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ABSTRACT. We introduce a new predator-prey model by replacing the growth and predation constant by a
square matrix, and the population density as a population vector. The classical Lotka-Volterra model describes
a population that either modulates or converges. Stability analysis of such models have been extensively studied
by the works of Merdan [MeD09], [Mer10]. The new model adds complexity by introducing an age group
structure where the population of each age group evolves as prescribed by the Leslie matrix.

The added complexity changes the behavior of the model such that the population either displays roughly a
exponential growth or decay. We first provide an exact equation that describes a time evolution, and use analytic
techniques to obtain an approximate growth factor. We also discuss the variants of the Leslie model, i.e., the
complex value predator-prey model and the competitive model. We then prove the Last Species Standing
theorem that determines the dominant population in the large time limit.

The recursive structure of the model denies the application of simple regression. We discuss a machine
learning scheme that allows an admissible fit for the population evolution of Paramecium Aurelia and Parame-
cium Caudatum. Another potential avenue to simplify the computation is to use the machinery of quantum
operators. We demonstrate the potential of this approach by computing the Hamiltonian of a simple Leslie
system.
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1. INTRODUCTION

Leslie matrices describe the time evolution of a homogeneous population with multiple age groups.
Consider a discrete-time evolution of a whale population that is comprised of three age groups. We let
a
(i)
n : Zpos → R for 1 ≤ i ≤ 3 be the time-dependent populations of each age group; for example, a(1)n is

the population of newborns at time n. We define the population vector as

a⃗n := (a(1)n , a(2)n , a(3)n )T . (1.1)

The total population is the sum of the populations of all age groups, or the sum of all entries in the population
vector: a(1)n + a

(2)
n + a

(3)
n .

If we set the fertility rate of the whales to be f > 0, constant across all age groups, and assume that the
whales have a survival rate of 1, that is, they do not die from reasons other than old age, then we obtain a set
of equations that describe the time evolution of the population:

a
(1)
n+1 = f · (a(1)n + a(2)n + a(3)n )

a
(2)
n+1 = a(1)n (1.2)

a
(3)
n+1 = a(2)n .

This equation can be rewritten in matrix form. For this, we define the Leslie matrix L

L =

f f f
1 0 0
0 1 0

 ,

and we get that

a⃗n+1 = La⃗n =

f f f
1 0 0
0 1 0

 a⃗n, (1.3)

which models our whale population. The advantage of using Leslie matrices is that the population vector
at any given time can be expressed as a matrix power. If the population vector at time zero is a⃗0, then the
population vector at time n is

a⃗n = Lna⃗0. (1.4)

The expression can be further simplified for faster computation. If the population vector a⃗0 is an eigenvector
of the Leslie matrix L with an eigenvalue of λ ∈ R, then we obtain

a⃗n = λna⃗0, (1.5)

and the growth rate of the population is characterized by the eigenvalue λ.
The same technique used to describe homogenous populations can be applied to heterogenous popula-

tions, as is the case in a predator-prey model. For this model, let us now assume that whales consume
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plankton, which only has one age group. We denote the plankton population by bn : Zpos → R1 and intro-
duce a predation rate k > 0, a plankton population multiplier m > 0, as well as a plankton fertility rate
F > 0. Writing the new population vector as

p⃗n := (a(1)n , a(2)n , a(3)n , bn)
T , (1.6)

we arrive at a new model

p⃗n+1 := L̃p⃗n =


f f f m
1 0 0 0
0 1 0 0
−k −k −k 1 + F

 p⃗n. (1.7)

Depending on the parameters (f, F,m, k), the model can either describe a situation where the predator
population exhausts the prey population with too high a predation rate (itself eventually also becoming
extinct due to starvation), or one where, with an appropriate predation rate, both populations grows. These
two cases are illustrated in Figure 1.

(A) High predation and prey exhaustion (B) Low predation and mutual population growth

FIGURE 1. Plot of model 1.7 for varying parameters.

Not all parameters predict a realistic population evolution. For example, for certain values of (f, F,m, k),
1.7 displays an oscillatory behavior where the population is described as a negative number.

FIGURE 2. Figure of oscillatory population with high predation.

In the following sections, we begin by defining and studying the eigenvalues of a simple Leslie matrix.
Furthermore, we show that a population model with nonsimple Leslie matrices can be approximated by a

1In reality, the population is positive. Nonetheless, for a simple presentation, we choose the domain of bn to be over the reals.
In practice, when the population reaches a negative value, the population is considered to be extinct.
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simplified version with simple Leslie matrices. (Section 2) . We then introduce the Leslie predator-prey
model for real and complex values. The solution for the complex model follows nicely from these results.
We also introduce the competitive population model where each population consumes the other to promote
growth of their own species. We present a closed-form formula for the population of the predator-prey
model with real value using a generating function approach (Section 3.2). The complexity of the closed-
form formula motivates us to study the model for a small number of age groups, i.e., one age group for each
predator and prey (Section 3.3). Next, using the observations made in Section 2, we provide an asymptotic
growth rate for the complex model and prove the last-species standing theorem for the competitive model
(Section 4.1).

To test the presented theory of Leslie population models, we used the competitive model to explain
the population evolution Paramecium Aurelia and Paramecium Caudatum. The recursive structure denies
the application of standard regression techniques. A Machine Learning Scheme developed to generate an
admissible fit is presented, along with a fit data with statistic significance (Section 5.2).

Finally, the complex predator-prey model motivates our study to consider the use of quantum mechanics
to describe the population. We investigate a specific case of population evolution and compute the Hamil-
tonian 2 of the system under the assumption that the population obeys the time-dependent Schrodinger
equation.

