OPTIMAL POINT SETS DETERMINING FEW DISTINCT TRIANGLES
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Abstract

We generalize work of Efis and Fishburn to study the structure of finite point sets tha
determine few distinct triangles. Specifically, we ask fajivent, what is the maximum
number of points that can be placed in the plane to deternxiaetly ¢ distinct triangles?
Denoting this quantity by"(¢), we show thatF'(1) = 4, F(2) = 5, and we completely
characterize the optimal configurations foe 1,2. We also discuss the general structure
of optimal configurations and conjecture that regular pohgare always optimal. This
differs from the structure of optimal configurations fortdisces, where it is conjectured
that optimal configurations always exist in the triangukttite. We also prove that the
number of distinct triangles determined by a reguilagon is asymptotic t@?/12; so if
the conjecture about regulargons being optimal is true, we identify the constant for the
lower bound of distinct triangles determined by any pointfaguration.

1This work was supported by NSF Grants DMS1265673, DMS15618dd DMS1347804, Simons Founda-

tion Grant #360560, Williams College, and the Clare Boothed program. We also thank Paul Baird-Smith and
Xiaoyu Xu for helpful conversations.
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1. Introduction

Finite point configurations are a central object of studyistiete geometry. Perhaps the
most well-known problem is the Edd distinct distances conjecture, which states that any
set ofn points in the plane determines at le&xt:/+/log n) distinct distances between
points. This problem, first proposed by Bxiin 1946([2], was essentially resolved by Guth
and Katz who proved that points determined at leaSX(n/ log n) distinct distances [5].
Higher dimensional analogs still remain open. A closelatesd question is: given a fixed
positive integek, what is the maximum number of points that can be placed ipldmee to
determine exactly distances? Furthermore, can the optimal configurationsbpletely
characterized? Efs and Fishburri[3] introduced this question in 1996 andatdtarized
the optimal configurations far < k& < 4. Shinohara [B] and Wei [10] have characterized
the optimal configurations fot = 5 andk = 6, respectively. Erds also conjectured that
an optimal configuration always exists in the triangulatidatgivenk large enough (see
Figurel1) and this conjecture remains open.

Figure 1: Maximal configurations determining exadtlgistances, fo2 < k£ < 6 [1]. For
eachk > 2, there is an example from the triangular lattice; it is cohjeed that this is
always the case for large enough.

As a distance is just a pair of points, distances can be pthasthe set of 2-point con-
figurations determined by a set. Analogously, we can stuelgét of 3-point configurations
(i.e., triangles) determined by a set. The analogue of tidé<$distinct distance problem
would ask for the minimum number of distinct triangles detiered by n points in the
plane. It follows directly from Guth and Katz’s result on thember of distinct distances
that a set of, points in the plane determines at le€%t?/ log(n)) distinct triangles, but
Misha Rudnev([7] adapted their argument and improved thisddo2(n?). It is also
known that this bound is best possible up to the implicit tams We study the following
analogue of Erdls and Fishburn’s question: given a fixedvhat is the maximum number
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of points that can be placed in the plane to determine exadibtinct triangles? Our main
result is the following.

Theorem 1.1. Let F(t) denote the maximum number of points that can be placed in the
plane to determine exacthydistinct triangles. Then

1. F(1) = 4 and the only configuration that achieves this is a rectanaphe]

2. F(2) = 5 and the only configurations that achieve this are a squark Wtétcenter
and a regular pentagon.

We also make two conjectures: first, that3) = 6, with a regular hexagon being a
representative optimal configuration, and second, thagaaepolygon always minimizes
the number of distinct triangles in anpoint set. If true, this second conjecture determines
the true leading constant for Guth and Katz’s asymptotid tast(n?) distinct triangles
for a set ofn points:1/12.

We prove Theorem 1.1 by classifying all potential arrangatsief 4-point sets in the
plane and sorting them by the minimum number of distinchiglas they create. To show
partd, we look at the 4-point sets that do not trivially detere more than one triangle.
Through elementary geometry, we eliminate all non-triciates that have at least two
distinct triangles except the rectangle. This immediaielplies thatF'(1) = 4, and the
rectangle uniquely satisfies this equation. Proving [gawe take the 4-point sets that
determine fewer than three distinct triangles, and we exarall possible ways to add a
fifth point to the set. After removing all cases where the fffthint causes at least three
distinct triangles, the only remaining configurations & dquare with a point at its center
and the regular pentagon. Thug2) = 5.

