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Abstract
We generalize work of Erd̋os and Fishburn to study the structure of finite point sets that
determine few distinct triangles. Specifically, we ask for agiven t, what is the maximum
number of points that can be placed in the plane to determine exactly t distinct triangles?
Denoting this quantity byF (t), we show thatF (1) = 4, F (2) = 5, and we completely
characterize the optimal configurations fort = 1, 2. We also discuss the general structure
of optimal configurations and conjecture that regular polygons are always optimal. This
differs from the structure of optimal configurations for distances, where it is conjectured
that optimal configurations always exist in the triangular lattice. We also prove that the
number of distinct triangles determined by a regularn-gon is asymptotic ton2/12; so if
the conjecture about regularn-gons being optimal is true, we identify the constant for the
lower bound of distinct triangles determined by any point configuration.

1This work was supported by NSF Grants DMS1265673, DMS1561945, and DMS1347804, Simons Founda-
tion Grant #360560, Williams College, and the Clare Boothe Luce program. We also thank Paul Baird-Smith and
Xiaoyu Xu for helpful conversations.
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1. Introduction

Finite point configurations are a central object of study in discrete geometry. Perhaps the
most well-known problem is the Erdős distinct distances conjecture, which states that any
set ofn points in the plane determines at leastΩ(n/

√
logn) distinct distances between

points. This problem, first proposed by Erdős in 1946 [2], was essentially resolved by Guth
and Katz who proved thatn points determined at leastΩ(n/ logn) distinct distances [5].
Higher dimensional analogs still remain open. A closely related question is: given a fixed
positive integerk, what is the maximum number of points that can be placed in theplane to
determine exactlyk distances? Furthermore, can the optimal configurations be completely
characterized? Erdős and Fishburn [3] introduced this question in 1996 and characterized
the optimal configurations for1 ≤ k ≤ 4. Shinohara [8] and Wei [10] have characterized
the optimal configurations fork = 5 andk = 6, respectively. Erd̋os also conjectured that
an optimal configuration always exists in the triangular lattice givenk large enough (see
Figure 1) and this conjecture remains open.

Figure 1: Maximal configurations determining exactlyk distances, for2 ≤ k ≤ 6 [1]. For
eachk > 2, there is an example from the triangular lattice; it is conjectured that this is
always the case fork large enough.

As a distance is just a pair of points, distances can be phrased as the set of 2-point con-
figurations determined by a set. Analogously, we can study the set of 3-point configurations
(i.e., triangles) determined by a set. The analogue of the Erdős distinct distance problem
would ask for the minimum number of distinct triangles determined by n points in the
plane. It follows directly from Guth and Katz’s result on thenumber of distinct distances
that a set ofn points in the plane determines at leastΩ(n2/ log(n)) distinct triangles, but
Misha Rudnev [7] adapted their argument and improved this bound toΩ(n2). It is also
known that this bound is best possible up to the implicit constant. We study the following
analogue of Erd̋os and Fishburn’s question: given a fixedt, what is the maximum number
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of points that can be placed in the plane to determine exactlyt distinct triangles? Our main
result is the following.

Theorem 1.1. Let F (t) denote the maximum number of points that can be placed in the
plane to determine exactlyt distinct triangles. Then

1. F (1) = 4 and the only configuration that achieves this is a rectangle,and

2. F (2) = 5 and the only configurations that achieve this are a square with its center
and a regular pentagon.

We also make two conjectures: first, thatF (3) = 6, with a regular hexagon being a
representative optimal configuration, and second, that a regular polygon always minimizes
the number of distinct triangles in ann-point set. If true, this second conjecture determines
the true leading constant for Guth and Katz’s asymptotic of at leastΩ(n2) distinct triangles
for a set ofn points:1/12.

We prove Theorem 1.1 by classifying all potential arrangements of 4-point sets in the
plane and sorting them by the minimum number of distinct triangles they create. To show
part 1, we look at the 4-point sets that do not trivially determine more than one triangle.
Through elementary geometry, we eliminate all non-trivialcases that have at least two
distinct triangles except the rectangle. This immediatelyimplies thatF (1) = 4, and the
rectangle uniquely satisfies this equation. Proving part 2,we take the 4-point sets that
determine fewer than three distinct triangles, and we examine all possible ways to add a
fifth point to the set. After removing all cases where the fifthpoint causes at least three
distinct triangles, the only remaining configurations are the square with a point at its center
and the regular pentagon. Thus,F (2) = 5.