2. SINGLE SPECIES POPULATION

2.1. Definition of Simple Leslie Matrices and the Lotka-Euler Equation. As described in Section 1,
Leslie matrices characterize changes in a species’ population with different age groups given its survival
and fertility rates. We focus on a specific class of Leslie matrices with a fixed fertility rate f and a survival
rate 1.

Definition 2.1 (Leslie Matrices). Suppose N ∈ Z+ is the number of age groups and f1, . . . , fN ∈ R be
fertility rates of each age group. A simple Leslie matrix that characterizes the population evolution is defined
as follows:

(Lf1,...,fN )ij =


fi (i = 1)

1 (i ̸= 1 ∧ j = i+ 1)

0 otherwise

or, writing the matrix out,

(Lf1,...,fN ) =


f1 f2 · · · fN−1 fN
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

If the fertility rate f1, f2, . . . , fN are constantly equal to some fixed fertility rate f , then we say that the
Leslie matrix is simple. Also, for a non-simple Leslie matrix with a variable fertility rate, we define the
simplified Leslie matrix Lf as follows.

Lf :=


f f · · · f f
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

2For more information on the standard theory, refer to [Bag19].
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The quantity f is the average fertility rate, which is defined as

f :=

∑N
i = 0 fi
N

.

The population at time n can be modeled by a tuple of real numbers, which we write out as a vector.

Definition 2.2 (Time evolution of a single population). Denote the population vector as p⃗n ∈ RN . Given
an initial population vector p⃗0 := v⃗, the population at time n is given by

p⃗n = (Lf1,...,fN )
nv⃗ (2.1)

We present the following theorem, which allows us to focus our analysis on simple Leslie matrices.

Theorem 2.3 (Approximating general Leslie with simplified Leslie). Assume that the fertility rate fN , i.e.,
the fertility rate of the oldest age group, is less than the average fertility rate. For time n sufficiently large,
the population vector for a model involving the general Leslie matrix with varying fertility rate can be
approximated using simplified Leslie matrix using the following formula.

(Lf1,...,fN )
nv⃗ ≈ (Lf )

n

[
n

(
N∑

k = 1

vk(fk/f − 1)

)
e⃗N + v⃗

]
:= (Lf )

n (nξv,f e⃗N + v⃗) (2.2)

3

Proof. It is straightforward verify the following matrix identity.

L−1
f Lf1,...,fN = I + C (2.3)

The matrix C is a square matrix of order N with N − 1 zero columns with one nonzero column.

(C)ij =

{
fi/f − 1 (i = N)

0 (i < N)
(2.4)

Also, since C has N − 1 zero rows, for any integer k > 1, we observe that Ck = (fN/f − 1)kEN where

(EN )ij =

{
1 (i = N, j = N)

0 otherwise.
(2.5)

Take power of n to the both sides of (2.3) and invoke the Binomial Theorem.

(L−1
f Lf1,...,fN )

n = (I + C)n =

N∑
k = 0

(
n

k

)
Ck = I + nC +

N∑
k = 2

(
n

k

)
Ck (2.6)

Use our observation on the powers of C.

(L−1
f Lf1,...,fN )

n = I − EN + nC − (fN/f − 1)nEN + EN

N∑
k = 0

(
n

k

)
(fN/f − 1)k

= I − EN + nC − (fN/f − 1)nEN + EN (fN/f)n

≈ I − EN + nC − (fN/f − 1)nEN

(2.7)

Where the second equality follows from the binomial theorem and the approximation from the assumption
that fN < f . Multiply both sides by the initial population vector v⃗:

(L−1
f Lf1,...,fN )

nv⃗ ≈ v⃗ + ne⃗N

(
N∑

k = 1

vk(fk/f − 1)

)
(2.8)

3We write ξv,f to highlight that the quantity is dependent on the initial population vector v⃗ and the fertility rates f1, . . . , fN
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The vector eN is the elementary basis vector, i.e.,

(e⃗N )i =

{
1 (i = N)

0 otherwise.
(2.9)

Finally, multiplying both sides by (Lf )
−n to the left yields the desired result. □

The implication of (2.10) is that for sufficiently large time n, the major contribution comes from the term
ξv,f e⃗N , allowing an even cruder approximation

(Lf1,...,fN )
nv⃗ ≈ (Lf )

n(nξv,f e⃗N ). (2.10)

The absolute error of this approximation will be large. However, when considering the relative growth rate
between two different populations, which we will be mainly concerned about, the approximation suffices.

To demonstrate this, suppose we wish to compute the proportion of the total populations of two different
populations. Suppose the first population has a initial population vector of v⃗ and N age groups with fertility
rates f1, . . . , fN . Let the second population to have an inital population vector of w⃗ and N age groups with
fertility rates g1, . . . , gN . The total population vector of each population is the L1 norm of the following two
vectors, which are

(Lf1,...,fN )
nv⃗ and (Lg1,...,gN )

nw⃗. (2.11)

Thus the proportion of the two population is

|(Lf1,...,fN )
nv⃗|1

|(Lg1,...,gN )
nw⃗|1

=
|(Lf )

nnξv,f e⃗N + (Lf )
nv⃗|1

|(Lg)nnξw,g e⃗N + (Lg)nw⃗|1
=

|(Lf )
nξv,f e⃗N |1

|(Lg)nξw,g e⃗N |1
+O

(
1

n

)
. (2.12)

Later, we verify that the eigenvalue with the largest modulus is a positive real value. We call this eigen-
value the dominant eigenvalue. The dominant eigenvalue of this matrix describes the asymptotic behavior
of the population. To begin our discourse, we compute the matrix’s characteristic equation and find its roots.