2. Conjectures

In this section, we present some conjectures and investifair consequences.

Conjecture 2.1. Any set of seven points in the plane determines at least fstinct tri-
angles; thusF'(3) = 6.

In Figure2 we see that the vertices of a regular hexagonrd@terexactly three distinct
triangles, so we know'(3) > 6.

Another interesting question to ask concerns the genetatdtate of the optimal config-
urations. For example, are regular polygons always op#riédhat about regular polygons
with their centers? As we discussed in the introductiongBmhd Fishburn conjectured in
[3] that optimal configurations for distinct distances awaxist in the triangular lattice.
For triangles, we make an analogous but qualitatively difiéconjecture.
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Figure 2: A regular hexagon determines three distinct glies

Conjecture 2.2. The regularn-gon minimizes (not necessarily uniquely) the number of
distinct triangles determined by arpoint se

If true, Conjecturé 2]2 establishes the following bestsjiile result on the number of
distinct triangles. We offer a proof of this claim in Secti@n

Theorem 2.3. Unconditionally, the vertices of a regulargon determingn?/12] distinct
triangles, wherdy| denotes the nearest integergoAssuming Conjectufe 2.2, this implies
that[n?/12] is the minimum number of distinct triangles that can be deteed by a set of
n points in the plane.

Remark 2.4. Itis known from the work of Rudnev, expanding on a result dh@uod Katz,
that a set o points in the plane determines at le&tr?) distinct triangles, and that this
bound is best possible. If true, Conjectlire 2.2 establiihesue leading constant, namely
1/12.

3. Definitions and setup

We make precise the notion of distinct triangles.

Definition 3.1. Given a finite point seP C R?, we say two triple$a, b, ¢), (a’, V', ) € P3
are equivalent if there is an isometry mapping one to the rotiied we denote this as
(a,b,c) ~ (a', V', ).

Definition 3.2. Given a finite point seP C R?, we denote by>3, the set of noncollinear
triples (a, b, c) € P3.

2In [d] it was stated as an open problem, due to Brass, wheltieeregulam-gon minimizes the number of
distinct triangles determined by anpoint set. Given the evidence in this paper, we go furthdrcamjecture that
it is true.
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Definition 3.3. Given a finite point seP C R?, we define the set of distinct triangles
determined byP as
T(P):=P3 ) ~. (3.1)

We prove Theorernh 1.1 by enumerating cases and disposingof tme by one via
elementary geometry. We then conclude with a conjecturkogaas to that of Erds con-
cerning the structure of optimal configurations in general.

In the proof of Theorem 111, we also use the following lemmaijciv we prove in
SectiorY.

Lemma 3.4. For a set of four noncollinear points in the plane, exacthearf the following
holds.

1. The four points are not in convex position.
2. The four points are in convex position.

(a) Three of the points are collinear.
(b) The determined quadrilateral has four distinct sidegts.
(c) The determined quadrilateral has exactly one pair ofgroent sides.

i. The congruent sides are adjacent.
ii. The congruent sides are opposite.

(d) The determined quadrilateral has two distinct pairs ofigruent sides.

i. The congruent sides are adjacent to each other (a kite).
ii. The congruent sides are opposite each other (a parajielm).

(e) Three sides are congruent and the fourth is distinct.
() All four sides are congruent (a rhombus).

Cases 2b, 2(d)[, 2(c)ii, arld 2(¢)i determine at least thresinict triangles. Caselsl I, Pa,

and2é determine at least two distinct triangles.

4. Classifying optimal 1-triangle sets

In this section, we prove paifl(1) of Theoréml1.1. We show thatonly four-point con-
figuration that determines exactly one triangle is a red&anghis proves thaf'(1) = 4
because there is no five-point configuration such that exmmyoint subconfiguration is
arectangle.

