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ABSTRACT. Given a finite set of integers A, its sumset is A + A := {ai + aj | ai, aj ∈ A}. We examine
|A + A| as a random variable, where A ⊂ In = [0, n − 1], the set of integers from 0 to n − 1, so that each
element of In is in A with a fixed probability p ∈ (0, 1). Recently, Martin and O’Bryant studied the case in
which p = 1/2 and found a closed form for E[|A + A|]. Lazarev, Miller, and O’Bryant extended the result to
find a numerical estimate for Var(|A + A|) and bounds on mn ; p(k) := P(2n − 1 − |A + A| = k). Their
primary tool was a graph-theoretic framework which we now generalize to provide a closed form for E[|A+A|]
and Var(|A+A|) for all p ∈ (0, 1) and establish good bounds for E[|A+A|] and mn ; p(k).

We continue to investigate mn ; p(k) by studying mp(k) = limn→∞mn ; p(k), proven to exist by Zhao.
Lazarev, Miller, and O’Bryant proved that, for p = 1/2, m1/2(6) > m1/2(7) < m1/2(8). This distribution
is not unimodal, and is said to have a “divot” at 7. We report results investigating this divot as p varies,
and through both theoretical and numerical analysis prove that for p ≥ 0.68 there is a divot at 1; that is,
m1/2(0) > m1/2(1) < m1/2(2).

Finally, we extend the graph-theoretic framework originally introduced by Lazarev, Miller, and O’Bryant
to correlated sumsets A + B where B is correlated to A by the probabilities P(i ∈ B | i ∈ A) = p1 and
P(i ∈ B | i 6∈ A) = p2. We provide some preliminary results using the extension of this framework.
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1. INTRODUCTION

Many problems in additive number theory, such as Fermat’s Last Theorem or the Goldbach conjecture or
the infinitude of twin primes, can be cast as problems involving sum or difference sets. For example, if Pn
is the set of nth powers of positive integers, Fermat’s Last Theorem is equivalent to (Pn+Pn)∩Pn = ∅ for
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n ≥ 3. Given a finite set of non-negative integers A, we define the sumset A+A := {ai + aj | ai, aj ∈ A}
and the difference set A−A := {ai − aj | ai, aj ∈ A}. The set A is said to be

• sum-dominant if |A+A| > |A−A| (also called MSTD, or More Sums Than Differences),
• balanced if |A+A| = |A−A|, and
• difference-dominant if |A+A| < |A−A|.

By [a, b], we mean the set of integers {a, a + 1, . . . , b}. As addition is commutative and subtraction is
not, it was expected that in the limit almost all sets would be difference-dominant, though there were
many constructions of infinite families of MSTD sets.1 There is an extensive literature on such sets,
their constructions, and generalizations to settings other than subsets of the integers; see for example
[AMMS, BELM, CLMS, CMMXZ, DKMMW, He, HLM, ILMZ, Ma, MOS, MS, MPR, MV, Na1, Na2,
PW, Ru1, Ru2, Ru3, Sp, Zh1].

We are interested in studying |A+A| as we randomly choose A using a Bernoulli process. Explicitly, we
fix a p ∈ (0, 1) and construct A ⊂ [0, n− 1] by independently including each i ∈ [0, n− 1] to be in A with
probability p. Martin and O’Bryant [MO] studied the distributions of |A+ A| and |A− A| when p = 1/2,
including computing the expected values. Contrary to intuitions, they proved a positive percentage of these
sets are MSTD in the limit as n → ∞. Note that p = 1/2 is equivalent to the model where each subset of
[0, n − 1] is equally likely to be chosen. Their work extends to any fixed p > 0, though if p is allowed to
decay to zero with n then the intuition is correct and almost all sets are difference dominated [HM].

Lazarev, Miller and O’Bryant [LMO] continued this program in the special but important case of p = 1/2.
They computed the variance of |A + A|, showed that the distribution is asymptotically exponential, and
proved the existence of a “divot”, which we now explain. From [MO], the expected number of missing sums
is 10 as n→∞; thus almost all sets are missing few sums, making it more convenient to plot the distribution
of the number of missing sums. For A ⊂ [0, n − 1], we set mn ; p(k) := P(2n − 1 − |A + A| = k), and
examine the distribution of mp(k) := limn→∞mn ; p(k), proven to exist by Zhao [Zh2]. The distribution
does not just rise and fall, but forms a ‘divot’, with m1/2(6) > m1/2(7) < m1/2(8); see Figure 1 for data
and [LMO] for a proof.

We extend the methodologies developed in [LMO] to study the distribution of |A+ A| for generic p not
necessarily equal to 1/2; there are many technical issues that arise which greatly complicate the combina-
torial analysis when p 6= 1/2. To do so, we generalize many previous results in Section 2, and use them to
derive a formula for the expected value of |A+A|, which we then analyze.

Theorem 1.1. Let A ⊆ [0, n− 1] with P(i ∈ A) = p for p ∈ (0, 1). Then E[|A+A|] equals
n∑
r=0

(
n

r

)
pr qn−r

(
2

n−2∑
i=0

(1− P(i 6∈ A+A | |A| = r)) + (1− P(n− 1 6∈ A+A | |A| = r))

)
, (1.1)

where q = 1− p and

P(i 6∈ A+A | |A| = r) =



i+1∑
k= i+1

2

2i+1−k
( k+1

2

k − i+1
2

)(
n− i− 1

n− r − k

)
(

n

n− r

) for i odd

i∑
k= i

2

2i−k
( i

2

k − i
2

)(
n− i− 1

n− r − 1− k

)
(

n

n− r

) for i even.

(1.2)

1The proportion of sets in [0, n− 1] in these families tend to zero as n → ∞. In the early constructions these densities tended
to zero exponentially fast, but recent methods have found significantly larger ones where the decay is polynomial.
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FIGURE 1. From [LMO]: Experimental values ofmp(k), where p = 1/2, with vertical bars
depicting the values allowed by our rigorous bounds. In most cases, the allowed interval is
smaller than the dot indicating the experimental value. The data comes from generating 228

sets uniformly forced to contain 0 from [0, 256).

As we need to compute on the order of n3 sums to compute E[|A + A|], an useful bound is needed for
numerical investigations.

Theorem 1.2. Let A ⊆ [0, n− 1] with P(i ∈ A) = p for p ∈ (0, 1) and set q = 1− p. Then

E[|A+A|] ≤ 2n− 1− 2q
1− q

n−1
2

1−√q
. (1.3)

If p > 1/2, then we also get

E[|A+A|] ≥ 2n− 1− 2q
1

1−
√
2q
− (2q)

n−1
2 . (1.4)

The proofs of Theorems 1.1 and 1.2 are given in Section 4. The proofs require an extension of the
graph-theoretic framework of [LMO], which is done in Section 3.

We also compute the variance of |A+A|.

Theorem 1.3. Let A ⊆ [0, n− 1] with P(i ∈ A) = p with p ∈ (0, 1). Then

Var(|A+A|) =
n∑
r=0

(
n

r

)
pr qn−r

(
2

∑
0≤ i< j≤ 2n−2

1−Pr(i, j) +
∑

0≤ i≤ 2n−2
1−Pr(i)

)
− E[|A+A|]2,

(1.5)
where q = 1 − p, E[|A + A|] is as calculated in Theorem 1.1, Pr(i) = P(i 6∈ A + A | |A| = r) and
Pr(i, j) = P(i and j 6∈ A+A | |A| = r).

As opposed to the calculation for the expected value, the variance does not have an easily calculable
closed form, as P(i and j 6∈ A + A | |A| = r) has on the order of p(n) terms to calculate, where p(n)
is the partition number of n and grows faster than any polynomial.2 We discuss these issues in Section 5,
where we prove Theorem 1.3. The difficulty arises as we go from P(i 6∈ A + A | |A| = r) to P(i and j 6∈
A + A | |A| = r) because we introduce many more dependencies between nodes in the graph-theoretic
framework. We were, however, able to show that the number of missing sums is asymptotically exponential.

2One has log p(n) ∼ π
√

3/2n1/2.
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Theorem 1.4. Let A ⊆ [0, n− 1] with P(i ∈ A) = p for p ∈ (0, 1) and recall that mn ; p(k) := P(2n− 1−
|A+A| = k). If n > 2 log(1−p)

log(1−p2)k, then

qk/2 � mn ; p(k) �
(
1− p+ φ(p)

2

)k
,

where φ(p) =
√

1 + 2p− 3p2.

The proof of Theorem 1.4 is structurally equivalent to the proof of Theorem 1.2 in [LMO]. The full proof
is in Appendix A, but the idea is to study specific scenarios that are less likely or more likely to happen, for
the lower bound and the upper bound, respectively, using many of the results proven in Section 2.

Finally, we investigate the shape of the distribution of mp(k). Recall that Zhao proved that mp(k) ex-
isted by fringe analysis [Zh2]. The technique of fringe analysis for estimating numbers of missing sums
is the means by which most results about sum-distributions have been obtained and is the method we will
follow. The technique grows out of the observation that sumsets usually have fully populated centers: there
is a very low probability that there will be any element missing that is not near one of the ends. When a
suitable distance from the edge is chosen, this observation can be made precise by bounding the probability
of missing any elements in the middle. It follows that most of the time, all missing sums must be near
the ends of the interval; the only contribution to these elements is from the upper and lower fringes of the
randomly chosen set. Conveniently, as long as they are short relative to the length of the whole set, the
fringes are independent and can be analyzed separately from the rest of the elements. As long as they are
reasonably sized (between 20 and 30 elements, usually) a computer can numerically check by brute force
all the possible fringe arrangements, and give exact data for the number of missing sums near the edges.

Working with difference sets is orders of magnitude more challenging than working with sumsets. This
is because the fringe method fails, since there are interactions between the upper and lower fringes when we
consider difference sets and thus the computational time is the square of that for sumsets. No suitable alter-
native technique has been found, and so rigorous numerical results about difference sets are scarce. Most
work, including ours, focuses on distributions of sums, though see [H-AMP] for some results on differences.

