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Abstract Given a finite set of integers A, we may consider its sumset A + A and
its difference set A−A. As addition is commutative and subtraction is not, it was
initially believed that as r → ∞ almost all of the 2r subsets of {1, . . . ,r} would have
|A− A| > |A + A|; if |A + A| > |A− A| we say A is an MSTD (more sums than
differences) set. While Martin and O’Bryant [MO06] disproved this conjecture by
showing that a small but positive percentage of such sets are MSTD, previous ex-
plicit constructions only found families of size f (r)2r/2 for some polynomial f (r).

Below we present a new construction that yields a family of MSTD sets in
{1, . . . ,r} of size C2r/r4 for a fixed, non-zero constant C; thus our family is signifi-
cantly denser than previous constructions. Our method has been generalized further
with Brooke Orosz to handle certain ternary combinations; the details below are
adapted from our paper [MOS09].

We conclude with an appendix on a special case of a result of Hegarty and Miller
[HM07] which supports the intuition behind the false conjecture. Specifically, if
p(r) is a monotonically decreasing function tending to 0, and for each r every ele-
ment in {1, . . . ,r} is in a subset A with probability p(r), then as r → ∞ almost no
subsets (with respect to this probability) are MSTD.
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1 Introduction

Given a finite set of integers A, we define its sumset A+A and difference set A−A
by

A+A = {ai +a j : ai,a j ∈ A}
A−A = {ai−a j : ai,a j ∈ A}, (1)

and let |X | denote the cardinality of X . If |A + A| > |A− A|, then, following
Nathanson, we call A an MSTD (more sums than differences) set. As addition is
commutative while subtraction is not, we expect that for a ‘generic’ set A we have
|A−A| > |A + A|, as a typical pair (x,y) contributes one sum and two differences;
thus we expect MSTD sets to be rare.

Martin and O’Bryant [MO06] proved that, in some sense, this intuition is wrong.
They considered the uniform model1 for choosing a subset A of {1, . . . ,n}, and
showed that there is a positive probability that a random subset A is an MSTD
set (though, not surprisingly, the probability is quite small). However, the answer
is very different for other ways of choosing subsets randomly, and if we decrease
slightly the probability an element is chosen then our intuition is correct. Specifi-
cally, consider the binomial model with parameter p(n), with limn→∞ p(n) = 0 and
n−1 = o(p(n)) (so p(n) doesn’t tend to zero so rapidly that the sets are too sparse).2

Hegarty and Miller [HM07] recently proved that, in the limit as n→ 0, the percent-
age of subsets of {1, . . . ,n} that are MSTD sets tends to zero in this model. See
Appendix 2 for full statements and a self-contained proof when p(n) = o(n−1/2).

Though MSTD sets are rare, they do exist (and, in the uniform model, are some-
what abundant by the work of Martin and O’Bryant). Examples go back to the
1960s. Conway is said to have discovered {0,2,3,4,7,11,12,14}, while Marica
[Ma69] gave {0,1,2,4,7,8,12,14,15} in 1969 and Freiman and Pigarev [FP73]
found {0,1,2,4,5, 9,12,13, 14,16,17, 21,24,25,26,28,29} in 1973. Recent work
includes infinite families constructed by Hegarty [He07] and Nathanson [Na07], as
well as existence proofs by Ruzsa [Ru76, Ru84, Ru92].

Most of the previous constructions3 of infinite families of MSTD sets start with
a symmetric set which is then ‘perturbed’ slightly through the careful addition of a
few elements that increase the number of sums more than the number of differences;
see [He07, Na07] for a description of some previous constructions and methods. In

1 This means each of the 2n subsets of {1, . . . ,n} are equally likely to be chosen, or, equivalently,
that the probability any k ∈ {1, . . . ,n} is in A is just 1/2.
2 This model means that the probability k ∈ {1, . . . ,n} is in A is p(n).
3 An alternate method constructs an infinite family from a given MSTD set A by considering
At = {∑t

i=1 aimi−1 : ai ∈ A}. For m sufficiently large, these will be MSTD sets; this is called the
base expansion method. Note, however, that these will be very sparse. See [He07] for more details.
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many cases, these symmetric sets are arithmetic progressions; such sets are natural
starting points because if A is an arithmetic progression, then |A+A|= |A−A|.4

In this work we present a new method which takes an MSTD set satisfying cer-
tain conditions and constructs an infinite family of MSTD sets. While these families
are not dense enough to prove a positive percentage of subsets of {1, . . . ,r} are
MSTD sets, we are able to elementarily show that the percentage is at least C/r4 for
some constant C. Thus our families are far denser than those in [He07, Na07]; trivial
counting5 shows all of their infinite families give at most f (r)2r/2 of the subsets of
{1, . . . ,r} (for some polynomial f (r)) are MSTD sets, implying a percentage of at
most f (r)/2r/2.

We first introduce some notation:

• We let [a,b] denote all integers from a to b; thus [a,b] = {n ∈ Z : a≤ n≤ b}.

• We say a set of integers A has the property Pn (or is a Pn-set) if both its sumset
and its difference set contain all but the first and last n possible elements (and of
course it may or may not contain some of these fringe elements).6 Explicitly, let
a = minA and b = maxA. Then A is a Pn-set if

[2a+n, 2b−n] ⊂ A+A (2)

and

[−(b−a)+n, (b−a)−n] ⊂ A−A. (3)

We can now state our construction and main result.

