LOW-LYING ZEROES OF MAASS FORM L-FUNCTIONS

LEVENT ALPOGE AND STEVEN J. MILLER

ABSTRACT. The Katz-Sarnak density conjecture states that the schiits of the dis-
tributions of zeroes of families of automorphicfunctions agree with the scaling limits of
eigenvalue distributions of classical subgroups of théampigroupsl (N). This conjec-
ture is often tested by way of computing particular statsstsuch as the one-level density,
which evaluates a test function with compactly supportegrieo transform at normalized
zeroes near the central point. lwaniec, Luo, and SainaK Bhilied the one-level densi-
ties of cuspidal newforms of weigltand levelN. They showed in the limit aBN — oo
that these families have one-level densities agreeingarittogonal type for test functions
with Fourier transform supported {2, 2). Exceeding(—1, 1) is important as the three
orthogonal groups are indistinguishable for support up-ta, 1) but are distinguishable
for any larger support. We study the other family @f.. automorphic forms ove®:
Maass forms. To facilitate the analysis, we use smooth wéigictions in the Kuznetsov
formula which, among other restrictions, vanish to ordérat the origin. For test func-

tions with Fourier transform supported insh{eﬂ + waﬂ),z — 2(1\/?“))' we un-
conditionally prove the one-level density of the low-lyimgros of level 1 Maass forms,
as the eigenvalues tend to infinity, agrees only with thahefdcaling limit of orthogonal
matrices.
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1. INTRODUCTION

The zeros of.-functions, especially those near the central point, eadogortant arith-
metic information. Understanding their distribution hasnerous applications, ranging
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from bounds on the size of the class numbers of imaginaryratiadields [Cl Gol GZ] to
the size of the Mordell-Weil groups of elliptic curvés [BSIASDZ]. We concentrate on
the one-level density, which allows us to deduce many resilout these low-lying zeros.

Definition 1.1. Let L(s, f) be anL-function with zeros in the critical stripy = 1/2+4i~;
(notey; € Rifand only if the Grand Riemann Hypothesis holdsffarand lety be an even
Schwartz function whose Fourier transform has compactstpfpheone-level density is

Dl(f;(bv R) = Z¢ (102g7TR/7f) ) (1.1)
ps

whereR is a scaling parameter. Given a famiy of L-functions and a weight function
of rapid decay, we define ttaweraged one-level density of the family by

1

Di(Fi0) = lim g > w(Cr/R)Di(f:0. F), (1.2)
’ feF
with
W(F,R) = Y w(Cf/R), (1.3)
feF

andC; some normalization constant associated to the f@rtypically it is related to the
analytic conductory, e.g.C'y = ¢y or c}/z, etc.).

The Katz-Sarnak density conjectufe [KaSal, KaSa2] stamsthe scaling limits of
eigenvalues of classical compact groups near 1 correcttiefribe behavior of these zeros
in families of L-functions as the conductors tend to infinity. Specificafl{he symmetry
group isG, then for an appropriate choice of the normalizatidwe expect

DuFid) = [ sWiglis = [ GoWiswa, (L4)
whereK (y) = 225, K (z,y) = K(z — y) + eK (z + y) fore = 0, +1, and
Wl,SO(cvcn) (.I') = K (.I', .I')
Wisoeddy(®) = K_1(x,x)+ do(x)
1 1

Wio(z) = §W1,SO(even)(I) + §W1,SO(odd)(I)

Wl)U(fL‘) = KQ(SC,SC)

Wigp(z) = K_i(x,x). (1.5)

Note the Fourier transforms of the densities of the threeogronal groups all equaj (y)+
1/2in the interval(—1, 1) but are mutually distinguishable for larger support (areldis-
tinguishable from the unitary and symplectic cases for apppert). Thus if the underlying
symmetry type is believed to be orthogonal then it is necggsaobtain results for test
functions¢ with Supp(a) exceeding—1, 1) in order to have a unique agreement.

