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Abstract. Lazarev, Miller and O’Bryant [LMO] investigated the distribution
of |S+S| for S chosen uniformly at random from {0, 1, . . . , n−1}, and proved the
existence of a divot at missing 7 sums (the probability of missing exactly 7 sums
is less than missing 6 or missing 8 sums). We study related questions for |S−S|,
and shows some divots from one end of the probability distribution, P (|S−S| =
k), as well as a peak at k = 4 from the other end, P (2n − 1 − |S − S| = k).
A corollary of our results is an asymptotic bound for the number of complete
rulers of length n.

1. Introduction

1.1. Background. Let S be a typical subset of
[n] := {0, 1, . . . , n− 1}; (1.1)

in other words, we choose S uniformly at random, or equivalently each integer in
[n] is independently chosen to be in S with probability 1/2. Define

S + S := {x+ y : x, y ∈ S} and S − S := {x− y : x, y ∈ S}. (1.2)
We refer to these as the sumset and the diffset of S, and we denote the cardinality
of a set A by |A|.

The sizes of the sumset and the diffset have been compared extensively. As
addition is commutative and subtraction is not, it was conjectured that as n→∞
almost all sets S should be difference dominated: |S − S| > |S + S|. Thus while
sum-dominant sets were known to exist, and constructions for infinite families were
given, they were thought to be rare. This conjecture turns out to be false; Martin
and O’Bryant [MO] proved that for a small but positive proportion of all subsets of
[n], the sumset has a larger cardinality than the diffset. This result holds if instead
of choosing each element with probability 1/2 we instead choose with a fixed
probability p > 0; however, if p is allowed to decay to zero with n then Hegarty
and Miller [HM] proved almost all sets are difference dominated. For these and
related results see [AMMS, BELM, CLMS, CMMXZ, DKMMW, DKMMWW, He,
HLM, ILMZ, MA, MOS, MP, MS, MV, MXZ, Na1, Na2, Ru1, Ru2, Ru3, Zh1, Zh2].

The distribution of |S + S| has also been studied. When S is chosen uniformly
at randomly from [n], Lazarev, Miller and O’Bryant [LMO] proved an unusual
“divot” occurs in the limiting probability distribution of |S + S| (the existence of
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the limiting distribution was shown by Zhao [Zh2]). In particular, the limiting
probability of missing 7 sums is less than that of missing 6 (or 8):
lim

n→∞
P (2n− 1− |S + S| = 7) < lim

n→∞
P (2n− 1− |S + S| = 6) < lim

n→∞
P (2n− 1− |S + S| = 8).

(1.3)

Further, [LMO] gave rigorous bounds for lim
n→∞

P (2n − 1 − |S + S| = k) for 0 ≤
k < 32, which imply that there are no more divots until k = 27. It is unknown
whether there could be more divots later. Figure 1 of their paper is reproduced
here with permission as Figure 1.
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Figure 1. Experimental values of m(k), the probability S + S is
missing exactly k sum, when each m ∈ [n] is in S with probability
1/2. The vertical bars depict the values allowed by the most rigorous
bounds in [LMO]. In most cases, the allowed interval is smaller than
the dot indicating the experimental value. The data comes from
generating 228 sets uniformly forced to contain 0 from [0, 256).

However, the probability distribution of |S − S|, the size of the diffset, has not
been extensively investigated. One reason for the success in |S + S| and the lack
of progress for |S − S| is that the sumset is significantly easier to exhaustively
investigate. For many sets, their properties can be determined by decomposing S
as L ∪M ∪ R, where L and R are respectively the left and right fringe elements
and M is the middle; typically L and R are of bounded size independent of n, so
most elements in S are in M . As there are many ways to write a number as a
sum or difference of elements, most elements in [n] + [n] or [n]− [n] are realized,
especially since a typical S has on the order of n/2 elements and thus generates on
the order of n2/2 pairs. The difference is for the fringe elements, where there are
fewer representations and thus a greater chance of an element not being obtained.1

1An integer m ≤ n can be written as m + 1 sums of pairs of elements from [n], and if m is
modest it is thus unlikely that none of these pairs have both elements in S; however, if m is
small then an element can have a significant probability of not occurring. For example, if 0 ∈ S
but 1 6∈ S then 1 6∈ S + S.
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For sumsets the left and right fringes do not interact, with the left fringe L+L and
the right R+R; this is not the case for the diffset, where the fringes are L−R and
its negative R − L. As a result, to determine whether an extremal element is in
S+S, only one fringe matters while for S−S, both ends must be considered. The
computational complexity is hence squared, which makes the diffset distribution
significantly harder to exhaustively investigate.