4 As |A+A| and |A−A| are not changed by mapping each x ∈ A to αx+β for any fixed α and β ,
we may assume our arithmetic progression is just {0, . . . ,n}, and thus the cardinality of each set is
2n+1.
5 For example, consider the following construction of MSTD sets from [Na07]: let m,d,k ∈N with
m ≥ 4, 1 ≤ d ≤ m− 1, d 6= m/2, k ≥ 3 if d < m/2 else k ≥ 4. Set B = [0,m− 1]\{d}, L = {m−
d,2m−d, . . . ,km−d}, a∗ = (k + 1)m−2d and A = B∪L∪ (a∗−B)∪{m}. Then A is an MSTD
set. The width of such a set is of the order km. Thus, if we look at all triples (m,d,k) with km≤ r
satisfying the above conditions, these generate on the order of at most ∑k≤r ∑m≤r/k ∑d≤m 1 ¿
r2, and there are of the order 2r possible subsets of {0, . . . ,r}; thus this construction generates a
negligible number of MSTD sets. Though we write f (r)/2r/2 to bound the percentage from other
methods, a more careful analysis shows it is significantly less; we prefer this easier bound as it
is already significantly less than our method. See for example Theorem 2 of [He07] for a denser
example.
6 It is not hard to show that for fixed 0 < α ≤ 1 a random set drawn from [1,n] in the uniform
model is a Pbαnc-set with probability approaching 1 as n→ ∞.
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Theorem 1. Let A = L∪ R be a Pn, MSTD set where L ⊂ [1,n], R ⊂ [n + 1,2n],
and 1,2n ∈ A;7 see Remark 2 for an example of such an A. Fix a k ≥ n and
let m be arbitrary. Let M be any subset of [n + k + 1,n + k + m] with the prop-
erty that it does not have a run of more than k missing elements (i.e., for all
`∈ [n+k+1,n+m+1] there is a j ∈ [`,`+k−1] such that j ∈M). Assume further
that n+k+1 6∈M and set A(M;k) = L∪O1∪M∪O2∪R′, where O1 = [n+1,n+k],
O2 = [n+k+m+1,n+2k+m] (thus the Oi’s are just sets of k consecutive integers),
and R′ = R+2k +m. Then

(1) A(M;k) is an MSTD set, and thus we obtain an infinite family of distinct MSTD
sets as M varies;

(2) there is a constant C > 0 such that as r → ∞ the percentage of subsets of
{1, . . . ,r} that are in this family (and thus are MSTD sets) is at least C/r4.

Remark 1. We quickly highlight the main idea of the construction, referring to §2
for details. The idea is to take an MSTD set A and augment it to a new set A′ such
that the number of sums added (|A′+A′|−|A+A|) equals the number of differences
added (|A′−A′|− |A−A|). This is accomplished by having the two blocks O1,O2
of consecutive elements and then making sure that we always take at least one out
of every k elements between O1 and O2. Counting arguments then show that every
possible new difference and new sum is included.

Remark 2. In order to show that our theorem is not trivial, we must of course ex-
hibit at least one Pn, MSTD set A satisfying all our requirements (else our family is
empty!). We may take the set8 A = {1,2,3,5,8,9,13,15,16}; it is an MSTD set as

A+A = {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,

22,23,24,25,26,28,29,30,31,32}
A−A = {−15,−14,−13,−12,−11,−10,−8,−7,−6,−5,−4,−3,−2,−1,

0,1,2,3,4,5,6,7,8,10,11,12,13,14,15} (4)

(so |A+A|= 30 > 29 = |A−A|). A is also a Pn-set, as (2) is satisfied since [10,24]⊂
A+A and (3) is satisfied since [−7,7]⊂ A−A.

For the uniform model, a subset of [1,2n] is a Pn-set with high probability as
n → ∞, and thus examples of this nature are plentiful. For example, of the 1748
MSTD sets with minimum 1 and maximum 24, 1008 are Pn-sets.

Unlike other estimates on the percentage of MSTD sets, our arguments are not
probabilistic, and rely on explicitly constructing large families of MSTD sets. Our
arguments share some similarities with the methods in [He07] (see for example Case

7 Requiring 1,2n ∈ A is quite mild; we do this so that we know the first and last elements of A.
8 This A is trivially modified from [Ma69] by adding 1 to each element, as we start our sets with 1
while other authors start with 0. We chose this set as our example as it has several additional nice
properties that were needed in earlier versions of our construction which required us to assume
slightly more about A.
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I of Theorem 8) and [MO06]. There the fringe elements of the set were also chosen
first. A random set was then added in the middle, and the authors argued that with
high probability the resulting set is an MSTD set. We can almost add a random set
in the middle; the reason we do not obtain a positive percentage is that we have the
restriction that there can be no consecutive block of size k of numbers in the middle
that are not chosen to be in A(M;k). This is easily satisfied by requiring us to choose
at least one number in consecutive blocks of size k/2, and this is what leads to the
loss of a positive percentage (though we do obtain sets that are known to be MSTD
sets, and not just highly likely to be MSTD sets).

The paper is organized as follows. We describe our construction in §2, and prove
our claimed lower bounds for the percentage of sets that are MSTD sets in §3. We
end with some concluding remarks and suggestions for future research in §4.

On a personal note, the first named author would like to thank Mel for introduc-
ing him to much of additive number theory, ranging from his accessible books to
numerous conversations over the years. This paper (as well as the paper by Hegarty
and Miller [HM07]) is an outgrowth of a talk Mel gave at Brown in 2007 on MSTD
sets as well as conversations at CANT 2007, and it is a pleasure to thank him for an
introduction to such a fascinating subject.

2 Construction of infinite families of MSTD sets

Let A⊂ [1,2n]. We can write this set as A = L∪R where L⊂ [1,n] and R⊂ [n+1,2n].
We have

A+A = [L+L]∪ [L+R]∪ [R+R] (5)

where L+L⊂ [2,2n], L+R⊂ [n+2,3n] and R+R⊂ [2n+2,4n], and

A−A = [L−R]∪ [L−L]∪ [R−R]∪ [R−L] (6)

where L−R ⊂ [−1,−2n + 1], L−L ⊂ [−(n− 1),n− 1], R−R ⊂ [−(n− 1),n− 1]
and R−L⊂ [1,2n−1].