The one-level density has been computed for many familiesuitably restricted test
functions, and has always agreed with a random matrix engserSimple families off.-
functions include Dirichlef.-functions, elliptic curves, cuspidal newforms, numbeldfie
L-functions, and symmetric powers GfL, automorphic representations [DM1, FiVi] FI,
[Gad/GK [ Gl HM HR] ILS, IMT| KaSal, KaS&2, Mil, MilPe, O$1S@O[RR[Rb, Rub1,
[Rub2[ShTé, Yd, Yo]. Duefiez and Millér [DMI, DM2] handled ssoompound families,
and recently Shin and Templier [ShTe] determined the symntgpe of many families
of automorphic forms orGL,, over Q. The goal of this paper is to provide additional
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evidence for these conjectures for the family of level 1 Méasms for as large support of
the test function as possible.

1.1. Background and Notation. By A < B we mean thatA| < ¢|B| for some positive
constant, and byA < B we mean thatl <« B andB < A. We set

e(x) = exp(2mix) (1.6)

and use the following convention for the Fourier transform:

flo = [ " f@)e(—at)dr. 1.7)

We quickly review some properties of Maass forms; $seel[[Wd,. JKL]
for a detailed exposition and a derivation of the Kaisov trace formula, which
will be a key ingredient in our analysis below.

Let u be a cuspidal (Hecke-Maass-Fricke) eigenformSdn(Z) with Laplace eigen-
value), =: % +t2,t, € C. By work of Selberg we may taki, > 0. We may write the
Fourier expansion of as

u(z) = y"? Y an(w)K_1/2(27|nly)e(ny). (1.8)
n#0
Let
A() e () 19
n(u) * Cosh(t)l/Q' ( . )

Changingu by a non-zero constant if necessary, by the relevant Hed@ryhon this
space without loss of generality we may take= 1. This normalization is convenientin
applying the Kuznetsov trace formula to convert sums oweFiburier coefficients af to
weighted sums over prime powers.

The L-function associated to is

L(s,u) == Y _ Ayn™". (1.10)

n>1

By the work of Kim and Sarnak K, K$a] thé-function is absolutely convergent in the
right half-planefRe(s) > 71/64 (it is believed to converge fdRe(s) > 1). TheseL-
functions analytically continue to entire functions of tbemplex plane, satisfying the
functional equation

A(s,u) = (=1)°A(1 — s,u), (1.12)
with
A(s,u) := 7 °T (HETM) r (HET_”> L(s,u). (1.12)
Factoring
1= X+ X2 = (1-a,X)(1-B,X) (1.13)
at each prime (the,, 3, are the Satake parametergatwe get an Euler product
L(s,u) = H(l —app 5 N1 = Bop )7, (1.14)

p

which again converges f@ke(s) sufficiently large.
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We let M; denote an orthonormal basis of Maass eigenforms, which wifithe
remainder of the paper. In what followsvg(A; B) will denote the average value of
over our orthonormal basis of level 1 Maass forms weighte@by hat is to say,

2uem, Aw)B(u)
ZuEMl B(u) .

1.2. Main result. Before stating our main result we first describe the weightfion used
in the one-level density for the family of level 1 Maass fornihe weight function we
consider is not as general as other ones investigated (s@eghments for other families
of Maass forms in[[AAILMZ]), but leads to a significantly sitep analysis and much
greater support. In this sense our work is similar to analys®ther problems where the
weight functionis chosen to facilitate the application stianmation formula (for example,
the use of harmonic weights for the Petersson formula). Asipus work on Maass forms
could not deal with test functions whose Fourier transfaanessupported outside-1, 1, ),
these calculations were insufficient to determine the uypicher symmetry. As extending
this support is the primary motivation for this work, we tlolmse a weight function which
is ideally suited for using the Kuznetsov trace formula.

As we will see below, some type of weighting is necessary dlepto restrict to conduc-
tors of comparable size. While our choice does not inclugidélsacharacteristic function
of [T, 2T, we are able to localize for the most part to conductors fieaith polynomial
decay beford” and exponential decay beyond. By choosing such weightifumstwe are
able to unconditionally obtain support {r-2, 2). Note this equals the best unconditional
results for any family ofL.-functions, that of DirichletL-functions (support this large is
known for cuspidal newforms, but only by assuming GRH foridbitet L-functions to
expand the Kloosterman sums).