Theorem 2.4 (Lotka-Euler Equation). The characteristic equation of a simple Leslie matrix Lf of order
N ≥ 1 is

chN (x) = xN − f(xN−1 + · · ·+ x+ 1)

which, using the geometric series formula, can be simplified to

xN − f
xN − 1

x− 1
.

Proof. We induct on N . It is trivial to see that the equation holds for N = 1 . For the inductive step,
consider N > 1. We write out the characteristic polynomial as a determinant expansion:

chN+1(x) := det(xI − Lf ) =

∣∣∣∣∣∣∣∣∣∣∣

x− f −f · · · −f −f
−1 x · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣
.

Expanding this with respect to the last column yields

chN+1(x) = (−f)(−1)N (−1)N + xchN (x).

By the inductive hypothesis, we have

chN+1(x) = −f + x
(
xN − f(xN−1 + · · ·+ x+ 1)

)
= xN+1 − f(xN + · · ·+ x+ 1),

which concludes the proof. □
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We focus on the case where the simple Leslie matrix describes a growing population. We comment that
the roots of chN (z) are exactly the eigenvalues of Lf . As a corollary of the theorems in Appendix A, we
present the following result.

Corollary 2.5. The eigenvalues of a simple Leslie matrix Lf all have eigenvalues that have a modulus
strictly less than 1, assuming f < 1/N . Otherwise, if f ≥ 1/N , then there exists a unique positive
real eigenvalue, greater than or equal to 1, that describes the asymptotic growth of the population. In other
words, there exists λmax ∈ [1,∞) such that for any v⃗ ∈ Rn, there exists some w⃗ ∈ Rn such that

(Lf )
nv⃗ ≈ (λmax)

nw⃗ (2.13)

for large enough n ∈ Z+. We call such eigenvalue of Lf as the dominant eigenvalue.

We focus on populations that grow in the long term period. Hence, we assume f ≥ 1/N for most cases.

3. THE LESLIE PREDATOR-PREY MODEL

3.1. The Classic Lotka-Volterra Predator-Prey Model. Let x(t) and y(t) be continuous functions that
describe the respective densities of prey and predator populations. That is, both x and y have ranges within
the interval [0, 1]. The classic predator-prey model is described by a system of differential equations:

dx

dt
= rx(1− x)− axy

dy

dt
= ay(x− y), (3.1)

r, a > 0 are reproductive ratio and predation ratio respectively. Studies of the classic model focus on
finding the conditions for which the system reaches stability. In [Mer10], Merdan explores a similar system
that accounts for the Allee effect, where the population growth is diminished when the population size is
small. The model is described by the equations below:

dx

dt
= rα(x)x(1− x)− axy

dy

dt
= ay(x− y). (3.2)

The term α(x) := x/(β + x) captures the Allee effect. Merdan shows that under the condition

r − αβ > 0, (3.3)

the population converges to a positive stable state:

(x∗, y∗) = ((r − αβ)/(a+ r), (r − αβ)/(a+ r)). (3.4)

3.2. The Predator-Prey Model with Leslie Matrices. We wish to account for different age groups in
the predator and prey populations. Hence, we replace population density, which was previously a scalar
function, by a vector. We also replace the previous reproductive and predation ratios by Leslie matrices.

Definition 3.1 (Leslie Predator-Prey Model). Let α⃗n, β⃗n ∈ RN
pos be the population vectors for the predator

and prey species at time n Let both populations have N different age groups, resulting in the following
population vectors:

α⃗n = (α(1)
n , . . . , α(N)

n )T

β⃗n = (β(1)
n , . . . , β(N)

n )T . (3.5)

The population vectors are defined by the following system of matrix difference equations:

α⃗n+1 = Laα⃗n + kmβ⃗n

β⃗n+1 = Lbβ⃗n − kα⃗n. (3.6)
7



The constants k and m are respectively the predation and nurturing ratios, both greater than zero 4 . We
set the predator and prey populations to be the sum of their vector entries. Symbolically, we let Pa,n, Pb,n

denote the predator and prey populations, given by the following sums:

Pa,n =

N∑
k = 1

α(k)
n and Pb,n =

N∑
k = 1

β(k)
n . (3.7)

We assume that the dominant eigenvalue of Lα does not have a dominant eigenvalue and Lβ has a domi-
nant eigenvalue. In other words, the predator population decays in absence of prey and the prey population
explodes in absence of predators.

Furthermore, the populations are fixed to be non-negative. If a population reaches zero at some time
n ∈ Z+, we say the species has gone extinct. Notice that if the predation rate is too high, the prey population
will be exhausted and subsequently the predator population will also become extinct. On the other hand, if
the predation rate is too low, the predator population will be unable to sustain itself and will equally become
extinct. Hence, it is natural to ask the following question.

Problem 3.2 (Optimal Predation Strategy). What range of the real value k guarantees exponential growth
of the predator population? Moreover, what value of k ensures maximum growth?

The real-valued Leslie Predator-Prey model motivates us to study a complex-valued model. By multiply-
ing i =

√
−1 to one of the summands can be considered as a time-delay in the population change.