A typical subset A of {1, . . . ,2n} (chosen from the uniform model, see Footnote
1) will be a Pn-set (see Footnote 6). It is thus the interaction of the “fringe” elements
that largely determines whether a given set is an MSTD set. Our construction begins
with a set A that is both an MSTD set and a Pn-set. We construct a family of Pn,
MSTD sets by inserting elements into the middle in such a way that the new set is a
Pn-set, and the number of added sums is equal to the number of added differences.
Thus the new set is also an MSTD set.

In creating MSTD sets, it is very useful to know that we have a Pn-set. The
reason is that we have all but the “fringe” possible sums and differences, and are
thus reduced to studying the extreme sums and differences. The following lemma
shows that if A is a Pn, MSTD set and a certain extension of A is a Pn-set, then this
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extension is also an MSTD set. The difficult step in our construction is determining
a large class of extensions which lead to Pn-sets; we will do this in Lemma 2.

Lemma 1. Let A = L∪R be a Pn-set where L ⊂ [1,n] and R ⊂ [n + 1,2n]. Form
A′ = L∪M ∪R′ where M ⊂ [n + 1,n + m] and R′ = R + m. If A′ is a Pn-set then
|A′ + A′| − |A + A| = |A′−A′| − |A−A| = 2m (i.e., the number of added sums is
equal to the number of added differences). In particular, if A is an MSTD set then so
is A′.

Proof. We first count the number of added sums. In the interval [2,n+1] both A+A
and A′+A′ are identical, as any sum can come only from terms in L+L. Similarly,
we can pair the sums of A+A in the region [3n+1,4n] with the sums of A′+A′ in
the region [3n+2m+1,4n+2m], as these can come only from R+R and (R+m)+
(R + m) respectively. Since we have accounted for the n smallest and largest terms
in both A+A and A′+A′, and as both are Pn-sets, the number of added sums is just
(3n+2m+1)− (3n+1) = 2m.

Similarly, differences in the interval [1− 2n,−n] that come from L−R can be
paired with the corresponding terms from L−(R+m), and differences in the interval
[n,2n− 1] from R− L can be paired with differences coming from (R + m)− L.
Thus the size of the middle grows from the interval [−n + 1,n− 1] to the interval
[−n−m+1,n+m−1]. Thus we have added (2n+2m+3)− (2n+3) = 2m sums.
Thus |A′+A′|− |A+A|= |A′−A′|− |A−A|= 2m as desired.

The above lemma is not surprising, as in it we assume A′ is a Pn-set; the difficulty
in our construction is showing that our new set A(M;k) is also a Pn-set for suitably
chosen M. This requirement forces us to introduce the sets Oi (which are blocks
of k consecutive integers), as well as requiring M to have at least one of every k
consecutive integers.

We are now ready to prove the first part of Theorem 1 by constructing an infinite
family of distinct Pn, MSTD sets. We take a Pn, MSTD set and insert a set in such a
way that it remains a Pn-set; thus by Lemma 1 we see that this new set is an MSTD
set.

Lemma 2. Let A = L∪R be a Pn-set where L⊂ [1,n], R⊂ [n+1,2n], and 1,2n ∈ A.
Fix a k ≥ n and let m be arbitrary. Choose any M ⊂ [n + k + 1,n + k + m] with the
property that M does not have a run of more than k missing elements, and form
A(M;k) = L∪O1∪M∪O2∪R′ where O1 = [n+1,n+ k], O2 = [n+ k +m+1,n+
2k +m], and R′ = R+2k +m. Then A(M;k) is a Pn-set.

Proof. For notational convenience, denote A(M;k) by A′. Note A′ + A′ ⊂ [2,4n +
4k + 2m]. We begin by showing that there are no missing sums from n + 2 to 3n +
4k + 2m; proving an analogous statement for A′−A′ shows A′ is a Pn-set. By sym-
metry9 we only have to show that there are no missing sums in [n+2,2n+2k +m].
We consider various ranges in turn.

9 Apply the arguments below to the set 2n+2k +m−A′, noting that 1,2n+2k +m ∈ A′.
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We observe that [n+2,n+k+1]⊂ A′+A′ because we have 1∈ L and these sums
result from 1+O1. Additionally, O1 +O1 = [2n+2,2n+2k]⊂ A′+A′. Since n≤ k
we have n + k + 1 ≥ 2n + 1, these two regions are contiguous and overlap and thus
[n+2,2n+2k]⊂ A′+A′.

Now consider O1 +M. Since M does not have a run of more than k missing ele-
ments, the worst case scenario for us for elements in the sumset is that the smallest
element of M is n + 2k and that the largest element is n + m + 1 (and, of course,
we still have at least one out of every k consecutive integers is in M). If this is
the case then we still have O1 + M ⊃ [(n + 1)+ (n + 2k),(n + k)+ (n + m + 1)] =
[2n+2k +1,2n+ k +m+1]. We had already shown that A′+A′ has all sums up to
2n+2k; this extends the sumset to all sums up to 2n+ k +m+1.

All that remains is to show we have all sums in [2n+k+m+2,2n+2k+m]. This
follows immediately from O1 +O2 = [2n+ k +m+2,2n+3k +m]⊂ A′+A′. This
extends our sumset to include all sums up to 2n + 3k + m, which is well past our
halfway mark of 2n + 2k + m; the remaining sums follow from a similar argument.
Thus we have shown that A′+A′ ⊃ [n+2,3n+4k +2m+1].