2. Conjectures

In this section, we present some conjectures and investigate their consequences.

Conjecture 2.1. Any set of seven points in the plane determines at least four distinct tri-
angles; thusF (3) = 6.

In Figure 2 we see that the vertices of a regular hexagon determine exactly three distinct
triangles, so we knowF (3) ≥ 6.

Another interesting question to ask concerns the general structure of the optimal config-
urations. For example, are regular polygons always optimal? What about regular polygons
with their centers? As we discussed in the introduction, Erdős and Fishburn conjectured in
[3] that optimal configurations for distinct distances always exist in the triangular lattice.
For triangles, we make an analogous but qualitatively different conjecture.
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Figure 2: A regular hexagon determines three distinct triangles.

Conjecture 2.2. The regularn-gon minimizes (not necessarily uniquely) the number of
distinct triangles determined by ann-point set.2

If true, Conjecture 2.2 establishes the following best-possible result on the number of
distinct triangles. We offer a proof of this claim in Section6.

Theorem 2.3. Unconditionally, the vertices of a regularn-gon determine[n2/12] distinct
triangles, where[y] denotes the nearest integer toy. Assuming Conjecture 2.2, this implies
that [n2/12] is the minimum number of distinct triangles that can be determined by a set of
n points in the plane.

Remark 2.4. It is known from the work of Rudnev, expanding on a result of Guth and Katz,
that a set ofn points in the plane determines at leastΩ(n2) distinct triangles, and that this
bound is best possible. If true, Conjecture 2.2 establishesthe true leading constant, namely
1/12.

3. Definitions and setup

We make precise the notion of distinct triangles.

Definition 3.1. Given a finite point setP ⊂ R
2, we say two triples(a, b, c), (a′, b′, c′) ∈ P 3

are equivalent if there is an isometry mapping one to the other, and we denote this as
(a, b, c) ∼ (a′, b′, c′).

Definition 3.2. Given a finite point setP ⊂ R
2, we denote byP 3

nc the set of noncollinear
triples (a, b, c) ∈ P 3.

2In [1] it was stated as an open problem, due to Brass, whether the regularn-gon minimizes the number of
distinct triangles determined by ann-point set. Given the evidence in this paper, we go further and conjecture that
it is true.
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Definition 3.3. Given a finite point setP ⊂ R
2, we define the set of distinct triangles

determined byP as
T (P ) := P 3

nc/ ∼ . (3.1)

We prove Theorem 1.1 by enumerating cases and disposing of them one by one via
elementary geometry. We then conclude with a conjecture analogous to that of Erd̋os con-
cerning the structure of optimal configurations in general.

In the proof of Theorem 1.1, we also use the following lemma, which we prove in
Section 7.

Lemma 3.4. For a set of four noncollinear points in the plane, exactly one of the following
holds.

1. The four points are not in convex position.

2. The four points are in convex position.

(a) Three of the points are collinear.

(b) The determined quadrilateral has four distinct side lengths.

(c) The determined quadrilateral has exactly one pair of congruent sides.

i. The congruent sides are adjacent.

ii. The congruent sides are opposite.

(d) The determined quadrilateral has two distinct pairs of congruent sides.

i. The congruent sides are adjacent to each other (a kite).

ii. The congruent sides are opposite each other (a parallelogram).

(e) Three sides are congruent and the fourth is distinct.

(f) All four sides are congruent (a rhombus).

Cases 2b, 2(c)i, 2(c)ii, and 2(d)i determine at least three distinct triangles. Cases 1, 2a,
and 2e determine at least two distinct triangles.

4. Classifying optimal 1-triangle sets

In this section, we prove part (1) of Theorem 1.1. We show thatthe only four-point con-
figuration that determines exactly one triangle is a rectangle. This proves thatF (1) = 4

because there is no five-point configuration such that every four-point subconfiguration is
a rectangle.