The results for p = 1/2 were possible because there were nice interpretations for the terms that simplified
the analysis; we do not have that in general, which is why our results are concentrated on the larger values
of p; see Figure 2. In Section 6, we look for divots other than that at m1/2(7), and our main theorem is the
following.

Theorem 1.5. For p ≥ 0.68, there is a divot at 1; that is, mp(0) > mp(1) < mp(2).

Our final result looks at the generalization of our work to correlated sumsets (see [DKMMW] for earlier
work and results). We examine the random variable |A + B|, where, for a given triplet (p, p1, p2) and any
i ∈ {0, . . . , n− 1} we have

• P(i ∈ A) = p,
• P(i ∈ B | i ∈ A) = p1, and
• P(i ∈ B | i 6∈ A) = p2.

We extend our graph-theoretic framework to analyze this system and find P(k 6∈ A+B) and P(i and j 6∈
A + B) in Section 7. We end by considering some work that can be done in continuation of that presented
here, in Section 8.

Note on the Computations.
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FIGURE 2. Plot of numerical approximations to mp(k), varying p by simulating 106 sub-
sets of {0, 1, 2, . . . , 400}. The simulation shows that: for p = 0.9 and 0.8, there is a divot at
1, for p = 0.7, there are divots at 1 and 3, for p = 0.6, there is a divot at 3 and for p = 0.5,
there is a divot at 7.

We end this section by mentioning our method of collecting data. Our program uses the technique of
fringe analysis, and is able to do the calculations for any value of p simultaneously by doing one pre-
computation. To do this, the program constructs all the fringe sets of a given size at once; the probability
we choose each set of a given size can be computed easily. In particular, let ` be the fringe size (i.e. the
width of the fringe) and let k be the number of elements in our set. The probability we choose this set is
pk(1−p)`−k. We then compute how many missing sums it has and store this information in an array, whose
elements correspond to the probabilities p`, p`−1(1− p), p`−2(1− p)2, . . . , (1− p)`. For each set, we only
save its number of missing sums and its number of elements. Using this method, we can find the probability
of missing different number of sums by simply changing the value of p.

We picked a fringe size of ` = 30 to compute all the data necessary for Theorem 1.5 about the divot at 1
(see Section §6 and Appendix C for details). The process took three days on a single machine without code
parallelization. We were initially hoping to get results about the divot at 3 with the same fringe analysis by
using a larger fringe size ` = 40 and parallelizing the code. Unfortunately, this was too big a search space.
We were able to use the shared Linux computing cluster at Williams College for six months, which was
enough time to do three-fourths of the computation. As the run-time for difference set computations is on
the order of the square of the length of sumsets (as the two fringes interact), these run-times illustrate the
challenges in numerically exploring difference sets.
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2. GENERALIZATIONS OF [MO]

We need to extend many of the lemmas and propositions from [MO], and prove they are true for general p
and not just p = 1/2. The arguments typically do not change, we only introduce notation as necessary3, thus,
we just state the results we use and how we generalized the argument. The full proofs are in Appendix A.

Lemma 2.1 (Lemma 5 of [MO]). Let n, `, u be integers with n ≥ ` + u. Fix L ⊂ {0, . . . , ` − 1} and
U ⊂ {n − u, . . . , n − 1}. Suppose R is a random subset of {`, . . . , n − u − 1}, where each element of
{`, . . . , n − u − 1} is in R with independent probability p ∈ (0, 1), and define A := L ∪ R ∪ U and
q := 1− p. Then for any integer i satisfying 2`− 1 ≤ i ≤ n− u− 1, we have

P(i 6∈ A+A) =

{
q|L|(1− p2)

i+1
2
−` if i odd

q|L|+1(1− p2)
i
2
−` if i even.

(2.1)

Lemma 2.2 (Lemma 6 of [MO]). Let n, `, u be integers with n ≥ ` + u. Fix L ⊂ {0, . . . , ` − 1} and
U ⊂ {n − u, . . . , n − 1}. Suppose R is a random subset of {`, . . . , n − u − 1}, where each element of
{`, . . . , n − u − 1} is in R with independent probability p ∈ (0, 1), and define A := L ∪ R ∪ U and
q := 1− p. Then for any integer i satisfying n+ `− 1 ≤ i ≤ 2n− 2u− 1, we have

P(i 6∈ A+A) =

{
q|U |(1− p2)n−

i+1
2
−u if i odd

q|U |+1(1− p2)n−1−
i
2
−u if i even.

(2.2)

Lemma 2.3. Choose A ⊆ [0, n− 1] by including each element with probability p. Set q = 1− p. Then, for
0 ≤ i ≤ n− 1, the probability

P(i /∈ A+A) =

{
(2q − q2)(i+1)/2 if i odd
q (2q − q2)i/2 if i even,

(2.3)

while for any integer n− 1 ≤ i ≤ 2n− 2 the probability

P(i /∈ A+A) =

{
(2q − q2)n−(i+1)/2, if i odd
q (2q − q2)n−1−i/2, if i even.

(2.4)

These give us a generalization of Proposition 8 from [MO].

Proposition 2.4 (Proposition 8 of [MO]). Let n, `, u be integers with n ≥ ` + u. Fix L ⊂ {0, . . . , ` − 1}
and U ⊂ {n − u, . . . , n − 1}. Suppose R is a random subset of {`, . . . , n − u − 1}, where each element
of {`, . . . , n − u − 1} is in R with independent probability p ∈ (0, 1), and define A := L ∪ R ∪ U and
q := 1− p. Then the probability that

{2`− 1, . . . , n− u− 1} ∪ {n+ `− 1, . . . , 2n− 2u− 1} ⊆ A+A (2.5)

is greater than 1− 1+q
p2

(
q|L| + q|U |

)
.

3. GRAPH-THEORETIC FRAMEWORK

We develop a graph-theoretic framework which has proved powerful in computing various probabilities
used in calculations. As we have shown in Section 2, we have an explicit formula for P(i 6∈ A + A)
(Lemmas 2.1 and 2.2). However for generic i and j, P(i 6∈ A + A) and P(j 6∈ A + A) are dependent,
and therefore P(i and j 6∈ A + A) requires more work. To understand the dependencies between these
two events, we create a condition graph, as defined in [LMO], with some slight modifications. In [LMO],
V = [0,max{i, j}], while we use V = [0, n − 1]. This distinction is because in [LMO] there was no need
to consider the unconnected vertices, but here they will prove meaningful for computations.

3We just replace 1/2 and 3/4 with q and 1− p2, respectively, as these are the representations of the exact values used in [MO].
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Definition 3.1. For a set F ⊆ [0, 2n− 2] we define the condition graph Gn = (V,E) induced on F where
V = [0, n− 1], and for two vertices k1 and k2, (k1, k2) ∈ E if k1 + k2 ∈ F .

0
1

2

3
4

5

6

7

8 9

FIGURE 3. Condition Graph for P(3 and 7 6∈ A+A), n = 9.

See Figure 3 for the condition graph G9 induced on F = {3, 7}.
By construction, as [LMO] explains, viewing our vertices as the integers [0, n − 1] we have a bijection

between edges and pairs of elements whose sum belongs to F . If we suppose that F ∩ (A + A) = ∅,
then, for each pair of elements whose sum belongs to F , at least one of the pair must be excluded from
A. The corresponding criteria in the condition graph is that each edge must be incident to a vertex which
corresponds to an integer missing from A. That is, F ∩ (A + A) = ∅ exactly when [0, n − 1] \ A forms a
vertex cover on Gn (recall a vertex cover of a graph is a set of vertices such that each edge is incident to at
least one vertex in the set). We therefore find the following result (Lemma 2.1 from [LMO]).

Lemma 3.2. For a set F ⊆ [0, 2n − 2], P(F ∩ (A + A) = ∅) is the probability that we choose a vertex
cover for the condition graph Gn induced on F .

Note that when we choose vertices in the condition graph for our vertex cover, we are choosing elements
to exclude from A.

We now find a closed form for P(i and j 6∈ A+A). By Lemma 3.2, we only need to study the condition
graph Gn induced on {i, j}. From Proposition 3.1 of [LMO], each component in our condition graph Gn
is a segment graph, a graph that consists of a sequence of vertices such that each vertex is connected only
to the vertices to its immediate left and right, or an isolated vertex. Since we only add isolated vertices to
[LMO]’s definition of a condition graph, the proof of their Proposition 3.1 applies to our condition graph.
As we are interested in counting vertex covers and there are no edges between different components, the
behavior of each component is independent. That is, the probability of finding a vertex cover for the entire
graph is the product of the probability of finding a vertex cover on each component. In this way, we reduce
the problem at hand to computing the probability of finding a vertex cover on a segment graph, which we
do in the following proposition.

Lemma 3.3. Let S be a subset of the vertices of a segment graph on the n vertices V , with each vertex
included in S with probability p. If we set an = P(V \ S is a vertex cover), then

an =
(φ(p)− 1− p) (1− p− φ(p))n + (φ(p) + 1 + p) (1− p+ φ(p))n

2n+1 φ(p)
, (3.1)

where φ(p) =
√
1 + 2p− 3p2.

Proof. The proof follows from a simple recurrence relation. We see that a1 = 1, as this path does not have
loops, so we cannot have an edge if only one vertex exists. Also, a2 = 1− p2, as the only case in which we
do not get a vertex cover is when both vertices v1, v2 ∈ S. This happens with probability p2, as each event
is independent. We now find a recurrence relation to compute an.

In Figure 4 we see that if vn 6∈ S, then we can recur on the remaining n − 1 vertices, as the edge
connecting vn to vn−1 has an incident vertex in the complement of S. This corresponds to (1 − p) an−1.
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v1 . . . vn−2 vn−1 vn

FIGURE 4. A path with n vertices; we may count vertex covers recursively by handling the
behavior of the nth vertex.