We now do a similar calculation for the difference set, which is contained in
[−(2n + 2k + m)+ 1,(2n + 2k + m)− 1]. As we have already analyzed the sumset,
all that remains to prove A is a Pn-set is to show that A′−A′ ⊃ [−n−2k−m+1,n+
2k + m−1]. As all difference sets are symmetric about and contain 0, it suffices to
show the positive elements are present, i.e., that A′−A′ ⊃ [1,n+2k +m−1].

We easily see [1,k−1]⊂ A′−A′ as [0,k−1]⊂ O1−O1. Now consider M−O1.
Again the worst case scenario for us is that the least element of M is n + 2k and
the greatest is n + m + 1. With this in mind we see that M−O1 ⊃ [(n + 2k)− (n +
k),(n + m + 1)− (n + 1)] = [k,m]. Now O2−O1 ⊃ [(n + k + m + 1)− (n + k),(n +
2k+m)− (n+1)] = [m+1,2k+m−1], and we therefore have all differences up to
2k +m−1.

Since 2n ∈ A we have 2n+2k +m ∈ A′. Consider (2n+2k +m)−O1 = [n+k +
m,n + 2k + m− 1]. Since k ≥ n we see that n + k + m ≤ 2k + m; this implies that
we have all differences up to n + 2k + m− 1 (this is because we already have all
differences up to 2k +m−1, and n+k +m is either less than 2k +m−1, or at most
one larger).

Proof of Theorem 1(1). The proof of the first part of Theorem 1 follows immedi-
ately. By Lemma 2 our new sets A(M;k) are Pn-sets, and by Lemma 1 they are also
MSTD. All that remains is to show that the sets are distinct; this is done by requiring
n+ k +1 is not in our set (for a fixed k, these sets have elements n+1, . . . ,n+ k but
not n+ k +1; thus different k yield distinct sets).

3 Lower bounds for the percentage of MSTDs

To finish the proof of Theorem 1, for a fixed n we need to count how many sets M̃
of the form O1 ∪M ∪O2 (see Theorem 1 for a description of these sets) of width
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r = 2k+m can be inserted into a Pn, MSTD set A of width 2n. As O1 and O2 are just
intervals of k consecutive ones, the flexibility in choosing them comes solely from
the freedom to choose their length k (so long as k ≥ n). There is far more freedom
to choose M.

There are two issues we must address. First, we must determine how many ways
there are there to fill the elements of M such that there are no runs of k missing
elements. Second, we must show that the sets generated by this method are distinct.
We saw in the proof of Theorem 1(1) that the latter is easily handled by giving
A(M;k) (through our choice of M) slightly more structure. Assume that the element
n + k + 1 is not in M (and thus not in A). Then for a fixed width r = 2k + m each
value of k gives rise to necessarily distinct sets, since the set contains [n + 1,n + k]
but not n+ k +1. In our arguments below, we assume our initial Pn, MSTD set A is
fixed; we could easily increase the number of generated MSTD sets by varying A
over certain MSTD sets of size 2n. We choose not to do this as n is fixed, and thus
varying over such A will only change the percentages by a constant independent of
k and m.

Fix n and let r tend to infinity. We count how many M̃’s there are of width r
such that in M there is at least one element chosen in any consecutive block of k
integers. One way to ensure this is to divide M into consecutive, non-overlapping
blocks of size k/2, and choose at least one element in each block. There are 2k/2

subsets of a block of size k/2, and all but one have at least one element. Thus there
are 2k/2−1 = 2k/2(1−2−k/2) valid choices for each block of size k/2. As the width
of M is r− 2k, there are d r−2k

k/2 e ≤ r
k/2 − 3 blocks (the last block may have length

less than k/2, in which case any configuration will suffice to ensure there is not a
consecutive string of k omitted elements in M because there will be at least one
element chosen in the previous block). We see that the number of valid M’s of width
r−2k is at least 2r−2k

(
1−2−k/2

) r
k/2−3

. As O1 and O2 are two sets of k consecutive
1’s, there is only one way to choose either.

We therefore see that, for a fixed k, of the 2r = 2m+2k possible subsets of r con-
secutive integers, we have at least 2r−2k

(
1−2−k/2

) r
k/2−3

are permissible to insert
into A. To ensure that all of the sets are distinct, we require n + k + 1 6∈ M; the ef-
fect of this is to eliminate one degree of freedom in choosing an element in the first
block of M, and this will only change the proportionality constants in the percent-
age calculation (and not the r or k dependencies). Thus if we vary k from n to r/4
(we could go a little higher, but once k is as large as a constant times r the num-
ber of generated sets of width r is negligible) we have at least some fixed constant
times 2r ∑r/4

k=n
1

22k

(
1−2−k/2

) r
k/2−3

MSTD sets; equivalently, the percentage of sets
O1∪M∪O2 with Oi of width k ∈ {n, . . . ,r/4} and M of width r−2k that we may
add is at least this divided by 2r, or some universal constant times

r/4

∑
k=n

1
22k

(
1− 1

2k/2

) r
k/2

(7)



Explicit constructions of infinite families of MSTD sets 9

(as k ≥ n and n is fixed, we may remove the −3 in the exponent by changing the
universal constant).

We now determine the asymptotic behavior of this sum. More generally, we can
consider sums of the form

S(a,b,c;r) =
r/4

∑
k=n

1
2ak

(
1− 1

2bk

)r/ck

. (8)

For our purposes we take a = 2 and b = c = 1/2; we consider this more general sum
so that any improvements in our method can readily be translated into improvements
in counting MSTD sets. While we know (from the work of Martin and O’Bryant
[MO06]) that a positive percentage of such subsets are MSTD sets, our analysis of
this sum yields slightly weaker results. The approach in [MO06] is probabilistic,
obtained by fixing the fringes of our subsets to ensure certain sums and differences
are in (or not in) the sum- and difference sets. While our approach also fixes the
fringes, we have far more possible fringe choices than in [MO06] (though we do
not exploit this). While we cannot prove a positive percentage of subsets are MSTD
sets, our arguments are far more elementary.