By Lemma 3.4, we only need to consider the cases 2(d)ii and 2f because all of the other
cases trivially lead to at least two triangles. We consider first the case 2(d)ii, when there
are two pairs of congruent sides opposite each other.
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Proof of case 2(d)ii: two pairs of opposite congruent sides.Since two pairs of opposite sides
are congruent, the quadrilateral must be a parallelogram (Figure 3). We claim△ABC and
△BCD are congruent if and only ifABCD is a rectangle. They share sideBC and
AB = CD, so△ABC ∼= △BCD if and only ifBD = AC, which happens if and only if
ABCD is a rectangle.

A

B C

D

Figure 3: A quadrilateral with two pairs of opposite congruent sides. IfABCD is a rect-
angle, then it determines only one triangle, but ifABCD is not a rectangle, then△ABC
and△BCD are distinct.

Proof of case 2f: four congruent sides.Any quadrilateral with four sides congruent is a
rhombus, and a rhombus is a parallelogram. So, by the argument in case 2(d)ii, a rhombus
determines two distinct triangles if and only if it is not a square. Thus, we have shown that
the only four-point configuration that determines one triangle is a rectangle. This completes
the proof of part (1) of Theorem 1.1.

5. Classifying optimal 2-triangle sets

In this section, we prove part (2) of Theorem 1.1. As in the proof of part (1), we show that
the only possible configurations determining exactly two triangles are the square with its
center and the regular pentagon. We consider the possible four-point configurations enu-
merated in Lemma 3.4, and we show that the addition of a fifth point to any of them (unless
it creates one of the two claimed configurations) necessarily determines a third triangle.
Moreover, adding a sixth point to either of the demonstratedoptimal configurations also
must determine a third triangle. By Lemma 3.4, the only caseswe need to consider are 1,
2a, 2(d)ii, 2e, and 2f because the other four point configurations already contain more than
two distinct triangles.

Proof of case 1: not in convex position.Using the notation of Figure 4, if△ABC is not
equilateral, or if△ABC is equilateral butD is not the center of△ABC, then there are
already three distinct triangles, so no more work is needed.
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If △ABC is equilateral andD is its center, we show that the addition of a fifth point
anywhere necessarily determines a new triangle. When we adda fifth pointE, it will
necessarily determine a triangle withAB (Figure 4). If△EAB is not congruent to△ABC

or△ABD, we’re done, so assume it’s congruent to one of those. Eitherway,△ECB will
be distinct from the other two, so we have three distinct triangles, so this case is done.

A B

C

D

E′

E

Figure 4: Possibilities for adding a fifth point to a non-convex set.

Proof of case 2a: three collinear points.With the notation of Figure 5, ifD does not lie on
the perpendicular bisector ofAB, then△ACD, △BCD, and△ABD are all distinct, so
no more work is needed. Also note that if a fifth pointE is added to the interior of△ABD,
it creates a non-convex four-point subconfiguration, so theprevious case applies to show
that there are at least 3 distinct triangles. Thus we assume the fifth pointE is added outside
△ABD.

If D lies on the perpendicular bisector ofAB but DC 6= AB, the addition of a fifth
pointE will create a triangle withAC. Triangle△EAC can’t be congruent to△ABD

becauseAC is shorter than any side of△ABD, so to avoid a third triangle we must have
△EAC ∼= △ACD. There are three choices forE that satisfy this (Figure 5), but either
way,△EAC, △EAB, and△EDB are all distinct.

If D lies on the perpendicular bisector ofAB andDC = AB, then the same argument
from above still applies; however, in this case, choosingE to form the squareADBE

leaves us with only two triangles, but the other two choices forE give us three (see Figure
5), so this case is done.
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A B
C

D

EE′

E′′

Figure 5: Addition of a fifth point when three points are collinear. IfDC 6= AC, then any
choice ofE forces a third triangle. If, on the other hand,DC = AC, then choosingE
creates a square with its center butE′ andE′′ still generate a third triangles.