However, if vn ∈ S, we must necessarily have vn−1 6∈ S for V \ S to be a vertex cover, and then we can
recur on the remaining n− 2 vertices. This corresponds to p (1− p) an−2. So, we find that

an = (1− p) an−1 + p (1− p) an−2,

with a1 = 1 and a2 = 1− p2. Solving this gives us (3.1), as desired. �

Now, to find P(i and j 6∈ A + A), we only need the number and size of the segment graphs of the
condition graph Gn induced by {i, j}. Fortunately, [LMO] derived formulas for the number and size of
segment graphs (their Proposition 3.5). Using these, we find

Proposition 3.4. Consider i, j such that i < j.
For i, j both odd:

P(i and j 6∈ A+A) = asq a
s′
q+2 (3.2)

where

q = 2

⌈
i+ 1

j − i

⌉
s =

1

2

(
(j − i)

⌈
i+ 1

j − i

⌉
− (i+ 1)

)
s′ =

1

2

(
j + 1− (j − i)

⌈
i+ 1

j − i

⌉)
. (3.3)

For i even, j odd:

P(i and j 6∈ A+A) = ao a
s
q a

s′
q+2 (3.4)

where

o = 2

⌈
i/2 + 1

j − i

⌉
− 1

q = 2

⌈
i+ 1

j − i

⌉
s =

1

2

(
(j − i− 1)

⌈
i+ 1

j − i

⌉
− (i+ 1) + o

)
s′ =

1

2

(
j − (j − i− 1)

⌈
i+ 1

j − i

⌉
− o
)
. (3.5)

For i odd, j even:

P(i and j 6∈ A+A) = ao′ a
s
q a

s′
q+2 (3.6)
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where

o′ = 2

⌈
j/2 + 1

j − i

⌉
− 2

q = 2

⌈
i+ 1

j − i

⌉
s =

1

2

(
(j − i− 1)

⌈
i+ 1

j − i

⌉
− (i+ 1) + o′

)
s′ =

1

2

(
j − (j − i− 1)

⌈
i+ 1

j − i

⌉
− o′

)
. (3.7)

For i, j both even:
P(i and j 6∈ A+A) = ao ao′ a

s
q a

s′
q+2 (3.8)

where

o = 2

⌈
i/2 + 1

j − i

⌉
− 1

o′ = 2

⌈
j/2 + 1

j − i

⌉
− 2

q = 2

⌈
i+ 1

j − i

⌉
s =

1

2

(
(j − i− 2)

⌈
i+ 1

j − i

⌉
− (i+ 1) + o+ o′

)
s′ =

1

2

(
j − 1− (j − i− 2)

⌈
i+ 1

j − i

⌉
− o− o′

)
. (3.9)

The proof of Proposition 3.4 is structurally identical to that of Proposition 3.5 of [LMO], as we have
already shown independence of segment graphs, so we must show how to obtain the number of segment
graphs and their size, which was done in [LMO]. We now bound P(i and j 6∈ A + A). We note, from
Equation (3.1), that if n is even, then

an ≤
(φ(p) + 1 + p) (1− p+ φ(p))n

2n+1 φ(p)
. (3.10)

Since q and q + 2 are always even, for odd i, j, we have

P(i and j 6∈ A+A) = arq a
r′
q+2

≤
(
(φ(p) + 1 + p) (1− p+ φ(p))q

2q+1 φ(p)

)r ((φ(p) + 1 + p) (1− p+ φ(p))q+2

2q+3 φ(p)

)r′
=

(φ(p) + 1 + p)r+r
′
(1− p+ φ(p))qr+(q+2)r′

2(q+1) r+(q+3) r′ φ(p)r+r′

=

(
φ(p) + 1 + p

2φ(p)

)r+r′(1− p+ φ(p)

2

)qr+(q+2)r′

=

(
φ(p) + 1 + p

2φ(p)

) j−i
2
(
1− p+ φ(p)

2

)j+1

, (3.11)

where the last equality comes from (3.18) in [LMO]. We can use Proposition 3.4 to show (3.11) holds for
all i, j.
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4. EXPECTED VALUE

To compute E[|A+A|], we see that

E[|A+A|] =
∑

A⊆{0,...,n−1}

|A+A| · P(A)

=
n∑

r=0

(
n

r

)
prqn−r

2n−2∑
i=0

∑
A⊆{0,...,n−1},|A|=r

i ∈ A

1

=

n∑
r=0

(
n

r

)
prqn−r

2n−2∑
i=0

P(i ∈ A+A | |A| = r). (4.1)

0 7

1 6

2 5

3 4

8

9

n

FIGURE 5. Condition Graph for P(7 6∈ A+A).

Now we compute P(i ∈ A+ A | |A| = r) = 1− P(i 6∈ A+ A | |A| = r). To compute this probability,
we refer once again to the condition graph Gn induced by i. If we assume4 that i ≤ n− 1, this graph has n
vertices and i+1

2 and i
2 disjoint edges with one loop. See Figure 5 for a visualization.

By Lemma 3.2, the event i 6∈ A + A corresponds to when the elements not in S form a vertex cover of
Gn. Since we are conditioning that |S| = r, we must count the number of ways that the n − r missing
elements may be chosen so that they form a vertex cover. Then we obtain the following:

4The i > n− 1 case is identical after reflection about n− 1.
10



Lemma 4.1. Let i ∈ [0, 2n− 2] be given. Then

P(i 6∈ A+A | |A| = r) =
# ways to place n− r vertices on disjoint edges to get cover

# ways to choose n− r vertices from n

=



i+1∑
k= i+1

2

2i+1−k
( i+1

2

k − i+1
2

)(
n− i− 1

n− r − k

)
(

n

n− r

) for i odd

i∑
k= i

2

2i−k
( i

2

k − i
2

)(
n− i− 1

n− r − 1− k

)
(

n

n− r

) for i even.

Proof. The derivation for the odd cases is as follows; the even cases can be handled similarly. We divide Gn
into two components; G0 containing the i+1

2 disjoint edges and G1 containing n − i − 1 isolated vertices.
To count the number of vertex covers, we denote by k the number of our n − r missing vertices which are
placed inG0. First, having fixed k, we must choose n−r−k vertices from the n− i−1 vertices inG1, with
no edge restrictions. Second, inside of G0 we must determine which edges are twice-covered and which

edges are once-covered; a factor of
( i+1

2

k− i+1
2

)
. Finally, those edges which are once-covered may be covered

both on the right and on the left; a factor of 2i+1−k. �

Then, if in (4.1) we use the symmetry around n− 1 to double terms and account for n− 1 < i < 2n− 2,
we find that

E[|A+A|] =
n∑

r=0

(
n

r

)
prqn−r

(
2
n−2∑
i=0

(1− P(i 6∈ A+A | |A| = r)) + (1− P(n− 1 6∈ A+A | |A| = r))

)
.

(4.2)
This proves Theorem 1.1, because equation (4.2) is exactly the claim. 2

While this closed form is exact and easily approximated numerically, there are O(n3) sums to execute. We
wish to place effective upper and lower bounds on this sum. First notice that



i+1∑
k= i+1

2

2i+1−k
( i+1

2

k − i+1
2

)(
n− i− 1

n− r − k

)
for i odd

i∑
k= i

2

2i−k
( i

2

k − i
2

)(
n− i− 1

n− r − 1− k

)
for i even

≥


(

n− i+1
2

n− r − i+1
2

)
for i odd(

n− i
2 − 1

n− r − 1− i
2

)
for i even.

(4.3)

As discussed before, the left-hand side counts the number of vertex covers using r vertices on our graph
G. The right-hand side undercounts the number of such vertex covers, by first (in the odd case) assigning
i+1
2 vertices to cover the edges, and then choosing the remaining n − r − k+1

2 vertices freely from the
11



remaining n− i+1
2 vertices. Substituting this into (4.2), we find that

E[|A+A|] ≤
n∑
r=0

prqn−r
(
2
n−2∑
i=0

((
n

r

)
−

{(
n− i+1

2
r

)
for i odd(

n− i
2
−1
r

)
for i even

)

+

(
n

r

)
−

{(
n−n

2
r

)
for n− 1 odd(

n−n−1
2
−1

r

)
for n− 1 even

)
. (4.4)

We organize these by collecting those terms of the form
(
n
r

)
to find a binomial which necessarily sums to

1. Specifically,

E[|A+A|] ≤
n∑
r=0

prqn−r
(
n

r

)(
2

(
n−2∑
i=0

1

)
+ 1

)
−

n∑
r=0

prqn−r2
n−2∑
i=0

{(
n− i+1

2
r

)
for i odd(

n− i
2
−1
r

)
for i even

−
n∑

r=0

prqn−r

{(
n−n

2
r

)
for n− 1 odd(

n−n−1
2
−1

r

)
for n− 1 even.

(4.5)

The first sum over r we see is binomial in r, and for a fixed value of i gives us
n∑

r=0

prqn−r

{(
n− i+1

2
r

)
for i odd(

n− i
2
−1
r

)
for i even

(4.6)

by factoring q
i+1
2 or q

i
2 out of this sum we get, once again, a sum of probabilities of events under a binomial

distribution which must sum to 1. We omit the last term corresponding to n− 1, as we seek an upper bound.
Then

E[|A+A|] ≤ 2

n−2∑
i=0

1 + 1−
n−2∑
i=0

{
q

i+1
2 for i odd

q
i+2
2 for i even

= 2n− 1− 2q
n−2∑
i=0

(
√
q)i

= 2n− 1− 2q
1− q

n−1
2

1−√q
(4.7)

as needed to prove the first statement of Theorem 1.2.
To derive a lower bound, we first see that

∑i+1
k= i+1

2

2i+1−k( i+1
2

k− i+1
2

)(
n−i−1
n−r−k

)
for i odd∑i

k= i
2
2i−k

( i
2

k− i
2

)(
n−i−1

n−r−1−k
)

for i even
≤


2

i+1
2

( n− i+1
2

n−r− i+1
2

)
for i odd

2
i
2

( n− i
2
−1

n−r−1− i
2

)
for i even.

(4.8)

Similar to before, on the right-hand side we are counting each way to choose our isolated vertices, and
overcounting the number of ways to position the vertices adjacent to edges.