Leth € C* (R) be an even smooth function with an even smooth square-rdale-
Wiener class such thate C> ((—1/4,1/4)) andh has a zero of order at leasat0. In
fact, the higher the order of the zero/ofit0, the better the support we are able to obtain:
this will be made precise below.

By the ideas that go into the proof of the Paley-Wiener theprgnceh is compactly
supported we have thatextends to an entire holomorphic function, with the estenat

Avg(A; B) = (1.15)

hiz +iy) < exp <#> . (1.16)

Note also that, by exhibiting as the square of a real-valued even smooth function on
the real line (that also extends to an entire holomorphiction by Paley-Wiener), by the
Schwarz reflection principle we have thatakes non-negative real values along the imag-
inary axis as well.

Throughout this paper 7" will be a large positive odd integer tending to infinity.
Let
Y (i
hr(r) = 7(T) STT) ) (1.17)

Forr € R we have

hr(r) < exp (_M> (1.18)
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Further,h extends to an entire meromorphic function, with poles dyattthe non-zero
integral multiples of 7". Figure[1 shows a plot df; () on [0, 1000] for one choice ofi.
The point is that.(r) is orderl for » on the order off’, decays exponentially at infinity,
and decays polynomially at zero (like e.g. the Maxwell-Baiainn distribution, and many
other well-known distributions).

Plot of a typical weight functior

L TR
200 400 600 800 1000

FIGURE 1. A plot of hyg;. Hereb(t) = exp(—1/(1/100 — t2)) if |¢| <
1/10 and 0 otherwiseh (&) = £8b(€) (whereb is the Fourier transform
of b), andhr(r) = (r/T)h(ir/T)/ sinh(mwr/T).

In our one-level calculations we take our test functicio be an even Schwartz function
such thaEupp(qAS) C (—n,n) for somen > 0. The goal of course is to prove results for the
largestn possible. We suppress any dependence of constaritsoon or ¢ as these are
fixed, but not oril” as that tends to infinity.

In computing the one-level density for the family(;, we have some freedom in the
choice of weight function. We choose to weighby hr(t,)/||u||?, wheret? + 1 /4 is the

Laplace eigenvalue af, and||u|| = ||ul|12(s1,(z)\p) is the L? norm ofu. We may write
the averaged one-level density as (We will see fhat T2 is forced)
2y b (tu)
Dl (Ml; d)) = lim D1
T zueMl ) /[ul? % Tl
h
= lim Avg (Dl(u 6, T?); r(ty 2)). (1.19)
T oad [l

Based on results from [AAILMZ] and [ShTe], which determiribe one-level density
for support contained if—1, 1), we believe the following conjecture.

Conjecture 1.2. Lethr be as defined ifI7)and ¢ an even Schwartz function wighof
compact support. Then

D1(My; ¢) / d(OWro(t (1.20)
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with Wy o(t) =1 + %50. In other words, the symmetry group associated to the faofiily
level 1 cuspidal Maass forms is orthogonal.

Unfortunately, the previous one-level calculations amaifficient to distinguish which
of the three orthogonal candidates is the correct corraipgrsymmetry type, as they all
agree in the regime calculated. There are two solutionssassue. The firstis to compute
the two-level density, which is able to distinguish the éhcandidates for arbitrarily small
support (se€ [Mil]). The second is to compute the one-leeebity in a range exceeding
(—1,1), which we do here. Our main result is the following.

Theorem 1.3. LetT" > 1 be an odd integer anéd an even Schwartz function with
supp(¢) C (—n,n). Leth € C* (R) be an even smooth function with an even smooth
square-root of Paley-Wiener class such thae C> ((—1/4,1/4)) andh has a zero of

order at leas®8 at0. Lethr be as defined i@ I7) Then, for ally < 5/4, we have that

DiMuo) = [ T sOWho(t)dt, (1.21)

the density corresponding to the orthogonal groOp,That is to say, the symmetry group
associated to the family of level 1 cuspidal Maass formstisagonal.