The proof of Theorem 1(2) is clearly reduced to proving the following lemma,
and then setting a = 2 and b = c = 1/2.

Lemma 3. Let

S(a,b,c;r) =
r/4

∑
k=n

1
2ak

(
1− 1

2bk

)r/ck

. (9)

Then for any ε > 0 we have

1
ra/b ¿ S(a,b,c;r) ¿ (logr)2a+ε

ra/b . (10)

Proof. We constantly use (1− 1/x)x is an increasing function in x. We first prove
the lower bound. For k ≥ (log2 r)/b and r large, we have

(
1− 1

2bk

)r/ck

=
(

1− 1
2bk

)2bk r
ck2bk

≥
(

1− 1
r

)r· b
c log2 r

≥ 1
2

(11)

(in fact, for r large the last bound is almost exactly 1). Thus we trivially have

S(a,b,c;r) ≥
r/4

∑
k=(log2 r)/b

1
2ak ·

1
2
À 1

ra/b . (12)

For the upper bound, we divide the k-sum into two ranges: (1) bn≤ bk≤ log2 r−
log2(logr)δ ; (2) log2 r− log2(logr)δ ≤ bk ≤ br/4. In the first range, we have
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(
1− 1

2bk

)r/ck

≤
(

1− (logr)δ

r

)r/ck

¿ exp

(
−b(logr)δ

c log2 r

)

≤ exp
(
−b log2

c
· (logr)δ−1

)
. (13)

If δ > 2 then this factor is dominated by r−
b log2

c ·(logr)δ−2 ¿ r−A for any A for r
sufficiently large. Thus there is negligible contribution from k in range (1) if we
take δ = 2+ ε/a for any ε > 0.

For k in the second range, we trivially bound the factors
(
1−1/2bk

)r/ck by 1. We
are left with

∑
k≥ log2 r

b − log2(logr)δ
b

1
2ak ·1 ≤ (logr)aδ

ra/b

∞

∑̀
=0

1
2a`

¿ (logr)aδ

ra/b . (14)

Combining the bounds for the two ranges with δ = 2+ ε/a completes the proof.

Remark 3. The upper and lower bounds in Lemma 3 are quite close, differing by a

few powers of logr. The true value will be at least
(

logr
r

)a/b
; we sketch the proof

in Appendix 1.

Remark 4. We could attempt to increase our lower bound for the percentage of sub-
sets that are MSTD sets by summing r from R0 to R (as we have fixed r above, we
are only counting MSTD sets of width 2n + r where 1 and 2n + r are in the set.
Unfortunately, at best we can change the universal constant; our bound will still be
of the order 1/R4. To see this, note the number of such MSTD sets is at least a
constant times ∑R

r=R0
2r/r4 (to get the percentage, we divide this by 2R). If r ≤ R/2

then there are exponentially few sets. If r ≥ R/2 then r−4 ∈ [1/R4,16/R4]. Thus the
percentage of such subsets is still only at least of order 1/R4.

4 Concluding remarks and future research

We observed earlier (Footnote 6) that for a constant 0 < α ≤ 1, a set randomly cho-
sen from [1,2n] is a Pbαnc-set with probability approaching 1 as n→ ∞. MSTD sets
are of course not random, but it seems logical to suppose that this pattern continues.

Conjecture 1. Fix a constant 0 < α ≤ 1/2. Then as n → ∞ the probability that a
randomly chosen MSTD set in [1,2n] containing 1 and 2n is a Pbαnc-set goes to 1.

In our construction and that of [MO06], a collection of MSTD sets is formed by
fixing the fringe elements and letting the middle vary. The intuition behind both is



Explicit constructions of infinite families of MSTD sets 11

that the fringe elements matter most and the middle elements least. Motivated by
this it is interesting to look at all MSTD sets in [1,n] and ask with what frequency a
given element is in these sets. That is, what is

γ(k;n) =
#{A : k ∈ A and A is an MSTD set}

#{A : A is an MSTD set} (15)

as n→ ∞? We can get a sense of what these probabilities might be from Figure 1.

20 40 60 80 100
k

0.45

0.50

0.55

0.60

Estimated ΓHk,nL

Fig. 1 Estimation of γ(k,100) as k varies from 1 to 100 from a random sample of 4458 MSTD
sets. The sample was obtained by choosing sets from the uniform model (i.e., for each A ⊂
{1, . . . ,n} the probability k ∈ A is 1/2).

Note that, as the graph suggests, γ is symmetric about n+1
2 , i.e. γ(k,n) = γ(n+1−

k,n). This follows from the fact that the cardinalities of the sumset and difference
set are unaffected by sending x → αx + β for any α,β . Thus for each MSTD set
A we get a distinct MSTD set n + 1−A showing that our function γ is symmetric.
These sets are distinct since if A = n+1−A then A is sum-difference balanced.10

From [MO06] we know that a positive percentage of sets are MSTD sets. By the
central limit theorem we then get that the average size of an MSTD set chosen from
[1,n] is about n/2. This tells us that on average γ(k,n) is about 1/2. The graph above
suggests that the frequency goes to 1/2 in the center. This leads us to the following
conjecture:

10 The following proof is standard (see, for instance, [Na07]). If A = n+1−A then

|A+A| = |A+(n+1−A)| = |n+1+(A−A)| = |A−A|. (16)
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Conjecture 2. Fix a constant 0 < α < 1/2. Then limn→∞ γ(k,n) = 1/2 for bαnc ≤
k ≤ n−bαnc.
Remark 5. More generally, we could ask which non-decreasing functions f (n) have
f (n)→ ∞, n− f (n)→ ∞ and limn→∞ γ(k,n) = 1/2 for all k such that b f (n)c ≤ k ≤
n−b f (n)c.