Then by substitution,

E[|A+A|] ≥
n∑

r=0

prqn−r2

n−2∑
i=0

((
n

r

)
−

{
2

i+1
2

(
n− i+1

2
r

)
for i odd

2
i
2

(
n− i

2
−1
r

)
for i even

+

(
n

r

)
−

{
2

n
2

(
n−n

2
r

)
for n− 1 odd

2
n−1
2

(
n−n−1

2
−1

r

)
for n− 1 even

)
. (4.9)
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If we distribute this sum into individual components,

E[|A+A|] ≥
n∑
r=0

prqn−r

(
2

(
n−2∑
i=0

(
n

r

))
+ 2

n−2∑
i=0

(
−

{
2

i+1
2

(
n− i+1

2
r

)
for i odd

2
i
2

(
n− i

2
−1
r

)
for i even

)

+

((
n

r

)
−

{
2

n
2

(
n−n

2
r

)
for n− 1 odd

2
n−1
2

(
n−n−1

2
−1

r

)
for n− 1 even

))
, (4.10)

before exchanging the order of summation,

E[|A+A|] ≥
n−2∑
i=0

(
2

n∑
r=0

(
prqn−r

(
n

r

))
+ 2

n∑
r=0

(
−prqn−r

{
2

i+1
2

(
n− i+1

2
r

)
for i odd

2
i
2

(
n− i

2
−1
r

)
for i even

))

+
n∑
r=0

prqn−r

((
n

r

)
−

{
2

n
2

(
n−n

2
r

)
for n− 1 odd

2
n−1
2

(
n−n−1

2
−1

r

)
for n− 1 even

)
. (4.11)

Now the first sum over r is 1, a binomial sum. That is,

E[|A+A|] ≥
n−2∑
i=0

(
2− 2

n∑
r=0

(
prqn−r

{
2

i+1
2

(
n− i+1

2
r

)
for i odd

2
i
2

(
n− i

2
−1
r

)
for i even

))

+
n∑
r=0

prqn−r

((
n

r

)
−

{
2

n
2

(
n−n

2
r

)
for n− 1 odd

2
n−1
2

(
n−n−1

2
−1

r

)
for n− 1 even

)
. (4.12)

Let us consider, for a moment, the remaining terms inside. They depend on both r and i, but, for a fixed
value of i, they resemble a binomial sum. That is, for fixed i,

n∑
r=0

prqn−r

{
2

i+1
2

(
n− i+1

2
r

)
for i odd

2
i
2

(
n− i

2
−1
r

)
for i even

=

{
(2q)

i+1
2 for i odd

(2q)
i+2
2 for i even.

Thus we have

E[|A+A|] ≥
n−2∑
i=0

(
2− 2

{
(2q)

i+1
2 for i odd

(2q)
i+2
2 for i even.

)
+

n∑
r=0

prqn−r

((
n

r

)
−

{
2

n
2

(
n−n

2
r

)
for n− 1 odd

2
n−1
2

(
n−n−1

2
−1

r

)
for n− 1 even

)
.

Now consider those terms independent of i. The first,
(
n
r

)
, is once again a simple binomial sum. The last

term corresponding to n − 1 may be handled the same way by factoring out (2q)
n
2 or (2q)

n−1
2 , depending

on parity; for a lower bound we choose to subtract the larger (2q)
n−1
2 , and find that, using our assumption

that p > 1/2 implies q < 1/2, so we may apply the geometric series formulae to obtain

E[|A+A|] ≥ 2

n−2∑
i=0

(
1−

{
(2q)

i+1
2 for i odd

(2q)
i+2
2 for i even

)
+ 1− (2q)

n−1
2

= 2n− 1− 2q
n−2∑
i=0

(
√
2q)i − (2q)

n−1
2

= 2n− 1− 2q

1−
√
2q
− (2q)

n−1
2 , (4.13)

completing the proof of Theorem 1.2. 2

13



5. VARIANCE

We now find the variance. Recall

Var(|A+A|) = E[|A+A|2]− E[|A+A|]2. (5.1)

In the previous section, we computed E[|A+A|], so we need only to determine E[|A+A|2]. We apply the
same technique used to compute the expected value and condition each probability on the size of A.

E[|A+A|2] =
∑

A⊆{0,...,n−1}

|A+A|2 · P(A)

=
n∑

r=0

(
n

r

)
prqn−r

∑
A⊆ [0,n−1] , |A|= r

|A+A|2

=
n∑

r=0

(
n

r

)
prqn−r

∑
0≤ i,j≤ 2n−2

∑
A⊆ [0,n−1] , |A|= r

i,j ∈A+A

1

=

n∑
r=0

(
n

r

)
prqn−r

∑
0≤i,j≤2n−2

P(i and j ∈ A+A | |A| = r)

=
n∑

r=0

(
n

r

)
prqn−r

2
∑

0≤ i<j≤ 2n−2
P(i and j ∈ A+A | |A| = r) +

∑
0≤ i≤ 2n−2

P(i ∈ A+A | |A| = r)

 .

(5.2)

Similarly to the Expected Value, we compute

P(i and j ∈ A+A | |A| = r) = 1− P(i and j 6∈ A+A | |A| = r).

Once again, this reduces to a question about graph coverings. In Proposition 3.4, we state formulas for the
number, and size, of paths in the dependency graph G associated to i and j. We choose n − r elements to
be missing from A, and seek to compute the number of vertex covers.

Unlike the dependency graph used for expected value, for a single i here we have many options for
distributing our n − r chosen vertices. We attack this program in generality, and derive a solution which
can then take, as input, the number and size of paths we know are in Gn. Suppose we wish to compute
the number of vertex covers on a graph consisting of m paths, each of length `i for 1 ≤ i ≤ m, with the
remaining n −

∑m
i=1 `i vertices isolated. Then, given the number of vertices distributed to each path, we

may compute the number of afforded vertex covers. Summing over all such possible distribution schemes,
we find the total number of vertex covers. We state a lemma that will be important in computing P(i and j 6∈
A+A | |A| = r).

Lemma 5.1. Given a graph G consisting of n vertices with m disjoint paths, with lengths `i for 1 ≤ i ≤ m,
and t = n −

∑m
i=1 `i isolated vertices, then the number of vertex covers of G using exactly n − r vertices

is equal to ∑
r0,r1,...,rm∈N0

r0 + r1 + ···+ rm =n−r

(
t

r0

) m∏
i=1

(
ri + 1

`i − ri

)
.

Proof. We must distribute the n − r vertices amongst the pieces of our graph. This is exactly the internal
sum. The

(
t
r0

)
term controls how many ways we may place those vertices in the edge-less block. Each of

the f(ri, `i) =
(
ri+1
`i−ri

)
terms controls how many ways we may place the ri vertices in that path. Note that

if ri > `i or, conversely, ri < `i/2, then f is zero since we cannot place that many vertices there, or get
14



a vertex cover, respectively. The same occurs if we attempt to place more than t vertices in the edge-less
block. �

We want to use Lemma 5.1 to compute P(i and j 6∈ A+A | |A| = r), in conjunction with Proposition 3.4,
plugging in the lengths and number of these paths. We find the following proposition.

Proposition 5.2. Let i, j ∈ [0, 2n− 2] with i < j. Then, denoting Pr(i, j) = P(i and j 6∈ A+A | |A| = r)
for i, j both odd:

Pr(i, j) =
∑

r0,r1,...,rm∈N0
r0 + r1 + ...+ rm =n−r

(
t

r0

) s∏
i=1

(
ri + 1

q − ri

) s+s′∏
i=s+1

(
ri + 1

q + 2− ri

)
,

where s, s′ and q are as defined in Proposition 3.4, m = s+ s′ and t = n− (qs+ (q + 2)s′).

For i even and j odd:

Pr(i, j) =
∑

r0,r1,...,rm∈N0
r0 + r1 + ...+ rm =n−r

(
t

r0

)(
rm + 1

o− rm

) s∏
i=1

(
ri + 1

q − ri

) s+s′∏
i=s+1

(
ri + 1

q + 2− ri

)
,

where s, s′, o and q are as defined in Proposition 3.4, m = s+ s′ + 1 and t = n− (qs+ (q + 2)s′ + o).

For i odd and j even:

Pr(i, j) =
∑

r0,r1,...,rm∈N0
r0 + r1 + ...+ rm =n−r

(
t

r0

)(
rm + 1

o′ − rm

) s∏
i=1

(
ri + 1

q − ri

) s+s′∏
i=s+1

(
ri + 1

q + 2− ri

)
,

where s, s′, o′ and q are as defined in Proposition 3.4, m = s+ s′ + 1 and t = n− (qs+ (q + 2)s′ + o′).

For i, j both even:

Pr(i, j) =
∑

r0,r1,...,rm∈N0
r0 + r1 + ...+ rm =n−r

(
t

r0

)(
rm−1 + 1

o− rm−1

)(
rm + 1

o′ − rm

) s∏
i=1

(
ri + 1

q − ri

) s+s′∏
i=s+1

(
ri + 1

q + 2− ri

)
,

where s, s′, o, o′ and q are as defined in Proposition 3.4,m = s+s′+2 and t = n−(qs+(q+2)s′+o+o′).

We find that

E[|A+A|2] =

n∑
r=0

(
n

r

)
prqn−r

(
2

∑
0≤i<j≤2n−2

1− Pr(i, j) +
∑

0≤i≤2n−2
1− Pr(i)

)
(5.3)

where P (i, j) = P(i and j 6∈ A+A | |A| = r) and P (i) = P(i 6∈ A+A | |A| = r). We calculated Pr(i, j)
in Proposition 5.2, and Pr(i) in Lemma 4.1. Since we have already calculated E[|A+A|] with Theorem 1.1,
we have

Var(|A+A|) =
n∑

r=0

(
n

r

)
prqn−r

(
2

∑
0≤i<j≤2n−2

1−Pr(i, j)+
∑

0≤i≤2n−2
1−Pr(i)

)
−E[|A+A|]2, (5.4)

which proves Theorem 1.3. 2
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6. DIVOT COMPUTATIONS

In this section we prove Theorem 1.5. Fringe analysis has historically been the most successful technique
for estimating probabilities of missing certain numbers of sums, and this is the method we follow. The
technique grows out of the observation that sumsets usually have fully populated centers: there is a very
low probability that an element from the bulk center of [0, 2n − 2] is missing.5 When a suitable distance
from the edge is chosen, this observation can be made precise. It follows that the number of missing sums
is essentially controlled by the upper and lower fringes of the randomly chosen set. As long as they are
short relative to the length of the whole set, the fringe behaviors at the top and bottom are independent and
can be analyzed separately from the rest of the elements and each other. Furthermore, as long as they are
reasonably sized (on the order of 20 to 30 elements) a computer can exhaustively check all the possible
fringe arrangements, and give exact data for the number of missing sums.