As mentioned, padding the weight function with more zerdésalows us to increase
the support with the same methods. By further restrictingveeight functions, we may
take the support o$ to be(—2 + €,2 — €) for anye > 0; note that we do not assume
GRH. This equals the best support obtainable either untiondily or under just GRH
for any family of L-functions (such as Dirichlet-functions [FiMi,[Gao[ HR OS1, 0%$2]
and cuspidal newforms not split by sidn [ILS]), and thus pdes strong evidence for the
Katz-Sarnak density conjecture for this family. Specificalle have

Theorem 1.4. LetT" > 1 be an odd integer anéd an even Schwartz function with
Supp(a) C (—n,n). Leth € C* (R) be an even smooth function with an even smooth
square-root of Paley-Wiener class such that ¢ ((—=1/4,1/4)) and h has a zero of
order at leastM > 8 at0. Lethr be as defined ifl.I7) Then, for allp < 2 —

we have that

3
(M1

DMio) = [ T W (t)dt, (1.22)

the density corresponding to the orthogonal groOp,That is to say, the symmetry group
associated to the family of level 1 cuspidal Maass formstisagonal.

The only difference in the proof is that we are allowed tognéte by parts\/ times in
Section 3.3 (see the proof of Proposition] 3.2).

1.3. Outline of proof. We give a quick outline of the argument. We carefully folldvet
seminal work of Iwaniec-Luo-Sarnak[ILS] in our prelimifes. Namely, we first write
down the explicit formula to convert the relevant sums owvaoes to sums over Hecke
eigenvalues. We then average and apply the Kuznetsov toaceifa to leave ourselves
with calculating various integrals, which we then sum. Tosbghtly more specific, we
reduce the difficulty to bounding an integral of shape

i rhy(r)
/ Joir (X)mdr, (1.23)

— 00

where these/ are Bessel functions, andr is as in Theorerh 113. We break into cases:
X “small” and X “large”. For X small, we move the line of integration frol down to
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R — iR and takeR — +o0, converting the integral to a sum over residues. The diffjcul
then lies in bounding a sum of residues of shape
P (%)

T];) V¥ Togia ( X)— =t (1.24)
whereP is closely related té. To do this (after a few tricks), we apply an integral formula
for these Bessel functions, switch summation and integmatpply Poisson summation,
apply Fourier inversion, and theapply Poisson summation agaifThe result is a sum
of Fourier coefficients, to which we apply the stationary gghenethod one by one. This
yields the bound foX small.

To handleX large, we use a precise asymptotic for #hg. (X ') term from Dunster [Du]
(as found in[[ST)). In fact, foX large it is enough to simply use the oscillationef, (X)
to get cancelation. It is worth noting that the same consittmns would also be enough
for the case ofX small were the asymptotic expansion convergent.

2. CALCULATING THE AVERAGED ONE-LEVEL DENSITY

The starting point is to use the explicit formula to convedigihted averages of the
Fourier coefficients to weighted sums over prime powers. ceteulation is standard and
easily modified from[[RS] (see also Lemma 2.8[of [AAILMZ]).

Lemma 2.1(Explicit formula). Lethr be asin Theoreim 1.3. Then

$0) - Avg(log(1+t2),W)
) B 2 +ol0) log R

2logp - [ logp Chp(ty)
gpmlogﬂ(mﬂ Ave 2ol T 2
2 10gp log p hr(ty)
— A 2 .
2 plogT? <1ogT e\ M (i

loglog T’
e (W) | (2.1)

To prove Theorem 113, it therefore suffices to show the fdlthow

hr(t)
[Jul[?

