each finite subgroup.
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