Proof of case 2(d)ii: two pairs of opposite congruent sides.This case has two subcases.
Subcase A: non-rectangle: Using the notation of Figure 6, if we add a fifth pointE on

line AB, then we have five points with three collinear, so we have 3 distinct triangles by
case 5. So assumeE does not lie on lineAB. Then△EAB will be created. If△EAB

is distinct from both△ABC and△ABD, then we also have three distinct triangles, so
assume otherwise. The only ways this can happen are enumerated in Figure 6. In Figure
6a, pointE creates three collinear points (EAD), pointE′ creates a non-convex subconfig-
uration (ACBE′), and pointE′′ creates three collinear points (CDE′′). Thus in any case
there will be three distinct triangles. In Figure 6b, pointE′ creates three collinear points
(CBE′) and pointE′′ also creates three collinear points (DE′′C). PointE creates a kite
ADBE if AD 6= DB, and ifAD = DB, thenCBE must be collinear, so in this case
also, we have three distinct triangles no matter what.

Subcase B: non-square rectangle: If the fifth point is added inside the rectangle, then we
get either a non-convex configuration or a configuration withthree collinear points (Figure
7a). So assume that the fifth point is added outside the rectangle. Using the notation of
Figure 7b, to add a fifth pointE without creating three distinct triangles there are three
potential possibilities.

1. △EAB ∼= △ABC. In this case, we get three collinear points, so we have three
triangles.

2. △E′AD ∼= △ABC. Here,DCE are collinear, so we have three triangles.

3. △E′′DC ∼= △E′′CB 6∼= △ABC. In this case,E′′DAB will form a kite, so we
have three triangles.

So we see both subcases yield at least three triangles, so theproof of case 2(d)ii is
complete.
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A B

D
C

E E′

E′′

(a) Possibilities forE so that△EAB ∼
=

△ABC. Any one of these choices cre-
ates a 4-point subconfiguration deter-
mining at least 3 distinct triangles.

A B

D C

E E′

E′′

(b) Possibilities forE so that△EAB ∼
=

△ABD. Here also, any choice creates
a bad 4-point subconfiguration.

Figure 6: Possible additions of a fifth point when two pairs ofopposite sides are congruent.

A

B C

D

E

(a) Any way to place a fifth point inside
a rectangle results in at least 3 distinct
triangles.

A

B

D C

E

E′

E′′

(b) Any way to place a fifth point out-
side a rectangle also results in at least 3
distinct triangles.

Figure 7: Any way to add a fifth point to a rectangle results in at least 3 distinct triangles.

Proof of case 2e: three congruent sides.Using the notation of Figure 8, if the quadrilat-
eralABCD is not a trapezoid, then in particularAC 6= BD. Then we claim△ABD,
△BDC, and△ABC are all distinct. Triangle△ABC 6∼= △ABD becauseAC 6= BD. If
△ABC ∼= △BDC, thenAB = BD andCD = AC, but this is impossible because then
there would be two isoceles triangles based onAD.

So we can assumeABCD is a trapezoid. When we add a fifth pointE, △EAD is
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created (Figure 8). As in case 2(d)ii, we must have△EAD ∼= △ABD or △EAD ∼=
△ACD. Suppose△EAD ∼= △ABD (Figure 8a). In the figure, pointE creates a non-
convex configurationEABD and pointE′ creates three collinear pointsE′DC. For point
E′′, if E′′C is a new distance then we obviously have a new triangle. IfE′′C = DC,
thenE′′DC is a new triangle. IfE′′C = AC, thenE′′DAC is a kite, so we have three
triangles. IfE′′C = BC, thenABCE′′D is a regular pentagon, and this is one of our
claimed optimal configurations.

Now suppose that△EAD ∼= △ACD (Figure 8b). PointE in the figure makesEACD

either a kite, a non-convex congfiguration, or a configuration with three collinear points,
depending on the length ofDC. In any case, we have at least three triangles. PointE′

makes three collinear pointsE′AB. For pointE′′, if E′′C is a new distance, we have a
new triangle. IfE′′C = AD, thenADE′′C is a non-rhombus parallelogram, so we have
three triangles. IfE′′C = AC, thenDE′′C is a new triangle. Finally, ifE′′C = DC,
thenDE′′C is also a new triangle. This shows that the only way to add a fifth point to a
trapezoid configuration without generating a third triangle is to create a regular pentagon,
which concludes the proof of case 2e.

A B

D

C

E

E′

E′′

(a) Options for adding a fifth pointE
so that△EAD ∼

= △ABD. Adding
E or E′ will create a third triangle, and
addingE′′ will create a third triangle if
and only ifDC 6= AC. If DC = AC,
E

′′ is the fifth vertex of a regular pen-
tagon.

