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Abstract. Motivated by the rich properties and various applications of recurrence
relations, we consider the extension of traditional recurrence relations to matrices,
where we use matrix multiplication and the Kronecker product to construct matrix
sequences. We provide a sharp condition, which when satisfied, guarantees that any
fixed-depth matrix recurrence relation defined over a product (with respect to matrix
multiplication) will converge to the zero matrix. We also show that the same statement
applies to matrix recurrence relations defined over a Kronecker product. Lastly, we
show that the dual of this condition, which remains sharp, guarantees the divergence of
matrix recurrence relations defined over a consecutive Kronecker product. These results
completely determine the stability of nontrivial fixed-depth complex-valued recurrence
relations defined over a consecutive product.

1. Introduction

Presented with the recurrence relation an = an−1an−2 with a0, a1 ∈ C, the standard
approach to solving for an involves defining an auxiliary sequence

gn = log an, (1)

which yields gn = gn−1 + gn−2, with g0 = log a0 and g1 = log a1. After some calculation,
we obtain ∑

n≥0

gnx
n =

log a0 + (log a1 − log a0)x

1− x− x2
, (2)

and consequently that gn = log a0 · Fn−1 + log a1 · Fn, where {Fn} is the Fibonacci
sequence with F0 = 0 and F1 = 1. Thus,

an = a
Fn−1

0 aFn
1 (3)

for any n ≥ 1. With this formula, determining the stability of an is simple. This
calculation is, in principle, straightforward; however, for more complicated recurrence
relations of arbitrarily large depth, it can become quite arduous.
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Matrix recurrences, the natural generalization of nonlinear complex-valued recur-
rences, are considered due to their added complexity. Indeed, in fields of applied math-
ematics such as population modeling, taking the initial conditions as matrices allows for
nuance in population dynamics unencodable by complex numbers.

Throughout this paper, we use submultiplicative matrix norms; a submultiplicative
matrix norm || · || is a norm on a vector space V of matrices such that ||X1X2|| ≤
||X1|| ||X2|| for any X1, X2 ∈ V . Examples include the Frobenius norm || · ||F and the
operator norm || · ||op defined by

||X||F :=
√
Tr(XXH)

||X||op :=
√

max(Eigenvalues(XXT )) (4)

for any X ∈ V , where V may be any vector space of matrices. Note XT and XH denote
the transpose and conjugate transpose of X respectively.

In this article, we determine the stability of matrix recurrence relations under matrix
multiplication and the Kronecker product through the lens of “multiplicity” rather than
the conventional auxiliary logarithmic sequence approach. In particular, we have the
following result.

Proposition 1.1. Let S ⊆ Z+ be finite such that |S| ≥ 2. Let m be the largest integer
such that S ⊆ mZ and let j := max(S). Define the sequence of matrices {An} by the
recurrence relation

An = B
∏
k∈S

An−k, (5)

with A0, A1, . . . , Aj−1 as fixed square matrices of the same size, B as a scalar or square
matrix, and the product taken in any desired order. Let

λ =

{
0 ||B|| ≥ 1

m− 1 ||B|| < 1.
(6)

Suppose

φ
−(j+λ)/m+1
S/m

φS/m − 1
log ||B||+

j−1∑
k=0

log ||Ak||
∑

j−k≤ℓ∈S

φ
(−k−ℓ)/m
S/m < 0, (7)

where || · || is some submultiplicative matrix norm and φS/m ∈ R+ uniquely satisfies∑
ℓ∈{l/m:l∈S}

φ−ℓ
S/m = 1. (8)

Then {An} converges to the zero matrix.

The relevance of m in Proposition 1.1 is not easily understood at first glance. To
elucidate such, consider the class of recurrences

Mn = Mn−2Mn−4 (9)
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where M0, . . . ,M3 fixed. Note that m = 2 for Mn. We have

M4 = M2M0

M5 = M3M1

M6 = M2M0M2

M7 = M3M1M3

M8 = M2M0M
2
2M0

M9 = M3M1M
2
3M1

M10 = M2M0M
2
2M0M2M0M2. (10)

Now consider the class of recurrences

An = An−1An−2, (11)

with A0, A1 fixed. We have

A2 = A1A0

A3 = A1A0A1

A4 = A1A0A
2
1A0

A5 = A1A0A
2
1A0A1A0A1

A6 = A1A0A
2
1A0A1A0A

2
1A0A

2
1A0. (12)

We observe that M2n = An with A1 = M2 and A0 = M0, and M2n+1 = An with
A1 = M3 and A0 = M1. From this observation, can say that Mn contains m = 2
different sequences which alternate depending on the parity of n. When considering
asymptotics, each sequence contained inMn growsm = 2 times as slow as An. Condition
(7) is ultimately about bounding the growth of ||An||; hence the ubiquitousness of m in
Proposition 1.1.