Definition 3.3 (Complex Leslie Predator-Prey Model). Let αn, βn ∈ RN
pos for n = 0 and αn, βn ∈ CN for

n > 0 be the population vectors of the predator and prey species at time n:

α⃗n = (α(1)
n , . . . , α(N)

n )T

β⃗n = (β(1)
n , . . . , β(N)

n )T . (3.8)

The population vectors are defined by the following system of matrix difference equations:

α⃗n+1 = iLaα⃗n + kmβ⃗n

β⃗n+1 = iLbβ⃗n − kα⃗n, (3.9)

where k and m are respectively the predation and nurturing ratios, both greater than zero. We again set the
predator and prey populations, Pa,n and Pb,n, to be the sum of their vector entries. In symbols, we have

Pa,n =

∥∥∥∥∥
N∑

k = 1

α(k)
n

∥∥∥∥∥ and Pb,n =

∥∥∥∥∥
N∑

k = 1

β(k)
n

∥∥∥∥∥ (3.10)

Experimentally speaking, for the complex model, the population grows almost surely unless the predation
rate k is zero. The natural question to ask for this model is therefore the following:

Problem 3.4 (Modeling Predator Growth). What is the growth rate of the predator population as n → ∞?

By elementary substitutions, we obtain the following proposition.

Proposition 3.5 (Coupled 1st Order to 2nd Order ). Assuming both prey and predator populations are non-
extinct within a given period of time, the populations satisfy the following second order difference equations:

α⃗n = (La + Lb)α⃗n−1 − LbLaα⃗n−2 −mk2α⃗n−2

β⃗n = (Lb + La)β⃗n−1 − LaLbβ⃗n−2 −mk2β⃗n−2. (3.11)

4The predation ratio describes the amount of prey consumed by each predator. The nurturing ratio describes the population
boost that comes from predation.

8



For the complex model, we have equivalently

α⃗n = i(La + Lb)α⃗n−1 − LbLaα⃗n−2 −mk2α⃗n−2

β⃗n = i(Lb + La)β⃗n−1 − LaLbβ⃗n−2 −mk2β⃗n−2. (3.12)

The coupled second order differences equation can be solved using generating functions under the as-
sumption that the Leslie matrices of the two populations are constant multiples of each other

Theorem 3.6 (Generating Function of the Predator Population in the Real Case). Let α⃗n be the predator
population vector in the real Leslie predator-prey model where La = ρL and Lb = L. The generating
function of α⃗n is

G(x) =
[(
ρL+mk2I − (ρ+ 1)Lx

)
α⃗0 + (ρL+mk2I)xα⃗1

] [
x2I − x(ρ+ 1)L+ ρL2 +mk2I

]−1
.

(3.13)

Proof. From the recurrence relation provided in Proposition 3.5, we have the following identity:[
x2 − x(ρ+ 1)L+ (ρL2 +mk2)

]
G(x) = −(ρ+1)Lα⃗0x+(ρL2+mk2)α⃗0+(ρL2+mk2)α⃗1x. (3.14)

This identity can be verified by substituting G(x) and imposing the appropriate conditions on αn. The
expansion on the left-hand side has residues for terms that have an x power less than or equal to 2. Solving
for G(x) yields the desired result. □

Using partial fraction decomposition, it is possible to obtain a closed form expression for α⃗n.

Theorem 3.7 (Formula for α⃗n). When n > 0,

α⃗n =
(L2ρ+ k2m)n−2

√
D

[(
(k2m+ L2ρ)α⃗1 − L(1 + ρ)

(
k2m+ L2ρ

)
α⃗0

)
δn−1 +

(
k2m+ L2ρ

)2
α⃗0δn

]
,

(3.15)
where D is defined by

D = L2(1 + ρ)2 − 4(mk2 + ρL2), (3.16)
and the sequence δn is defined by

δn =

(
1

2

)n (
L2ρ+ k2m

)−n

n+1∑
l = 1
l odd

(
n+ 1

l

)
[L(1 + ρ)]t+1−l(

√
D)l

 . (3.17)

Proof. The derivation follows by applying partial fraction decomposition to the previous generating function
in Equation 3.13. □

Though the theorem provides a closed-form expression for the predator population, the complexity of the
formula poses difficulties in determining the optimal predation rate for maximal growth.

3.3. Real-Valued Predator-Prey Model with Scalar L. The following three propositions model the preda-
tor and prey populations when the dimension of the Leslie matrix is 1; that is, the population growth is char-
acterized by an exponential of a scalar without interaction. To emphasize their scalarity, we write la < 1
and lb > 1 instead of La and Lb.

Theorem 3.8 (Eigenvalues of the Companion Matrix). Using Proposition 3.5, we write the companion
matrix that describes the two populations:[

la + lb −lalb − k2m
1 0

]
. (3.18)

The eigenvalues of this matrix are purely real if and only if

k ≤ la − lb
2
√
m

. (3.19)

9



Otherwise, the eigenvalues are complex conjugates of each other.

Proof. The characteristic equation of the companion matrix is

λ2 − (la + lb)λ+ k2m+ lalb. (3.20)

For both eigenvalues to be purely real, the discriminant D of this polynomial must be nonnegative:

D

4
:=

(la + lb)
2

4
− k2m+ lalb ≥ 0. (3.21)

Using elementary algebra, we obtain

k ≤ la − lb
2
√
m

. (3.22)

Otherwise, if D/4 < 0, the eigenvalues have an imaginary part, and the two eigenvalues are complex
conjugates of each other. □

Theorem 3.9 (Exponential Growth of Population for Small Predation Rate). The following condition guar-
antees that neither predator nor prey populations vanish as n → ∞:

k ≤
√

(1− lb)(la − 1)

m
. (3.23)

Proof. We assume that the discriminant of the companion matrix (Equation 3.18) is a non-negative real
value. Then the dominant eigenvalue must be

la + lb
2

+

√
D

2
, (3.24)

which must be greater or equal to 1 for both of the population to not vanish. □

Theorem 3.10 (Extinction in the Case of Complex Eigenvalues). If

k >
la − lb
2
√
m

, (3.25)

then the population is guaranteed to go extinct.