Appendix 1: Size of S(a,b,c;r)

We sketch the proof that the sum

S(a,b,c;r) =
r/4

∑
k=n

1
2ak

(
1− 1

2bk

)r/ck

(17)

is at least
(

logr
r

)a/b
. We determine the maximum value of the summands

f (a,b,c;k,r) =
1

2ak

(
1− 1

2bk

)r/ck

. (18)

Clearly f (a,b,c;k,r) is very small if k is small due to the second factor; simi-
larly it is small if k is large because of the first factor. Thus the maximum value
of f (a,b,c;k,r) will arise not from an endpoint but from a critical point.

It is convenient to change variables to simplify the differentiation. Let u = 2k (so
k = logu/ log2). Then

g(a,b,c;u,r) = f (a,b,c;k,r) = u−a
(

1− 1
ub

)ub· m log2
cub logu

. (19)

Thus

g(a,b,c;u,r) ≈ u−a exp
(
− r log2

cub logu

)
. (20)

Maximizing this is the same as minimizing h(a,b,c;u,r) = 1/g(a,b,c;u,r). After
some algebra we find

h′(a,b,c;u,r) =
h(a,b,c;u,r)

cu log2 u

(
acub log2 u− r log2 · (b logu+1)

)
. (21)

Setting the derivative equal to zero yields

acub log2 u = r log2 · (b logu+1) . (22)
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As we know u must be large, looking at just the main term from the right hand side
yields

acub logu ≈ rb log2, (23)

or

ub logu ≈ Cr, C =
b log2

ac
. (24)

To first order, we see the solution is

umax =

(
(Cr)

log(Cr)
b

) 1
b

≈ C′
(

r
logr

) 1
b
. (25)

Straightforward algebra shows that the maximum value of our summands is approx-

imately (C′e1/b)−a
(

logr
r

)a/b
.

Appendix 2: When almost all sets are not MSTD sets

Peter Hegarty and Steven J. Miller

In [Na06], Nathanson remarked: Even though there exist sets A that have more
sums than differences, such sets should be rare, and it must be true with the right
way of counting that the vast majority of sets satisfies |A−A| > |A + A|. While we
now know (thanks to the work of Martin and O’Bryant [MO06]) that a positive per-
centage of all subsets of {1, . . . ,N} are MSTD sets, the answer is markedly different
when we consider instead a binomial model with parameter decreasing to zero as
N →∞. In [HM07] it is shown that Nathanson’s intuition is correct for such a model.

Theorem 2. Let p : N→ (0,1) be any function such that

N−1 = o(p(N)) and p(N) = o(1). (26)

For each N ∈ N let A be a random subset of {1, . . . ,N} chosen according to a bi-
nomial distribution with parameter p(N). Then, as N → ∞, the probability that A is
difference dominated tends to one.

More precisely, let S ,D denote respectively the random variables |A + A| and
|A−A|. Then the following three situations arise:

(i) p(N) = o(N−1/2): Then

S ∼ (N · p(N))2

2
and D ∼ 2S ∼ (N · p(N))2. (27)
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(ii) p(N) = c ·N−1/2 for some c ∈ (0,∞): Define the function g : (0,∞)→ (0,2) by

g(x) := 2
(

e−x− (1− x)
x

)
. (28)

Then

S ∼ g
(

c2

2

)
N and D ∼ g(c2)N. (29)

(iii) N−1/2 = o(p(N)): Let S c := (2N +1)−S , Dc := (2N +1)−D . Then

S c ∼ 2 ·Dc ∼ 4
p(N)2 . (30)

Parts (i) and (ii) of the theorem can be proven by elementary means; a standard
second moment analysis (Chebyshev’s inequality applied to a sum of indicator ran-
dom variables) suffices to prove strong concentration of the variables S and D ,
while in part (ii) an additional inclusion-exclusion type argument is used to ob-
tain the correct form of the function g. Our proof of part (iii) requires different
and more sophisticated concentration machinery recently developed by Kim and Vu
[KV00, Vu00, Vu02]. For the benefit of the reader not familiar with probabilistic
techniques, we present below an entirely self-contained proof of a more explicit
form of the simplest case of our theorem, namely part (i). See [HM07] for proofs of
the other cases, as well as generalizations to comparing arbitrary binary forms.11

We prove the following special case of Theorem 2.

Theorem 3. Let p(N) := cN−δ for some c > 0, δ ∈ (1/2,1). Set C := max(1,c),
f (δ ) := min{ 1

2 , 3δ−1
2 } and let g(δ ) be any function such that 0 < g(δ ) < f (δ )

for all δ ∈ (1/2,1). Set P1(N) := 4
c N−(1−δ ) and P2(N) := N−( f (δ )−g(δ )). For any

subset chosen with respect to the binomial model with parameter p = p(N), with
probability at least 1−P1(N)−P2(N) the ratio of the cardinality of its difference
set to the cardinality of its sumset is 2 + OC(N−g(δ )). Thus the probability a subset
chosen with respect to the binomial model is not difference dominated is at most
P1(N)+P2(N), which tends to zero rapidly with N for δ ∈ (1/2,1).

We first establish some notation, and then prove a sequence of lemmas from
which Theorem 3 immediately follows. Our goal is to provide explicit bounds which
decay like N to a power.