Below we focus on the probability distribution of |S − S|.

1.2. Distribution of |S − S| when n = 35.
We display the probability distribution when n = 35 in Figure 2. We exhaus-

tively listed every subset of [n] and recorded the corresponding |S − S|. The
probability distribution is exactly the frequencies divided by 235.

Figure 2. Probability distribution of P (|S − S| = x) when n = 35.

We make three observations from Figure 2.
• |S − S| is either 0 or odd.
• There are divots at having 5, 9 and 15 differences. That is,

P (|S − S| = 3) > P (|S − S| = 5) < P (|S − S| = 7),
P (|S − S| = 7) > P (|S − S| = 9) < P (|S − S| = 11), and
P (|S − S| = 13) > P (|S − S| = 15) < P (|S − S| = 17). (1.4)

• There is a peak at “missing 4” differences. That is,
∀k 6= 4, P (2n− 1− |S − S| = 4) > P (2n− 1− |S − S| = k) (1.5)

(thus when n = 35, this is saying |S−S| = 65 is the most likely cardinality
of the diffset).

These observations seem to continue to hold for larger n, though our investiga-
tions are no longer exhaustive but instead are random samples from the space.

The first observation is trivial after realizing that if m ∈ S−S then −m ∈ S−S.
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For conciseness, let
PH

n (k) := P (|S − S| = k), PM
n (k) := P (2n− 1− |S − S| = k). (1.6)

Here, H means having differences whereas M means missing. They are two com-
plementary perspectives.

1.3. Main results.
We prove that Observations 2 and 3 are true for sufficiently large n.

Theorem 1.1. Observation 2 is true for n ≥ 12. That is, ∀n ≥ 12,
PH

n (3) > PH
n (5) < PH

n (7),
PH

n (7) > PH
n (9) < PH

n (11),
and PH

n (13) > PH
n (15) < PH

n (17). (1.7)

(Note that when n = 11, Observation 2 fails because PH
n (13) = 269 < 275 =

PH
n (15).)

Theorem 1.2. Observation 3 is true for sufficiently large n. That is,
∃N : ∀n ≥ N,∀k 6= 4 : PM

n (4) > PM
n (k). (1.8)

(Note that when n = 14, Observation 3 fails because PM
n (4) = PM

n (2). We don’t
know if this will ever happen again for larger n.)

Similar to Theorem 1.9 in [LMO], we have the following result, which is used
to prove Theorem 1.2.

Theorem 1.3. The limiting probability distribution of missing differences,
`(k) := lim

n→∞
PM

n (k), is well-defined, positive on (and only on) even k’s, adds up to
1, and satisfies

`(10) < `(8) < `(0) < `(6) < `(2) < `(4). (1.9)

Rigorous bounds for `(k) are given in Theorem 3.20. As a corollary, we provide
an asymptotic bound for the OEIS sequence A103295, which counts the number
of complete rulers2.

Theorem 1.4. The OEIS sequence A103295 satisfies an ∼ c · 2n, where 0.2433 <
c < 0.2451.

2. Results about having (few) differences

We give a few straightforward results on having few differences.

Definition 2.1. A sequence Q has a divot at i if Qi is smaller than the nearest
non-zero neighbor on each side of the sequence.

Note in the above definition we require the neighbors to be non-zero; this is
important as the cardinalities of the number of missing differences is always even.

Proposition 2.2. For all n ≥ 4, PH
n has a divot at 5: PH

n (3) > PH
n (5) < PH

n (7).
2See Definition 3.24.
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Proof. We have the following characterizations, where we abbreviate a set S is an
arithmetic progression3 by writing S is an AP.

• |S − S| = 3⇐⇒ |S| = 2.
• |S − S| = 5⇐⇒ |S| = 3 and S is an AP (e.g., {3, 8, 13}).
• |S − S| = 7⇐⇒ |S| = 3 and S is not an AP, or |S| = 4 and S is an AP.

Thus, by counting arithmetic progressions, the following equations hold:

2nPH
n (3) =

(
n

2

)

2nPH
n (5) =

(
bn

2 c
2

)
+
(
bn+1

2 c
2

)

2nPH
n (7) =

(
n

3

)
− 2nPH

n (5) +
2∑

i=0

(
bn+i

3 c
2

)
. (2.1)

When n ≥ 4, we have

PH
n (3) > PH

n (5) ≤

(
n
3

)
2n
− PH

n (5) < PH
n (7). (2.2)

�

In view of the proof, for any k we see that PH
n (k) can be written in a closed

form in terms of n. Straightforward analysis shows the following.

