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Abstract. A More Sums Than Difference (MSTD) set is a finite set of integers A where the cardinality of
its sumset, A+A, is greater than the cardinality of its difference set, A−A. Since addition is commutative

while subtraction isn’t, it was conjectured that MSTD sets are rare. As Martin and O’Bryant proved a small

(but positive) percentage are MSTD, it is natural to ask what additional properties can we impose on a
chain of MSTD sets; in particular, can we construct a sequence of sets alternating between being MSTD

and More Difference Than Sums (MDTS) where each properly contains the previous? We provide several

such constructions; the first are trivial and proceed by filling in all missing elements from the minimum
to maximum elements of A, while the last is a more involved construction that prohibits adding any such

elements.

1. Introduction

For a finite set of integers A, we define the sumset A + A := {a + b : a, b ∈ A}. Similarly, we define
the difference set A − A := {a − b : a, b ∈ A}. Let

∣∣A∣∣ refer to the cardinality of A. Intuitively, because

a+ b = b+a for all a, b ∈ Z, but a− b ̸= b−a unless a = b, we would expect
∣∣A−A

∣∣ to be larger than
∣∣A+A

∣∣
[MartinOBryant, nathanson2006]. However, this is not always the case. We say A is a More Sums Than
Differences (MSTD) set if

∣∣A+A
∣∣ >

∣∣A−A
∣∣. Alternatively, A is a More Differences Than Sums (MDTS)

set if
∣∣A−A

∣∣ >
∣∣A+A

∣∣. These sets are also referred to as sum-dominated or difference-dominated sets.

The study of MSTD sets originated with early examples discovered by Conway
(
{0, 2, 3, 4, 7, 11, 12, 14}

)
,

Marica
(
{1, 2, 3, 5, 8, 9, 13, 15, 16}

)
[MaricaConwayConjecture], and Freiman-Pigarev 1[FreimanPigarev1973].

Nathanson later formalized the problem, proved several properties of MSTD sets, provided several methods
for constructing MSTD sets, and remarked that MSTD sets should be rare [nathanson2006]. Surpris-
ingly, Martin and O’Bryant [MartinOBryant] proved that as n → ∞, a positive percentage of subsets of
{1, 2, . . . , n} are MSTD, and Hegarty proved that the set Conway found is the smallest possible MSTD set in
terms of cardinality and diameter [HegartyMinSum]. Additional research has focused on explicit construc-
tions of generalized MSTD sets [miller2008, ExplicitLargeFamilies, nathanson2017] and generalizations
to groups [Zhao2010]. Many problems in number theory involve sumsets and difference sets.

At the recent 2025 CANT (Combinatorial and Additive Number Theory Conference), Samuel Allen Alexan-
der posed the problem of finding an infinite sequence of sets with Ai−1 ⊂ Ai that alternate being MSTD
and MDTS. We address this problem by presenting several methods for constructing such sequences. Be-
fore introducing these methods, we must first establish several known properties of MSTD sets, and sets in
general.

First, for any set of integers A, we define the dilation x ·A := {xa : a ∈ A}. For all integers x, y such that
x ̸= 0, the set

B = x ·A+ {y} = {xa+ y : a ∈ A} (1)

satisfies
∣∣B + B

∣∣ =
∣∣A + A

∣∣ and
∣∣B − B

∣∣ =
∣∣A − A

∣∣ [nathanson2006]. This property ensures that any
method developed on a specific subset of the integers can be extended, via dilation and translation, to the
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full domain of integers. Furthermore, through dilation and translation, we have that any non-trivial k-term
arithmetic progression can be obtained from the interval

I = {1, 2, . . . , k} := [1, k].

It is also evident that

I + I = [2, 2k]

I − I = [1− k, k − 1], (2)

so such sets have the same number of sums and differences. For instance, if A = {1, 2, 3}, then

A+A = {2, 3, 4, 5, 6}
A−A = {−2,−1, 0, 1, 2}∣∣A+A

∣∣ =
∣∣A−A

∣∣ = 5. (3)

For a set of integers A, if there exists an a∗ ∈ Z such that a∗ − A = A, then we say that A is symmetric
with respect to a∗, and we have that

∣∣A+A
∣∣ = ∣∣A−A

∣∣ [nathanson2006]. If A is an arithmetic progression,
we have that A is symmetric to a∗ = min(A)+max(A). For instance, the arithmetic progression A = {1, 3, 5}
is symmetric with respect to 6.