AVg (Dl (u; (bv R)7

Lemma 2.2. Let hr be as in Theoreiin 1.3. Then @s— oo through the odd integers we
have

(1) Avg (log(l +t2); hﬁr(Hz)

logp [ logp hr(tu)
Y ;plﬂlogﬁ(mogfr)“g(”) i)~
logp - (logp hr(tu)
®) EplogT“ﬁ(logT)Avg(A (0 ) =0 =2

The first determines the correct scale to normalize the zétos T2 (see [Mil] for
comments on normalizing each form’s zeros by a local faatdrreot a global factor such
asT? here; briefly if only the one-level density is being studibdr either is fine). The
third is far easier than the second. Each will be handledheaduznetsov trace formula
(see for examplé [IK, KL, LiuYe?2]), which we now state.

) = log(T?) + O (loglog T)
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Theorem 2.3(Kuznetsov trace formula)Letm,n € Z*. Let H be an even holomorphic
function on the striz: +iy | y| < 5 +¢} (for somes > 0) such thatf () < > Then

Z H(tu))\m(u)m _ man /OO rH(r) tanh(mr)dr

2o Tl

/Z m"”i*mm"o-ir(n)ﬁdr
L2 M/“ J%T<4w\/ﬁ> rH(r)

= ¢ e ¢ cosh(7r)

2
1
m

dr,

(2.3)

the sum taken over an orthonormal basis of Hecke-Maas&éigenforms o812 (Z),
with S the usual Kloosterman sum,the extended divisor function ag, ,, Kronecker’s
delta.

Observe that our weight functidn, satisfies the hypotheses of the above theorem once
T > 1, since the sine function has a simple zer0.at

Our first application of the Kuznetsov trace formula is toedetine the total mass (i.e.,
the normalizing factor in our averaging).

Lemma 2.4. Leth be as in Theorem 1.3. Then

3 hrlt) _ o (2.4)
A Tl

Proof. We apply Theoremi 213 tbr, with m = n = 1. We obtain

Z hﬁu(fﬁ) _ 1 /°° rhT(r)tanh(wr)dr_%/Oo hr(r)

1 ()
2 ; 2
A = . o[G0+ 20r)]

L% 5(1710)/00 oy (%”) rhrlr) g (25)

= ¢ e cosh(7r)

Itis rather easy to see that the first ternxig 2, sincehr is non-negative and essentially
supported onr =< T'. Similarly, using|¢(1 + 2ir)| > 1/log(2 + |r|) (see for example
[Ciu)), the second term is readily seen to be

TlogT
—_—. 2.6
Applying the Weil bound, it certainly suffices to show that
/ J2ir in Mdr < (2.7
oo ¢ ) cosh(mr)
But this follows from Propositioh 313 and the bound
) < B 28)
n.
completing the proof. O

We can now prove the first part of the main lemma needed to prbeereni 1.

Proof of Lemma&2]2, part (1)We cut the sum above &t logT and below at% and
apply the previous lemma along with the fact tHat| =< 1 under our normalizations (see

[Smi]). 0
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We are thus left with the last two parts of Lemmal 2.2.

3. HANDLING THE BESSEL INTEGRALS

In this section we analyze the Bessel terms. Crucial in oalyais is the fact that our
weight functionhr is holomorphic with nice properties; this allows us to skidntours
and convert our integral to a sum over residues. The goakofi#xt few subsections is to
prove the following two propositions, which handiesmall and large.

Proposition 3.1. Let At be as in(T.I7) SupposeX < T. Then

i rhy(r) X
ir(X)———=d —. 3.1
/,Oo Jain )cosh(m“) TS T (3.1)
Proposition 3.2. Let hr be as in(T.17) Supposex > % Then
e rhy(r) X
/_OO JQW(X)COSh () dr < Tz (3.2)

3.1. Calculating the Bessel integral.We begin our analysis of the Bessel terms, which
will eventually culminate in a proof of Proposition 8.1.

Proposition 3.3. Let hr be as in(Z.17) Then
o ‘ rhy(r) B 1Y\ .
/_oo Jair (X) cosh(7r) aro =« ,;0 J%H X)(@k+ Dhr ((k * 2) z)

+ 2Ty (=1 Joxr (X )kho(k)

k>1
= Z J2k+1 X)(2k + 1)hT ((k + %) Z)
k>0
L0 (Xe T, (3.3)

wherecy, ¢o, andcs are some constants independenofandT'.