In addition to matrix multiplication, we consider the stability of matrix recurrences
defined over a Kronecker product. The Kronecker product between an n1 ×m1 matrix
X and an n2 ×m2 matrix Y , denoted X ⊗ Y , is the n1n2 ×m1m2 block matrix

X ⊗ Y :=

 x1,1Y · · · x1,m1Y
...

. . .
...

xn1,1Y · · · xn1,m1Y

 , (13)

where xi,j is the (i, j)th entry of X.

Since the Kronecker product behaves nicely under submultiplicative matrix norms,
we essentially have an identical result to Proposition 1.1 for matrix recurrences of the
form

An = B ⊗
⊗
k∈S

An−k. (14)
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Lastly, we determine when recurrences defined over a consecutive Kronecker product
diverge to infinity in norm; that is, all recurrences of the form

An = B ⊗
⊗
1≤k≤j

An−k. (15)

Proposition 1.2. Let j > 1 be an integer. Define the sequence of matrices {An} by the
recurrence relation

An = B ⊗
⊗
1≤k≤j

An−k, (16)

with B,A0, A1, . . . , Aj−1 fixed and the Kronecker product taken in any desired order.
Suppose that

||B||
j−1∏
k=0

||Ak||1−φ−k−1
j > 1, (17)

where || · || is any submultiplicative matrix norm and φj ∈ R+ uniquely satisfies

j∑
k=1

φ−k
j = 1. (18)

Then {An} diverges to infinity in norm.

Note that φj is also the positive real root of

xj −
j−1∑
k=0

xk,

the characteristic polynomial of the j-nacci sequence. This is a natural generalization
of the golden ratio, which is equal to φ2.

By considering 1 × 1 matrices, we can apply these results to completely determine
the stability of nonlinear complex-valued nontrivial recurrence relations defined over a
finite consecutive product. By nontrivial, we mean that the recurrence is not of the form

an = ban−1, (19)

which easily lends the formula

an = a0b
n. (20)

2. Multiplicity

To yield our theorems on stability, we first find the “multiplicity” of each initial
value matrix in the matrix sequences. Once again, consider the recurrence

An = An−1An−2 (21)

with A0, A1 fixed. By (12), the multiplicity of A1, or colloquially, the number of times
A1 is multiplied in An, is 0, 1, 1, 2, 3, 5, 8 for n = 0, 1, . . . , 6 respectively. For the sake of
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the curious reader, this sequence is indeed the Fibonacci sequence, arising as a special
case of Theorem 2.1.

To this end, we introduce a generalization of the Fibonacci sequence and determine
its generating function.

Definition 2.1 (S-nacci sequence and S-nacci constant). Let ∅ ̸= S ⊆ Z+ be a finite set

and let j := max(S). Define the sequence of integers {F (S)
n }, which we call the S-nacci

sequence, by the recurrence relation

F (S)
n =

∑
ℓ∈S

F
(S)
n−ℓ, (22)

with F
(S)
0 , F

(S)
1 , . . . , F

(S)
j−2 = 0 and F

(S)
j−1 = 1. The S-nacci constant, denoted φS, is defined

as the positive real number satisfying∑
ℓ∈S

φ−ℓ
S = 1. (23)

These definitions coincide with the definitions of the k-nacci sequence and k-nacci con-
stant when S = {1, 2, 3, . . . , k − 1, k}. Note if S is not a singleton, then φS > 1.

Lemma 2.1. Let ∅ ̸= S ⊆ Z+ be a finite set and j := max(S). Then∑
k≥0

F
(S)
k zk =

zj−1

1−
∑

ℓ∈S z
ℓ
. (24)

Proof. To determine the ordinary generating function of {F (S)
n }, we use the standard

ansatz (see [3] for example) that this function is rational with denominator 1−
∑

ℓ∈S z
ℓ.

Indeed, we have(
1−

∑
ℓ∈S

zℓ

)∑
k≥0

F
(S)
k zk =

∑
k≥0

F
(S)
k zk −

∑
ℓ∈S

∑
k≥0

F
(S)
k zk+ℓ

=
∑
k≥0

F
(S)
k zk −

∑
ℓ∈S

∑
k≥ℓ

F
(S)
k−ℓz

k

= F
(S)
j−1z

j−1 +
∑
k≥j

(
F

(S)
k −

∑
ℓ∈S

F
(S)
k−ℓ

)
zk (∗)

= F
(S)
j−1z

j−1

= zj−1, (25)

where (∗) follows from F
(S)
k = 0 if k ≤ j − 2. So∑

k≥0

F
(S)
k zk =

zj−1

1−
∑

ℓ∈S z
ℓ
, (26)

as desired. □
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Definition 2.2 (Indicator Function). For S ⊆ Z+, let 1S : Z+ → {0, 1} be defined for
all n ∈ Z+ by

1S(n) =

{
1 n ∈ S

0 n ̸∈ S.
(27)