Proposition 2.3. For all n ≥ 7, PH
n has a divot at 9.

Proposition 2.4. For all n ≥ 12, PH
n has a divot at 15.

The above allows us to conclude Theorem 1.1. �

3. Results about missing (few) differences

3.1. Intuitively measuring the limiting probabilities.
We show that the limiting probability of having k differences, and that of missing

k differences, exist. The latter (Claim 3.2) is a special case of Theorem 1.3 in [Zh2],
but as some parts of this argument will be used later, we provide details.

Claim 3.1. For all k ≥ 0, lim
n→∞

PH
n (k) = 0.

Proof. The claim follows immediately by noting P (|S − S| = k) ≤ P (|S| ≤ k)→
0. �

Claim 3.2. For all k ≥ 0, lim
n→∞

PM
n (k) exists and ∑∞i=0 lim

n→∞
PM

n (i) = 1.

Proof. Recall Observation 1: when k is odd, for all n 6= k+1
2 we have PM

n (k) = 0.
We are interested in evens.
∀k ≥ 0,∀m > k,∀ε > 0,∀n > 2m,∀S ⊆ [n], if {0, . . . , n−m− 1} ⊆ S−S, then
|(S − S) ∩ {n−m, . . . , n− 1}| = m− k ⇐⇒ |(S − S) ∩ {0, . . . , n− 1}| = n− k

⇐⇒ |S − S| = 2n− 1− 2k. (3.1)

3This means there are integers a, d and m such that S = {a, a + d, a + 2d, . . . , a + md}.
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Thus ∣∣∣PM
n (2k)− P (|(S − S) ∩ {n−m, . . . , n− 1}| = m− k)

∣∣∣
≤ P ({0, . . . , n−m− 1} ( S − S). (3.2)

The main term is constant with respect to n:

P (|(S − S) ∩ {n−m, . . . , n− 1}| = m− k)
= P (|((S ∩ {n−m, . . . , n− 1})− (S ∩ {0, . . . , m− 1})) ∩ {n−m, . . . , n− 1}| = m− k)
= PS1⊆[n]\(n−m),S2⊆[m] (|(S1 − S2) ∩ {n−m, . . . , n− 1}| = m− k)
= PS⊆[2m] (|(S − S) ∩ {m, . . . , 2m− 1}| = m− k)
=: fk(m). (3.3)

By Lemma 11 in [MO]4,

P ({0, . . . , n−m− 1} ( S − S) ≤
n−m−1∑

i=0
P (i /∈ S − S)

≤
bn

2 c−1∑
i=0

(3
4

)n
3

+
n−m−1∑
i=bn

2 c

(3
4

)n−i

<
(3

4

)n
3
· n2 +

(3
4

)m+1
· 4

< ε+ 4
(3

4

)m+1
for sufficiently large n. (3.4)

For sufficiently large n,∣∣∣PM
n (2k)− fk(m)

∣∣∣ < ε+ 4
(3

4

)m+1
. (3.5)

By the arbitrariness of m and ε, {PM
n (2k)}n is Cauchy and so converges. The

rest of the claim follows from non-negativity of the limits and the fact∑2n−1
i=0 PM

n (i) =
1. �

Remark 3.3. Note m > k is not needed, and since the bounded error, ε+4
(

3
4

)m+1
,

is irrelevant to k, the convergence is uniform.

Definition 3.4. Let `(k) := lim
n→∞

PM
n (k).

Lemma 3.5. For all k ≥ 0, we have `(2k + 2) ≥ `(2k)/2.

4It states that if A is a uniformly randomly chosen subset of [n], then

P (k /∈ S − S)
{
≤
( 3

4
)n/3 1 ≤ k ≤ n

2
≤
( 3

4
)n−k n

2 ≤ k ≤ n− 1.
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Proof. We have

PM
n (2k + 2)

= P (|S − S| = 2n− 1− 2(k + 1))
≥ P (n− 1 /∈ S ∧ |(S − S) ∩ {−n+ 2, . . . , n− 2}| = 2n− 1− 2(k + 1))
= P (n− 1 /∈ S) · PS⊆[n−1](|S − S| = 2(n− 1)− 1− 2k)

= 1
2P

M
n−1(2k). (3.6)

Note the left and right hand sides converge to `(2k + 2) and `(2k)/2 respectively.
�

Corollary 3.6. For all k ≥ 0, lim
n→∞

PM
n (2k) > 0.