By Lemmd 3.4, we only need to consider the c@ses 2(d)iLdne&use all of the other
cases trivially lead to at least two triangles. We considst the casg 2(d)ii, when there
are two pairs of congruent sides opposite each other.
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Proof of cas¢ 2(d)jii: two pairs of opposite congruent sid8ice two pairs of opposite sides
are congruent, the quadrilateral must be a parallelogragu€3). We claimA ABC and
ABCD are congruent if and only iABCD is a rectangle. They share sid#&” and
AB =CD,soAABC = ABCD ifandonlyif BD = AC, which happens if and only if
ABCD is arectangle. O

A
D

Figure 3: A quadrilateral with two pairs of opposite congrusides. IfABCD is a rect-
angle, then it determines only one triangle, buliBC' D is not a rectangle, theA ABC
andABCD are distinct.

Proof of casé 2f: four congruent sidedny quadrilateral with four sides congruent is a
rhombus, and a rhombus is a parallelogram. So, by the argimeasd 2(d)ji, a rhombus
determines two distinct triangles if and only if it is not ausge. Thus, we have shown that
the only four-point configuration that determines one giars a rectangle. This completes
the proof of part[(ll) of Theorem1.1. O

5. Classifying optimal 2-triangle sets

In this section, we prove paffl(2) of TheorEml1.1. As in theopad part (1), we show that

the only possible configurations determining exactly twanigles are the square with its
center and the regular pentagon. We consider the possibtepfint configurations enu-

merated in Lemmia3.4, and we show that the addition of a fifthtpo any of them (unless

it creates one of the two claimed configurations) necegsdetermines a third triangle.
Moreover, adding a sixth point to either of the demonstratgtimal configurations also
must determine a third triangle. By Lemmal3.4, the only caseseed to consider aré 1,
[28]2(d)ij[2&, and 2f because the other four point configumatalready contain more than
two distinct triangles.

Proof of casé€ll: not in convex positioklsing the notation of Figurgl 4, ik ABC is not
equilateral, or ifAABC' is equilateral buD is not the center oA ABC, then there are
already three distinct triangles, so no more work is needed.
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If AABC is equilateral and is its center, we show that the addition of a fifth point
anywhere necessarily determines a new triangle. When weadith point £, it will
necessarily determine a triangle willB (Figurd4). IfAE AB is not congruentta\ ABC
or AABD, we're done, so assume it's congruent to one of those. BithgrA EC B will
be distinct from the other two, so we have three distinchglas, so this case is doneld

Figure 4: Possibilities for adding a fifth point to a non-cexsget.

Proof of cas€ Za: three collinear point§Vith the notation of Figurgl5, iD does not lie on
the perpendicular bisector ofB, then ANAC D, ABCD, andAABD are all distinct, so
no more work is needed. Also note that if a fifth palhts added to the interior A ABD,

it creates a non-convex four-point subconfiguration, sopttesious case applies to show
that there are at least 3 distinct triangles. Thus we asshefifth pointE is added outside
AABD.

If D lies on the perpendicular bisector 4B but DC' # AB, the addition of a fifth
point £/ will create a triangle withAC'. Triangle AEAC can’t be congruent t&\ ABD
becausedC is shorter than any side df AB D, so to avoid a third triangle we must have
AEAC = NACD. There are three choices fér that satisfy this (Figurgl5), but either
way, AEAC, AEAB, andAEDB are all distinct.

If D lies on the perpendicular bisector 3 andDC' = AB, then the same argument
from above still applies; however, in this case, choosih¢p form the squaredDBE
leaves us with only two triangles, but the other two choicedd give us three (see Figure
[), so this case is done. O
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Figure 5: Addition of a fifth point when three points are aadlar. If DC # AC, then any
choice of E forces a third triangle. If, on the other hanBC' = AC, then choosing?
creates a square with its center Btitand E” still generate a third triangles.

Proof of cas¢ 2(d)ji: two pairs of opposite congruent sid€his case has two subcases.