Many methods that are used to construct MSTD sets make use of the symmetry property [nathanson2006].
For example, the set A = {0, 2, 3, 7, 11, 12, 14} is symmetric with respect to 14, so

∣∣A+A
∣∣ = ∣∣A−A

∣∣. However,
adding 4 to this set forms Conway’s set, which is MSTD. We also use this symmetry property in one method
presented in the paper.

Section 2 of the paper presents two methods that construct the desired alternating sequence through the
use of ‘filling in’ missing elements. Theorem 2.4 provides a method to construct an MDTS superset from
any MSTD set, which forms the foundation for Filling in Method 1. Theorem 2.8 then builds on known
constructions of MSTD sets to generate sequences with controlled growth in Filling in Method 2. Section 3
presents another constraint, requiring that any element missing from an intermediate set remains missing in
all subsequent sets. Theorem 3.2 provides a method based on choosing fringe elements to control the sum
and difference sets. Lastly, Section 4 summarizes the growth rate of each method.

The first constructions are trivial as we add missing elements from the minimal to maximal element in
our set and then append whatever left and right fringe are needed. The final construction is more interesting
and involved, as we force the constructions to be non-trivial by forbidding the inclusion of any of the missing
elements. We further develop such methods in a companion paper.

2. Filling in Methods

For a set A ⊂ [a, b], ‘filling in’ the set A refers to the process of adding some (or potentially all) missing
elements of [a, b] \A to A. For instance, we could fill in the set A = {1, 3, 5} by adding either 2, 4, or both 2
and 4 to A.

We provide two methods that construct the desired sequence through the use of filling in. In each method,
we first fill in Ai−1 and subsequently adjoin elements to create either a MSTD or MDTS set Ai.

2.1. Filling in Method 1. Before we begin, we recall the following results, taken from Nathanson [nathanson2006].

Lemma 2.1. Let m ≥ 4 and 2 ≤ r ≤ m−3, with m, r ∈ N. Let B = [0,m−1]\{r}. Then B+B = [0, 2m−2],
and B −B = [−(m− 1),m− 1].

Definition 2.2. For integers d ≥ 1, a d-dimensional arithmetic progression is a set of the form

L := {a+ x1m1 + · · ·+ xdmd : ℓi ≤ xi ≤ ℓi + ki − 1 for i = 1, . . . , d},

where a is the base point, m1, . . . ,md are the step sizes, ℓ1, . . . , ℓd are the starting indices, and k1, . . . , kd are
the lengths in each dimension.

A 0-dimensional arithmetic progression is just a single point {a}.
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Theorem 2.3. Let m ≥ 4, m ∈ N and let B be a subset of [0,m− 1] such that

B +B = [0, 2m− 2],

and

B −B = [−m+ 1,m+ 1].

Let L∗ be a (d−1)-dimensional arithmetic progression contained in [0,m−1]\B such that min(L∗)−1 ∈ B
and m /∈ L∗ + L∗. Let k ≥ 2 and let L be the d-dimensional arithmetic progression

L = (m− L∗) +m ∗ [1, k].

Let

a∗ = min(L) + max(L) = (k + 3)m−min(L∗)−max(L∗),

and

A∗ = B ∪ L ∪ ({a∗} −B).

Then A = A∗ ∪ {m} is a MSTD set of integers.

In addition to these results, we provide a simple construction which will be used to build the MDTS sets
of our sequence.

Theorem 2.4. Let m, p ∈ N such that p > m+ 1. Define

A := [0,m] ∪ {p}.

Then A is a MDTS set of integers that satisfies

|A−A| − |A+A| =

{
m, if p > 2m,

p−m− 1, if m+ 1 < p ≤ 2m.

Proof. For m, p ∈ N such that p > m+ 1, define

A := [0,m] ∪ {p}. (4)

We first compute the values of the sumset and difference set of A:

A+A = [0, 2m] ∪ [p,m+ p] ∪ {2p}
A−A = [−m,m] ∪ [−p,m− p] ∪ [p−m, p] . (5)

To count the cardinality of each set, we consider two cases.

