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Abstract
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1 Introduction

Special sequences of integers have fascinated people for millenia. Our goal in this
outreach paper is to describe connections between two of the best known: prime
numbers (more precisely, the subset of Mersenne primes) and perfect numbers.
After introducing these two sequences we discuss the well-known Euclid-Euler
theorem, the most important result connecting the two. Interestingly, this the-
orem provides a characterization of the Mersenne primes that can be proved
independently and with tools other than those usually used in proofs of the
Euclid-Euler theorem. Specifically, we write the sum of the proper divisors of
the nth Mersenne numbers as itself plus an excess term, which vanishes only
when our number is prime.

We give two simple, direct proofs of this characterization in Section 4, which
have the virtue of explicitly stating the most important terms leading to the
proofs. The explicit expressions are easy-to-use formulas that we then illustrate
with examples. By using this characterization, we show a simple proof of the
Euclid-Euler theorem.

Without going into all the definitions and details, we can give a high level
overview of what follows. This paper was inspired by the following easy to state
problem: given the sum

T := 1 + 2 + · · · + 2n − 1 (1.1)

where n is an integer, does it equal the sum of the proper divisors of T? An-
swering this question as simply as possible is one of the objectives of this work,
and provides an opportunity to talk about the connections between Mersenne
primes and perfect numbers. In Section 4 we describe two ways of seeing when
the answer is yes. Both are based on decomposing T into two summands, one
is the sum of the proper divisors of T , and if the other term is zero obviously
the answer to our question is yes.

Therefore, our approach to the problem is directed towards the explicit cal-
culation of this second summand. We show two expressions for this term that
clearly show it is zero if, and only if, 2n−1 is prime. This nice problem is, at its
core, the well-known Euclid-Euler theorem, which in addition tells us that any
even number with the property of being equal to the sum of its proper divisors
has to be necessarily of the form (1.1) with 2n − 1 prime. It is quite likely that
the expressions we find are implicitly given in one of the many existing proofs
of the Euclid-Euler Theorem, but we think that viewing them separately, in
addition to simplifying the theorem, may suggest new ideas. Throughout this
note we mark possible generalizations inspired by these investigations for the
interested reader to pursue.

2 Mersenne numbers

Given a natural number n > 1, we denote the nth Mersenne number by

Mn := 2n − 1.
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It’s well known that if n is a composite number then Mn is also composite. The
proof is easy. If n = a · b with a, b natural numbers greater than 1, then

Mn = (2a)
b − 1 = (2a − 1)

(
1 + 2a + 22a + · · ·+ 2(b−1)a

)
is a factorization with each term exceeding 1. For example, if n = 15 = a · b,
with a = 3 and b = 5, then

M15 = 215 − 1 =
(
23
)5 − 1 = 32767

=
(
23 − 1

) (
1 + 21·3 + 22·3 + 23·3 + 2(5−1)·3

)
= 7 · 4681.

An equivalent formulation is that if Mn is prime then n is prime. For ex-
ample, since M2 = 22 − 1 = 3 is prime then n = 2 is prime. The question
that quickly comes to mind is whether the other direction is true: if n is prime,
then Mn is prime? To see that the answer is no observe that n = 11 is prime
although M11 = 2047 is composite, indeed M11 = 23 · 89. The numbers Mn

that are prime are called Mersenne primes, after the 17th-century French monk
Marin Mersenne (see Grosslight’s work [Gro] on his life and deeds), a philosopher
and mathematician who, in his Cogitata Physico-Mathematica [Mer] provided
a list of primes of the form Mn and conjectured that the only prime numbers
of this form with n ≤ 257 are M2, M3, M5, M7, M13, M17, M19, M31, M67,
M127, and M257. Drake’s paper [Dra] discusses why Mersenne made this con-
jecture. His list has, however, some errors: M67 and M257 are not primes, while
M61, M89, and M107 are.2 It’s still an open question whether or not there are
infinitely many such primes.

Mersenne primes, by their shape, have typically generated the largest prime
numbers [GIMPS]. To date the largest known prime number is M136279841,
which has more than 41 million digits. This prime was found using the “Great
Internet Mersenne Prime Search” (GIMPS) project with a probable prime (PRP)
test and subsequently demonstrated its primality using the Lucas–Lehmer test
[Leh1, Leh2, Luc], and is the 52nd known Mersenne prime number.

The Lucas-Lehmer test tells us when a Mersenne number Mn is prime, and
works as follows.