Our approach is to represent a general set A as the union of a left, middle, and right part, where the left
and right parts have fixed length ` and the middle size n − 2`. Then, we establish sharp upper and lower
bounds for mp(k), and use this to prove the existence of divots. First we develop some specialized notation
for dealing with these fringe sets.

Fix a positive integer ` ≤ n/2; this will be the “fringe width”. Write A = L ∪M ∪ R, where L ⊆
[0, `− 1],M ⊆ [`, n− `− 1] and R ⊆ [n− `, n− 1]. We look at mp(k) = limn→∞mn ; p(k) for k ∈ N0 ,
the limiting distribution of missing sums.

Let Lk be the event that L + L misses exactly k elements in [0, ` − 1]. Let Lak be the event that L + L
misses exactly k elements in [0, `−1] and contains [`, 2`−a]. Similar notations are applied toR; see below.

Lk : |[0, `− 1] \ (L+ L)| = k,

Lak : |[0, `− 1] \ (L+ L)| = k and [`, 2`− a] ⊆ L+ L,

Rk : |[2n− `− 1, 2n− 2] \ (R+R)| = k,

Rak : |[2n− `− 1, 2n− 2] \ (R+R)| = k and [2n− 2`+ a− 2, 2n− `− 2] ⊆ R+R. (6.1)

Next, let minLk be the minimal size of L for which the event Lk occurs, and similarly for the other events
just defined; see below.

minLk = min{|L| : Lk occurs},
minRk = min{|R| : Rk occurs},
minLak = min{|L| : Lak occurs},
minRak = min{|R| : Rak occurs}. (6.2)

Let

ML,k = {L ⊂ [0, `− 1] | Lk occurs}
ML,a,k = {L ⊂ [0, `− 1] | Lak occurs}
MR,k = {R ⊂ [0, `− 1] | Rk occurs}
MR,a,k = {R ⊂ [0, `− 1] | Rak occurs} (6.3)

and

τ
(
Lak
)

= min
L∈ML,k

|L ∩ [0, `− a+ 1]|

τ
(
Rak
)

= min
R∈MR,k

|R ∩ [n− `+ a− 2, n− 1]|. (6.4)

5If each element of [0, n− 1] is chosen with probability p, the number of elements in A is of size pn with fluctuations of order√
n. There are thus of order p2n2 pairs of sums but only 2n− 1 possible sums, and most possible sums are realized.
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By symmetry, for each k ∈ N0 we have minLk = minRk, minLak = minRak and τ
(
Lak
)
= τ

(
Rak
)
.

However, for clarity we will still distinguish these numbers despite that they are equal.

6.1. An Upper Bound on mp(k). In this section we place an upper bound on mp(k). First we show
formally that our fringe events are independent.

Lemma 6.1 (Independence of the Fringes). Pick a fringe width `. For any k1, k2 ∈ [0, `], the events Lk1
and Rk2 are independent.

Proof. The elements of [0, n − 1] are all chosen to be in A or not independently. The only elements of
[0, n − 1] which can contribute to (A + A) ∩ [0, ` − 1] are those in the interval [0, ` − 1], since any larger
element will sum to at least `+0 /∈ [0, `−1]. Similarly, the only elements of [0, n−1] which can contribute
to (A+A)∩ [2n− `− 1, 2n− 2] are those in the interval [n− `, n− 1], since any smaller element will sum
to at most (n− `− 1) + (n− 1) /∈ [2n− `− 1, 2n− 2]. Since ` ≤ n/2,

[0, `− 1] ∩ [n− `, n− 1] = ∅. (6.5)

Therefore the elements of [0, `− 1] ∩ (L + L) and [2n − ` − 1, 2n − 2] ∩ (R + R) are independent, so in
particular the events Lk1 and Rk2 are independent. �

Next, we place an upper bound on the probability that the bulk of A+A is missing at least one element.

Lemma 6.2. Let C denote the event that (([0, n− 1] + [0, n− 1]) \A) ∩ [`, 2n− `− 2] 6= ∅. Then

P(C) ≤ 2


(1 + q)(2q − q2)j+1

(1− q)2
, ` = 2j + 1;

(3q − q2)(2q − q2)j

(1− q)2
, ` = 2j.

(6.6)

Proof. Because the event C implies that [`, 2n− `− 2] 6⊆ A+A,

P(C) ≤ P([`, 2n− `− 2] 6⊆ A+A)

≤
2n−`−2∑
i=`

P(i /∈ A+A)

=

n−1∑
i=`

P(i /∈ A+A) +

2n−`−2∑
i=n

P(i /∈ A+A)

=
n−1∑
i=`
i odd

(2q − q2)(i+1)/2 +
n−1∑
i=`
i even

q(2q − q2)i/2

+

2n−`−2∑
i=n
i odd

(2q − q2)n−(i+1)/2 +

2n−`−2∑
i=n
i even

q(2q − q2)n−1−i/2. (6.7)
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The last equality uses Lemma 2.3. Each of the four sums on the RHS of inequality (6.7) can be bounded
from above by an infinite geometric sum as follows:

n−1∑
i=`
i odd

(2q − q2)(i+1)/2 ≤
∞∑
i=`
i odd

(2q − q2)(i+1)/2 =


(2q−q2)j+1

(1−q)2 , ` = 2j + 1
(2q−q2)j+1

(1−q)2 , ` = 2j

n−1∑
i=`
i even

q(2q − q2)i/2 ≤
∞∑
i=`
i even

q(2q − q2)i/2 =


q(2q−q2)j+1

(1−q)2 , ` = 2j + 1
q(2q−q2)j
(1−q)2 , ` = 2j

2n−`−2∑
i=n
i odd

(2q − q2)n−(i+1)/2 ≤
2n−`−2∑
i=−∞
i odd

(2q − q2)n−(i+1)/2 =


(2q−q2)j+1

(1−q)2 , ` = 2j + 1
(2q−q2)j+1

(1−q)2 , ` = 2j

2n−`−2∑
i=n
i even

q(2q − q2)n−1−i/2 ≤
2n−`−2∑
i=−∞
i even

q(2q − q2)n−1−i/2 =


q(2q−q2)j+1

(1−q)2 , ` = 2j + 1
q(2q−q2)j
(1−q)2 , ` = 2j.

(6.8)

Adding these together, we obtain the desired bound (inequality (6.6)). �

Remark 6.3. In the first step of the above proof, we could replace
2n−`−2∑
i=`

P(i /∈ A+A) (6.9)

with
2n−`−2∑
i=`;i≡l(2)

P(i, i+ 1 /∈ A+A), (6.10)

and then use the results of Proposition 3.4 to place a tighter upper bound. However, these terms are already
quite small and will play little role in our upper bound, so this would not significantly improve our result.

Using these lemmas, we prove an upper bound on the probability of missing exactly k elements.

Theorem 6.4. Pick a fringe width `. For any k ∈ [0, `],

mn ; p(k) ≤
k∑
i=0

P(Li)P(Lk−i) + 2


(1+q)(2q−q2)j+1

(1−q)2 , ` = 2j + 1

(3q−q2)(2q−q2)j
(1−q)2 , ` = 2j.

(6.11)

Proof. We divide the interval [0, 2n−2] into three subintervals: [0, `−1], [`, 2n−`−2] and [2n−`−1, 2n−2].
Suppose that there are k missing sums. We separate into two cases.

Case I. There are no missing sums in the interval [`, 2n − ` − 2]. In this case, let i be the number of
missing sums in [0, ` − 1]. (Note that i can be any integer between 0 and k inclusive, because we chose
k ≤ `.) Then the remaining k−i sums are in [2n−`−2, 2n−2], and thus the eventsLi andRk−i both occur.

Case II. There is at least one missing sum in [`, 2n− `− 2]. This corresponds to the event C defined in
Lemma 6.6.

The above casework gives us the expression

mn ; p(k) =

k∑
i=0

P(Li and Rk−i) + P(C). (6.12)
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By Lemma 6.1, Li and Rk−i are independent, so

P(Li and Rk−i) = P(Li)P(Rk−i) = P(Li)P(Lk−i). (6.13)

Using this in (6.12), along with the bound on P(C) from Lemma 6.6, gives our desired bound (inequal-
ity (6.11)), completing the proof. �

Corollary 6.5. Let k ∈ N0 and p ∈ (0, 1) be chosen. Given ` ≥ k, then

mp(k) ≤
k∑
i=0

P(Li)P(Lk−i) + 2


(1+q)(2q−q2)j+1

(1−q)2 , ` = 2j + 1

(3q−q2)(2q−q2)j
(1−q)2 , ` = 2j.

(6.14)

Proof. This result follows immediately from Theorem 6.4 by taking the limit as n goes to infinity of both
sides. In particular, limn→∞mn ; p(k) = mp(k) while the right side is independent of n. �

6.2. A Lower Bound on mp(k). We now attack the more challenging problem of finding a lower bound
for the number of missing sums. This will allow us to prove the existence of a divot at 1 by showing that the
probability of missing nothing and the probability of missing two sums have lower bounds that are greater
than the upper bound for missing one sum. Once again, we begin by observing that our fringe events are
indeed independent.

Lemma 6.6 (Independence of the Fringes). Fix a fringe width ` and a positive integer a ≤ `. If n ≥
4`− 2a+ 1, then for any k1, k2 ∈ [0, `], the events Lak1 and Rak2 are independent.

The proof of Lemma 6.6 is similar to that of Lemma 6.1. The following lemma is a generalization of
Proposition 8 in [MO]. The lemma gives a lower bound that is independent the specific elements of the
fringe. Instead, the bound only involves the cardinalities of L and R.