Proof. It follows trivially that condition (3.25) implies the dominant eigenvalue is complex. Furthermore,
the real part of the root is (la + lb)/2, which is guaranteed to be positive. Let the two eigenvalues of the
companion matrix be γ and γ̄, with

γ = reiθ and γ̄ = re−iθ, (3.26)

where r > 0 and θ ∈ (0, π/2). By Proposition 3.5, we note that the predator population at time n can be
written as

αn = ν1γ
n + ν2(γ̄)

n. (3.27)
We also observe that the populations α0 and α1 can be assumed to take positive real values. If α1 ≤ 0,
then the population has gone extinct at time 1. Equation 3.27 for n = 0, 1 is

α0 = ν1 + ν2

a1 = ν1γ + ν2γ̄. (3.28)

Since α0, α1 > 0, we deduce that ν1 = ν2 := ν/2 > 0. Finally, we rewrite the population at time n:

αn = ℜ(νγn) = νrn cos(nθ). (3.29)

We know that θ ∈ (0, π/2) and thus, there exists an integer n such that cos(nθ) < 0, which finishes
showing that the predator population must go extinct. □

□
10



3.4. The Complex-Valued Leslie Predator-Prey Model with La = ρLb. To solve the second order
matrix recurrence related to the predator-prey model, we solve a characteristic equation whose coefficients
are matrices. Since the only matrices involved in this equation are I and Lβ which commute, we can use the
quadratic equation.

Theorem 3.11 (Dominant Eigenvalue in the General Case). The population vector of the predator species
in (2.1) can be characterized by

α⃗n = Λn
1 v⃗1 + Λn

2 v⃗2 (3.30)

for vectors v⃗1 and v⃗2, the eigenvectors of the system. . The growth of the predator population is dominated
by the dominant eigenvalue of Λ1. We denote the dominant eigenvalue of Lb by λmax and that of Λ1 by
Λmax. Then Λmax has the following modulus:

∥Λmax∥ =
(ρ+ 1)λmax +

√
(ρ+ 1)2λ2

max + 4mk2

2
. (3.31)

.

Proof. It is possible to solve for Λ1,Λ2 directly. We wish to find a matrix Λ such that

Λ2 − i(ρ+ 1)LbΛ + ρL2
b +mk2I = 0. (3.32)

Applying the quadratic formula yields

Λ1 =
(1 + ρ)L2

b +
√

(1− ρ)2L2
b + 4mk2

2
i

Λ2 =
(1 + ρ)L2

b −
√

(1− ρ)2L2
b + 4mk2

2
i. (3.33)

Note that the magnitude of Λ1 is greater than that of Λ2. We approximate the population of the predator
species at the limit as n → ∞:

Pa,n = ∥a⃗n∥ = ∥Λ1∥n∥v⃗1∥+ ∥Λ2∥n∥v⃗2∥ ≈ ∥Λ1∥n∥v⃗1∥. (3.34)

It remains to show that the vector v⃗1 is nonzero. Let us assume for contradiction that v⃗1 = (0, . . . , 0)T .
Then we can write the predator populations at times 0, 1 as

α⃗0 = v⃗2 and α⃗1 = Λ2v⃗2, (3.35)

which indicates that
α⃗1 = Λ2α⃗0. (3.36)

Since Λ2 is purely imaginary, α1 is therefore also purely imaginary. However, the initial condition of the
model in Definition 3.3 dictates that each entry of α⃗0 and β⃗ is positive and real and that

α⃗1 = iLαα⃗n + kmβ⃗n. (3.37)

Therefore, α1 cannot be purely imaginary and we arrive at a contradiction. □

4. THE COMPETITIVE MODEL

We can slightly modify one of the signs in the previous Leslie predator-prey model and study the fol-
lowing system. Suppose there exist two populations with the same growth matrix L. We assume the two
populations are non-vanishing without interaction; that is, f ≥ 1/N and L = Lf has a dominant
eigenvalue.

11



Definition 4.1 (Leslie Competitive Predator-Prey Model). Let α⃗n, β⃗n be the population vectors of the preda-
tor and prey species at time n. The competitive model is defined by the following system of matrix difference
equations:

α⃗n+1 = max(Lα⃗n − kmβ⃗n, 0⃗) (4.1)

β⃗n+1 = max(Lβ⃗n − kα⃗n, 0⃗),

where k and m are respectively the interaction and competitive advantage ratios, both between 0 and 1. The
interaction ratio describes how much interaction, i.e.„ how much casualties are incurred by competition.
The competitive advantage ratio describes the competitive ratio of species β over α.

4.1. Last Species Standing. A similar analysis used for the predator-prey model can be applied to yield
the following result.

Theorem 4.2 (Last Species Standing). Suppose α⃗0 = (α0, . . . , α0) and β⃗0 = (β0, . . . , β0). In a Leslie
competitive model, one of the two species is likely to vanish as n → ∞. The fate of the two species is
determined by the sign of the term

D := α0 −
√
mβ0. (4.2)

In particular, if D > 0, then the population α vanishes and population β grows exponentially. If D < 0,
then the population β vanishes and the population α grows exponentially. If D = 0, either both species
vanish or both grow exponentially.