Proof of Propositiof 313.The idea here is to move the contour fr@&down toR — ioco,
picking up poles at all the half-integers multiplied bfpoles arising from theosh(zr) in
the denominator) and integer multiples:@f (poles arising from theinh (%) hidden in
hr) that are passed. Indeed, the first sum is precisely the stime é6rmer residues, while
the second is the sum of the latter. The final point is that) decays extremely rapidly
asRe a — oo, with z fixed. One way to see this decay is to use the expansion

( 1)n 2n+ao
< I'( (n+1I'(n+a+1)’

Ja (22 (3.4)
switch the sum and integral, and use Stirling’s formula totlu® relevant calculations,
switching sums and integrals back at the end to consolittetéorm into the above. The
details will not be given here, as the bounds already giveh-pnas well as Stirling’s
bounds orl" (and the outline above), reduce this to a routine computatio

The claimed bound on the error term follows by trivially bdiimg by using (for0 <
x < 1, n a positive integer)

Te 1—x2 "
T R [ 35
() <1 T m) (3.5)
which can be found i TAS]. O
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3.2. Averaging Bessel functions of integer order for small primes. lwaniec-Luo-Sarnak,

in proving the Katz-Sarnak density conjecture &supported in—2, 2) for holomorphic
cusp forms of weight at mogt’, demonstrate a crucial lemma pertaining to averages of
Bessel functions. In some sense our analogous work herengndvis to the Kuznetsov
setting requires only one more conceptual leap, which igyaPoisson summation a
second time to a resulting weighted exponential sum. Thgrad argument can be found

in Iwaniec’s book ([Iw2]), which we basically reproduce agirat step in handling the
remaining sum from above.

Remark 3.4. We will use the fact that_,,(z) = (—1)"J,(x) several times in what
follows. Moreover, we introduce the notation

h(z) = zh(z), (3.6)
and similarly for iterated tildes.
Thus (in this notation) to prove Propositioni3.1 it sufficeshow the following.

Proposition 3.5. Lethr be as in(.17) SupposeX < T'. Then

h (22 X
J =T J2k+1 )¢ <L —. (37)
2 (B < T

Proof. Observe thak — sin ( ) is supported only on the odd integers, and mzips- 1
to (—1)*. Hence, rewriting gives

z ( k \ sin (”—k)

SyX) =T Jp(X)h <—) = (3.8)

/ ; k 2T ) sin (2—]“)

kg2TZ
As

Sin (71'_]{}) eﬂék —e Wék % mika
B ,fk = ik ik er (39)
S (2—) e2T — e2T

whenk is not a multiple o7, we find that

ka =k
= T —_— pg— . .
>y e<2T> Jk(X)h<2T> (3.10)
lal<% 57z
Observe that, since the sum oveis invariant undery — —« (and it is non-zero only for
k odd!), we may extend the sum oveto the entirety ofZ at the cost of a factor of 2 and
of replacingh by

g(x) = sgn(x)h(z). (3.11)

Note thaty is as differentiable as has zeroes dt, less one. That is to say,decays like
the reciprocal of a degreed._, h(z) — 1 polynomial atoc. This will be crucial in what
follows.
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Next, we add back on th&'Z terms and obtain

900 = 750 e () 003 (55) =12 X dar (XORNGH)

la|< T keZ kEZ
ko ~( k e
= Ty Ze(ﬁ) Ju(X)g (ﬁ> +0 (Xe T
la|<Z kEZ

= V;(X)+ 0O (Xe "), (3.12)

by the same argument as the last step of Proposifidn 3.3(fiecsign was immaterial).
Now we move to apply Poisson summation. Wike=: 27Y. We apply the integral

formula (fork € Z)

[N

Ji(2mx) = / e (kt — xsin(27t)) dt (3.13)