Lemma 6.7. Choose a fringe width ` and letL ⊆ [0, `−1] andR ⊆ [n−`, n−1] be fixed. Let S = L∪M∪R
for M ⊆ [`, n− `− 1]. Then for any ε > 0,

P([2`− 1, 2n− 2`− 1] ⊆ A+A) ≥ 1− 1 + q

(1− q)2
(q|L| + q|R|)− ε (6.15)

for all sufficiently large n.

Proof. We have

P([2`− 1, 2n− 2`− 1] ⊆ A+A)

= P([2`− 1, n− `− 1] ∪ [n+ `− 1, 2n− 2`− 1] ⊆ A+A

and [n− `, n+ `− 2] ⊆ A+A)

= 1− P([2`− 1, n− `− 1] ∪ [n+ `− 1, 2n− 2`− 1] 6⊆ A+A

or [n− `, n+ `− 2] 6⊆ A+A)

≥ 1− P([2`− 1, n− `− 1] ∪ [n+ `− 1, 2n− 2`− 1] 6⊆ A+A)

− P([n− `, n+ `− 2] 6⊆ A+A).

(6.16)

We find a lower bound for P([n− `, n+ `− 2] ⊆ A+A). Since M +M ⊆ A+A,

P([n− `, n+ `− 2] ⊆ A+A) ≥ P([n− `, n+ `− 2] ⊆M +M). (6.17)
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Applying the change of variable N = n− 2`, we estimate

P([n− 2`, n− 2] ⊆M +M) = P([N,N + 2`− 2] ⊆M +M)

= 1− P(∃k ∈ [N,N + 2`− 2], k /∈M +M)

≥ 1−
N+2`−2∑
k=N

P(k /∈M +M)

= 1−
N+2`−2∑
k=N
k even

P(k /∈M +M)−
N+2`−2∑
k=N
k odd

P(k /∈M +M)

= 1−
N+2`−2∑
k=N
k even

q(2q − q2)N−1−k/2 −
N+2`−2∑
k=N
k odd

(2q − q2)N−(k+1)/2. (6.18)

The last equality uses Lemma 2.3. In the last line, the exponents of 2q − q2 ∈ (0, 1) are all at least
N/2 − ` = n/2 − 2`, so the RHS approaches 1 as n → ∞. Hence for any ε > 0, when n is sufficiently
large we have P([n− `, n+ `− 2] ⊆ A+A) ≥ 1− ε and so

P([n− `, n+ `− 2] 6⊆ A+A) = 1− P([n− `, n+ `− 2] ⊆ A+A) ≤ ε
Combining this with Lemma 2.4, we obtain

P([2`− 1, 2n− 2`− 1] ⊆ A+A) ≥ 1− 1 + q

(1− q)2
(q|L| + q|R|)− ε. (6.19)

This completes our proof. �

The even Lai prescribes, in some ways, the behavior of i+`−a elements in [0, 2`]; i sums must be missing
from the first `, while [`, 2` − a] are all present. The next lemma places a lower bound on the probability
that the remaining a− 3 elements are also present in A+A.

Lemma 6.8. For n ≥ 4`− 2a+ 1, we have

P([2`− a+ 1, 2`− 2] ⊆ A+A | Lai ) ≥ 1− (a− 2)qτ(L
a
i ),

P([2n− 2`, 2n− 2`+ a− 3] ⊆ A+A | Rai ) ≥ 1− (a− 2)qτ(R
a
i ).

(6.20)

Proof. We prove only the first inequality because the second follows identically. We have

P([2`− a+ 1, 2`− 2] ⊆ A+A | Lai ) = 1− P([2`− a+ 1, 2`− 2] 6⊆ A+A | Lai )

≥ 1−
2`−2∑

k=2`−a+1

P(k /∈ A+A | Lai ). (6.21)

Recall the definitions ofML,a,i (the set of sets L ⊂ [0, `− 1] such that event Lai occurs) and

τ
(
Lak
)
= min

L∈ML,i

|L ∩ [0, `− a+ 1]|. (6.22)

Suppose from now on that Lai occurs. For each k ∈ [2`− a+ 1, 2`− 2], the probability that k /∈ A+ A is
equal to the probability that for each x ∈ L, the corresponding x − k /∈ L. Since there are at least τ(Lak)
elements of L, and the probability of excluding a certain integer from S is q, we can bound

P(k /∈ A+A | Lai ) ≤ qτ(R
a
i ). (6.23)

Hence

1−
2`−2∑

k=2`−a+1

P(k /∈ A+A | Lai ) ≥ 1− (a− 2)qτ(R
a
i ). (6.24)
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This completes our proof. �

Given k ∈ N0, the following theorem gives us a lower bound for mn ; p(k).

Theorem 6.9. Fix q ∈ (0, 1) and pick a fringe length ` ≥ 0. Also choose a ≤ `. For any ε > 0, the
following holds for all sufficiently large n:

mn ; p(k) ≥
k∑
i=0

P(Lai )P(Rak−i)θk,i(q, ε), (6.25)

where

θk,i(q, ε) = 1− (a− 2)(qτ(L
a
i ) + qτ(R

a
k−i))− ε− 1 + q

(1− q)2
(qminLa

i + qminRa
k−i). (6.26)

Proof. The probability that A + A is missing exactly k sums is greater than the probability that all these
sums are missing from the two fringes. Thus for each k ∈ [0, `], we have

mn ; p(k) ≥
k∑
i=0

P(Lai and Rak−i and [2`− a+ 1, 2n− 2`+ a− 3] ⊆ A+A)

= P(Lai and Rai )P([2`− a+ 1, 2n− 2`+ a− 3] ⊆ A+A | Lai and Rak−i)

= P(Lai )P(Rai )P([2`− a+ 1, 2n− 2`+ a− 3] ⊆ A+A | Lai and Rak−i). (6.27)

This last equality follows from Lemma 6.6. We can bound P([2` − a + 1, 2n − 2` + a − 3] ⊆ A +
A | Lai and Rak−i) below by splitting into three subintervals.

P([2`− a+ 1, 2`− 2] ∪ [2`− 1, 2n− 2`− 1] ∪ [2n− 2`, 2n− 2`+ a− 3] ⊆ A+A | Lai and Rak−i)

= 1− P([2`− a+ 1, 2`− 2] 6⊆ A+A or [2`− 1, 2n− 2`− 1] 6⊆ A+A

or [2n− 2`, 2n− 2`+ a− 3] 6⊆ A+A | Lai and Rak−i)

≥ 1− P([2`− a+ 1, 2`− 2] 6⊆ A+A | Lai and Rak−i)
− P([2`− 1, 2n− 2`− 1] 6⊆ A+A | Lai and Rak−i)

− P([2n− 2`, 2n− 2`+ a− 3] 6⊆ A+A | Lai and Rak−i)

≥ 1− (a− 2)qτ(L
a
i ) − 1 + q

(1− q)2
(qminLa

i + qminRa
k−i)− ε− (a− 2)qτ(R

a
k−i)

The last inequality uses Lemma 6.8, as well as Lemma 6.7 with the observation that for any L such that Lai
occurs, q|L| ≤ qminLa

i (respectively q|R| ≤ qminRa
i ). Hence

P(Lai and Rak−i and [2` − a + 1, 2n − 2` + a − 3] ⊆ A + A) ≥ P(Lai )P(Rak−i)θk,i(q, ε). (6.28)

This completes our proof. �

Corollary 6.10. Let k ∈ N0 and p ∈ (0, 1) be chosen. Given ` ≥ k, then

mp(k) ≥
k∑
i=0

P(Lai )P(Lak−i)
[
1− (a− 2)

(
qτ(L

a
i ) + qτ(L

a
k−i)
)

− 1 + q

(1− q)2
(
qminLa

i + qminLa
k−i

)]
. (6.29)

Proof. This follows immediately from Theorem 6.9 by taking the limit as n goes to infinity of both sides.
In particular, limn→∞mn ; p(k) = mp(k) while the right side is independent of n. �

These upper and lower bounds enable a proof of Theorem 1.5.
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Remark 6.11. Given 0 ≤ k ≤ `, P(Lk) is a polynomial of p. Recall thatML,k is the set of all sets L such
that event Lk occurs. For 0 ≤ i ≤ `, let

c(i) = |{L ∈ML,k such that |L| = i}| (6.30)

Then

P(Lk) =
∑̀
i=0

c(i)pi(1− p)`−i. (6.31)

As long as `, the fringe size, is not too large6, we can numerically compute c(i). Similarly, define

ck,a(i) = |{L ∈ML,a,k such that |L| = i}|. (6.32)

Then

P(Lak) =
∑̀
i=0

ck,a(i)p
i(1− p)`−i. (6.33)

So we can numerically compute the upper and lower bounds for mp(k) found in § 6.1 and § 6.2.

Finally, we employ these numerical techniques through exhaustive search to prove Theorem 1.5.

Proof of Theorem 1.5. For our argument for the divot at 1, we use ` = 30 and a = 12. For clarity, we
summarize our bounds:

mp(0) ≥ LB(0, p),

mp(1) ≤ UB(1, p),

mp(2) ≥ LB(2, p), (6.34)

where

LB(0, p) := P(L12
i )P(L12

0 )

[
1− 10(qτ(L

12
0 ) + qτ(L

12
0 ))− 1 + q

(1− q)2
(qminL12

0 + qminL12
0 )

]
,

UB(1, p) :=
1∑
i=0

P(Li)P(L1−i) + 2
(3q − q2)(2q − q2)15

(1− q)2
,

LB(2, p) := P(L12
i )P(L12

2−i)
2∑
i=0

[
1− 10(qτ(L

12
i ) + qτ(L

12
2−i))

− 1 + q

(1− q)2
(qminL12

i + qminL12
2−i)

]
. (6.35)

Using Remark 6.11, we can plot each function LB(0, p),UB(1, p) and LB(2, p) (q = 1 − p). We pro-
vide the values for minL12

i , τ(L
12
i ), ck(i) and ck,a(i), which are crucial values for explicitly plotting func-

tions LB(0, p),UP(1, p),LB(2, p) in Appendix C. Figure 6 is the plot. From it, we see that for p ≥ 0.68,
LB(0, p) > UB(1, p) < LB(2, p); thus, there is a divot at 1. Numerical evidence shows that our upper
bounds are very good; we also discuss this in Appendix B. �

6Later, we pick ` = 30 because computer can run through 230 ≈ 109 subsets in a reasonable amount of time. The computer
(no parallel running) took approximately 3 days to gather all the information we need. For p ≥ 0.67, there is no need to go further
since our results are already very close to the true value.
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FIGURE 6. Plot of the bounds LB(0, p),UB(1, p) and LB(2, p). Since LB(0, p) >
UB(1, p) < LB(2, p) for p ≥ 0.68, there exists a divot at 1 for p ≥ 0.68.