Theorem 2.1 (Multiplicity Theorem). Let S ⊆ Z+ be a finite set and j := max(S).
Define the sequence of matrices {An} by the recurrence relation

An =
∏
k∈S

An−k, (28)

with A0, A1, . . . , Aj−1 as fixed square matrices of the same size, and the product taken in
any desired order. Then for all n ≥ j, An is a product of A0, A1, . . . , Aj−1’s where each
Ak with 0 ≤ k ≤ j − 1 has multiplicity∑

j−k≤ℓ∈S

F
(S)
n+j−1−k−ℓ. (29)

Proof. Let S ⊆ Z+ be a finite set and j := max(S). We have that

Q(S) :=


1S(1) 1S(2) · · · 1S(j − 1) 1S(j)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 (30)

is the j × j companion matrix of the S-nacci sequence. This matrix encodes the recur-
rence relation for the S-nacci sequence such that

F
(S)
n+1

F
(S)
n

...

F
(S)
n−j+2

 = Q(S)


F

(S)
n

F
(S)
n−1
...

F
(S)
n−j+1

 . (31)

For 0 ≤ k ≤ j − 1, let #Ak,n denote the multiplicity of Ak in An. From the recurrence
relation

An =
∏
k∈S

An−k, (32)

we can deduce the recurrence relation

#Ak,n =
∑
ℓ∈S

#Ak,n−ℓ. (33)
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This relation is identical to that of the S-nacci sequence; thus,
#Ak,n+1

#Ak,n
...

#Ak,n−j+2

 = Q(S)


#Ak,n

#Ak,n−1
...

#Ak,n−j+1

 . (34)

Given initial conditions, we can think about applying the Q(S) matrix n times to recover
the nth iteration of the vector sequence. Specifically,


#Ak,n+j−1

#Ak,n+j−2
...

#Ak,n

 =
(
Q(S)

)n

#Ak,j−1

#Ak,j−2
...

#Ak,0

 . (35)

We now focus on the left-hand side vector’s last entry, #Ak,n.

Observe that when looking at the multiplicity of a specific initial matrix Ak, the
initial conditions vector on the right-hand side which we multiply by

(
Q(S)

)n
consists of

all zeros except for a 1 in the kth entry (with entries numbered bottom-up starting from
0). For example, when considering the multiplicity of Aj−1, we have that

#Aj−1,n+j−1

#Aj−1,n+j−2
...

#Aj−1,n

 =
(
Q(S)

)n

1
0
...
0

 . (36)

Note that this recovers precisely the S-nacci sequence, which is defined with initial

conditions F
(S)
k = 0 for 0 ≤ k ≤ j − 2 and F

(S)
j−1 = 1.

We claim that
(
Q(S)

)n
equals

∑
ℓ∈S F

(S)
n+j−1−ℓ

∑
2≤ℓ∈S F

(S)
n+j−ℓ · · ·

∑
j−1≤ℓ∈S F

(S)
n+2j−3−ℓ

∑
j≤ℓ∈S F

(S)
n+2j−2−ℓ∑

ℓ∈S F
(S)
n+j−2−ℓ

∑
2≤ℓ∈S F

(S)
n+j−1−ℓ · · ·

∑
j−1≤ℓ∈S F

(S)
n+2j−4−ℓ

∑
j≤ℓ∈S F

(S)
n+2j−3−ℓ

...
...

. . .
...

...∑
ℓ∈S F

(S)
n+1−ℓ

∑
2≤ℓ∈S F

(S)
n+2−ℓ · · ·

∑
j−1≤ℓ∈S F

(S)
n+j−1−ℓ

∑
j≤ℓ∈S F

(S)
n+j−ℓ∑

ℓ∈S F
(S)
n−ℓ

∑
2≤ℓ∈S F

(S)
n+1−ℓ · · ·

∑
j−1≤ℓ∈S F

(S)
n+j−2−ℓ

∑
j≤ℓ∈S F

(S)
n+j−1−ℓ


for any integer n ≥ j. Indeed, let q

(n)
a,b denote the (a, b)th entry of (Q(S))n. By [1, Theorem

3.2],

∑
n≥0

q
(n)
a,b z

n =
za−b

(
1−

∑b−1
ℓ∈S z

ℓ
)

1−
∑

ℓ∈S z
ℓ

(37)
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if a ≥ b, and ∑
n≥0

q
(n)
a,b z

n =

∑
b≤ℓ∈S z

a−b+ℓ

1−
∑

ℓ∈S z
ℓ

(38)

if a < b. Lemma 2.1 gives that∑
n≥0

F (S)
n zk =

zj−1

1−
∑

ℓ∈S z
ℓ
. (39)

From these formulas, we see that

q
(n)
a,b = F

(S)
n+j−1+b−a −

b−1∑
ℓ∈S

Fn+j−1+b−a−ℓ =
∑
b≤ℓ∈S

Fn+j−1+b−a−ℓ (40)

for any a, b, verifying the formula for (Q(S))n.