Define the sequence (si)i=0,1,... by

si =

{
4 if i = 0,

s2i−1 − 2 otherwise.

Then, one has that Mn is prime if, and only if, Mn is a divisor of sn−2. In
terms of modular arithmetic:

Mn is prime ⇔ sn−2 ≡ 0 (mod Mn) .

2It’s worth noting that M67 = 147 573 952 589 676 412 927 or about 1020, which factors as
193707721 times 761838257287; while trivial to do on today’s computers this would be quite
a challenge almost half a millenium ago!

3



Therefore, to check if Mn is prime, we can do the following. Consider the
residual sequence

ri =

{
4 if i = 0,

mod
(
r2i−1 − 2,Mn

)
otherwise,

where mod
(
r2i−1 − 2,Mn

)
is the remainder of dividing r2i−1 − 2 by Mn. Then

Mn is prime ⇔ rn−2 = 0.

For example, to check if M5 = 31 is a Mesenne prime or a composite number,
we compute the terms of ri up to i = 5− 2 = 3:

r0 = 4,

r1 = mod
(
42 − 2, 31

)
= 14,

r2 = mod
(
142 − 2, 31

)
= 8,

r3 = mod
(
82 − 2, 31

)
= 0.

Since r3 = 0, then M5 is a Mersenne prime.
Let’s see now if M11 = 2047 is a Mersenne prime or a composite number.

We need to find r9:

r0 = 4, r5 = mod
(
7012 − 2, 2047

)
= 119,

r1 = mod
(
42 − 2, 2047

)
= 14, r6 = mod

(
1192 − 2, 2047

)
= 1877,

r2 = mod
(
142 − 2, 2047

)
= 194, r7 = mod

(
18772 − 2, 2047

)
= 240,

r3 = mod
(
1942 − 2, 2047

)
= 788, r8 = mod

(
2402 − 2, 2047

)
= 282,

r4 = mod
(
7882 − 2, 2047

)
= 701, r9 = mod

(
2822 − 2, 2047

)
= 1736,

therefore, since r9 ̸= 0, then M11 is a composite number.

As discussed in [GIMPS], GIMPS is a collaborative project of volunteers
who search for Mersenne prime numbers. It was founded in 1996 by George
Woltman and has discovered the last 18 Mersenne primes (see the last three
rows of the list (2.1)). One can find a good overview of the history of GIMPS
at
https://en.wikipedia.org/wiki/Great_Internet_Mersenne_Prime_Search

.

Below is the complete list of the indices n corresponding to the known
Mersenne primes:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,

2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209,

44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787,

1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583,

25964951, 30402457, 32582657, 37156667, 42643801, 43112609,
57885161, 74207281, 77232917, 82589933, 136279841.

(2.1)
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See https://t5k.org/mersenne/ for information about the discoverer of each
of the above primes.

Lenstra, Pomerance and Wagstaff [Cal, Pom] conjectured that there are in-
finitely many Mersenne primes, and that as x → ∞ the number of such primes at
most x is approximately eγ log2 (log2 x), where γ := limn→∞

(∑n
k=1

1
k − lnn

)
≈

0.5772 is the Euler–Mascheroni constant. For more on Mersenne numbers, see,
for instance, [Bur, Chapter 11] or https://t5k.org/mersenne/ .

3 Perfect numbers

3.1 Definitions

Related to the Mersenne primes, though the connection should not be obvious,
are the perfect numbers. These are numbers that equal the sum of their proper
divisors. Remember that the proper divisors of n are all of its positive divisors
except n itself. Thus the proper divisors of 6 are 1, 2, and 3, and those of 12
are 1, 2, 3, 4, and 6; hence 6 is a perfect number because

6 = 1 + 2 + 3,

while 12 is not as
12 ̸= 1 + 2 + 3 + 4 + 6.

The next three perfect numbers after 6 are 28, 496 and 8128. Many centuries
before Mersenne, Euclid, around 300 BC, had already discovered [Euc] that the
first 4 perfect numbers were of the form 2n−1 (2n − 1) with n = 2, 3, 5 and 7.
The fact that for these cases 2n − 1 is prime led Euclid to prove that if 2n − 1
is prime then 2n−1 (2n − 1) is a perfect number. Many centuries later, in the
18th century, Leonhard Euler proved that every even perfect number had to be
of the form 2n−1 (2n − 1) with 2n − 1 prime [Eul].

While even perfect numbers are now completely characterized, the situation
is very different for possible odd perfect numbers. It’s unknown if any exist,
though if there is one we do know some properties it must have. The difficulty
of achieving the conditions below is what leads many to conjecture that there
are no odd perfect numbers.