Proof. Proposition 3.5 can be generalized by the substitution m 7→ −m. From the recursive relation

αn = (2L)αn−1 − L2αn−2 +mk2αn−2 (4.3)

we obtain the characteristic equation

Λ2 − 2LΛ + L2 −mk2I = O, (4.4)

where I,O are the identity matrix and the zero matrix of dimension N -by-N respectively. By the quadratic
formula, we derive the following roots:

Λ1 = L+ k
√
mI

Λ2 = L− k
√
mI, (4.5)

Notice that k and m are both non-negative real values, and that L is assumed to guarantee positive population
growth. Hence, Λ1 has a positive eigenvalue.

From (3.11), we characterize the population as

α⃗n = Λn
1 v⃗1 + Λn

2 v⃗2. (4.6)

In the limit as n → ∞,
α⃗n ≈ Λn

1 v⃗1. (4.7)
Thus, the population is non-vanishing if and only if v⃗1 is positive. We compute v⃗1 directly. From 4.6, we
obtain two conditions:

α⃗0 = v⃗1 + v⃗2

α⃗1 = Λ1v⃗1 + Λ2v⃗2. (4.8)

Solving for v⃗1 yields

v⃗1 =
Λ2α⃗0 − α⃗1

Λ2 − Λ1
=

Lα⃗0 − k
√
mα⃗0 − Lα⃗0 + kmβ0

2mk
=

√
mβ⃗0 − α⃗0

2
√
m

=

√
mβ0 − α0

2
√
m

(1, . . . , 1) = − D

2
√
m
(1, . . . , 1).

(4.9)
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Similarly, we obtain
βn ≈ Λ1w⃗1, (4.10)

where

w⃗1 =
D

2
√
m
(1, . . . , 1). (4.11)

If D ̸= 0, substituting the appropriate value of D yields the desired result. Now suppose D = 0 or
α0 =

√
mβ0, then the conditions of 4.1 imply

α⃗1 = Lα⃗0 − k
√
mα⃗0

β⃗1 = Lβ⃗0 − k
√
mβ⃗0. (4.12)

By induction, it is possible to prove that

α⃗n =
√
mβ⃗n (4.13)

for all nonnegative integers n. In turn, we obtain

α⃗n+1 =
(
L− k

√
m
)n

α⃗0

β⃗n+1 =
(
L− k

√
m
)n

β⃗0, (4.14)

and the two populations grow or vanish simultaneously. □

5. APPLICATIONS OF THE COMPETITIVE MODEL: LIMITATION OF RESOURCES AND MACHINE
LEARNING

In classical ecology, the competitive exclusion principle predicts that two populations that compete over
the same resources are unlikely to coexist. The last species standing theorem supports this principle. We ap-
ply the model to existing data on the population dynamics of species, and quantify the competitive advantage
of one species over the other.

Though unlikely, competitive coexistence is possible in the case of D = 0. We study the dynamics at
the equilibrium point of competitive coexistence, and demonstrate its coherence with P. H. Leslie’s original
observations.

5.1. Adjusting for Limited Resources. Resources are limited in a realistic biological system, and it is
impossible that both species display indefinite exponential growth. We assume that the both populations of
the model rely on the same resource with a logistical growth rate.

Let rn(t) : R → [0, 1] be a continuous function such that rn(t) describes the population density of the
resource at the time interval [(n− 1)τ, nτ). rn(t) = 1 implies maximum resource and rn(t) = 0 implies
absence of resource. Though rn(t) models the continuous population evolution in between the discrete
timestep of the competitive model, our major concern is the value of rn(0) and rn(τ) where τ is the unit
time for one instance of (4.1).

Let T be the total population capacity of the system. If the combined population of the competitive
species equals the total capacity, the resources are totally consumed. The consumption happens when the
time is an integer multiple of τ . We deduce the initial condition and the logistic growth that allows the
resource population to asymptote to 1. If the total population exceeds the capacity, the resources go extinct,
and r(t) = 0. By the observation, the equation for rn+1(t) is given as

rn+1(0) = max

(
1− αn + βn

T
, 0

)
(5.1)

rn+1(t) =
max(T − αn − βn, 0)e

mt

max(T − αn − βn, 0)emt + αn + βn
. (5.2)
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The quantity m determines the replenishing rate of the resources. For high values of τ , we can estimate the
rn(t) as the following Iverson bracket, i.e.,

rn+1(τ) = [T > αn + βn]. (5.3)

To justify the claim, we plot the value of r(τ) for varying values of αn + βn in figure 3.

FIGURE 3. Plot of r(τ) versus αn + βn.

Since the resources are exhausted when the population goes over the population capacity T , we deduce
that growth and competition stops when αn + βn > T . The natural death of the old age groups allow the
resources to replenish [Bag19]. As a consequence, a small perturbation is introduced around the equilib-
rium. To simplify our calculations, we ignore the perturbation at equilibrium and claim that the population
stagnates once the population reaches its full capacity.

5.2. Competitive Coexsistence and Machine Learning. A classical example of competitive coexistence
is from the experiment of Gause in the 1930’s. The population of Paramecium Aurelia and Paramecium
Caudatum5 was observed under a controlled environment. Both species shared a resource of Bacillus py-
ocyaneus. The combined population of the two species display exponential growth until the equilibrium
population is reached. At equilibrium, the two species coexist. P. Aurelia possesses competitive advantage,
and therefore has a faster growth rate along with a higher equilibrium population.