Case 1: p > 2m. In this case, since none of the subintervals overlap, counting the cardinality of
each set simplifies to adding together the total number of elements in each interval:∣∣A+A

∣∣ = (2m+ 1) + (m+ 1) + 1 = 3m+ 3∣∣A−A
∣∣ = (2m+ 1) + (m+ 1) + (m+ 1) = 4m+ 3. (6)

Thus, A is difference dominated with exactly m more differences than sums.
Case 2: m+ 1 < p ≤ 2m. Since [0, 2m] ∪ [p,m+ p] = [0,m+ p] and m+ p < 2p, we have∣∣A+A

∣∣ = (m+ p+ 1) + 1 = m+ p+ 2. (7)

Similarly, [−p,m− p] ∪ [−m,m] ∪ [p−m, p] = [−p, p], so∣∣A−A
∣∣ = 2p+ 1. (8)

Since p > m + 1, we have 2p + 1 > m + p + 2, so A is difference-dominated with p − m − 1 more
differences than sums.

Thus, A = [0,m] ∪ {p} is difference-dominated for all p > m+ 1. □



4 YORICK HERRMANN, CONNOR HILL, MERLIN PHILLIPS, DANIEL FLORES, MILLER, AND STEVEN SENGER

With Theorem 2.4, we can construct an MDTS superset A2 from any MSTD set A1 by lettingm = max(A1)
and selecting p > m+ 1.

Next, we construct a MSTD superset A3 of the MDTS set A2. Let n = p+5 if p is even, and let n = p+2
if p is odd. In either case, n is odd. Define

B3 := [0, n− 1] \ {r}, (9)

where 2 ≤ r ≤ n− 3 and A2 ⊂ B3. Such an r exists since taking r = n− 3 gives r /∈ [0,m] ∪ {p} = A2 when
p > m+ 1.

By Lemma 2.1, B3 satisfies

B3 +B3 = [0, 2n− 2]

B3 −B3 = [−(n− 1), n− 1]. (10)

Let L∗ = {r} be a 0-dimensional arithmetic progression. Clearly, min(L∗) = r and min(L∗) − 1 ∈ B3. If
n ∈ L∗ + L∗, then n = 2r. As n is odd, n ̸= 2r, and n /∈ L∗ + L∗.

Now, let k ≥ 2 and define

L := {n− r}+ n ∗ [1, k] = {2n− r, 3n− r, . . . , (k + 1)n− r}
a∗ := 2n− r + (k + 1)n− r = (k + 3)n− 2r

A∗
3 := B3 ∪ L ∪ ({a∗} −B3). (11)

Then A3 = A∗
3 ∪ {n} is MSTD by Theorem 2.3. Furthermore, since A2 ⊂ B3 ⊂ A3, we have A2 ⊂ A3.

Now, let m2 = a∗. Clearly, A3 ⊂ [0,m2]. We can now repeat the process indefinitely, substituting m2 in
for m to generate A4, and so on. This gives a sequence A1 ⊂ A2 ⊂ · · · such that A2i−1 is sum-dominated
and A2i is difference-dominated for all i ∈ N.

We now apply Method 1 to the Conway set in order to examine the smallest commonalities of this method.
Let A1 = {0, 2, 3, 4, 7, 11, 12, 14}; A1 has 8 elements and a diameter of 14.

The two smallest possible p we can pick to generate A2 are p = 16 and p = 17. However, when we generate
A3, we want n to be as small as possible to minimize the cardinality and diameter of A3. If p = 16, then
n = 21, but if p = 17, then n = 19. Thus, we choose p = 17.

For p = 17, A2 = [0, 14] ∪ {17}, which has 16 elements and a diameter of 17.
To generate A3, we set n = p+ 2 = 19. We choose r to be as large as possible to minimize the diameter

and cardinality of L and {a∗} − B3. For the same reasons, we choose k to be as small as possible. We set
r = 16 and k = 2. Then

B3 = [0, 18] \ {16}
L∗ = {16}
L = {22, 41}
a∗ = 63

{a∗} −B3 = [45, 63] \ {47}. (12)

Thus, A3 = B3 ∪L ∪ ({a∗}−B3) ∪ {19} is MSTD. Table 2.5 below displays the minimal characteristics
for the first few sets in this chain generated by the Conway set. The density of a set refers to that set’s
cardinality divided by its diameter. The D(Ai)/D(Ai−1) column measures how much larger a set’s diameter
is compared to the previous set in the sequence. Note that all entries in the density and growth rate columns
are rounded to 3 decimal places, and this convention will be followed throughout the rest of the paper.