We can see that for an initial matrix Ak, the last entry, #Ak,n, of the left-hand side
vector in (35) is obtained by picking out the kth entry (with entries numbered from right
to left starting from 0) of the last row of

(
Q(S)

)n
. This gives that

#Ak,n =
∑

j−k≤ℓ∈S

F
(S)
n+j−1−k−ℓ, (41)

as desired. □

3. Stability

Now that we have Theorem 2.1, we need only give a few lemmas on asymptotics
before finally proving the stability theorems.

Definition 3.1. Let F be a complex function analytic at zero and let {an} be the sequence
such that

F (z) =
∑
n≥0

anz
n (42)

for some neighborhood of zero. We define

[zn]F (z) := an (43)

for all n ∈ N.

Lemma 3.1 (Asymptotics of a supercritical sequence, [2, page 294]). Let G be a gener-
ating function with non-negative coefficients that is analytic at zero with G(0) = 0. Let
r be the radius of convergence of G. Suppose

(i) 1 < G(r) ≤ ∞, and
(ii) there does not exist an integer d ≥ 2 and h analytic at zero such that G(z) = h(zd).



STABILITY OF MATRIX RECURRENCE RELATIONS 9

Let F (z) = 1/(1−G(z)). Then there is some |q| < 1 such that

[zn]F (z) =
1

σG′(σ)
· σ−n(1 +O(qn)), (44)

for σ ∈ (0, r) with G(σ) = 1.

Definition 3.2. As in [2, page 294], conditions (i) and (ii) in the above lemma are
hereafter referred to as supercriticality and strong aperiodicity respectively.

We now apply Lemma 3.1 to the generating function of {F (S)
n } to yield the asymp-

totics of {F (S)
n }. This is not quite as straightforward as it may first seem, as these

generating functions can fail the strong aperiodicity condition for certain S ⊆ Z+. Nev-
ertheless, we work around this inconvenience without great difficulty by relating S-nacci
sequences by their greatest common divisors.

Definition 3.3. Given two functions f : N → C and g : N → C, we write that

f(n) ∼ g(n) (45)

if

lim
n→∞

f(n)

g(n)
= 1. (46)

Definition 3.4. Let S ⊆ Z+ be a finite set. We define

S/m := {ℓ/m : ℓ ∈ S}, (47)

where m ∈ Z+.

Definition 3.5 (S-nacci coefficient). Let S ⊆ Z+ be a finite set such that S ̸⊆ mZ for
any integer m ≥ 2. Then the S-nacci coefficient, denoted cS, is defined as the unique
positive real number satisfying

F (S)
n ∼ cSφ

n
S. (48)

This asymptotic relation is proven via a special case of the following lemma.

Lemma 3.2. Let S ⊆ Z+ be finite, j := max(S), and m be the largest integer such that
S ⊆ mZ. Then for any k ∈ N such that m ∤ k + 1,

F
(S)
k = 0. (49)

We also have the relation

F
(S)
nm−1 = F

(S/m)
n−1 ∼ cS/mφ

n−1
S/m (50)

for all n ∈ Z+.

Proof. By Lemma 2.1, ∑
k≥0

F
(S)
k zk =

zj−1

1−
∑

ℓ∈S z
ℓ
. (51)
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Consequently,

F
(S)
n+j−1 = [zn]

1

1−
∑

ℓ∈S z
ℓ
. (52)

We now split the proof into two cases: first, suppose that S ̸⊆ mZ for any integer m ≥ 2.
Let G(z) :=

∑
ℓ∈S z

ℓ.

As G is a polynomial, its radius of convergence is infinite. As the leading coefficient
of G is positive, the supercriticality condition is satisfied. To see that G satisfies the
strong aperiodicity condition, note that for any d ≥ 2, hd(z) := G(z1/d) necessarily has a
fractional power term since S ̸⊆ dZ; thus no such hd can be analytic at zero. Therefore,
applying Lemma 3.1 gives that

F
(S)
n+j−1 = [zn]

1

1−
∑

ℓ∈S z
ℓ

=
1

σG′(σ)
· σ−n(1 +O(qn)), (53)

where σ ∈ R+ satisfies G(σ) = 1 and |q| < 1. By the definition of φS, we have that
σ = 1/φS, and so

F
(S)
n+j−1 =

φS

G′(1/φS)
· φn

S(1 +O(qn)), (54)

and

F (S)
n ∼ φ2−j

S

G′(1/φS)
φn
S ≡ cSφ

n
S. (55)

Note that since G′(x) > 1 when x > 0, we have that cS ≡ φ2−j
S /G′(1/φS) > 0.