7. CORRELATED SUMSETS

Up unto this point, we have studied the random variable |A + A|, where each element is included in A
with probability p. Now, we examine the random variable |A+B|, where, for a given triplet (p, p1, p2) and
any i ∈ {0, . . . , n− 1}

• P(i ∈ A) = p
• P(i ∈ B | i ∈ A) = p1
• P(i ∈ B | i 6∈ A) = p2.

For example, if p1 = 1, p2 = 0 we recover the problem of |A + A|, while if p1 = 0, p2 = 1 we get
|A+Ac|.

Our first objective is, as before, to use graph theory to compute P(i, j 6∈ A + B). The probability of
missing a single element, P(i 6∈ A+B), was computed in [DKMMW]. The clear choice of graph-theoretic
generalization is to form a bipartite graph CG.

Definition 7.1. For a set F ⊆ [0, 2n− 2] we define the bipartite correlated condition graph CGn = (V,E)
induced on F where V = A ∪ B = {0A, 1A, . . . , (n − 1)A, 0B, 1B, . . . , (n − 1)B}, and for two vertices
k1 ∈ A and k2 ∈ B, (k1, k2) ∈ E if k1 + k2 ∈ F .

Then, just as before with Lemma 3.2, the event i, j 6∈ A+B is the same as having a vertex cover on this
graph of those elements missing from A and B.

Fortunately, the structure of this graph is entirely analogous to that found in § 3. If k ∈ {0, . . . , n − 1},
and we denote by kA and kB the copies of k potentially present in A,B respectively, then we know that if
k1A + k2B = i, then also k1B + k2A = i, and so each edge in Gn has a “partner”. Thus, [LMO]’s Proposition
3.1 still applies and we once again find ourself with a collection of disjoint paths, present in pairs where one
element is in A and the other is in B.

Definition 7.2. Given nonnegative integers i, j, an accordion path of length n on CGm is a pair of paths
in CGm given by vertices specified by a sequence of integers ks for 1 ≤ s ≤ n, so that for each s > 1,
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ks + ks−1 ∈ {i, j}. Then the accordion path is given by
⋃

kA,kB ∈ ks
{kA, kB} and the edges (inherited from

the condition graph) between them.

kA,1 kA,2 kA,3 . . .

kB,1 kB,2 kB,3 . . . kB,n

kA,n

FIGURE 7. A generic accordion path.

An example of such an accordion path is given in Figure 7. In Section 3, we were able to compute the
probability of finding a vertex cover on a path using a one-dimensional recurrence relation. Here, we still
have that vertices in distinct pairs of paths are independent, but within a pair of paths composing a single
accordion we have serious dependencies, since each element is included in B with probability conditioned
on whether or not that element was included in A. However, by extending our recurrence relation to include
2 new variables, setting

xn = P(vertex cover)

yn = P(vertex cover and kn ∈ S)
zn = P(vertex cover and k∗n ∈ S). (7.1)

We then get the recurrence relations

xn = qq2xn−1 + qp2yn−1 + pq1zn−1 + pp1qq2xn−2

yn = qq2xn−1 + qp2yn−1

zn = qq2xn−1 + pq1zn−1. (7.2)

where x1 = y1 = z1 = 1 and

x2 = q(q2 + p2q) + p(q1qq2 + q21p+ p1qq2)

y2 = q(1− pp2)
z2 = pq1(qq2 + pq1) + qq2. (7.3)

This larger recurrence relation generalizes the one previously derived in §3. To find asymptotics, we can
examine the eigenvalues of the governing 4× 4 matrix;

xn+1

yn+1

zn+1

xn

 =


qq2 qp2 pq1 pp1qq2
qq2 qp2 0 0
qq2 0 pq1 0
1 0 0 0




xn
yn
zn
xn−1

 . (7.4)

In fact, we can find the closed form for the eigenvalues of the governing matrix from Equation (7.4);
however, we do not include it in this paper as it is not very informative to the behavior of the probability of
obtaining a vertex cover. Instead, we propose that one might fix one or more of p, p1, and p2, and then find
the eigenvalues, to obtain a more meaningful result.

From this, we are able to find a preliminary result for the event k 6∈ A+B, noting the similarities to cases
discussed in Section 4 and [MO].

Proposition 7.3. For k ∈ [0, 2n− 2], we have

P(k 6∈ A+B) =

{
x
k/2
2 (1− pp1) if k is even,
x
k+1/2
2 if k is odd,
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where x2 is as defined in Equation 7.3.

Proof. Consider CG2 induced on k ∈ [0, 2n−2]. We notice this graph is very similar to the graph displayed
in Figure 5, with disjoint edges and isolated vertices. We also note that Lemma 3.2 still applies, so we find
a vertex cover on this graph.

By definition, the probability of obtaining a vertex cover on a disjoint edge is x2. We must count how
many of these disjoint edges there are; then we can multiply these together and find the probability of
obtaining a vertex cover on the graph.

If k is odd, then there are (k + 1)/2 disjoint edges. So, we get x(k+1)/2
2 .

If k is even, then there are k/2 disjoint edges, however, there is also an edge between (k/2)A and (k/2)B

with no “partner”. The probability of obtaining a vertex cover for this edge is 1− pp1. So, we get xk/22 (1−
pp1). �

And using the framework developed in Section 3, we are able to find the following Proposition.

Proposition 7.4. For i, j ∈ [0, 2n− 2], we have

P(i, j 6∈ A+B) =


xsq x

s′
q+2 i, j both odd,

xo x
s
q x

s′
q+2 i even, j odd,

xo′ x
s
q x

s′
q+2 i odd, j even,

xo xo′ x
s
q x

s′
q+2 i, j both even,

(7.5)

where q, s, s′, o, o′ are as defined in Proposition 3.4.

Proof. Consider CGn induced on {i, j}. To find P(i, j 6∈ A+B), we must find the probability of obtaining
a vertex cover on this graph. Thankfully, the structure of this graph has been well-studied, from Propo-
sition 3.4. The difference is we now have accordion paths as opposed to paths, however xn gives us the
probability of obtaining a vertex cover on an accordion path of length n. So, we can use Proposition 3.4 to
find the number and lengths of these accordion paths, to obtain our desired result. �

8. FUTURE WORK

We list some natural questions for future research. We first list questions relating to Sections 4, 5 and 7.

• Does there exist a “good” lower bound for E[|A+A|] for p ≤ 1/2?
• Can a “good” bound be found for Var(|A+A|)?
• Does there exist a closed formula for E[|A+B|] and Var(|A+B|)?

Now we list questions relating to Section 6. For convenience, we present Figure 2 again.

• As p decreases, the divot appears to shift to the right, from 1 at p = .8, to 3 for p = .6, to 7 for
p = .5. How does the position of the divot depend on p? Do divots move monotonically with p?
• At p = .7 there appear to be two divots at 1 and 3; for what values of p are there more than one

divot?
• Is there a value p0 where for p > p0 the distribution of the number of missing sums has a divot, and

for p < p0 the divot disappears. Where is this phase transition point p0?
• In our theoretical and numerical investigations, we have never seen a divot at an even number. Are

there no divots at even values?

These results all apply to the sumsetA+A. In general, can any of these results be applied to the difference
set A−A? What is needed to apply these results to the difference set?
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FIGURE 8. Plot of the distribution of missing sums, varying p by simulating 106 subsets of
{0, 1, 2, . . . , 400}. The simulation shows that: for p = 0.9 and 0.8, there is a divot at 1, for
p = 0.7, there are divots at 1 and 3, for p = 0.6, there is a divot at 3 and for p = 0.5, there
is a divot at 7.

APPENDIX A. PROOFS OF GENERALIZATIONS

Here we provide the full proofs of the many generalizations of lemmas originally proven by [MO]. Note
that we have only introduced new notation that generalizes the previous arguments made. We also provide
the full proof of Theorem 1.4, that is structurally equivalent to Theorem 1.2 of [LMO].

Proof of Lemma 2.1. Define random variables Xj by setting Xj = 1 if j ∈ A and Xj = 0 otherwise. By
the definition of A, the variables Xj are independent random variables for ` ≤ j ≤ n− u− 1, each taking
the values 0 and 1 with probability q and p respectively, while the variables Xj for 0 ≤ j ≤ ` − 1 and
n− u ≤ j ≤ n− 1 have values that are fixed by the choices of L and U .