Table 2.5 shows that both the cardinality and diameter at least triples between consecutive MSTD sets
in this sequence. The exponential growth between the sets generated by this method raises the question of
whether a more efficient approach exists for producing the desired sequence.

Remark. The process for generating such a sequence could be generalized to any MSTD, not just those that
start out as subsets of nonnegative integers, due to dilations and translations.



CONSTRUCTIONS OF SEQUENCES OF ALTERNATING SUM AND DIFFERENCE DOMINATED SETS 5

Table 2.5. Filling in Method 1 Example Sequence

Set
∣∣Ai +Ai

∣∣ ∣∣Ai −Ai

∣∣ Cardinality Diameter
∣∣Ai

∣∣/∣∣Ai−1

∣∣ D(Ai)/D(Ai−1) Density
A1 26 25 8 14 N/A N/A 0.571
A2 33 35 16 17 2.000 1.214 0.941
A3 126 125 39 63 2.438 3.706 0.619
A4 130 131 65 65 1.667 1.032 1.000
A5 414 413 135 207 2.077 3.185 0.652
A6 418 419 209 209 1.548 1.010 1.000
A7 1278 1277 423 639 2.024 3.057 0.662
...

...
...

...
...

...
...

...
Limiting MSTD density: 0.667

2.2. Filling in Method 2. We now construct a second method that incorporates filling in, but is more
efficient than Filling in Method 1. This method builds on Theorem 1.1 of Miller, Scheinerman, and Orosz
[miller2008], which requires the following definition.

Definition 2.6. A set A ⊂ [a, b] is said to be Pn if both A + A and A − A contain all possible sums or
differences with possible exceptions for the first and last n elements, i.e., [2a + n, 2b − n] ⊂ A + A and
[−(b− a) + n, (b− a)− n] ⊂ A−A.

With this definition in place, we are able to state the following theorem from [miller2008].

Theorem 2.7. Let A = L ∪ R be a Pn, MSTD set where L ⊂ [1, n], R ⊂ [n + 1, 2n], and 1, 2n ∈ A. Fix
a k ≥ n and let m be arbitrary. Let M be any subset of [n + k + 1, n + k + m] with the property that
it does not have a run of more than k missing elements. Assume further that n + k + 1 /∈ M and set
A(M ; k) = L ∪ O1 ∪ M ∪ O2 ∪ R′, where O1 = [n + 1, n + k], O2 = [n + k + m + 1, n + 2k + m], and
R′ = R+ 2k +m. Then A(M ; k) is a MSTD set.

To begin, let A = A1 ⊂ [1, 2n] be a MSTD set which includes both 1 and 2n, and which does not include
n. Suppose further that A is Pn. Write A = L ∪R where L ⊂ [1, n] and R ⊂ [n+ 1, 2n].

Let

A2 = ([0, 2n] \ {n}) ∪ {3n} (13)

which is difference-dominated (similar calculation in Case 1 of Filling in Method 1), and let

A3 = (L− n− 1) ∪ ([0, 2n] \ {n}) ∪ (R+ n). (14)

Analyzing A3 is identical to analyzing A3 + n+ 1, which can be expressed as

A3 + n+ 1 = L ∪ ([n+ 1, 3n+ 1] \ {2n+ 1}) ∪ (R+ 2n+ 1). (15)

Using Theorem 2.7 with the parameters k = n, m = 1, and M = ∅ ⊂ [2n+1, 2n+1], we see that A3+n+1
is a MSTD set. Thus A3 is MSTD as well, and we have

A1 ⊂ A2 ⊂ A3. (16)

For an integer l ≥ 2, let

A2l := ([(1− l)n, (l + 1)n] \ {n}) ∪ {(l + 2)n} (17)

which is difference-dominated, and let

A2l+1 := (L− ln− 1) ∪ ([(1− l)n, (l + 1)n] \ {n}) ∪ (R+ ln). (18)

Using k = ln, m = 1, and M = ∅, we can apply Theorem 2.7 to

A2l+1 + ln+ 1 = L ∪ ([n+ 1, (2l + 1)n+ 1] \ {(l + 1)n+ 1}) ∪ (R+ 2ln+ 1)
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to see that A2l+1 is sum-dominated. Finally, we have

A2l+2 = ([minA2l+1,maxA2l+1] \ {n}) ∪ {maxA2l+1 + n}
= ([−ln, (l + 2)n] \ {n}) ∪ {(l + 3)n} = A2(l+1), (19)

and

A2l ⊂ A2l+1 ⊂ A2l+2. (20)

We summarize this result with the following theorem.