1
2

and interchange sum and integral (via rapid decay) ¢d get that

=Ty /; <k€z (— +kt>§<%>> e (=Y sin(2rt))dt. (3.14)

la|<F
By Poisson summatior, (3.114) is just (interchanging sumiatedjral once more)

ViX) = 1) Z/ §" (2T (t — k) 4+ a) e (=Y sin(2nt)) dt

la|<Z k€Z

As

sin<T +%) = sin(%)—i—ﬂ%cos(%)—ﬂ';ﬂfsm(g)+O<t3> (3.16)

we see that

+0<§+Y—2>. (3.18)
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As the rest of the argument is a bit long, we isolate it in Lerfa@immediately below.
Its proof uses Poisson summation again. By (8.18), thishfasishe proof of Proposition
[37 (and hence that of Proposition]3.1 as weII). O

Lemma 3.6. Letg be as in(3.11) andY” < 5. Then

1) 4g(¥) = T 3 e (Vein (2 ))5(%@(?))«;

lo <%
TaN =, (T To 5
(2) By(Y) = Tlang (Ysm( ))sin (?)g (%cos (T)) <<%.
(3.19)

Proof of Lemmé&3léLetp € C> ([-%, 1]) such thatp|[_u Ty = 1. We viewp as
2 2
a Schwartz function oRR. Then

V)= T8 s (van (7)) (Feos(F)). @20

a€EL
Applying Poisson summation,

s = o [ (o ()< () )

nez
= TY Cy(Y,n). (3.21)
nez
For eachn, the derivative of the phase @, (Y, n) is
% cos <%t) —n. (3.22)

Here is where our hypothesis dh(néeX) comes in: fory” < % andn # 0, we have

7Y cos 7t
T T) "

Now we integrate by parts four times. There is nothing spediaut four other than the
fact thatg has far more than four zeroestaaind>_ n~* converges. Integrating by parts
more times would give us no improvement in the end. First iciemghen = 0 term of
(B.21) —i.e..Cy (Y, 0) — where the phasis stationary (albeit at a boundary point of the
integration region).

> n. (3.23)

T

[ (5o () (o ()

T

[ (o () () 0

Note that theg has lost one tilde because we have divided out by the derivafi the
phase, and also that the boundary terms vanish thanks taipert condition om.

We remark before we repeat this three more timespthat 0 on [- 2%, 1], and on

+ [L51, Z] we have that
Y Tt Y 8

Cy(Y,0)

2

Qn
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for instance (since, agaip,has a high order zero &j. Further, differentiating thg term
picks up a factor ot’/72, and differentiating the denominator we absorbed earl@rld/
again pick up a factor of /7. The point is that repeating this process three more times
gives us a bound of the form

C,(Y,0) < <%>4 (3.26)

The exact same argument works for4 0, except now we pick up at least one factor
of n each time we integrate by parts (since the derivative of tese isT: cos (%) —n).
The same process and reasoning leads us to a bound of shape:

4
A (Y) < T(%) (1+Z%) < }T/—j (3.27)

n#0

as desired. O

3.3. Handling the remaining large primes. The goal of this subsectionis to prove Propo-
sition[3.2. For this we apply the following asymptotic expimm, due to Dunster [Du] and
(essentially) found in Sarnak-Tsimerman[ST].

Lemma 3.7. Letz,r» > 0. Then

2iTE(%) r —r
Joip(z) = 8T 0 ¢ —+—= ), (328
(4r2 4+ 22)7 |r| (4r2 4+ 22)7 (4r2 + 22)1

whereg(2) = (1 + 22)% + log (W) O

Proof of Propositioh 3.2 Write
© rhy(r)
D;(X) = ir(X)———d 3.29
J(X) /_OO Jain )cosh (7r) " ( )

for our integral.
Observe that

I r ,’,2
(rg (;)) _ _1og<2y+ 1+f‘;(—2>. (3.30)

Note that this logarithm is zero at but its derivative is not (whence the quotient-dfy
this remains bounded ne@). These will both come in handy in a moment. Applying the
asymptotic expansion df (328) (and using evenness), wthate