Subcase A: non-rectangl&sing the notation of Figurg 6, if we add a fifth poifiton
line AB, then we have five points with three collinear, so we have 8ndistriangles by
casd b. So assunte does not lie on linedB. Then AEAB will be created. I AEAB
is distinct from bothAABC and AABD, then we also have three distinct triangles, so
assume otherwise. The only ways this can happen are enw@uénatigurd 5. In Figure
[64, pointE creates three collinear pointg 4 D), pointE’ creates a non-convex subconfig-
uration ACBE’), and pointE” creates three collinear point§'DE’). Thus in any case
there will be three distinct triangles. In Figurel 6b, paolfitcreates three collinear points
(CBE’) and pointE” also creates three collinear poinf3£”C). PointE creates a kite
ADBE if AD # DB, and if AD = DB, thenCBE must be collinear, so in this case
also, we have three distinct triangles no matter what.

Subcase B: non-square rectanglithe fifth point is added inside the rectangle, then we
get either a non-convex configuration or a configuration Witke collinear points (Figure
[7d). So assume that the fifth point is added outside the rgletatUsing the notation of
Figure[7bh, to add a fifth poinE without creating three distinct triangles there are three
potential possibilities.

1. AEAB =2 AABC. In this case, we get three collinear points, so we have three
triangles.

2. AE'AD = NABC. Here,DCE are collinear, so we have three triangles.

3. AE"DC = AE"CB % AABC. In this caseE"DAB will form a kite, so we
have three triangles.

So we see both subcases yield at least three triangles, gurdbéof casd 2(djii is
complete. O
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(a) Possibilities folZ so thatAEAB =
AABC. Any one of these choices cre-
ates a 4-point subconfiguration deter-
mining at least 3 distinct triangles.

[

(b) Possibilities forE so thatA EAB =
ANABD. Here also, any choice creates
a bad 4-point subconfiguration.

Figure 6: Possible additions of a fifth point when two pairspposite sides are congruent.

B

(a) Any way to place a fifth point inside
a rectangle results in at least 3 distinct
triangles.

E//
k\
/ N~
D ~ C
-
-
~ 7 N
-
Ee— — — — — e B
A ~ ‘
~
-
S
E

(b) Any way to place a fifth point out-
side a rectangle also results in at least 3
distinct triangles.

Figure 7: Any way to add a fifth point to a rectangle resultstileast 3 distinct triangles.

Proof of cas€ Ze: three congruent siddgsing the notation of Figurel 8, if the quadrilat-
eral ABCD is not a trapezoid, then in particulaiC = BD. Then we claimAABD,
ABDC,andAABC are all distinct. TrianglA\ABC % AABD becausedC # BD. If
NABC = ABDC, thenAB = BD andCD = AC, but this is impossible because then
there would be two isoceles triangles baseddn.

So we can assumdBCD is a trapezoid. When we add a fifth poidt AEAD is
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created (Figur€l8). As in cafe 2(l)ii, we must hav€ AD =~ AABD or AEAD =
AACD. SupposeAEAD = NABD (Figure[8a). In the figure, poinf creates a non-
convex configuratio® AB D and pointE’ creates three collinear poinks DC'. For point
E”, if E’C is a new distance then we obviously have a new triangle&”\€ = DC,
thenE” DC'is a new triangle. IfE”"C = AC, thenE”"DAC is a kite, so we have three
triangles. IfE”C = BC, thenABCE" D is a regular pentagon, and this is one of our
claimed optimal configurations.

Now suppose thah FEAD = A AC D (Figure[8b). Poin¥ in the figure make& AC D
either a kite, a non-convex congfiguration, or a configuratidth three collinear points,
depending on the length dPC. In any case, we have at least three triangles. PBint
makes three collinear poinfs’ AB. For pointE”, if E”C is a new distance, we have a
new triangle. IfE”C = AD, thenADE" C is a non-rhombus parallelogram, so we have
three triangles. IfE”"C = AC, thenDE"C is a new triangle. Finally, it”"C = DC,
thenDE"C is also a new triangle. This shows that the only way to add la ffitint to a
trapezoid configuration without generating a third trianigl to create a regular pentagon,
which concludes the proof of casd 2e. O

C
(a) Options for adding a fifth poinE (b) Options for adding a fifth poinE so
so that AEAD = AABD. Adding that AEAD =~ AACD. E and E’
E or E’ will create a third triangle, and both generate a third triangle, ard’
adding E” will create a third triangle if generates a third triangle D # AC.
and only if DC # AC. If DC = AC, If DC = AC, thenE” andC are the
E" is the fifth vertex of a regular pen- same point.

tagon.