Let IN = {1, . . . ,N} and let Xn;N denote the binary indicator variable for n being in
a subset (it is thus 1 with probability cN−δ and 0 otherwise), and let X be the random
variable denoting the cardinality of a subset (thus X = ∑n Xn;N). For two pairs of

11 Let u1,u2,v1,v2 be fixed integers, and define two binary forms f (x,y) = u1x+v1y and g(x,y) =
u2x + v2y. By f (A) we mean { f (a1,a2) : ai ∈ A} (and similarly for g(A)). Theorem 2 can be
generalized to analyze how often | f (A)|> |g(A)|when A is drawn from {1, . . . ,N} from a binomial
model with parameter p(N).
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ordered elements (m,n) and (m′,n′) in IN × IN (m < n, m′ < n′), let Ym,n,m′,n′ = 1 if
n−m = n′−m′, and 0 otherwise.

Lemma 4. With probability at least 1−P1(N),

X ∈
[

1
2

cN1−δ ,
3
2

cN1−δ
]
. (31)

Let O denote the number of ordered pairs (m,n) (with m < n) in a subset of IN
chosen with respect to the binomial model. Then with probability at least12 1−
P1(N) we have

1
2 cN1−δ ( 1

2 cN1−δ −1
)

2
≤O ≤

3
2 cN1−δ ( 3

2 cN1−δ −1
)

2
. (32)

Proof. We have E[X ] = ∑n E[Xn;N ] = cN1−δ . As the Xn;N are independent,

σ2
X = ∑

n
σ2

Xn;N
= N

(
cN−δ − c2N−2δ

)
. (33)

Thus

σX ≤ √
c ·N 1−δ

2 . (34)

By Chebyshev’s inequality,

Prob(|X− cN1−δ | ≤ kσX ) ≥ 1− 1
k2 . (35)

For X ∈ [ 1
2 cN1−δ , 3

2 cN1−δ ]
we choose k so that

kσX =
1
2

cN1−δ ≤ k
√

cN
1−δ

2 . (36)

Thus k ≥ 1
2
√

cN(1−δ )/2, and the probability that X lies in the stated interval is at
least 1− (cN1−δ /4)−1. The second claim follows from the fact that there are

( r
2

)
ways to choose two distinct objects from r objects.

Proof of Theorem 3. By Lemma 4, (32) holds with probability at least 1−P1(N).
The main contribution to the cardinalities of the sumset and the difference set is
from ordered pairs (m,n) with m < n. With probability at least 1− P1(N) there
are on the order N2−2δ such pairs, which is much larger than the order N1−δ pairs
with m = n. The proof is completed by showing that almost all of the ordered pairs
yield distinct sums (and differences). Explicitly, we shall show that for a subset
chosen from IN with respect to the binomial model, if O is the number of ordered
pairs (which is of size N2−2δ with high probability), then with high probability the

12 By using the Central Limit Theorem instead of Chebyshev’s inequality we could obtain a better
estimate on the probability of X lying in the desired interval.
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cardinality of its difference set is 2O+OC(N3−4δ ) while the cardinality of its sumset
is O +OC(N3−4δ ). This argument crucially uses δ > 1/2 (if δ = 1/2 then the error
term is the same size as the main term, and a more delicate argument is needed).
We shall show that almost all of the ordered pairs generate distinct differences; the
argument for the sums follows similarly.

Each ordered pair (m,n) yields two differences: m−n and n−m. The problem is
that two different ordered pairs could generate the same differences. To calculate the
size of the difference set, we need to control how often two different pairs give the
same differences. Consider two distinct ordered pairs (m,n) and (m′,n′) with m < n
and m′ < n′ (as the N1−δ ¿ N2−2δ ‘diagonal’ pairs (n,n) yield the same difference,
namely 0, it suffices to study the case of ordered pairs with distinct elements). With-
out loss of generality we may assume m≤m′. If n−m = n′−m′ then these two pairs
contribute the same differences. There are two possibilities: (1) all four indices are
distinct; (2) n = m′.

We calculate the expected number of pairs of non-diagonal ordered pairs with
the same difference by using our binary indicator random variables Ym,n,m′,n′ . Set

Y = ∑
1≤m≤m′≤N

∑
m′<n′≤N

∑
m<n≤N

n′−m′=n−m

Ym,n,m′,n′ . (37)

If the four indices are distinct then E[Ym,n,m′,n′ ] = c4N−4δ ; if n = m′ then E[Ym,n,m′,n′ ] =
c3N−3δ .

The number of tuples (m,n,m′,n′) of distinct integers satisfying our conditions
is bounded by N3 (once m, n and m′ are chosen there is at most one choice for
n′ ∈ {m+1, . . . ,N} with n′−m′ = n−m)13. If instead n = m′ then there are at most
N2 tuples satisfying our conditions (once m and n are chosen, m′ and n′ are uniquely
determined, though they may not satisfy our conditions). Therefore

E[Y ] ≤ N3 · c4N−4δ +N2 · c2N−3δ ≤ 2C4N3−4δ (38)

as δ ∈ (1/2,1).
As N3−4δ is much smaller than N2−2δ for δ > 1/2, most of the differences are

distinct. To complete the proof, we need some control on the variance of Y . In
Lemma 5 we show that

σY ≤ 7C4Nr(δ ), (39)

where

2r(δ ) = max{3−4δ ,5−7δ}. (40)

While we cannot use the Central Limit Theorem (the Ym,n,m′,n′ are not independent),
we may use Chebyshev’s inequality to bound the probability that Y is close to its

13 Although we do not need the actual value, simple algebra yields the number of tuples is N3/6+
O(N2).
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mean (recall the mean is at most 2C4N3−4δ ). We have

Prob(|Y −E[Y ]| ≤ kσY )≥ 1− 1
k2 . (41)

Simple algebra shows that if we take k = N2−2δ−r(δ )−g(δ ) then with probability at
least 1−N−( f (δ )−g(δ )) we have Y ≤ 9C4N2−2δ−g(δ ), which is a positive power of N
less than N2−2δ . Thus an at most negligible amount of the differences are repeated.