An odd perfect number n must satisfy the following (see [Bur, page 234]):

• n > 10300;

• n must be divisible at least by 9 distinct primes, the largest of which is
greater than 108, and the next largest exceeds 104; and

• if 3 is not a divisor of n, then n must be divisible at least by 12 distinct
primes.
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Remark 3.1 Note that 2n−1(2n − 1) is the sum of all natural numbers up to
2n − 1, so, roughly speaking, Euler proved that even perfect numbers, which by
definition satisfy a summation property, are numbers that are obtained by some
related summation. Should something similar happen for odd perfect numbers,
if they exist? That is, if an odd perfect number exists, should it be obtained by
some related summation? Observe that the necessary conditions given above are
not of this type.

3.2 Euclid-Euler Theorem

We extract the following from the results above.

Theorem 3.2 (Euclid-Euler theorem) Let N > 1 be a natural number, then

N is an even perfect number ⇐⇒ N = 2n−1 (2n − 1) and 2n − 1 is prime.

There are many proofs of the Euclid–Euler theorem, see for example Voight’s
work [Voi], where Euclid’s implication is given in Theorem 7, while six proofs
are given for Euler’s assertion in Theorem 9. See also [Bur, Theorem 11.1].
Thus proving that there are infinitely many Mersenne primes is equivalent to
proving that there are infinitely many even perfect numbers. For completeness
we give a proof of this theorem at the end of the paper in Appendix A.

As a consequence of Theorem 3.2 and the list of primes n given in (2.1), we
directly obtain the known 52 perfect numbers of the form 2n−1 (2n − 1).

Remark 3.3 The list suggests every even perfect number ends in a 6 or an
8. We leave a proof of this to the reader, and encourage them to explore the
alternations between 6’s and 8’s. The latter is of course quite difficult as we
have an incomplete list; note for investigations we only need to compute the
numbers modulo 10.

The sum of the first n integers, denoted Tn and called the nth Triangular
number as we can view the increasing summands as rows of a triangle, is well-
known3

Tn := 1 + 2 + · · ·+ n =
n (n+ 1)

2
.

Thus

TMn
=

Mn(Mn + 1)

2
=

(2n − 1)2n

2
= 2n−1 (2n − 1) .

3The simplest proof is to write the sum in reverse order and add, obtaining 2Tn = (1 +
n) + (2 + n− 1) + · · ·+ (n+ 1).
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3.3 Summation Results

Let’s start by visualizing what was discussed in Remark 3.1 about the summa-
tion relations for even perfect numbers. Thus TMn

being perfect means that the
sum of the proper divisors of TMn

equals the sum of all the natural numbers up
to Mn. For example, since M3 = 7 is a Mersenne prime, then TM3 = T7 = 28 is
perfect and, therefore,

1 + 2 + 3 + 4 + 5 + 6 + 7︸ ︷︷ ︸
Sum of all natural numbers up to 7

= T7 = 1 + 2 + 4 + 7 + 14︸ ︷︷ ︸
Sum of proper divisors of T7

.

Following up on what was said in the Remark 3.1, as our numbers Tn are
defined by sums of integers, it is not surprising that they have certain summa-
tion properties. We record a few below that are necessary, but not sufficient,
conditions for TMn

to be a perfect number.

• TMn =
M(n−1)/2∑

k=0

(2k + 1)
3
.

For example

TM5 = 496 =

3∑
k=0

(2k + 1)
3

= 13 + 33 + 53 + 73,

TM11 = 2096128 =

31∑
k=0

(2k + 1)
3

(3.1)

(recall TM11
is not perfect).

• TMn =
2(n−1)∑
k=n−1

2k.

This implies that TMn
in binary form has n ones followed by n− 1 zeros.

For example:

TM5 = 496 =

8∑
k=4

2k

= 1 · 28 + 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24

+ 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20

= 1111100002

TM11
= 2096128 =

20∑
k=10

2k

= 1111111111100000000002 (3.2)

(recall again TM11
is not perfect).
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Remark 3.4 As we said before, the properties we just saw are necessary condi-
tions for an even number to be perfect, but they are not sufficient. Note that if a
sufficient condition of the previous type were found, we would have a construc-
tive proof of the existence of infinitely many even perfect numbers, and therefore,
of infinitely many Mersenne primes.