We have k /∈ A+A if and only if XjXk−j = 0 for all 0 ≤ j ≤ k/2; the key point is that these variables
XjXk−j are independent of one another. Therefore

P (k /∈ A+A) =
∏

0≤j≤k/2

P (XjXk−j = 0) . (A.1)

If k is odd, this becomes

P (k /∈ A+A) =
`−1∏
j=0

P (XjXk−j = 0)

(k−1)/2∏
j=`

P (XjXk−j = 0)

=
∏
j∈L

P (Xk−j = 0)

(k−1)/2∏
j=`

P (Xj = 0 or Xk−j = 0)

= q|L|(1− p2)(k+1)/2−`. (A.2)
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On the other hand, if k is even then

P (k /∈ A+A) =

`−1∏
j=0

P (XjXk−j = 0)

( k/2−1∏
j=`

P (XjXk−j = 0)

)
P
(
Xk/2Xk/2 = 0

)
=
∏
j∈L

P (Xk−j = 0)

( k/2−1∏
j=`

P (Xj = 0 or Xk−j = 0)

)
P
(
Xk/2 = 0

)
= q|L|(1− p2)k/2−` · q. (A.3)

�

Proof of Lemma 2.2. This follows from Lemma 2.1 applied to the parameters `′ = u and L′ = n− 1− U ,
u′ = ` and U ′ = n− 1− L, and A′ = n− 1−A and k′ = 2n− 2− k. �

Proof of Proposition 2.4. We employ the crude inequality

P ({2`− 1, . . . , n− u− 1} ∪ {n+ `− 1, . . . , 2n− 2u− 1} 6⊆ A+A)

≤
n−u−1∑
k=2`−1

P (k /∈ A+A) +

2n−2u−1∑
k=n+`−1

P (k /∈ A+A) . (A.4)

The first sum can be bounded, using Lemma 2.1, by
n−u−1∑
k=2`−1

P (k /∈ A+A) <
∑

k≥2`−1
k odd

q|L|(1− p2)(k+1)/2−` +
∑

k≥2`−1
k even

q|L|+1(1− p2)k/2−`

= q|L|
∞∑
m=0

(1− p2)m + q|L|+1
∞∑
m=0

(1− p2)m

= q|L|
1

p2
+ q|L|+1 1

p2
=

1 + q

p2
q|L|. (A.5)

The second sum can be bounded in a similar way using Lemma 2.2, yielding
2n−2u−1∑
k=n+`−1

P (k /∈ A+A) <
1 + q

p2
q|U |. (A.6)

Therefore P ({2`− 1, . . . , n− u− 1} ∪ {n+ `− 1, . . . , 2n− 2u− 1} 6⊆ A+A) is bounded above by
1+q
p2

(
q|L| + q|U |

)
, which is equivalent to the statement of the proposition. �

Proof of Theorem 1.4. For the lower bound, we construct many A such that A + A is missing k elements.
First suppose that k is even. Let the first k/2 non-negative integers not be in A. Then let the rest of the
elements of A be any subset A′ that fills in (so A′ + A′ has no missing elements between its largest and
smallest elements); that is Mn−k/2(A

′) = 0. By Proposition 2.4, we can show that P(M[0,n−1](A
′) = 0) is

a constant independent of n. If L ⊆ [0, ` − 1] and U ⊆ [n − u, n − 1] are fixed, then Proposition 2.4 says
that

P([2`−1, 2n−2u−1] ⊆ A′+A′ |A′∩[0, `−1] = L,A′∩[n−u, n−1] = U) > 1−1 + q

p2
(q|L|+q|U |), (A.7)

independent of n. Therefore,

P([2`− 1, 2n− 2u− 1] ⊆ A′ +A′ and A′ ∩ [0, `− 1] = L,A′ ∩ [n− u, n− 1] = U)

>

(
1− 1 + q

p2
(q|L| + q|U |)

)
q`qu. (A.8)
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By letting L = [0, `− 1], U = [n− u, n− 1] so the ends fill in, we get that

P(A′ +A′ = [0, 2n− 2]) >

(
1− 1 + q

p2
(q` + qu)

)
q`qu. (A.9)

Pick `, u large enough so that the first term in the product is positive, we get that

P(A′ +A′ = [0, 2n− 2]) >

(
1− 1 + q

p2
(qs + qs)

)
qsqs =

(
1− 1 + q

p2
2qs
)
q2s, (A.10)

which is a constant independent of n, as desired.
As A = k/2 +A′, we have A+A = k +A′ +A′ = [k, 2n− 2] and so M[0,n−1](A) = k. Thus

P(M[0,n−1](A) = k) ≥ P(A = k/2 +A′ and Mn−k/2(A
′) = 0)

= qk/2P(Mn−k/2(A
′) = 0)

� qk/2. (A.11)

This proves the lower bound in Theorem 1.4 when k is even.
If k is odd, then we can let L = [0, ` − 1] \ {2, 3} and U = [n − u, n − 1] so that only the element 3 is

missing from A′ +A′. Then we get a bound for P(M[0,n−1](A
′) = 1). Letting A = (k− 1)/2 +A′, we get

the desired lower bound in Theorem 1.4 for when k is odd.
Now, we find the upper bound. For this, we introduce some notation. We set

M[0,n−1] := |[0, 2n− 2]\(A+A)| = 2n− 1− |A+A|. (A.12)

For the upper bound, we have the following inequality for the probability of missing k elements in [0, n/2]:

P(|[0, n/2]\(A+A)| = k) ≤ P(j 6∈ A+A, j ∈ [k, n/2])

≤ 2
∑
j≥k

(1− p2)j/2

� (1− p2)k/2, (A.13)

and similarly for P(|[3n/2, 2n]\(A + A)| = k). Furthermore, there is an equation ((7.27) from [LMO])
that connects the probability of missing k elements to the probability of missing elements in [0, n/2] and
[3n/2, 2n]:

P(M[0,n−1](A) = k) =
∑
i+j=k

P(|[0, n/2]\(A+A)| = i)P(|[3n/2, 2n]\(A+A)| = j)+O
(
(1− p2)n/4

)
.

(A.14)
Combining A.13 and A.14, we get

P(M[0,n−1](A) = k)

=
∑
i+j=k

P(|[0, n/2]\(A+A)| = i)P(|[3n/2, 2n]\(A+A)| = j) +O
(
(1− p2)n/4

)
�

∑
i+j=k

(1− p2)i/2(1− p2)j/2 + (1− p2)n/4

� k(1− p2)k/2 + (1− p2)n/4. (A.15)

Therefore, if k/2 < n/4, we get

P(M[0,n−1](A) = k) � k(1− p2)k/2. (A.16)
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However, [LMO] shows we can improve this bound as follows, with the use of (3.11):

P(|[0, n/2]\(A+A)|) = k ≤ P(A+A misses 2 elements greater than k − 3)

= P(i, j 6∈ A+A, i, j ∈ [k − 3, n/2])

=
∑

k−3<i<j
P(i, j 6∈ A+A)

�
∑

k−3<i<j

(
φ(p) + 1 + p

2φ(p)

) j−i
2
(
1− p+ φ(p)

2

)j+1

�
(
φ(p) + 1 + p

2φ(p)

) k−k
2
(
1− p+ φ(p)

2

)k+1

=

(
1− p+ φ(p)

2

)k+1

<

(
1− p+ φ(p)

2

)k
. (A.17)

Note that as in (A.15), we always have an extra (1− p2)n/4 term. To make this term negligible, we need to
have (1− p2)n/4 < ((1− p+ φ(p))/2)k, which means n > k · 4 log((1− p+ φ(p))/2)/ log(1− p2). This
condition is sufficient in this case where we have the bound ((1− p+ φ(p))/2)k. However, in general, we
know that we have a lower bound of (1− p)k/2 for the distribution. Therefore, to make the (1− p2)n/4 term
always negligible, we can have (1− p2)n/4 < (1− p)k/2, which means n > k · 2 log(1− p)/ log(1− p2),
as in the statement of Theorem 1.4. Note that then the implied constants are independent of n. Combining
(A.11) and (A.17), we get Theorem 1.4. �

APPENDIX B. OUR BOUNDS FOR P(|B| = k) ARE GOOD

To observe numerically how good our bounds are, we must compare our bounds to the true values of
P(|B| = k). However, P(|B| = k) cannot be computed directly; thus, we run simulations to estimate
P(|B| = k). We pick p ∈ (0, 1) and run 106 simulations to form subsets of {0, 1, . . . , 400} and find the
frequency of each number of missing sums within these 106 simulations. We then compare the plot of the
simulated distribution with our bound functions mentioned in Corollary 6.5 and Corollary 6.10.
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FIGURE 9. For p = 0.8, lower bound, upper bound and simulation of P(|B| = k). At
p = 0.8, the lower bound and upper bound for P(|B| = k) are so good that we cannot
differentiate the lines. The two bounds and the simulation seem to closely coincide at all
points.

FIGURE 10. At p = 0.7, the lower bound and upper bound for P(|B| = k) are still close to
each other. The upper bound seems to coincide with the simulation everywhere. However,
the bounds are relatively worse compared to the case p = 0.8.

APPENDIX C. DATA FOR DIVOT COMPUTATIONS

All the data we provide below corresponds to ` = 30 and a = 12.Our program computes all the quantities
required by Inequalities (6.5) and (6.10) to find lower and upper bounds for mp(k) when p varies. Again,
our method of storing and collecting data are mentioned at the end of Section 1.

C.0.1. Data for minL12
i and τ(L12

i ).

i 0 1 2 3 4 5
minL12

i 12 11 11 11 11 11
τ(L12

i ) 7 7 6 6 6 6
30



FIGURE 11. At p = 0.6, the upper bound is fairly good while the lower bound is much
worse compared to previous cases.

C.0.2. Data for ck(i) for 0 ≤ k ≤ 2.

i c0(i) c1(i) c2(i)
0-7 0 0 0
8 0 0 12
9 58 1552 13955
10 10629 82696 276434
11 190349 704139 1495762
12 1164105 2613360 4544680
13 3879603 6121208 9753610
14 8720201 10586952 16142608
15 14730206 14526747 21525160
16 19817016 16371555 23716940
17 21916190 15421977 21913801
18 20269375 12251022 17114758

i c0(i) c1(i) c2(i)
19 15817037 8237988 11333625
20 10452359 4689056 6359012
21 5847957 2251741 3010077
22 2759881 906081 1192562
23 1090747 302191 390638
24 356894 82172 103915
25 95055 17777 21870
26 20099 2947 3501
27 3248 352 400
28 377 27 29
29 28 1 1
30 1 0 0

C.0.3. Data for ck,a(i).
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i c0,12(i) c1,12(i) c2,12(i)
0-10 0 0 0
11 0 5 27
12 400 3352 18890
13 39072 198265 589832
14 685029 1857746 3772428
15 3664341 6033358 9993760
16 9311984 10449491 15740073
17 14592372 12237242 17647078
18 16358625 10909486 15345556
19 14202656 7803902 10775362
20 9943771 4584649 6229436
21 5729373 2234092 2989242
22 2740544 904203 1190494
23 1088774 302096 390543
24 356799 82172 103915
25 95055 17777 21870
26 20099 2947 3501
27 3248 352 400
28 377 27 29
29 28 1 1
30 1 0 0
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