Compared with the distribution of having-differences (Claim 3.1), this shows
that the direction we view matters. We see non-zero limits at this end.

Remark 3.7. By Remark A.1,

PM
36 (0) = 8342197304

236 ≈ 0.1214,

PM
36 (2) = 12668987317

236 ≈ 0.1843,

PM
36 (4) = 12894355828

236 ≈ 0.1876,

PM
36 (6) = 10879185718

236 ≈ 0.1583,

PM
36 (8) = 8208838614

236 ≈ 0.1195. (3.7)

This gives us a sensible (but not rigorous) estimate of `(k).

We do have a rigorous bound of `(k), in view of the proof of Claim 3.2.

Proposition 3.8. For all m > k, |`(2k)− fk(m)| ≤ 4(3
4)m+1.

Proof. Replace PM
n (2k) by `(2k) in equation (3.5). �

One would like to use this fact to prove Theorem 1.3, since fk(m) is finitely
computable. Unfortunately this quickly becomes unrealistic because it takes 4mm2

computations to exhaustively determine fk(m), and to reduce the uncertainty to
(0.1876− 0.1843)/2 we should have m ≥ 27. In 2019, it took our laptop5 around
5 minutes to run m = 17 with this method, and thus it would need around 25.2
years to computationally verify the theorem. We thus need a better approach,
which we describe below.

5CPU: i7-6500U @ 2.5GHz, RAM: 8GB
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3.2. Using Conditional Probabilities.

Lemma 3.9. The conditional probability of k 6∈ S − S, given that 0, n− 1 ∈ S, is
bounded by the following:

P
(
k /∈ S − S

∣∣∣ 0, n− 1 ∈ S
) 

= 0 k = n− 1
= 4

9 ·
(

3
4

)n−k
n
2 ≤ k < n− 1

≤ 4
9 ·
(

3
4

)n
3 0 ≤ k < n

2 .

(3.8)

Proof. For all k < n let D := {{a, b} : a, b ∈ [n], |a− b| = k}. We say D′ ⊆ D is
mutually disjoint if ∀p1, p2 ∈ D′, p1 ∩ p2 = ∅. If D′ ⊆ D is mutually disjoint and
0, n− 1 ∈ ⋃D′ (the union is over all the pairs in D′), then

P
(
k /∈ S − S

∣∣∣ 0, n− 1 ∈ S
)

= P
(
D ∩ P(S) = ∅

∣∣∣ 0, n− 1 ∈ S
)

≤ P
(
D′ ∩ P(S) = ∅

∣∣∣ 0, n− 1 ∈ S
)

=
∏

p∈D′

(
1− 2−|p\{0,n−1}|

)

=

0 k = n− 1
4
9 ·
(

3
4

)|D′|
0 ≤ k < n− 1.

(3.9)

When 2k > n− 1, D is already mutually disjoint and has size n− k; otherwise,
we can find a mutually disjoint D′ with |D′| ≥ n/3, and let 0, n−1 ∈ ⋃D′ without
loss of generality. We hence conclude the lemma. �

The conditional probability distribution requiring 0, n − 1 ∈ S is compared
with the usual probability distribution without such restriction. We define similar
notions to PM

n , fk.

Definition 3.10. Let

QM
n (k) := P

(
|S − S| = 2n− 1− k

∣∣∣ 0, n− 1 ∈ S
)

;

gk(m) := PS⊆[2m]
(
|(S − S) ∩ {m, . . . , 2m− 1}| = m− k

∣∣∣ 0, 2m− 1 ∈ S
)
.

Proposition 3.11. ∀k ≥ 0,∀m > k,∀ε > 0 and for sufficiently large n,∣∣∣QM
n (2k)− gk(m)

∣∣∣ < ε+ 16
9 ·

(3
4

)m+1
.

Proof. This follows from an analagous argument as in Claim 3.2. By Lemma 3.9,
the uncertainty is 4/9 the original one. �

Definition 3.12. We have j(k) := lim
n→∞

QM
n (k).

Proposition 3.13. Note j(k) is well-defined; in addition, for all m > k we have

|j(2k)− gk(m)| < 16
9

(3
4

)m+1
.

Proof. The proof is similar to that of Proposition 3.8. �
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Lemma 3.14. For k ∈ 2N,

`(k) = j(k)
4 + `(k − 2)− `(k − 4)

4 .