P. H. Leslie studied the population dynamics using the Lotka-Euler equations. We carry out a similar
analysis using the Leslie model. In order to account for limited resources, we focus on the data before
equilibrium is attained. In the experimental setup of Gause, the liquid medium containing nutrients were

5P. Aurelia and P. Caudatum in short.
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replaced everyday after the observation. Therefore, if the resources consumed per day by the combined
population does not reach the threshold, the effect of the limitation can be ignored.

For a quantitative analysis, we consider the specifics of the Competitive model. Fix the number of popu-
lation groups to be N = 3. The population dynamics depend on five quantities

(f, k, α0, β0,m) (5.4)

where each parameter describes fertility, predation, initial population of the dominant population, initial
population of the subdominant population, and the multiplier. To ensure that α⃗ is the dominant population,
we set m > 1.The recursive equation for the competitive model is given from (4.1).

Since we assume competitive coexistence, D = 0 by theorem 4.2. Therefore, we fix the initial population
of the dominant species as

α0 =
√
mβ0. (5.5)

Standard regression techniques fail to provide a fit of the theoretical model. The challenge is that the
resulting curve of the population does not have an exact analytic expression, but rather is defined by a
recursive relation determined by the parameter. In order to overcome the increasing complexity for larger
values of T , we draw to techniques from machine learning.

Let p, q : [T ] → R be two functions that each describe the observed population of the dominant and
subdominant species6. Also, define

αt =
∑
i∈[N ]

α⃗t · ei and βt =
∑
i∈[N ]

β⃗t · ei. (5.6)

In this definition, α⃗t, β⃗t is the population vector at time t of a competitive model with parameters (f, k, β0,m).
The vectors ei := (0, . . . , 0, 1, 0, . . . , 0) are the ith cannonical bases.

In order to fit the model, we define a function χ : R4 → R that describes the fit.

χ(f, k, β0,m) :=

∑
t ≤ T

(
αt − p(t)

p(t)

)2

+
∑
t ≤ T

(
βt − q(t)

q(t)

)2
 (5.7)

Also fix the value of the number of populations to be N = 3.
By the nature of the model, the ratio between the equilibrium population depends on m, and the growth

of both populations are determined by f . The system displays extreme sensitivity to the two values k, β0.
The two values k, β0 are fixed after they enter an admissible range.

We performed the following machine learning scheme to train the model to extract the parameters that
minimizes χ.

MACHINE LEARNING SCHEME

(1) Evaluate χ for random choice of the four parameters. Among the random tuples, choose the tuple
that minimizes the value of χ.

(2) Perform a general gradient descent involving all four parameters, starting from the point chosen in
step 1. Find the admissible value of k,m.

(3) Define a subroutine, Optg, that performs a gradient descent solely on parameter g with all other
parameters fixed.

(4) Finally perform an optimized gradient descent on parameter m. In the beginning of each loop,
invoke the subroutine Optg to adjust the parameter g.

6[T ] := {1, 2, . . . , T} describes the discrete timestep. For Gause’s experiment, t ∈ [T ] describes the days elapsed from the
beginning of the experiment.
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Gause’s original data includes population evolution over 16 days where equilibrium population is attained
in day 10. We set T = 10 and tested for 20 parameters. The threshold value of admissible χ for a 5%
significance and 20 degrees of freedom is is 10.851 [NIS22].

After training the model according to the scheme described above, we obtained a fit with χ = 3.11.

FIGURE 4. Fit of the competitive model to experemental data. Fit parameters are
(f, β0, k,m) = (1.79, 0.56, 3.53, 9.42), and the associated error is χ(f, β0, k,m) = 3.11.

6. GENERALISED FRAMEWORK: QUANTUM OPERATORS

6.1. Motivation. From Equation 3.11, we have already seen that a complex model approach allows us
to extract a lot more information compared to a real model approach, where we have to work with more
rigid closed-form solutions. Using this as a motivation, we now propose a quantum mechanical approach
for modeling the time evolution of populations with discrete age demographics, by using bosonic ladder
operators.

The application of ladder operators, or more colloquially creation and annihilation operators, from quan-
tum mechanics to model complex real-world interactions between N systems is well-studied [Bag19] .
Previously, a fermionic ladder operator approach was favored as it allowed for discrete evolutionary states,
but in recent times, a truncated bosonic approach has been developed with great success, to study population
evolution [ArG89]. We use previous work on this subject as a motivation to develop a bosonic ladder oper-
ator approach to study populations wtih discrete age-structures and to relate it to the Leslie matrix approach
from our previously developed model.
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6.2. Hermitian of the Leslie Matrix. In a quantum system, the time evolution of a state |φ⟩ can be de-
scribed by the Schrodinger Equation:

∂

∂t
iℏ |φ(t)⟩ = iH |φ(t)⟩ . (6.1)

The solution to this equation can be described by the exponential map:

|φ(t)⟩ = eiHt |φ(0)⟩ . (6.2)

A population model can also be described using quantum operators. In this case, the population vector
becomes the state. We omit the normalization constant ℏ for better notation.

Proposition 6.1 (Hamiltonian for a Single-Population Leslie Matrix). Consider a single non-interacting
population that follows the time-evolution dictated by the Leslie matrix L. If

∥L− I∥ ≤ 1, (6.3)

where I denotes the identity operator, then our Hamiltonian has a closed form solution:

H =
(−1)k

ik
(L− I)k. (6.4)

Proposition 6.2 (Algorithm to Compute the Hamiltonian). The matrix logarithm of L is

log(L) = P log(D)P−1, (6.5)

where

D = diag(d1, . . . , dN ) (6.6)

and
log(D) = diag(log(d1), . . . , log(dN )). (6.7)

Proof. We directly take the exponential and show that it matches L.

elog(L) =
∞∑

k = 0

(log(L))k

k!
=

∞∑
k = 0

(P log(D)P−1)k

k!
=

∞∑
k = 0

P log(D)kP−1

k!