Now suppose S ⊆ bZ for some integer b ≥ 2. Let m be the largest integer such that
S ⊆ mZ. We have∑

k≥0

F
(S/m)
k zk =

zmax(S/m)−1

1−
∑

ℓ∈S/m zℓ
=

zj/m−1

1−
∑

ℓ∈S/m zℓ
. (56)

Thus,∑
k≥0

F
(S/m)
k zmk =

zj−m

1−
∑

ℓ∈S/m zmℓ
=

z1−m · zj−1

1−
∑

ℓ∈S z
ℓ
=
∑
k≥0

F
(S)
k zk−m+1 =

∑
k≥0

F
(S)
k+m−1z

k,

(57)

where the last equality in (57) follows from m− 1 ≤ j − 1. Expanding gives

F
(S/m)
0 + F

(S/m)
1 zm + F

(S/m)
2 z2m + · · · = F

(S)
m−1 + · · ·+ F

(S)
2m−1z

m + · · ·+ F
(S)
3m−1z

2m + · · · ,
which shows that

F
(S)
nm−1 = F

(S/m)
n−1 (58)

for all n ∈ Z+, and F
(S)
n = 0 if m ∤ n + 1. Lastly, note that there is no integer N ≥ 2

such that S/m ⊆ NZ; if such an N existed, then Nm would divide each element of S,
contradicting the definition of m. So

F
(S/m)
n−1 ∼ cS/mφ

n−1
S/m, (59)
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as desired. □

Lastly, we introduce the following lemma to allow a constant matrix (or scalar) to
be appended to the recurrence relation.

Lemma 3.3. Let S ⊆ Z+ be a finite set. Let m be the largest integer such that S ⊆ mZ
and let j := max(S). Define the sequence of matrices {An} by the recurrence relation

An = B
∏
k∈S

An−k, (60)

with A0, A1, . . . , Aj−1 as fixed square matrices of the same size, B as a scalar or square
matrix, and the product taken in any desired order. Let #Bn denote the multiplicity of
B in An. Then

#Bn =
n∑

k=1

F
(S)
n−k =

cS/m
φS/m − 1

φ
⌊n/m⌋
S/m +R +O(ϕn/m), (61)

for some R ∈ R, where ϕ is the maximal characteristic root1 in modulus of F
(S/m)
n such

that ϕ ̸= φS/m. Moreover, |ϕ| < |φS/m|.

Proof. Note that for n ≥ j, #Bn is represented by the recurrence relation

#Bn = 1 +
∑
ℓ∈S

#Bn−ℓ (62)

with #B0,#B1, . . . ,#Bj−1 = 0. Using this relation, we determine the ordinary gener-
ating function of #Bn. By similar computations as those given in the proof of Lemma
2.1,(

1−
∑
ℓ∈S

zℓ

)∑
k≥0

#Bkz
k =

∑
k≥j

(
#Bk −

∑
ℓ∈S

#Bk−ℓ

)
zk =

∑
k≥j

zk =
zj

1− z
. (63)

Thus, ∑
k≥0

#Bkz
k =

zj

(1− z)
(
1−

∑
ℓ∈S z

ℓ
) =

z

1− z
· zj−1

1−
∑

ℓ∈S z
ℓ
. (64)

So

#Bn =
n∑

k=1

F
(S)
n−k =

n−1∑
k=0

F
(S)
n−k−1 =

n−1∑
k=0

m|n−k

F
(S/m)
(n−k)/m−1 =

n−1∑
k=0

m|n−k

cS/mφ
(n−k)/m−1
S/m +R0 +O(ϕn/m)

for some R0 ∈ R, where ϕ ̸= φS/m is the maximal characteristic root in modulus of

F
(S/m)
n . This last equivalence follows since F

(S/m)
n is a linear combination of powers of

its characteristic roots. Moreover, we have |ϕ| < |φS/m|; otherwise,

F (S/m)
n ̸∼ cS/mφ

n
S/m, (65)

1A characteristic root of a sequence defined by a recurrence relation is a root of the characteristic
polynomial of the recurrence relation.
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contradicting Lemma 3.2. Now simplifying the sum, we find that

n−1∑
k=0

m|n−k

cS/mφ
(n−k)/m−1
S/m = cS/mφ

n/m−1
S/m

n−1∑
k=0

m|n−k

φ
−k/m
S/m

= cS/mφ
n/m−1
S/m

(n−1−(n mod m))/m∑
k=0

φ
−(mk+(n mod m))/m
S/m

= cS/mφ
(n−(n mod m))/m−1
S/m

(n−1−(n mod m))/m∑
k=0

φ−k
S/m

= cS/mφ
(n−(n mod m))/m−1
S/m

⌊n/m⌋−1∑
k=0

φ−k
S/m

= cS/m
φ
n/m−⌊n/m⌋
S/m

(
φ
⌊n/m⌋
S/m − 1

)
φ
(n mod m)/m
S/m (φS/m − 1)