Proof.
PM

n (k) = P (|S − S| = 2n− 1− k)

= 1
4P

(
|S − S| = 2n− 1− k

∣∣∣ 0, n− 1 ∈ S
)

+ 1
2P

(
|S − S| = 2n− 1− k

∣∣∣ 0 /∈ S
)

+ 1
2P

(
|S − S| = 2n− 1− k

∣∣∣ n− 1 /∈ S
)

− 1
4P

(
|S − S| = 2n− 1− k

∣∣∣ 0, n− 1 /∈ S
)

= 1
4Q

M
n (k) + 1

2P
M
n−1(k − 2) + 1

2P
M
n−1(k − 2)− 1

4P
M
n−2(k − 4). (3.10)

The left and right hand sides converge to `(k) and j(k)
4 +`(k−2)− `(k−4)

4 respectively.
�

Corollary 3.15. For k ∈ 2N,

j(k) = 4`(k)− 4`(k − 2) + `(k − 4), and `(k) =
∞∑

i=0

i+ 1
2i+2 j(k − 2i).

Corollary 3.16. For k ∈ 2N,

`(k)− `(k + 2) = −1
4j(k + 2) +

∞∑
i=1

i

2i+3 j(k − 2i).

Remark 3.17. It’s better to focus on and compute the j sequence than the `
sequence, for the following reasons.

• Using the same value of m, estimating the j sequence will produce less
uncertainty than estimating the ` sequence. In view of Proposition 3.8 and
Proposition 3.13, given fk(m) and gk(m), which are finitely computable,
`(2k) is within 4

(
3
4

)m+1
from fk(m), while j(2k) is within only 16

9

(
3
4

)m+1

from gk(m), reducing to a factor of 4/9.
• When estimating `(2)− `(4), which is the bottleneck difference regarding

Theorem 1.2, the uncertainty coming from the j sequence would be further
compressed while that from ` would be amplified. Say each term in the j
sequence has an uncertainty of e, then by Corollary 3.16, the uncertainty
of `(2) − `(4) is only (1

4 + 1
16)e = 5e/16, whereas if we estimated the `

sequence honestly the uncertainty would be 2e.6
• What’s more, it is 4x faster to compute gk(m) than fk(m) because the

conditional probability reduces two degrees of freedom.
6The bottleneck difference for Theorem 1.3 is `(0)−`(8), which would have uncertainty 73e/64

under the j method by Corollary 3.15, but 2e under the ` method.
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Approximately7, the j method is 4log3/4( 4
9 ·

5
32 ) × 4 ≈ 1527656 times faster than the

` method to verify Theorem 1.2, and ≈ 2981 times faster to verify Theorem 1.3.
One can divide the 25.2 years (mentioned earlier) by these numbers to see how
everything is going to become feasible.

Armed with these results, we are ready now to prove Theorem 1.3.

3.3. Calculations and results.
Calculation 3.18. The code in Appendix B calculates the data in Table 1.

k gk(23)
0 8592305829704/244

1 4442759682300/244

2 2367846591103/244

3 1174068145740/244

4 559669653171/244

5 256031157923/244

6 114186380080/244

7 49736070308/244

8 21123843993/244

9 8778930083/244

10 3543398884/244

11 1378772067/244

12 508048560/244

13 174732658/244

14 54900922/244

15 15344643/244

16 3692910/244

17 737437/244

18 116855/244

19 13885/244

20 1134/244

21 55/244

22 1/244

Table 1. Values of gk(m) when m = 23.

Lemma 3.19. The following inequalities hold:
`(0)− `(2) ∈ (−0.06359,−0.06268)
`(2)− `(4) ∈ (−0.00369,−0.00256)
`(4)− `(6) ∈ (0.02895, 0.03030)
`(6)− `(8) ∈ (0.03838, 0.03989)
`(8)− `(10) ∈ (0.03523, 0.03686). (3.11)

7This is a rough estimate: the computational complexities of fk(m) and gk(m) are both
asymptotically 4m ·m2, but when m is decreased we only counted the boost coming from the
4m factor, neglecting that from the quadratic term; also, m is always an integer, so there are
floor-and-ceiling errors.
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In particular,
`(10) < `(8) < `(0) < `(6) < `(2) < `(4). (3.12)

Proof. This follows from Proposition 3.13, Corollary 3.16 and Calculation 3.18. �
Proof of Theorem 1.3. Follows from Claim 3.2, Corollary 3.6 and Lemma 3.19. �

We report on some numerical bounds.
Theorem 3.20. The following inequalities hold:

0.12165 < `(0) < 0.12255
0.18434 < `(2) < 0.18614
0.18713 < `(4) < 0.18959
0.15728 < `(6) < 0.16019
0.11801 < `(8) < 0.12119
0.08188 < `(10) < 0.08523
0.05355 < `(12) < 0.05700
0.03334 < `(14) < 0.03685
0.01981 < `(16) < 0.02335
0.01115 < `(18) < 0.01471
0.00580 < `(20) < 0.00937. (3.13)

Proof. The claims follow from Proposition 3.13, Corollary 3.15 and Calculation
3.18. �

The rigorous bounds are illustrated in Figure 3.