Theorem 2.8. Let A = L∪R where L ⊂ [1, n] and R ⊂ [n+1, 2n], with 1, 2n ∈ A and n /∈ A. Suppose that
A is Pn and MSTD. Let A1 = A and for l ≥ 1, let

A2l = ([(1− l)n, (l + 1)n] \ {n}) ∪ {(l + 2)n}

and let

A2l+1 = (L− ln− 1) ∪ ([(1− l)n, (l + 1)n] \ {n}) ∪ (R+ ln).

Then the sequence of sets A1 ⊂ A2 ⊂ · · · alternates between being MSTD and MDTS. Furthermore, for
m ≥ 3 the diameter of the set Am is n larger than that of the set Am−1.

An example of a set which can be used for this construction is

A1 = {1, 3, 4, 8, 9, 12, 13, 15, 18, 19, 20}, (21)

which is a P10 MSTD set with 1, 20 ∈ A1 and 10 /∈ A1. Breaking down A1 into L and R, we have

L = {1, 3, 4, 8, 9}
R = {12, 13, 15, 18, 19, 20}. (22)

When applying Method 2 to A1, we get

A2 = [0, 20] \ {10} ∪ {30}
A3 = {−10,−8,−7,−3,−2} ∪ [0, 20] \ {10} ∪ {22, 23, 25, 28, 29, 30}. (23)

The cardinalities and diameters of the sets in this sequence are given in Table 2.9 below.

Table 2.9. Filling in Method 2 Example Sequence

Set
∣∣Ai +Ai

∣∣ ∣∣Ai −Ai

∣∣ Cardinality Diameter
∣∣Ai

∣∣/∣∣Ai−1

∣∣ D(Ai)/D(Ai−1) Density
A1 38 37 11 16 N/A N/A 0.688
A2 52 61 21 30 1.909 1.875 0.700
A3 80 79 31 40 1.476 1.333 0.775
A4 92 101 41 50 1.323 1.25 0.820
A5 120 119 51 60 1.244 1.2 0.850
A6 132 141 61 70 1.196 1.167 0.871
A7 160 159 71 80 1.164 1.143 0.888
...

...
...

...
...

...
...

...
Limiting MSTD density: 1.000

As seen in Table 2.9, both the cardinality and diameter increases by 10 between Ai and Ai+1 in this
sequence for i ≥ 2. So, while Filling in Method 1 produces the desired sequence for any MSTD set A1, Filling
in Method 2 exhibits a more efficient and controlled growth rate between the Ai.
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3. Non-Filling in Method

We now place an additional constraint on the alternating sequence we seek to generate. For any Ak, let
a = minAk and b = maxAk. Then, if an x ∈ [a, b] is not in Ak, we require that x /∈ An for all n > k. In
other words, this restriction prohibits filling in when generating the sequence. While filling in provides valid
constructions, it can substantially alter or even erase the structure of earlier MSTD sets in the sequence,
leading to relatively trivial solutions. With non-filling in methods, each step preserves the properties of the
previous sets, leading to more structurally meaningful sequences. We provide a single such method below
and several more in a future paper.

A≥x := {a ∈ A : a ≥ x}. (24)

Let

A0 = {0, 1, 2, 5, 8, 9, 10}. (25)

For l ≥ 1, let

A2l−1 = A0 ∪ (8 · [1, l] + {6, 7, 9, 10}). (26)

We prove that A2l−1 is MSTD.

First, we show

A2l−1 +A2l−1 = [0, 16l + 20] \ {21}. (27)

Note that

[0, 28] \ {21} ⊂ A1 +A1 ⊆ A2l−1 +A2l−1. (28)

To construct sums for [29, 16l+ 20], we take k ∈ [2, 2l], and m,n ∈ N such that 1 ≤ m,n ≤ l and m+ n = k.
We then have the following cases:

• 8k + 13 = (8m+ 7) + (8n+ 6)
• 8k + 14 = (8m+ 7) + (8n+ 7)
• 8k + 15 = (8m+ 9) + (8n+ 6)
• 8k + 16 = (8m+ 9) + (8n+ 7)
• 8k + 17 = (8m+ 10) + (8n+ 7)
• 8k + 18 = (8m+ 9) + (8n+ 9)
• 8k + 19 = (8m+ 10) + (8n+ 9)
• 8k + 20 = (8m+ 10) + (8n+ 10).