A B

D

C

E

E′

E′′

(b) Options for adding a fifth pointE so
that △EAD ∼

= △ACD. E and E
′

both generate a third triangle, andE′′

generates a third triangle ifD 6= AC.
If DC = AC, thenE′′ andC are the
same point.

Figure 8: Possible additions of a fifth point when three sidesare congruent.

Proof of case 2f: four congruent sides.There are two subcases: the four points either form
a non-square rhombus or a square.
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If the four points form a non-square rhombus, then the argument presented in case 2(d)ii
for a non-rectangle parallelogram also applies to show thatthe addition of a fifth point
anywhere generates a third triangle (see Figure 6).

If the four points form a square, we must show that the addition of a fifth point anywhere
but the center results in a configuration determining at least three triangles. If the fifth
point is on the interior of the square but not in the center, then it creates a non-convex
configuration (Figure 9a).

If the fifth point E is added outside the square, to avoid three distinct triangles, we
must place it so that either△EBC ∼= △BCD or △EBC ∼= △EBA (see Figure 9b).
If △EBC ∼= △BCD, thenECD are collinear, so there are at least three triangles. If
△EBC ∼= △EBA, then we have a non-convex configuration, so there are at least three
distinct triangles in this case also.

This shows that the addition of a fifth point to a square anywhere but the center generates
at least three distinct triangles, and this completes the proof of case 2f.

D

A B

C

E

(a) Addition of a fifth point inside the
square but not at the center.ABCE is
a non-convex configuration, so we get
three distinct triangles.

A B

CD E

E′

(b) Options for adding a fifth point toE
to the outside of a square. Either option
generates three distinct triangles.

Figure 9: Options for adding a fifth point to a square. Any choice except for the center of
the square will result in a configuration with at least three distinct triangles.

6. Proof of Theorem 2.3

Proof. We show that the vertices of a regularn-gon determine[n2/12] distinct triangles.
Conditional on Conjecture 2.2, this completes the proof. Label the vertices of a regular
n-gon{P0, . . . , Pn−1}. By the symmetry of the configuration, every congruence class of
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a triangle has a member withP0 as a vertex, so when counting triangles we can just count
triangles incident onP0. To form a triangle, we just have to pick two other vertices,Pa and
Pb, and we can assumea < b. By symmetry,△P0PaPb will be distinct from△P0Pa′Pb′ if
and only if{a−0, b−a, n−b} and{a′−0, b′−a′, n−b′} are not the same set (see Figure
10). Thus there is a bijection between distinct triangles determined by the regularn-gon
and ways to writen as a sum of three positive integers. Using a result from the theory of
integer partitions (see [6]), this quantity is equal to[n2/12], so this completes the proof.

P0 P1

P8

P7

P5

P6

P4

P3

P2

Figure 10: Illustrating the bijection described in the proof of Theorem 2.3 withn =
9. Note that triangles△P0P4P7 and △P0P3P5 represent the same partition of9
({4− 0, 7− 4, 9− 7} = {3− 0, 5− 3, 9− 5} = {4, 3, 2}). Thus they are congruent;
however,△P0P6P8 represents a different partition({6− 0, 8− 6, 9− 8} = {6, 2, 1}),
so it is a different triangle.

However, we can also get this quantity explicitly, without using Honsberger’s result. We
denote the number of ways to writen as a sum of three positive integers asp(n, 3). Since
the order of a partition doesn’t matter, we view this quantity as the number of ways to pick
two elementsk < l from {1, . . . , n} such thatk ≥ l − k ≥ n − l > 0. Note thatk can
be any of the elements⌈n/3⌉ , . . . , n − 2. Oncek is chosen,l can be any of the elements
k + ⌈(n− k)/2⌉ , . . . ,min(2k, n − 1). Note2k is the minimum whenk ≤ ⌊n/2⌋, and
n− 1 is the minimum otherwise. Thus the number of choices is givenby

p(n, 3) =

⌊n/2⌋
∑

k=⌈n/3⌉

2k
∑

l=k+⌈(n−k)/2⌉

1 +

n−2
∑

k=⌊n/2⌋+1

n−1
∑

l=k+⌈(n−k)/2⌉

1

=

n/2
∑

k=n/3

2k
∑

l=k+(n−k)/2

1 +

n−2
∑

k=(n+2)/2

n−1
∑

l=k+(n−k)/2

1 + O(n)
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=

n/2
∑

k=n/3

(3k/2− n/2 + 1) +

n−2
∑

k=(n+2)/2

(n/2− k/2) + O(n)