Figure 3. Bounds of `(k) for 0 ≤ k ≤ 30. (Odd k’s are omitted.)

After proving an auxiliary result we will prove Theorem 1.2.
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Lemma 3.21. ∑∞i=0 i · `(i) = 6.

Proof.
∞∑

i=0
i · `(i) = lim

n→∞

∞∑
i=0

i · PM
n (i)

= lim
n→∞

∞∑
i=0

1
2n

(2n− 1− (2n− 1− i)) ·#(S ⊆ [n] : |S − S| = 2n− 1− i)

= lim
n→∞

( 1
2n

(2n− 1)2n − 1
2n

∞∑
i=0

i#(S ⊆ [n] : |S − S| = i))

= lim
n→∞

(2n− 1− 1
2n

∑
S⊆[n]

|S − S|)

= 6 (by Theorem 3 of [MO]8). (3.14)
�

Theorem 3.22. For all k 6= 4, `(k) < `(4).

Proof. Theorem 1.3 proves the case for k < 12. When k ≥ 12, by Lemma 3.5 and
3.21,

2(k − 6) · `(k) <
∞∑

i=k

(k − 6) · `(i)

<
∞∑

i=6
(i− 6) · `(i)

=
∞∑

i=0
(i− 6) · `(i) + 6`(0) + 4`(2) + 2`(4)

<
∞∑

i=0
i · `(i)− 6

∞∑
i=0

`(i) + (6 + 4 + 2)`(4)

= 12`(4). (3.15)
Thus ⇒ `(k) < `(4). �

Proof of Theorem 1.2. The theorem follows from Theorem 3.22 and Remark 3.3.
�

Remark 3.23. Theorem 1.2 gives a partial answer to Question A.2; the rather
strange occurrence of PM

n (2) = PM
n (4) happens only finitely many times.

3.4. About rulers.

Definition 3.24. A ruler of length L is any subset R ⊆ {0, . . . , L}. It is complete
if it can measure every distance shorter or equal to its length; that is, {0, ..., L} ⊆
R−R.

Lemma 3.25. Let an be the number of complete rulers of length n; then an−1 ∼
`(0) · 2n.

8It states that for any AP A of size n, 1
2n

∑
S⊆A |S − S| converges to 2n− 7 when n→∞.



DISTRIBUTION OF MISSING DIFFERENCES IN DIFFSETS 13

Proof. S ⊆ [n] is a complete ruler of length n − 1 iff |S − S| = 2n − 1, so the
number of complete rulers of length n − 1 is equal to PM

n (0) · 2n, which goes to
`(0) · 2n. �

Proof of Theorem 1.4. The claim follows from Lemma 3.25 and Theorem 3.20.
Here c = 2`(0). �

4. Conjectures

Intuitively, when k≪ n, randomly choosing k elements from [n] usually gives
|S−S| = k(k− 1) + 1. On the other hand, to have |S−S| = k(k− 1) + 3 requires
a maximal appearance of coincidences (repeated differences). Hence we have the
following conjecture about the divots in PH

n .

Conjecture 4.1. For every k > 1, k(k − 1) + 3 is a divot of PH
n for sufficiently

large n. Furthermore, they are the only divots.

We also noticed that once a divot appears in PH
n , it seems to never move again:

Conjecture 4.2. If k is a divot of PH
n for n = n1, then it is also a divot for any

n > n1.

About missing differences, we proved Theorem 1.2 by limits, hence not giving an
explicit threshold N such that every n ≥ N satisfies Observation 3. Experimental
data suggest that 15 might be enough already, so we guess:

Conjecture 4.3. For all n ≥ 15, ∀k 6= 4, PM
n (4) > PM

n (k).

Recall that in Theorem 1.3, we compared the limiting probabilities of missing 0,
2, 4, 6, 8 and 10 differences, and found no divot. What about missing 12, or more?
In fact, any two limiting probabilities can be approximated to be arbitrarily precise
using our method, but we couldn’t bound infinite many of them at the same time.
Both intuition and experimental data seem to suggest that the decay after `(4)
should go on forever. Thus, we leave the following conjecture.