Interestingly, another formulation of perfect numbers are those where the
sum of the reciprocals of the proper divisors equals 1. To see this, note there is
a 1-to-1 pairing of the divisors d and n/d. Thus summing 1/d over the proper
divisors is the same as summing 1/(n/d) = d/n, and clearly the second sums to
1 by the definition of being perfect (n is perfect if the sum of its proper divisors is
n). For more on these and other curious properties of even perfect numbers, see
https://en.wikipedia.org/wiki/Perfect_number and the references there,
as well as [Bur, Section 11.2].

Remark 3.5 This result suggests a family of generalizations of being perfect;
what can we say about the numbers whose sum of the reciprocals of the proper
divisors equals r for various rational r?

4 Characterization of Mersenne primes

4.1 Preliminaries

Our goal is to extract a nice condition for when Mn is prime. Our starting point
is the Euclid-Euler theorem, which provides the following characterization.

Proposition 4.1 (Characterization of Mersenne primes) Let n > 1 be a
natural number, then

Mn is a Mersenne prime number ⇐⇒ TMn
is a perfect number. (4.1)

Remark 4.2 Proposition 4.1 differs slightly from the Euclid-Euler theorem we
stated earlier, because it does not imply that if a perfect number is even then it
has to be of the form TMn

with Mn prime. This result can be stated independently
and also proved independently, without resorting to the Euclid-Euler theorem,
and is the motivation for writing this outreach note.

We start by setting notation. We denote the sum of the proper divisors (or
aliquot sum) of m ∈ N by s(m). Below we give two proofs of Proposition 4.1.
These are based on an explicit decomposition of the sum of proper divisors of
TMn as

s (TMn
) = TMn

+ e (4.2)

where e will be described fully later, and is the quantity to determine. Our
number Mn is prime and thus TMn

is perfect if and only if e = 0.
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The main tools of the proofs will be Lemma 4.3 and Corollary 4.6, where the
proper divisors of Mn and TMn are computed. This determination allows us in
the first proof to calculate s (TMn

) as a function of s (Mn). In the second proof,
the key will be to identify the proper divisors of TMn

whose sum is exactly TMn
,

i.e., those divisors which ensure that TMn
is perfect.

4.2 Needed Results

The following lemma provides useful expressions for the positive divisors of a
natural m > 1 and the sum of the positive divisors of m, denoted by σ (m)
(see, for example, [Bur, Theorem 6.1 and Theorem 6.2 (b)]). Note that σ(m)
includes all positive divisors and not just the proper ones; thus m is perfect if
and only if σ(m) = 2m,

Lemma 4.3 ( Positive divisors of a natural number ) Let m > 1 be a

natural number with prime factorization m :=
r∏

i=1

pki
i . Then the positive di-

visors of m are
r∏

i=1

pai
i , where 0 ≤ ai ≤ ki, (4.3)

and the sum of the positive divisors is given by

σ (m) =

r∏
i=1

ki∑
j=0

pji =

r∏
i=1

pki+1
i − 1

pi − 1
. (4.4)

Remark 4.4 The second equality in (4.4) follows immediately from the finite
geometric series formula:

k∑
j=0

pj =
pk+1 − 1

p− 1
for p ̸= 0.

Remark 4.5 ( Proper divisors of a natural number ) Note that the proper

divisors of m are
r∏

i=1

pai
i , where 0 ≤ ai ≤ ki, except for the case when ai = ki

for all i = 1, . . . , r, since the corresponding divisor is
r∏

i=1

pki
i = m.

The following corollary specifies the proper divisors of TMn and the sum of
the corresponding divisors.

Corollary 4.6 ( Proper divisors of the triangular number TMn ) Let n >

1 be a natural number and let Mn :=
r∏

i=1

pki
i be the prime factorization of Mn.

Denote p0 := 2 and k0 := n− 1. The proper divisors of TMn are
r∏

i=0

pai
i , where
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0 ≤ ai ≤ ki, except the case when ai = ki for all i = 0, . . . , r, since the cor-
responding divisor is TMn . Moreover, the sum of the proper divisors of TMn

is:

s(TMn) =

r∏
i=0

pki+1
i − 1

pi − 1
− TMn (4.5)

= Mnσ (Mn)− TMn (4.6)

= TMn +Mn (s(Mn)− 1) . (4.7)

Proof. For (4.5) and (4.6) just observe that TMn
= 2n−1Mn with Mn odd

and take into acount Lemma 4.3 and the subsequent remarks. For (4.7), take
(4.4) for m = Mn and follow from (4.6) as

s(TMn
) = Mnσ (Mn)− TMn

= Mn (s (Mn)−Mn)− TMn
=

= Mn (s (Mn)− 1 + 1 +Mn)− TMn

= Mn (s(Mn)− 1) +Mn (1 +Mn)− TMn

= Mn (s(Mn)− 1) + 2TMn
− TMn

= TMn
+Mn (s(Mn)− 1) .