Figure 8: Possible additions of a fifth point when three salescongruent.

Proof of cas¢ 2f: four congruent side$here are two subcases: the four points either form
a non-square rhombus or a square.
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If the four points form a non-square rhombus, then the arguipresented in cage 2(d)ii
for a non-rectangle parallelogram also applies to show ttiataddition of a fifth point
anywhere generates a third triangle (see Fifilire 6).

If the four points form a square, we must show that the addifa fifth point anywhere
but the center results in a configuration determining attldage triangles. If the fifth
point is on the interior of the square but not in the centegnth creates a non-convex
configuration (FigurE9a).

If the fifth point £/ is added outside the square, to avoid three distinct trémghe
must place it so that eitheh FBC =~ ABCD or AEBC = AEBA (see Figuré 9b).
If AEBC =2 ABCD, thenECD are collinear, so there are at least three triangles. If
AEBC = AEBA, then we have a non-convex configuration, so there are dttlrae
distinct triangles in this case also.

This shows that the addition of a fifth point to a square anyebat the center generates

at least three distinct triangles, and this completes thefmf casé 2f. O
D C D C E
———————— »
~ v \ //
Ny / \ ,

~ ’ \ 7
N J . -

J \ ,

’ \ e
o, W
®] d
O e E\\\ g s \\

A T~ B\

\ S~ \

\\ S~ \

\ T~
A B E
- _ o (b) Options for adding a fifth point t&
(2) Addition of a fifth point inside the to the outside of a square. Either option

square but not at the centeABCE is generates three distinct triangles.

a non-convex configuration, so we get
three distinct triangles.

Figure 9: Options for adding a fifth point to a square. Any clkeaéxcept for the center of
the square will result in a configuration with at least threstiict triangles.

6. Proof of Theorem[2.3

Proof. We show that the vertices of a regutaigon determineén?/12] distinct triangles.
Conditional on Conjecturle 2.2, this completes the proofbdldhe vertices of a regular
n-gon{ P, ..., P,_1}. By the symmetry of the configuration, every congruencesctds
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a triangle has a member with, as a vertex, so when counting triangles we can just count
triangles incident o,. To form a triangle, we just have to pick two other verticBsand

P,, and we can assunae< b. By symmetryA Py P, P, will be distinct fromA Py P, Py if
andonly if{a—0,b—a,n—b} and{a’ — 0,0’ —a’,n — 1’} are not the same set (see Figure
[10). Thus there is a bijection between distinct trianglasiaained by the regulat-gon

and ways to writen as a sum of three positive integers. Using a result from therthof
integer partitions (se&|[6]), this quantity is equajtd,/12], so this completes the proof.

P5
P4

P6

P7 P3

P8 P2

PO P1

Figure 10: lllustrating the bijection described in the grod Theorem[2.B withn =
9. Note that trianglesA\PyP,P; and APyP;Ps represent the same partition 6f
({4-0,7-4,9-7}={3-0,5-3,9—-5} ={4,3,2}). Thus they are congruent;
however,A P, Ps Ps represents a different partitio{6 — 0, 8 — 6, 9 — 8} = {6,2,1}),
so it is a different triangle.