Thus, we have proven (27). Next, we show

A2l−1 −A2l−1 = [−8l − 10, 8l + 10] \ {−8l − 3, 8l + 3}. (29)

Note that

[−10, 10] ⊂ A1 −A1 ⊆ A2l−1 −A2l−1. (30)

For k ∈ [1, l − 1], we have

8k + 3 = (8(k + 1) + 9)− 14,

and for k ∈ [1, l] we have the following cases:

• 8k + 4 = (8k + 6)− 2
• 8k + 5 = (8k + 6)− 1
• 8k + 6 = (8k + 6)− 0
• 8k + 7 = (8k + 7)− 0
• 8k + 8 = (8k + 9)− 1
• 8k + 9 = (8k + 9)− 0
• 8k + 10 = (8k + 10)− 0.
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Lastly, if we assume without loss of generality that m > n, we note that there exists no combination of
m ∈ 8l+{6, 7, 9, 10} and n ∈ A0 such thatm−n = 8l+3. This is enough to conclude ±(8l+3) /∈ A2l−1−A2l−1

since if m /∈ 8l + {6, 7, 9, 10} or n /∈ A0, then m− n < 8l + 3.
Thus, we have proven (29), and we have that A2l−1 is MSTD with

16l + 20 =
∣∣A2l−1 +A2l−1

∣∣ >
∣∣A2l−1 −A2l−1

∣∣ = 16l + 19. (31)

Furthermore, we observe that

A1 ⊂ A3 ⊂ · · · ⊂ A2l−1 ⊂ · · · . (32)

Now, let

A2l = A2l−1 ∪ {8l + 14}. (33)

We show that A2l is MDTS.

Since a+8l+14 ̸= 21 for any a ∈ A2l−1, the new sums are 2 · (8l+14) = 16l+28 and the elements of the
set

{a+ 8l + 14 : a ∈ A≥8l+7
2l−1 } = {16l + 21, 16l + 23, 16l + 24}. (34)

Note that we exclude 8l+6 from the construction of the new sums because 8l+6+8l+14 = 8l+10+8l+10 ∈
A2l−1 +A2l−1. Next, since ±(8l + 3) /∈ (A2l −A2l), the new differences are the numbers

±({8l + 14} − {0, 1, 2}) = ±{8l + 12, 8l + 13, 8l + 14}. (35)

Therefore, there are 4 new sums and 6 new differences. Combining this with (31), we get

16l + 24 =
∣∣A2l +A2l

∣∣ <
∣∣A2l −A2l

∣∣ = 16l + 25 (36)

and so A2l is MDTS. Additionally, we have

A2l−1 ⊂ A2l ⊂ A2l+1 (37)

and thus the sequence A1 ⊂ A2 ⊂ · · · alternates between being MSTD and MDTS. Furthermore, filling in
is not used in this method since every added element is greater than the maximum of the previous set. The
cardinalities and diameters of the first few sets in this sequence are given in Table 3.1 below.

Table 3.1. Non-Filling in Method 2 Example Sequence

Set
∣∣Ai +Ai

∣∣ ∣∣Ai −Ai

∣∣ Cardinality Diameter
∣∣Ai

∣∣/∣∣Ai−1

∣∣ D(Ai)/D(Ai−1) Density
A1 36 35 11 18 N/A N/A 0.611
A2 40 41 12 22 1.091 1.222 0.545
A3 52 51 15 26 1.25 1.182 0.577
A4 56 57 16 30 1.067 1.154 0.533
A5 68 67 19 34 1.188 1.133 0.559
A6 72 73 20 38 1.053 1.118 0.526
A7 84 83 23 42 1.15 1.105 0.548
...

...
...

...
...

...
...

...
Limiting MSTD density: 0.500

Each set in this sequence has a diameter exactly 4 larger than the previous set in the sequence. Further-
more, the diameter increases by 8 and the cardinality by 4 between consecutive MSTD sets in the sequence.

This sequence illustrates the idea behind the following theorem.

Theorem 3.2. Suppose there are sets L,R ⊂ [0, n] such that the following are true.

(1) n ∈ L,R
(2) [0, n− 1] ⊂ (L+ L)
(3) [0, n− 1] ⊂ (R+R)
(4) [0, n− 1] ̸⊂ [R+ L].