= cS/m
φ
⌊n/m⌋
S/m − 1

φS/m − 1
. (66)

Thus, for some R ∈ R,

#Bn =
n∑

k=1

F
(S)
n−k =

cS/m
φS/m − 1

φ
⌊n/m⌋
S/m +R +O(ϕn/m). (67)

□

Theorem 3.1 (Stability Theorem). Let S ⊆ Z+ be finite such that |S| ≥ 2. Let m
be the largest integer such that S ⊆ mZ and let j := max(S). Define the sequence of
matrices {An} by the recurrence relation

An = B
∏
k∈S

An−k, (68)

with A0, A1, . . . , Aj−1 as fixed square matrices of the same size, B as a scalar or square
matrix, and the product taken in any desired order. Let

λ =

{
0 ||B|| ≥ 1

m− 1 ||B|| < 1.
(69)

Suppose

φ
−(j+λ)/m+1
S/m

φS/m − 1
log ||B||+

j−1∑
k=0

log ||Ak||
∑

j−k≤ℓ∈S

φ
(−k−ℓ)/m
S/m < 0, (70)

where || · || is some submultiplicative matrix norm. Then {An} converges to the zero
matrix.
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Proof. Let j := max(S). Let ε > 0 and for each 0 ≤ k ≤ j − 1, define

εk :=

{
ε ||Ak|| ≥ 1

−ε ||Ak|| < 1.
(71)

Let

εB :=

{
ε ||B|| ≥ 1

−ε ||B|| < 1.
(72)

Lastly, define

λ :=

{
0 ||B|| ≥ 1

m− 1 ||B|| < 1.
(73)

Via Lemma 3.3, we deduce

||B||#Bn = O
(
||B||(cS/mφ

−λ/m
S/m

/(φS/m−1)+εB)φ
n/m
S/m

)
= O

((||B||φ
−(j+λ)/m+1
S/m

/(φS/m−1)
)cS/m (

max(||B||, ||B||−1)φ
−j/m+1
S/m

)ε )φ
(n+j)/m−1
S/m

 (74)

since

#Bn − (cS/mφ
−λ/m
S/m /(φS/m − 1) + εB)φ

n/m
S/m (75)

tends to +∞ if ||B|| < 1 and −∞ if ||B|| ≥ 1. This relation is used to justify the last
statement of (76).

By the submultiplicity of the given matrix norm, Theorem 2.1, and Lemma 3.2, we
have that for any n ≥ j,

||An|| =

∥∥∥∥∥B∏
k∈S

An−k

∥∥∥∥∥ ≤ ||B||#Bn

j−1∏
k=0

||Ak||
∑

j−k≤ℓ∈S F
(S)
n+j−1−k−ℓ

= ||B||#Bn

j−1∏
k=0

exp

log(||Ak||)

 ∑
j−k≤ℓ∈S

m|n+j−k−ℓ

F
(S/m)
(n+j−k−ℓ)/m−1




= O

||B||#Bn

j−1∏
k=0

exp

log(||Ak||)

 ∑
j−k≤ℓ∈S

m|n+j−k−ℓ

(cS/m + εk)φ
(n+j−k−ℓ)/m−1
S/m





= O

(
||B||#Bn

j−1∏
k=0

exp

(
log(||Ak||)

( ∑
j−k≤ℓ∈S

(cS/m + εk)φ
(n+j−k−ℓ)/m−1
S/m

)))
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= O

(
||B||#Bn

j−1∏
k=0

exp

(
(cS/m + εk)φ

(n+j)/m−1
S/m log(||Ak||)

( ∑
j−k≤ℓ∈S

φ
(−k−ℓ)/m
S/m

)))

= O

||B||#Bn

 j−1∏
k=0

||Ak||≥1

||Ak||
∑

j−k≤ℓ∈S φ
(−k−ℓ)/m
S/m


(cS/m+ε)φ

(n+j)/m−1
S/m

×

 j−1∏
k=0

||Ak||<1

||Ak||
∑

j−k≤ℓ∈S φ
(−k−ℓ)/m
S/m


(cS/m−ε)φ

(n+j)/m−1
S/m



= O


((

||B||φ
−(j+λ)/m+1
S/m

/(φS/m−1)
j−1∏
k=0

||Ak||
∑

j−k≤ℓ∈S φ
(−k−ℓ)/m
S/m

)cS/m

×

max(||B||, ||B||−1)φ
−j/m+1
S/m

∏j−1
k=0, ||Ak||≥1 ||Ak||

∑
j−k≤ℓ∈S φ

(−k−ℓ)/m
S/m∏j−1

k=0, ||Ak||<1 ||Ak||
∑

j−k≤ℓ∈S φ
(−k−ℓ)/m
S/m

ε φ
(n+j)/m−1
S/m

 .