Conjecture 4.4. In fact, `(4) > `(2) > `(6) > `(0) > `(8) > `(10) > `(12) > · · · .
In other words, the sequence ` has no divots.
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Appendix A. Distribution of |S − S| when n ≤ 36

Table 2. Number of S ⊆ [n] with |S − S| = k. (n ≤ 24)

k
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276
5 0 0 0 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132
7 0 0 0 0 3 8 17 31 51 77 112 155 208 272 348 436 539 656 789 939 1107 1293 1500 1727 1976
9 0 0 0 0 0 4 10 17 27 43 62 85 113 148 189 236 289 352 423 501 588 687 795 913 1042
11 0 0 0 0 0 0 9 25 47 77 113 170 237 319 413 531 666 825 1000 1206 1430 1691 1970 2289 2630
13 0 0 0 0 0 0 0 17 49 97 169 269 409 606 863 1195 1607 2115 2735 3492 4393 5450 6690 8130 9790
15 0 0 0 0 0 0 0 0 33 93 177 275 402 549 730 967 1238 1562 1932 2355 2829 3345 3946 4613 5343
17 0 0 0 0 0 0 0 0 0 63 187 377 629 973 1417 1978 2688 3628 4765 6151 7794 9781 12089 14774 17861
19 0 0 0 0 0 0 0 0 0 0 128 377 747 1228 1850 2642 3633 4849 6340 8278 10580 13381 16603 20474 24909
21 0 0 0 0 0 0 0 0 0 0 0 248 747 1509 2507 3770 5338 7271 9641 12469 15909 20315 25533 31893 39392
23 0 0 0 0 0 0 0 0 0 0 0 0 495 1472 2975 4999 7519 10654 14499 19129 24681 31221 38903 48354 59263
25 0 0 0 0 0 0 0 0 0 0 0 0 0 988 2975 6022 10104 15278 21596 29249 38430 49408 62377 77572 95318
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1969 5911 11985 20192 30501 43062 58148 76121 97667 123155 153424
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3911 11880 24103 40524 61350 86236 115893 150319 190510 236824
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7857 23734 48377 81542 123470 174352 234160 304245 385858
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15635 47474 96676 162994 246765 347050 465537 602109
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31304 94885 193562 326913 494449 696108 931109
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62732 190623 388606 656644 993569 1396647
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 125501 380805 776640 1312446 1985532
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250793 763402 1557467 2633237
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 503203 1528095 3117611
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1006339 3061916
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2014992
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Number of S ⊆ [n] with |S − S| = k. (24 ≤ n ≤ 36)