CONSTRUCTIONS OF SEQUENCES OF ALTERNATING SUM AND DIFFERENCE DOMINATED SETS 9

(Note that the second and third conditions imply that 0 ∈ L,R). Choose a suitable m ≥ n such that elements
of [n,m] fill out the sums in [n+ 1, 2m+ n− 1] (cf. [Zhao2010]), lacking up to one element. Then, set

A1 = L ∪ [n,m] ∪ (m+ n−R), (38)

and for l ≥ 1, set

A2k+1 = A2k−1 ∪ (m+ (k + 1)n−R). (39)

Then A2k+1 is MSTD, and there may exist A2k which is MDTS such that A2k−1 ⊂ A2k ⊂ A2k+1.

Proof. Since

[0, n] ⊂ (L+ L)

2m+ n = m+ (m+ n− 0) (40)

and

[2m+ n+ 1, 2m+ 2n] ⊂ (m+ n−R) + (m+ n−R)

= 2m+ 2n− (R+R), (41)

we have
∣∣A1 +A1

∣∣ = 2m+ 2n+ 1 or
∣∣A1 +A1

∣∣ = 2m+ 2n.

The maximum value of
∣∣A1 − A1

∣∣ is 2m + 2n + 1, so in order to show A1 is MSTD we must show that

A1 −A1 is missing at least one pair of elements. This is true because elements of (A1 −A1)
≥m+1 must be of

the form (m + n − r) − l with r ∈ R, l ∈ L. From our fourth condition, we know that r + l cannot take all
values in [0, n− 1], and so m+n− r− l cannot take all values in [m+1,m+n]. This causes the desired gap
in the difference set, so A1 is MSTD.

We then set

A3 = A1 ∪ (m+ 2n−R). (42)

We have

[2m+ 2n+ 1, 2m+ 3n] ⊂ (m+ 2n−R) + (m+ n−R)

[2m+ 3n+ 1, 2m+ 4n] ⊂ (m+ 2n−R) + (m+ 2n−R), (43)

which implies that
[2m+ 2n+ 1, 2m+ 4n] ⊂ A3 +A3. (44)

Furthermore, A3−A3 is now missing at least one difference in [m+n+1,m+2n] due to the fourth condition,
so

∣∣A3 +A3

∣∣ ≥ 2m+ 4n and
∣∣A3 −A3

∣∣ ≤ 2m+ 4n− 1. Thus A3 is MSTD with A1 ⊂ A3.
Continuing the sequence, appending m+ (k + 1)n−R gives new possible sums in the range [2m+ 2kn+

1, 2m+ 2(k + 1)n] to consider. The sums are all realized since

[2m+ 2kn+ 1, 2m+ (2k + 1)n] ⊂ (m+ kn−R) + (m+ (k + 1)n−R) (45)

and
[2m+ (2k + 1)n+ 1, 2m+ 2(k + 1)n] ⊂ (m+ (k + 1)n−R) + (m+ (k + 1)n−R). (46)

Then, since A2k−1 − A2k−1 always lacks at least two differences (again one in (A − A)≥m+kn+1, and its
negative), A2k−1 is MSTD. The diameter of a MSTD set in the sequence is n larger than the previous. □

Remark. We may also generalize the conditions as follows. We require only that the number of elements in
[0, n− 1] missing from L+L is less than twice the number of elements in [0, n− 1] missing from L+R. The
slowest-growing sequence obtained with the new conditions uses n = 7, L = {0, 1, 3, 7}, R = {0, 1, 2, 4, 7}, and
m = 8.
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4. Growth Rates

We conclude by giving a table that compares the growth characteristics of the various methods we covered.
Note that the

∣∣A1

∣∣ and A1 Diam. columns give the smallest possible cardinality and diameter for a set A1

which a method can be applied to. Additionally, the Card. Rate and Diam. Rate columns measure the
growth rate between consecutive MSTD sets in the sequence generated by the minimal A1 for that method.

Table 4.1. Minimal Method Growth Characteristics

Method
∣∣A1

∣∣ A1 Diam. Card. Rate Diam. Rate Type

Filling in 1 8 14 > 3 ·
∣∣A2i−1

∣∣ > 3· Diam(A2i−1) Exponential
Filling in 2 11 19 20 20 Linear

Non-Filling in 11 18 4 8 Linear
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