The argument for two ordered pairs yielding the same sum proceeds similarly: if
µ +ν = µ ′+ν ′ then ν−µ ′ = ν ′−µ .

For our ratio to be 2 + OC(N−g(δ )), two events must happen. As the probability
the first does not occur is at most P1(N) and the probability the second does not
occur is at most P2(N), the probability that the two desired events happen is at least
1−P1(N)−P2(N).

Except for the claimed estimate on σY , the above completes the proof of Theorem
3. We now prove our bound for σY .

Lemma 5. Let the notation be as in Theorem 3 and (A.10). We have

σY ≤ 7C4Nr(δ ). (42)

Proof. If U and V are two random variables, then

Var(U +V ) = Var(U)+Var(V )+2CoVar(U,V ). (43)

By the Cauchy-Schwartz inequality, CoVar(U,V )≤
√

Var(U)Var(V ). Thus

Var(U +V ) ≤ 3Var(U)+3Var(V ). (44)

We may therefore write

∑Ym,n,m′,n′ = ∑Um,n,m′,n′ +∑Vm,n,n′ = U +V, (45)

where in the U-sum all four indices are distinct (with 1≤ m < m′ ≤ N, m < n≤ N,
m′ < n′≤N and n−m = n′−m′) and in the V -sum all three indices are distinct (with
1≤ m < n < n′ ≤ N and and n−m = n′−n). As Var(Y )≤ 3Var(U)+3Var(V ), we
are reduced to bounding the variances of U and V .

We first bound Var(U). Standard algebra yields

Var(U) = Var
(
∑Um,n,m′,n′

)

= ∑Var(Um,n,m′,n′)+2 ∑
(m,n,m′,n′)6=(m̃,ñ,m̃′,ñ′)

CoVar(Um,n,m′,n′ ,Um̃,ñ,m̃′,ñ′).

(46)
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As Var(Um,n,m′,n′) = c4N−4δ − c8N−8δ and there are at most N3 ordered tuples
(m,n,m′,n′) of distinct integers with n−m = m′ − n′, the Var(Um,n,m′,n′) term is
bounded by c4N3−4δ .

For the covariance piece, if all eight indices (m,n,m′,n′, m̃, ñ, m̃′, ñ′) are dis-
tinct, then Um,n,m′,n′ and Um̃,ñ,m̃′,ñ′ are independent and thus the covariance is zero.
There are four cases; in each case there are always at most N3 choices for the tu-
ple (m,n,m′,n′), but often there will be significantly fewer choices for the tuple
(m̃, ñ, m̃′, ñ′). We only provide complete details for the first and third cases, as the
other cases follow similarly.

• Seven distinct indices: There are at most N2 choices for (m̃, ñ, m̃′, ñ′). The covari-
ance of each such term is bounded by c7N−7δ . To see this, note

CoVar(Um,n,m′,n′ ,Um̃,ñ,m̃′,ñ′)
= E[Um,n,m′,n′Um̃,ñ,m̃′,ñ′ ]−E[Um,n,m′,n′ ]E[Um̃,ñ,m̃′,ñ′ ]. (47)

The product of the expected values is c8N−8δ , while the expected value of
the product is c7N−7δ . Thus the covariances of these terms contribute at most
c7N5−7δ .

• Six distinct indices: The covariances of these terms contribute at most c6N4−6δ .
• Five distinct indices: The covariances of these terms contribute at most c5N3−5δ

(once three of the m̃, ñ, m̃′, ñ′ have been determined, the fourth is uniquely deter-
mined; thus there are at most N3 choices for the first tuple and at most 1 choice
for the second).

• Four distinct indices: The covariances of these terms contribute at most c4N3−4δ .

The N-dependence from the case of seven distinct indices is greater than the N-
dependence of the other cases (except for the case of four distinct indices if δ >
2/3). We also only increase the contributions if we replace c with C = max(c,1).
We therefore find

Var(U) ≤ C4N3−4δ +2
(

C7N5−7δ +C6N4−6δ +C5N3−5δ +C4N3−4δ
)

= 3C4N3−4δ +6C7N5−7δ . (48)

Similarly we have

Var(V ) = Var(∑Vm,n,n′)

= ∑Var(Vm,n,n′)+2 ∑
(m,n,n′)6=(m̃,ñ,ñ′)

CoVar(Vm,n,n′ ,Vm̃,ñ,ñ′). (49)

The Var(Vm,n,n′) piece is bounded by N2 · c3N−3δ (as there are at most N2 tuples
with n′− n = n−m). The covariance terms vanish if the six indices are distinct.
A similar argument as before yields bounds of c5N3−5δ for five distinct indices,
c4N2−4δ for four distinct indices, and c3N2−3δ for three distinct indices. The largest
N-dependence is from the c3N2−3δ term (as δ > 1/2). Arguing as before and re-
placing c with C yields
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Var(V ) ≤ C3N2−3δ +2 ·3C3N2−3δ ≤ 7C3N2−3δ . (50)

As δ < 1, 2−3δ < 3−4δ . Therefore

Var(Y ) ≤ 3 ·
(

3C4N3−4δ +6C7N5−7δ
)

+3 ·7C3N2−3δ

≤ 30C4N3−4δ +18C7N5−7δ ≤ 49C8N2r(δ ), (51)

which yields

σY ≤ 7C4Nr(δ ). (52)

Remark 6. An extreme choice of g would be to choose g(δ ) = ε , for some small
positive constant ε . Since f (δ ) ≥ 1/4 for all δ ∈ (1/2,1), we then obtain a bound
of 2 + OC(N−ε) for the ratio of the cardinality of the difference set to the sumset
with probability 1−OC(N−min{1−δ , 1

4−ε}).
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