(76)

Note that

φ
−(j+λ)/m+1
S/m

φS/m − 1
log ||B||+

j−1∑
k=0

log ||Ak||
∑

j−k≤ℓ∈S

φ
(−k−ℓ)/m
S/m < 0 (77)

if and only if

||B||φ
−(j+λ)/m+1
S/m

/(φS/m−1)
j−1∏
k=0

||Ak||
∑

j−k≤ℓ∈S φ
(−k−ℓ)/m
S/m < 1. (78)

Let ε > 0 be sufficiently small such that(
||B||φ

−(j+λ)/m+1
S/m

/(φS/m−1)
j−1∏
k=0

||Ak||
∑

j−k≤ℓ∈S φ
(−k−ℓ)/m
S/m

)cS/m

×

max(||B||, ||B||−1)φ
−j/m+1
S/m

∏j−1
k=0, ||Ak||≥1 ||Ak||

∑
j−k≤ℓ∈S φ

(−k−ℓ)/m
S/m∏j−1

k=0, ||Ak||<1 ||Ak||
∑

j−k≤ℓ∈S φ
(−k−ℓ)/m
S/m

ε

< 1. (79)

We know that such an ε exists since the first factor in (79) is less than 1. Thus for some
|q| < 1,

||An|| = O
(
qφ

n/m
S/m

)
. (80)
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Since φS/m > 1, it follows that limn→∞ ||An|| = 0. Thus, An converges to the zero
matrix. □

Consider one of the simplest nontrivial matrix recurrence relations under matrix
multiplication:

An = BAn−1An−2 (81)

with B, A0, and A1 as fixed square matrices of the same size. Theorem 3.1 states that
An is guaranteed to converge if for some submultiplicative matrix norm || · ||, we have

φ−2+1

φ− 1
log ||B||+

2−1∑
k=0

log ||Ak||
∑

2−k≤ℓ∈{1,2}

φ−k−ℓ

= log ||B||+ φ−2 log ||A0||+ (φ−2 + φ−3) log ||A1|| < 0, (82)

where φ is the golden ratio. Equivalently,

||B||φ||A0||1/φ||A1|| < 1. (83)

Using Theorem 2.1 and Lemma 3.3, we can verify this form of the condition without
much difficulty. Indeed, with the aid of the identity

#Bn =
n∑

k=1

Fn−k =
n−1∑
k=1

Fk = Fn+1 − 1 (84)

as seen in [5, pg.4], observe that

||An|| ≤ ||B||Fn+1−1||A0||Fn−1||A1||Fn ∼ ||B||−1+φn+1/
√
5||A0||φ

n−1/
√
5||A1||φ

n/
√
5

= ||B||−1
(
||B||φ||A0||1/φ||A1||

)φn/
√
5
. (85)

Even this result for such a simple recurrence is surprising, as it implies that the
asymptotic contributions of B, A1, and A0 are quite different; the reader would be
forgiven for expecting their asymptotic contribution to be equivalent.

Taking S = {1, 2} and A0, A1, B ∈ C (viewed as 1× 1 matrices), the recurrence

An = B
∏
k∈S

An−k (86)

shows that Theorem 3.1 is sharp; this follows since

||An|| ∼ ||B||−1
(
||B||φ||A0||1/φ||A1||

)φn/
√
5
, (87)

which converges to zero if and only if

log ||B||+ φ−2 log ||A0||+ (φ−2 + φ−3) log ||A1|| < 0. (88)

Since Kronecker products behave quite well under submultiplicative matrix norms,
we can give an identical stability theorem for matrix recurrence relations defined over a
Kronecker product.
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Theorem 3.2 (Stability Theorem for the Kronecker Product). Let S ⊆ Z+ be finite
such that |S| ≥ 2. Let m be the largest integer such that S ⊆ mZ and let j := max(S).
Define the sequence of matrices {An} by the recurrence relation

An = B ⊗
⊗
k∈S

An−k, (89)

with B,A0, A1, . . . , Aj−1 fixed and the product taken in any desired order. Let

λ =

{
0 ||B|| ≥ 1

m− 1 ||B|| < 1.
(90)

Suppose

φ
−(j+λ)/m+1
S/m

φS/m − 1
log ||B||+

j−1∑
k=0

log ||Ak||
∑

j−k≤ℓ∈S

φ
(−k−ℓ)/m
S/m < 0, (91)

where || · || is any submultiplicative matrix norm. Then An converges to zero in norm.2

Proof. By [4, Theorem 8], we have that ||X1 ⊗ X2|| = ||X1|| · ||X2||. With Lemma 2.1
and Lemma 3.1, we have that for any n ≥ j,

||An|| =

∥∥∥∥∥B⊗
k∈S

An−k

∥∥∥∥∥ = ||B||#Bn

jS−1∏
k=0

||Ak||
∑

jS−k≤ℓ∈S F
(S)
n+jS−1−k−ℓ , (92)

which converges to zero as established in the proof of Theorem 3.1. □

Definition 3.6. For j ∈ Z+, let [j] := {1, 2, . . . , j − 1, j}.