2iré (2% 7,~ ir ;L i
D;(X) < / et )lh(T) dr+ O / ‘ (%)
R+ (472 4+ X2)7% sinh (ZF) Rt (4r2 4+ X2)

e N

dr)
sinh (%)
= Ny(X)+ E;(X). (3.31)

Using our hypothesis o (and the exponential decay bf atoo),

E;(X) < T=. (3.32)
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Thus it suffices to study the first term @f(3131) — i.&7;(X). But, viar — T'r and then
an integration by parts, we see that

NyX) < T: /]R+8<§5< X )) rh(ir)/ sinh(mr) /dr

QTT 2\ 1 /
(42 + 7=)* ('T¢ (577))
X
< = 1+ crd
Ti/ R+( r)e r
X
< T (3.33)
as desired. O

The following remark describes the changes needed in ounaggt to prove Theorem

L4

Remark 3.8. Each integration by parts picks up a factor &f/72. Hence, so long a8
has a zero of order at least/ at0, integrating by parts\/ times gives instead

Ny(X) < XMp3-2M (3.34)

In fact pushing the asymptotic expansion further (agaia[Bei]) produces terms differing
by a factorO(1/r) smaller each time, and so pushing the expansion out to twe teams
we get the bound

Dy(X) < XMT§-2M 4 p-3/2, (3.35)

4. PROOF OFTHEOREM[I.3

We can now prove our main result.

Proof of Theorer 113We prove part (2) of Lemmia2.2. Part (3) follows entirely anal
gously (in fact, we obtain better bounds in this case).

We have already seen that the total mass of the averages e arder of72. So it
suffices to give a bound of siz¢72) for

logp - ( logp her(t)
. 4.1
Zpl/QlogT¢<21ogT u; Tz () (4.1)

p

Applying the Kuznetsov trace formula and using the sameraegus used fof (216) gives
us that

hr(ty 1, p; o 4 h TlogT
> ) ) = e 3 SR [, (MR ) g, (TETY
v [|ul| = c oo c cosh(7mr) p
4.2)

Since¢ has compact support, the sum of the error term over the piiBnes

logp -/ logp TlogT
zp:pl/21OgT¢<210gT O~z ) < TlogT. (4.3)
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We split the remaining double sum into three parts as follows

logp -~ [ logp S(1,p;c) /OO dmy/p\ rhr(r)
i d
Xp: pl/2 logT(b (2 logT ; c J2 c cosh(7mr) g

— 00

logp -~ ([ logp S(1,p;c) /OO dm\/p\ rhr(r)
= ir d
Z pl/zlogT¢<2logT Z c & c "

cosh(7r)
— 00
LS <p<T2n e< ATy

logp -~ [ logp S(l,p;c)/oo  (Amyp\ rhr(r)
+ Z pl/2 logT(ZS (210gT Z c Jair dr

:: c cosh(7r)
2 4 -
L <p<T >/

logp 3 logp S(1,p;c) /°° dm\/p\ rhr(r)
_— Josir d
+ Z p'/2log T <210gT ; c ? c cosh(7r) g

— 00

(4.4)

We apply the Weil bound for Kloosterman sums to edéti, p; ¢)| < ¢'/?*<. More-
over, we apply Propositidn 3.2 to the integrals in the firshi (4.4), and Propositidn 3.1
to those in the second and third sums[ofi(4.4). We getfha) iglbbunded by

logp » ( logp 8 e
Z 1ogT (210gT Z ¢

T2 47
£ <p<T? e<im/P

- logp - ( logp 3
T 1 “+e
* Z logT(b (210gT Z ©

(VB

T

logp log p .
27€, 4.5
Z logT <2logT ;C (4.5)
47r2 -

Applying Chebyshev’s prime number theorem estimales) (¢.5
T2n—%+e Tl+€

4.6
< logT +1ogT’ (4.6)
which is of the desired shape whenrc %, completing the argument. O
Proof of Theoreri I]4The proof of Theorer 114 follows similarly. We argue as abave
apply [3.35) instead to the first term. O
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