=
3

4

(

n2

4
− n2

9

)

− n2

12
+

n2

4
− 1

4

(

n2 − n2

4

)

+ O(n)

=
n2

12
+ O(n), (6.1)

and this completes the proof.

7. Proof of Lemma 3.4

Proof of case 1: not in convex position.In this case, the four points form a triangle with
one point in the interior (Figure 11). Triangle△ABD is contained in△ABC, so they
must be distinct.

A

B

C

D

Figure 11: Four points not in convex position;△ABC and△ABD are distinct.

Proof of case 2a: three collinear points.Say pointC lies onAB andD does not (Figure
12). Then△ACD is contained in△ABD, so they are distinct.

A

B

D

C

Figure 12: Four points containting three collinear points;△ACD and△ABD are distinct.

Proof of case 2b: no congruent sides.Say the four points form quadrilateralABCD (Fig-
ure 13). We have△ABD 6∼= △CBD becauseAB, AD, BC, andCD are all distinct. We
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claim △ABC is distinct from both of these. Triangle△ABC sharesAB with △ABD,
andBC 6= AD, so if they are congruent then we must haveBC = BD andAC = AD.
This is impossible because then△CBD and△CAD would both be isoceles triangles with
CD as base, which is impossible unless one contains the other, which is not the case here.
Thus△ABC 6∼= ABD. A similar argument shows that△ABC 6∼= △CBD, so we have
three distinct triangles.

A

B
C

D

Figure 13: A quadrilateral with all distinct side lengths;△ABC, △ABD, and△CBD
are all distinct.

Proof of case 2(c)i: one pair of adjacent congruent sides.Let the points form quadrilateral
ABCD and supposeAB = AD (Figure 14). Triangle△ABD 6∼= △BCD because
△ABD is isoceles but△BCD is not. Also, by the same argument as in part 2b, we
see that△ABC is distinct from both of these, so there are at least three distinct triangles.

A B

D

C

Figure 14: Quadrilateral with one pair of adjacent congruent sides (shown in bold);
△ABD, △BCD, and△ABC are all distinct.

Proof of case 2(c)ii: one pair of opposite congruent sides.SupposeAB = CD (Figure 15).
Triangle△ABC 6∼= △DBC because they have two sides congruent to each other and
the third is not. We now claim that△ACD is distinct from both of these. Triangle
△ACD 6∼= △BCD by the same isoceles triangle argument from parts 2b and 2(c)i. If
△ACD ∼= △ABC, thenBC must equalAD. But that would forceAB to be parallel to
CD, which would forceAC = BD, a contradiction. Thus there are at least three distinct
triangles.
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A B

C

D

Figure 15: Quadrilateral with one pair of opposite congruent sides;△ACD, △BCD, and
△ABC are all distinct.

Proof of case 2(d)i: two pairs of adjacent congruent sides.SayAB = AD andBC =

CD and assume without loss of generality thatAC > BD (Figure 16). Triangle△ABD 6∼=
△BCD becauseAB 6= BC. We claim that there is another triangle distinct from both of
these. First note that it is impossible to have bothAC = CD = BC andBD = AD =

AB. Because of this, the triangles△ABD, △BCD, and△ACD are necessarily distinct,
so there are at least three distinct triangles.

A

C

BD

Figure 16: Quadrilateral with two pairs of adjacent congruent sides. Independently of the
lengths ofAC andBD, the triangles△ABD, △BCD, and△ACD are all distinct.

Proof of case 2e: three congruent sides.SayAD = AB = BC (Figure 17). Triangle
△ABC 6∼= △ADC because they have two sides congruent with each other and oneside
not congruent, thus there are at least two distinct triangles.
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A B

D C

Figure 17: Quadrilateral with three congruent sides;△ABC and△ADC are distinct.
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