k
n 24 25 26 27 28 29 30 31 32 33 34 35 36

0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 24 25 26 27 28 29 30 31 32 33 34 35 36
3 276 300 325 351 378 406 435 465 496 528 561 595 630
5 132 144 156 169 182 196 210 225 240 256 272 289 306
7 1976 2248 2544 2864 3211 3584 3985 4415 4875 5365 5888 6443 7032
9 1042 1184 1338 1504 1682 1876 2084 2305 2541 2795 3064 3349 3651
11 2630 3010 3419 3876 4357 4886 5443 6060 6707 7410 8143 8940 9776
13 9790 11699 13868 16325 19094 22202 25674 29543 33832 38569 43786 49515 55787
15 5343 6158 7029 7980 9024 10164 11384 12696 14093 15597 17216 18941 20767
17 17861 21464 25554 30192 35439 41365 47972 55334 63485 72583 82597 93598 105615
19 24909 30034 35835 42560 50164 58778 68336 79218 91199 104572 119214 135569 153328
21 39392 48297 58729 70921 85023 101393 120236 141992 166842 195124 227418 263837 304894
23 59263 72166 86779 103803 122773 144495 168711 195948 226062 259777 297046 338522 383708
25 95318 116803 141545 170669 203518 241453 283954 332047 385486 445578 511668 585268 666132
27 153424 188936 230785 281634 340918 411385 492735 587687 696368 821738 964188 1126614 1309990
29 236824 290286 351743 422400 502848 598252 705828 831558 972438 1134483 1314383 1519559 1747229
31 385858 480260 589088 713474 855957 1018020 1202962 1419676 1664732 1947773 2265195 2627654 3032028
33 602109 759570 939048 1145157 1379205 1646202 1948206 2289594 2673659 3121284 3619723 4191609 4824889
35 931109 1202343 1512270 1865592 2266137 2720935 3236533 3821295 4483176 5231412 6075752 7058965 8161491
37 1396647 1867806 2404100 3013664 3697776 4468556 5330593 6293553 7368022 8567388 9903780 11391366 13047575
39 1985532 2792117 3726584 4795360 5994044 7342144 8845276 10520512 12382684 14456863 16757210 19313503 22151419
41 2633237 3984017 5596451 7469425 9586795 11966365 14608625 17543417 20782662 24369445 28318130 32680465 37482058
43 3117611 5270104 7970998 11195574 14913983 19131301 23822819 29022146 34739876 41039669 47936336 55509344 63800433
45 3061916 6244117 10557091 15968677 22417023 29862931 38239392 47566626 57804101 69047026 81288502 94666428 109216351
47 2014992 6125358 12494664 21122722 31935586 44822674 59651353 76346946 94783970 115036473 137031262 160950680 186816887
49 0 4035985 12278446 25038586 42321005 63983506 89749444 119386846 152607226 189351319 229343035 272803379 319629353
51 0 0 8080448 24564954 50090752 84658919 127967673 179465499 238552257 304816636 377630128 456991110 542473471
53 0 0 0 16169267 49200792 100303312 169496641 256144840 359073831 477185749 609113912 754212597 911317415
55 0 0 0 0 32397761 98478615 200765677 339187677 512453496 718291220 953949620 1217261287 1505590283
57 0 0 0 0 0 64826967 197164774 401837351 678805584 1025433250 1436715877 1907636501 2432498687
59 0 0 0 0 0 0 129774838 394536002 804070333 1358091161 2051059855 2873264810 3813305230
61 0 0 0 0 0 0 0 259822143 789993459 1609586119 2717986051 4104228068 5747795503
63 0 0 0 0 0 0 0 0 520063531 1580640910 3220331421 5437313809 8208838614
65 0 0 0 0 0 0 0 0 0 1040616486 3163602123 6444236200 10879185718
67 0 0 0 0 0 0 0 0 0 0 2083345793 6330608624 12894355828
69 0 0 0 0 0 0 0 0 0 0 0 4168640894 12668987317
71 0 0 0 0 0 0 0 0 0 0 0 0 8342197304
73 0 0 0 0 0 0 0 0 0 0 0 0 0

Remark A.1. Denoting the table by T , Tn,k/2n = PH
n (k) = PM

n (2n− 1− k).

Question A.2. Observe that when n = 3, 11, 12, 14, PM
n (2) = PM

n (4). Such
frequent repetition of large numbers doesn’t look so random. Is there any reason
behind it? Will it happen again?
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Appendix B. Code for Estimating j(2k)

#include <stdio.h>
#include <time.h>
#include <math.h>
long long cnts[100];
int main() {

int m = 23, d; // Measure prob of missing n-1, ... n-m diffs
clock_t begin = clock();
double j[100], error = pow(0.75, m+1) * 16 / 9;
long long cnt, r1 = (1LL << 2*m), r2 = 2*m-1;
for(long long S = (1LL << (2*m-1)) + 1; S < r1; S+=2) {

cnt = 0;
for(d = m; d < r2; d++) if(!(S & (S >> d))) cnt++;
cnts[cnt]++;

}
for(int i=0; i<m; i++) {

j[2*i] = 1.0 * cnts[i] / pow(2, 2*m-2);
printf("j(%d) = %f+-%e\t(G%d = %lld/2ˆ%d)\n", 2*i,
j[2*i], error, i, cnts[i], 2*m-2);

}
clock_t end = clock();
double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
printf("\nj(0)/4 < (%f+%f)/4 = %f <? %f = %f-%f < j(4).\nj(0)+\
j(2) > %f+%f-2*%f = %f >? %f = 4(%f+%f) = 4j(6).\n",
j[0], error, j[0]/4+error/4, j[4]-error, j[4], error,
j[0], j[2], error, j[0]+j[2]-2*error, j[6]*4+error*4,
j[6], error);
printf("In %f sec.\n", time_spent);
return 0;

}

Remark B.1. The algorithm is Ω(4mm2). When m = 23, it runs for 92.73 hours
on our laptop. In fact, even when m = 18, which takes only 3 minutes to run, the
results could already establish `(2)− `(4) < 0, and hence Theorem 1.2, although
it’s not strong enough to show that `(0) > `(8). The reader is welcome to confirm
our calculations or achieve better bounds.
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