□

4.3 Example

To illustrate the arguments above, let’s compute the proper divisors of M6, TM6 ,
and the corresponding sums.

As
M6 = 26 − 1 = 63 = pk1

1 pk2
2

where
p1 = 3, k1 = 2, p2 = 7, k2 = 1,

the proper divisors of M6 are of the form 3j17j2 , arising from the pairs

(j1, j2) ∈ {0, 1, 2︸︷︷︸}
k1

× {0, 1︸︷︷︸
k2

},

except M6 = 3271, corresponding to the pair (j1, j2) = (k1, k2) = (2, 1), which
is not included.

In Figure 1 the proper divisors of M6 are in the row corresponding to j0 = 0,
except the last term that is M6 = 63. The proper divisors of TM6

are of the
form 2j3j17j2 for all the triples

(j0, j1, j2) ∈

0, 1, 2, 3, 4, 5︸︷︷︸
k0=n−1

× {0, 1, 2︸︷︷︸}
k1

× {0, 1︸︷︷︸
k2

},

except TM6
= 253271, corresponding to the triple (j0, j1, j2) = (k0, k1, k2) =

(5, 2, 1). In Figure 1, the proper divisors of TM6
are all the values of the table

except the last term of the row j0 = 5, that is TM6
= 2016.
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j0 2j0 2j07 2j03 2j021 2j09 2j063

0 1 7 3 21 9 63
1 2 14 6 42 18 126
2 4 28 12 84 36 252
3 8 56 24 168 72 504
4 16 112 48 336 144 1008
5 32 224 96 672 288 2016

Figure 1: M6, TM6
, and their proper divisors.

The sum of the proper divisors of M6 and TM6 can be directly obtained by
adding the corresponding values of Figure 1, and the formulas (4.4) for m = M6

and (4.5) -(4.7) apply as follows:

σ (M6) =

2∏
i=1

pki+1
i − 1

pi − 1
=

32+1 − 1

3− 1

71+1 − 1

2− 1
− 63 = 13 · 8 = 104,

s (M6) = σ (M6)−M6 = 104− 63 = 41,

s (TM6
) = M6σ (M6)− TM6

= 63 · 104− 2016 = 4536.

Observe that TM6
is obtained from Figure 1 by adding the proper divi-

sors of the second and the last columns, corresponding to the extreme cases
(j1, j2) = (0, 0) and (j1, j2) = (2, 1). The sum of the remaining values of the
table corresponds to M6 (s(M6)− 1) as a consequence of (4.7):

M6 (s(M6)− 1) = 63 (41− 1) = 2520.

The fact that the proper divisors of TMn
whose sum is TMn

itself are in the
second and last columns of Figure 1 is in fact what happens in general, and
leads us to another decomposition of TMn , given in Proposition 4.7.

We encourage the interested reader to reproduce the previous example for
other values of n in order to see the simplicity of the calculation method.

4.4 Proofs

The main use of the decomposition (4.7) in Corollary 4.6 is to prove easily the
characterization (4.1) stated in Proposition 4.1.

Proof 1 of Proposition 4.1. Observe that s(Mn) = 1 means that the
unique proper divisor of Mn is 1, that is, Mn is prime. From equality (4.7) of
Corollary 4.6 we have

s(TMn
) = TMn

+Mn (s(Mn)− 1) ,

11



and thus

TMn
is perfect ⇔ s(TMn

) = TMn
⇔ s(Mn) = 1 ⇔ Mn is prime,

which proves Proposition 4.1. □

Proposition 4.7 The proper divisors of TMn in Corollary 4.6 corresponding to
the extreme cases ai = 0 and ai = ki for all i = 1, . . . , r are

pj0

r∏
i=1

p0i = 2j
r∏

i=1

p0i = 2j for all j = 0, . . . , n− 1(= k0), (4.8)

and

pj0

r∏
i=1

pki
i = 2jMn for all j = 0, . . . , n− 2, (recall that j = n− 1 gives TMn),

(4.9)
respectively, have the particular property that their sum is TMn

.