= P

( ∞∑
k = 0

log(D)k

k!

)
P−1 = PDP−1 = L (6.8)

We also provide an example use of the algorithm. We consider the population model described in the
introduction (Equation 1.7) and set the parameters to be (f,m, k, F ) = (.2, .5, .5, 2). Numerically, the
model simplifies to

p⃗n+1 := L̃p⃗n =


.2 .2 .2 .5
1 0 0 0
0 1 0 0

−.5 −.5 −.5 3

 p⃗n. (6.9)

We obtain

log
(
L̃
)

≈


−0.3926 −0.3606 0.5079 0.2940
1.9656 −0.9006 −0.8685 −0.2296
−3.2005 2.8342 −0.0320 0.4569
−0.5212 −0.0644 −0.2940 1.1627

 , (6.10)

and by direct computation via MATLAB, we verify that
17



elog(L) ≈


.2 .2 .2 .5
1 0 0 0
0 1 0 0

−.5 −.5 −.5 3

 = L. (6.11)

□

APPENDIX A. ROOTS OF chN (z)

In this section, we provide our observations on the roots of chN (z) using Complex Analysis.

Theorem A.1. If f ≥ 1/N , then ch(z) has a unique positive, real root that has a magnitude strictly greater
than any of the other complex roots.

Proof. Consider the polynomial

h(z) := (z − 1)chN (z) = zN+1 − (f + 1)zN + f (A.1)

which has a simpler algebraic expression. We split the polynomial h(x) into two summands, and invoke
Rouche’s Theorem ([SS03] p91). Let C1+ϵ be a circular contour centered at the origin with radius 1 + ϵ for
arbitrarily small ϵ. Write

h(z) = (zN+1 + f) + (1 + f)zN (A.2)

and Taylor expand the two summands at z = 1.

(zN+1 + f) = 1 + f + (N + 1)ϵ (A.3)

zN (1 + f) = (1 +Nϵ)(1 + f) = 1 + f +N(1 + f)ϵ (A.4)

By assumption, f ≥ 1/N , which implies (N +1) ≤ N(1 + f). The modullus of the two terms along the
contour can be compared as follows. ∣∣zN+1 + f

∣∣ ≤
∣∣(1 + f)zN

∣∣ (A.5)

By Rouche’s theorem, h(z) has the same number of roots as the term that has a larger modullus in the
countour C1+ϵ, which is the summand (1 − f)zN . It is trivial to see that this summand has N roots inside
the countour, and by fundamental theorem of algebra, h(z) has N + 1 roots.

We know that chN (z) is positive somewhere in the interval [1,∞). We consider the following:

chN (1) = 1− fN ≤ 0. (A.6)

By the Intermediate Value Theorem, we conclude that the one root outside the unit circle is a positive real
value. □

Theorem A.2. If f < 1/N , then all the roots of chN (z) have a modullus strictly less than 1.

Proof. It suffices to show that

h̃(z) = h(1/z)zN+1 = fzN+1 − (f + 1)z + 1 (A.7)

has exactly one root within the unit circle which comes from multiplying
(z − 1). Again, consider the countour C1+ϵ and split h̃(z) into two summands.

h̃(z) = (fzN+1 + 1)− (f + 1)z (A.8)

Taylor expand the two summands at z = 1, and notice that under the condition f < 1/N , the second
summand has a larger modullus along the contour C1+ϵ.

fzN+1 + 1 = f(1 + (N + 1)ϵ) + 1 (A.9)

(f + 1)z = (f + 1)(1 + ϵ) (A.10)
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Clearly, the second summand has one root inside the contour C1+ϵ, which originates from (z − 1). By
Rouche’s theorem, h̃(z) has exactly one root inside the unit circle, i.e. z = 1, and all other roots have a
modullus greater than 1. Consequently, chN (z) = h(z)/(z + 1) has all of its roots strictly inside the unit
circle. □

Theorem A.3 (Bounds for the largest root). Given that f ≥ 1/N , the largest root λmax of chN (z) given
by

1 + f − 1

N
≤ λmax < 1 + f. (A.11)

Proof. The upper bound is trivial:
chN (1 + f) = f > 0. (A.12)

We have chN (0) = −f < 0, and thus by the Intermediate Value Theorem the maximum root is bounded.
To obtain the lower bound, we write f = 1/N + ϵ for some ϵ ≥ 0. With some algebra listed below ,

we compute chN (z) at the claimed lower bound. If we show that this value is less than zero, the dominating
root must be greater than the purported lower bound. We find

chN

(
1 + f − 1

N

)
= −

(
1 + f − 1

N

)N [ 1

fN − 1

]
+

fN

fN − 1
. (A.13)

We wish to bound this value by zero. It suffices to show

fN −
(
1 + f − 1

N

)N

≤ 0, (A.14)

which, using the ϵ substitution, converts to

1 +Nϵ− (1 + ϵ)N ≥ 0. (A.15)

Expanding the power term by the binomial theorem, we see that inequality indeed holds. □

The following figures demonstrate the theorems in this section.
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(A) f > 1, N odd. (B) f ≈ 0, N odd.

(C) f < 1, N odd. (D) f > 1, N even.

FIGURE 5. Roots of chN (z) for varying f,N in the complex plane.
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