However, we can also get this quantity explicitly, withoging Honsberger’s result. We
denote the number of ways to writeas a sum of three positive integersyds, 3). Since
the order of a partition doesn’'t matter, we view this qugrdi the number of ways to pick
two elements: < [ from {1,...,n} suchthatt > [ — k > n — [ > 0. Note thatk can
be any of the elements:/3],...,n — 2. Oncek is chosen] can be any of the elements
E+[(n—Ek)/2],...,min(2k, n — 1). Note2k is the minimum wherk < |n/2], and
n — 1 is the minimum otherwise. Thus the number of choices is gisen

[n/2] 2k n—2 _
p(n,3) = Z Z 1+ Z Z 1
k=[n/3] l=k+[(n—Fk)/2] k=|n/2]+1 I=k+[(n—Fk)/2]
n/2 n—1

> Z 1+ Z > 1+ 0Mm)

k=n/3 l=k+(n—k)/2 =(n+2)/2 l=k+(n—k)/2
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n—2
= (Bk/2—n/2+1)+ > (n/2-k/2) + O(n)
k=n/3 k=(n+2)/2
3 (n? n? n? n? 1/, n?
=1 Z‘E)‘ﬁJFI_Z(” ‘z) + Oln)
" 10 6
and this completes the proof. O

7. Proof of Lemmal3.4

Proof of cas€l: not in convex positiom this case, the four points form a triangle with

one point in the interior (Figule_11). Triangle ABD is contained inAABC, so they
must be distinct. O

@

C

Figure 11: Four points not in convex positich ABC andAABD are distinct.

Proof of casé Za: three collinear pointSay pointC lies on AB and D does not (Figure
[12). ThenAACD is contained i\ ABD, so they are distinct. O

D

A

Figure 12: Four points containting three collinear poidtsiC D andA ABD are distinct.

Proof of casé& Zb: no congruent sideSay the four points form quadrilaterdlBC D (Fig-
ure[13). We havé\ABD % ACBD becaused B, AD, BC, andC'D are all distinct. We
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claim AABC is distinct from both of these. Triangl@ ABC sharesAB with AABD,
andBC # AD, so if they are congruent then we must ha&€ = BD andAC = AD.
This is impossible because thé&yC BD andAC AD would both be isoceles triangles with
CD as base, which is impossible unless one contains the othahis not the case here.
ThusAABC 2% ABD. A similar argument shows that ABC 2 ACBD, so we have
three distinct triangles. O

B
c
Figure 13: A quadrilateral with all distinct side lengthsABC, AABD, and ACBD
are all distinct.

Proof of cas¢ 2(c)i: one pair of adjacent congruent sidest the points form quadrilateral
ABCD and supposelB = AD (Figure[14). TriangleAABD % ABCD because
AABD is isoceles buABCD is not. Also, by the same argument as in pait 2b, we
see that\ ABC is distinct from both of these, so there are at least thraadidriangles.

([l

A B

Figure 14: Quadrilateral with one pair of adjacent congtugdes (shown in bold);
AABD, ABCD, andAABC are all distinct.

Proof of cas¢ Z2(Cjji: one pair of opposite congruent sid8sipposel B = C'D (Figurd1h).
Triangle AABC % ADBC because they have two sides congruent to each other and
the third is not. We now claim thabh AC'D is distinct from both of these. Triangle
AACD % ABCD by the same isoceles triangle argument from darts 2 and afc)
ANACD = NABC, thenBC must equalAD. But that would forceAB to be parallel to
C D, which would forceAC' = BD, a contradiction. Thus there are at least three distinct
triangles.

([l
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A B

Figure 15: Quadrilateral with one pair of opposite congtsiahes;AAC D, ABCD, and
NABC are all distinct.

Proof of cas¢ 2(d)i: two pairs of adjacent congruent siday AB = AD and BC =
CD and assume without loss of generality tH&t > BD (Figurd16). Triangle\ABD %
ABCD becausedB # BC. We claim that there is another triangle distinct from badth o
these. First note that it is impossible to have bdth = CD = BC andBD = AD =
AB. Because of this, the trianglésABD, ABCD, andAAC D are necessarily distinct,
so there are at least three distinct triangles.

A

C

Figure 16: Quadrilateral with two pairs of adjacent congiusdes. Independently of the
lengths of AC and BD, the trianglesAABD, ABC D, andAACD are all distinct.

O

Proof of casé€ 2e: three congruent sidday AD = AB = BC (Figure[1T). Triangle
NABC % NADC because they have two sides congruent with each other ansidme
not congruent, thus there are at least two distinct triangle

O
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D C

A B

Figure 17: Quadrilateral with three congruent sidésj BC andA ADC are distinct.
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