Proof. Indeed,

n−1∑
j=0

2j +

n−2∑
j=0

2jMn = 2n − 1 +Mn

(
2n−1 − 1

)
= Mn +

Mn

2
(Mn − 1)

= Mn

(
1 +

Mn − 1

2

)
=

Mn (Mn + 1)

2
= TMn

.

□

Corollary 4.8 We have the following decomposition of the sum of proper divi-
sors of TMn

:

s(TMn
) = TMn

+
∑
d∈Ω

d, (4.10)

where Ω is the set of proper divisors of TMn which are not in (4.8) and (4.9).

Proof. This is a direct consequence of Proposition 4.7. □

Example 4.9 (Example from Section4.3 revisited) As we already commented
in Section 4.3, observe that proper divisors of (4.8) and (4.9) correspond to those
of the second and the last columns of Figure 1 , except the last element in the
last column which is TMn

itself.

As a consequence of the previous corollary, we can provide another proof of
the characterization (4.1) stated in Proposition 4.1.
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Proof 2 of Proposition 4.1. Since 1 ̸∈ Ω because 1 is in (4.8), then,
according to (4.10) one has

Mn is prime ⇐⇒ Ω = ∅ ⇐⇒
∑
d∈Ω

d = 0 ⇐⇒ s(TMn
) = TMn

⇐⇒ TMn
is perfect.

□

Remark 4.10 The extreme cases indicated in Proposition 4.7 are the key for
Proof 2. Could this idea underlie perfect numbers in general?

Remark 4.11 Formulas (4.7) and (4.10) of Corollaries 4.6 and 4.8, respec-
tively, are valid for any n ∈ N, not necessarily for n prime.

Corollary 4.12 As an immediate consequence of expressions (4.7) or (4.10),
one has that all numbers of the form TMn

are either perfect numbers or abun-
dant numbers. Remember that a number is called abundant or excessive if it
is a positive integer for which the sum of its proper divisors is greater than the
number. In such a case, from (4.7) and (4.10), one has the following formulas
for the abundancy:

s(TMn
)− TMn

= Mn (s(Mn)− 1) =
∑
d∈Ω

d .

Note that a general formula for calculating the abundance of an abundant
number has to generalize the formulas in the previous corollary.

A A Standard Proof of the Euclid-Euler Theo-
rem

For completeness we conclude with one of the standard proofs of the Euclid-
Euler theorem. With the notation used above we may state the theorem as
follows.

Theorem A.1 Let N > 1 be a natural number, then

N is an even perfect number ⇐⇒ N = TMn
and Mn is prime.

Proof. The Characterization (4.1) given in Proposition 4.1 gives us the
implication from right to left, since if N = TMn

for some natural n > 1, and
Mn is prime, then N is perfect and N = 2n−1Mn is even.

It only remains to show the implication from left to right. We rewrite the
proof given in [Bur, Theorem 11.1] in our notation. Assume that N is an even
perfect number. We can write

N = 2n−1M with n > 1 and M odd. (A.1)
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Lemma 4.3 then tells us that the sum of positive divisors of N is

σ (N) =
2n−1+1 − 1

2− 1
σ (M) = Mnσ (M) . (A.2)

Since N is perfect, then

σ (N) = s (N) +N = 2N. (A.3)

From (A.1) and (A.3) we have

σ (N) = 2nM. (A.4)

Using (A.2) and (A.4) yields

Mnσ (M) = 2nM. (A.5)

Since Mn is odd and σ (M) is a natural number, from (A.5) we find Mn is a
divisor of M , and we can write

M = MnK where K is an integer. (A.6)

Replacing (A.6) in (A.5) and simplifying gives

σ (M) = 2nK, (A.7)

which entails that K is a divisor of σ (M).
As σ (M) is the sum of the positive divisors of M ,

σ (M) ≥ K +M, (A.8)

and replacing now (A.6) in (A.8) and taking into account (A.7) we arrive at

σ (M) ≥ K +M ≥ K +MnK = (Mn + 1)K = 2nK = σ (M) , (A.9)

which implies
σ (M) = K +M.

In other words, if the unique positive divisors of M are M and K < M , then
necessarily K = 1 and M is prime, and from (A.6) we find

Mn = M prime. (A.10)

We only need to replace (A.10) in (A.1) to obtain

N = 2n−1Mn = TMn , with Mn prime,

which is what we wanted to prove. □

As a final remark, it would be interesting to obtain a short proof, along the
ones given in this paper, that any even perfect number must be of the form
TMn

. Different proofs may open up new approaches for exploration.
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