If the Kronecker product is consecutive (that is, the product is indexed over some
[j]), then we can guarantee when the recurrence diverges to infinity in norm.

Theorem 3.3. Let j > 1 be an integer. Define the sequence of matrices An by the
recurrence relation

An = B ⊗
⊗
1≤k≤j

An−k, (93)

with B,A0, A1, · · · , Aj−1 fixed and the Kronecker product taken in any desired order.
Suppose that

||B||
j−1∏
k=0

||Ak||1−φ−k−1
j > 1, (94)

where φj is the [j]-nacci constant and || · || is any submultiplicative matrix norm. Then
An diverges to infinity in norm.

2Stating that An converges to the zero matrix is not quite precise as the size of the matrix An may
be increasing with n.
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Proof. Note that [j] ̸⊆ mZ for any integer m ≥ 2. Let cj and φj be the [j]-nacci
coefficient and [j]-nacci constant respectively. By [4, Theorem 8], we have that ||X1 ⊗
X2|| = ||X1|| · ||X2||. So for any n ≥ j,

||An|| =

∥∥∥∥∥B ⊗
⊗
1≤k≤j

An−k

∥∥∥∥∥ = ||B||#Bn

j−1∏
k=0

||Ak||
∑j

i=j−k F
([j])
n+j−1−k−i

= ||B||#Bn

j−1∏
k=0

||Ak||
∑k

i=0 F
([j])
n−i−1 = Θ

(
||B||

cjφ
n
j

φj−1

j−1∏
k=0

||Ak||
∑k

i=0 cjφ
n−i−1
j

)

= Θ

||B||
cjφ

n
j

φj−1

j−1∏
k=0

||Ak||
cjφ

n
j

(
φk+1
j

−1

φk+1
j

(φj−1)

) = Θ

(||B||
j−1∏
k=0

||Ak||1−φ−k−1
j

) cjφ
n
j

φj−1

 .

(95)

The second line of (95) follows since for some ϕ ∈ C : |ϕ| < 1, set {qk ∈ C : |qk| < 1, 0 ≤
k ≤ j − 1}, and R ∈ R,

lim
n→∞

||B||#Bn
∏j−1

k=0 ||Ak||
∑k

i=0 F
([j])
n−i−1

||B||
cjφ

n
j

φj−1
∏j−1

k=0 ||Ak||
∑k

i=0 cjφ
n−i−1
j

= lim
n→∞

||B||O(ϕn/m)+R

j−1∏
k=0

||Ak||O(qnk ) = ||B||R.

(96)

By [6, pgs.747-748], the characteristic roots of F
([j])
n are all less than one in modulus

except φj; thus, we know that each
∑k

i=0 F
([j])
n−i−1 − cjφ

n−i−1
j is O(qnk ) for some |qk| < 1

since F
([j])
n is a linear combination of powers of its characteristic roots. Furthermore, we

deduce that

#Bn −
cj

φj − 1
φn
j = O(ϕn/m) +R (97)

for some ϕ ∈ C : |ϕ| < 1 and R ∈ R as a consequence of Lemma 3.3.

Thus, since φj > 1, cj > 0, and ||B||
∏j−1

k=0 ||Ak||1−φ−k−1
j > 1, it follows that

limn→∞ ||An|| = ∞. Hence, An diverges to infinity. □

Note that the condition

||B||
j−1∏
k=0

||Ak||1−φ−k−1
j > 1 (98)

is the dual of

φ
−(j+λ)/m+1
S/m

φS/m − 1
log ||B||+

j−1∑
k=0

log ||Ak||
∑

j−k≤ℓ∈S

φ
(−k−ℓ)/m
S/m < 0 (99)
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since (99) is equivalent to

||B||
j−1∏
k=0

||Ak||1−φ−k−1
j < 1 (100)

when S = [j] (when S = [j], note m = 1; consequently, λ = 0).

Taking j = 2, A0 ∈ C, A1 ∈ C, and B ∈ C (viewed as 1 × 1 matrices), the
complex-valued recurrence

An = B ⊗
⊗
k∈S

An−k (101)

shows that Theorem 3.3 is sharp since

||An|| ∼ ||B||−1
(
||B||φ||A0||1/φ||A1||

)φn/
√
5
= ||B||−1

(
||B|| ||A0||1−φ−1||A1||1−φ−2

)φn+1/
√
5

.

(102)

An immediate corollary of Theorem 3.1 and Theorem 3.3 gives that the stability of
all recurrence relations of the form

an = b

j∏
k=1

an−k (103)

is completely determined. We of course may apply Theorems 3.1 and 3.3 by simply
considering {an} as a sequence of complex 1× 1 matrices.
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